Compare commits

...

3 Commits
0.2 ... master

Author SHA1 Message Date
0a9b381bd0 update gitignore 2024-12-23 10:38:08 +01:00
f1d9bdc04d Remove Python cache files 2024-12-23 10:37:37 +01:00
84bfdaed48 fix variety config 2024-12-20 03:45:00 +01:00
15 changed files with 495 additions and 466 deletions

14
src/.gitignore vendored
View File

@ -1 +1,15 @@
/sources
/auth/config/users/*.json
users/*.json
# Python cache files
__pycache__/
*.py[cod]
*$py.class
# IDE
.idea/
.vscode/
*.swp
*.swo

View File

@ -4,6 +4,7 @@ from dataclasses import dataclass
@dataclass
class Ids:
# Auth Container
USE_MODEL = 'use-model'
AUTH_CONTAINER = 'auth-container'
DASHBOARD_CONTAINER = 'dashboard-container'

View File

@ -1,6 +1,8 @@
import warnings
import flask
import plotly.express as px
from dash import Dash, dcc, html, Input, Output, State, callback_context
from dash import Dash, dcc, html, Input, Output, State
import tensorflow as tf
import keras
import joblib
@ -9,13 +11,14 @@ import os
import argparse
import json
from dash.exceptions import PreventUpdate
from dash_bootstrap_components import Card
from auth import utils
from utils.helpers import clean_column_name
from dashboard.environmental_simulator import *
from dash import no_update
from auth.utils import (
init_directory_structure, verify_user, create_token,
verify_user, create_token,
verify_token, create_user, get_user_config_path, get_default_config
)
from auth.login import create_login_layout, create_register_layout
@ -27,13 +30,6 @@ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Set global precision policy
tf.keras.mixed_precision.set_global_policy('float32')
DEV_MODE = True
model = None
scaler_temporal = None
scaler_static = None
scaler_y = None
MODEL_LOADING = False
def load_config():
try:
@ -106,20 +102,6 @@ def save_config(config):
return False, f"Errore nel salvataggio: {str(e)}"
try:
print(f"Caricamento dataset e scaler...")
simulated_data = pd.read_parquet("./sources/olive_training_dataset.parquet")
weather_data = pd.read_parquet("./sources/weather_data_solarenergy.parquet")
olive_varieties = pd.read_parquet("./sources/olive_varieties.parquet")
scaler_temporal = joblib.load('./sources/olive_oil_transformer/olive_oil_transformer_scaler_temporal.joblib')
scaler_static = joblib.load('./sources/olive_oil_transformer/olive_oil_transformer_scaler_static.joblib')
scaler_y = joblib.load('./sources/olive_oil_transformer/olive_oil_transformer_scaler_y.joblib')
except Exception as e:
print(f"Errore nel caricamento: {str(e)}")
raise e
def prepare_static_features_multiple(varieties_info, percentages, hectares, all_varieties):
"""
Prepara le feature statiche per multiple varietà seguendo la struttura esatta della simulazione.
@ -348,25 +330,8 @@ def mock_make_prediction(weather_data, varieties_info, percentages, hectares, si
def make_prediction(weather_data, varieties_info, percentages, hectares, simulation_data=None):
print(f"DEV_MODE: {DEV_MODE}")
if DEV_MODE:
return mock_make_prediction(weather_data, varieties_info, percentages, hectares, simulation_data)
if app_state.use_model:
try:
if MODEL_LOADING:
return {
'olive_production': 0, # kg/ha
'olive_production_total': 0 * hectares, # kg totali
'min_oil_production': 0, # L/ha
'max_oil_production': 0, # L/ha
'avg_oil_production': 0, # L/ha
'avg_oil_production_total': 0 * hectares, # L totali
'water_need': 0, # m³/ha
'water_need_total': 0, # m³ totali
'variety_details': 0,
'hectares': hectares,
'stress_factor': 0 if simulation_data is not None else 1.0
}
print("Inizio della funzione make_prediction")
# Prepara i dati temporali (meteorologici)
@ -413,7 +378,7 @@ def make_prediction(weather_data, varieties_info, percentages, hectares, simulat
static_data.append(hectares)
# Ottieni tutte le possibili varietà dal dataset di training
all_varieties = olive_varieties['Varietà di Olive'].unique()
all_varieties = app_state.olive_varieties['Varietà di Olive'].unique()
varieties = [clean_column_name(variety) for variety in all_varieties]
# Per ogni varietà possibile nel dataset
@ -468,8 +433,8 @@ def make_prediction(weather_data, varieties_info, percentages, hectares, simulat
print(f"Shape dei dati statici: {static_data.shape}")
# Standardizza i dati
temporal_data = scaler_temporal.transform(temporal_data.reshape(1, -1)).reshape(1, 1, -1)
static_data = scaler_static.transform(static_data)
temporal_data = app_state.scaler_temporal.transform(temporal_data.reshape(1, -1)).reshape(1, 1, -1)
static_data = app_state.scaler_static.transform(static_data)
# Prepara il dizionario di input per il modello
input_data = {
@ -478,7 +443,7 @@ def make_prediction(weather_data, varieties_info, percentages, hectares, simulat
}
# Effettua la predizione
prediction = model.predict(input_data)
prediction = app_state.model.predict(input_data)
print("\nRaw prediction:", prediction)
@ -490,7 +455,7 @@ def make_prediction(weather_data, varieties_info, percentages, hectares, simulat
'total_water_need' # Fabbisogno idrico totale m³/ha
]
prediction = scaler_y.inverse_transform(prediction)[0]
prediction = app_state.scaler_y.inverse_transform(prediction)[0]
print("\nInverse transformed prediction:")
for feature, value in zip(target_features, prediction):
print(f"{feature}: {value:.2f}")
@ -501,8 +466,6 @@ def make_prediction(weather_data, varieties_info, percentages, hectares, simulat
print(f"Applied stress factor: {stress_factor}")
print(f"Prediction after stress:", prediction)
prediction[4] = prediction[4] / 4 # correggo il bias creato dai dati di simulazione errati @todo nel prossimo modello addestrato con i dati corretti sarà dovrà essere rimosso
# Calcola i valori per ettaro dividendo per il numero di ettari
olive_prod_ha = prediction[0] / hectares
min_oil_prod_ha = prediction[1] / hectares
@ -575,6 +538,8 @@ def make_prediction(weather_data, varieties_info, percentages, hectares, simulat
print("Traceback completo:")
print(traceback.format_exc())
raise e
else:
return mock_make_prediction(weather_data, varieties_info, percentages, hectares, simulation_data)
def create_phase_card(phase: str, data: dict) -> dbc.Card:
@ -639,7 +604,7 @@ def calculate_kpis(sim_data: pd.DataFrame) -> dict:
return kpis
def create_kpi_indicators(kpis: dict) -> html.Div:
def create_kpi_indicators(kpis: dict) -> Card:
"""Crea gli indicatori visivi per i KPI"""
def get_stress_color(value):
@ -720,6 +685,213 @@ def create_kpi_indicators(kpis: dict) -> html.Div:
return indicators
class AppState:
_instance = None
_initialized = False
def __new__(cls):
if cls._instance is None:
print("Creating new AppState instance...")
cls._instance = super(AppState, cls).__new__(cls)
return cls._instance
def __init__(self):
# Assicurati che l'inizializzazione avvenga solo una volta
if not AppState._initialized:
print("Inizializzazione AppState...")
self.simulated_data = None
self.weather_data = None
self.olive_varieties = None
self.scaler_temporal = None
self.scaler_static = None
self.scaler_y = None
self.model = None
self.use_model = None
self.initialize_app()
AppState._initialized = True
def initialize_app(self):
"""Inizializza l'applicazione caricando dati e modello"""
try:
print("Inizializzazione applicazione...")
print("Caricamento dataset e scaler...")
# Ignora warning sulla versione di scikit-learn
warnings.filterwarnings("ignore", category=UserWarning)
self.simulated_data = pd.read_parquet("./sources/olive_training_dataset.parquet")
self.weather_data = pd.read_parquet("./sources/weather_data_solarenergy.parquet")
self.olive_varieties = pd.read_parquet("./sources/olive_varieties.parquet")
self.scaler_temporal = joblib.load('./sources/olive_oil_transformer/olive_oil_transformer_scaler_temporal.joblib')
self.scaler_static = joblib.load('./sources/olive_oil_transformer/olive_oil_transformer_scaler_static.joblib')
self.scaler_y = joblib.load('./sources/olive_oil_transformer/olive_oil_transformer_scaler_y.joblib')
print("Caricamento modello...")
try:
self.load_model()
print("Modello caricato con successo")
except Exception as e:
print(f"Errore nel caricamento del modello: {e}")
raise e
print("Inizializzazione completata con successo")
except Exception as e:
print(f"Errore nell'inizializzazione: {str(e)}")
import traceback
traceback.print_exc()
raise e
def load_model(self):
try:
print(f"Keras version: {keras.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"CUDA available: {tf.test.is_built_with_cuda()}")
print(f"GPU devices: {tf.config.list_physical_devices('GPU')}")
# GPU memory configuration
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
print(e)
@keras.saving.register_keras_serializable()
class DataAugmentation(tf.keras.layers.Layer):
"""Custom layer per l'augmentation dei dati"""
def __init__(self, noise_stddev=0.03, **kwargs):
super().__init__(**kwargs)
self.noise_stddev = noise_stddev
def call(self, inputs, training=None):
if training:
return inputs + tf.random.normal(
shape=tf.shape(inputs),
mean=0.0,
stddev=self.noise_stddev
)
return inputs
def get_config(self):
config = super().get_config()
config.update({"noise_stddev": self.noise_stddev})
return config
@keras.saving.register_keras_serializable()
class PositionalEncoding(tf.keras.layers.Layer):
"""Custom layer per l'encoding posizionale"""
def __init__(self, d_model, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
def build(self, input_shape):
_, seq_length, _ = input_shape
# Crea la matrice di encoding posizionale
position = tf.range(seq_length, dtype=tf.float32)[:, tf.newaxis]
div_term = tf.exp(
tf.range(0, self.d_model, 2, dtype=tf.float32) *
(-tf.math.log(10000.0) / self.d_model)
)
# Calcola sin e cos
pos_encoding = tf.zeros((1, seq_length, self.d_model))
pos_encoding_even = tf.sin(position * div_term)
pos_encoding_odd = tf.cos(position * div_term)
# Assegna i valori alle posizioni pari e dispari
pos_encoding = tf.concat(
[tf.expand_dims(pos_encoding_even, -1),
tf.expand_dims(pos_encoding_odd, -1)],
axis=-1
)
pos_encoding = tf.reshape(pos_encoding, (1, seq_length, -1))
pos_encoding = pos_encoding[:, :, :self.d_model]
# Salva l'encoding come peso non trainabile
self.pos_encoding = self.add_weight(
shape=(1, seq_length, self.d_model),
initializer=tf.keras.initializers.Constant(pos_encoding),
trainable=False,
name='positional_encoding'
)
super().build(input_shape)
def call(self, inputs):
# Broadcast l'encoding posizionale sul batch
batch_size = tf.shape(inputs)[0]
pos_encoding_tiled = tf.tile(self.pos_encoding, [batch_size, 1, 1])
return inputs + pos_encoding_tiled
def get_config(self):
config = super().get_config()
config.update({"d_model": self.d_model})
return config
@keras.saving.register_keras_serializable()
class WarmUpLearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Custom learning rate schedule with linear warmup and exponential decay."""
def __init__(self, initial_learning_rate=1e-3, warmup_steps=500, decay_steps=5000):
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.decay_steps = decay_steps
def __call__(self, step):
warmup_pct = tf.cast(step, tf.float32) / self.warmup_steps
warmup_lr = self.initial_learning_rate * warmup_pct
decay_factor = tf.pow(0.1, tf.cast(step, tf.float32) / self.decay_steps)
decayed_lr = self.initial_learning_rate * decay_factor
return tf.where(step < self.warmup_steps, warmup_lr, decayed_lr)
def get_config(self):
return {
'initial_learning_rate': self.initial_learning_rate,
'warmup_steps': self.warmup_steps,
'decay_steps': self.decay_steps
}
@keras.saving.register_keras_serializable()
def weighted_huber_loss(y_true, y_pred):
# Pesi per diversi output
weights = tf.constant([1.0, 0.8, 0.8, 1.0, 0.6], dtype=tf.float32)
huber = tf.keras.losses.Huber(delta=1.0)
loss = huber(y_true, y_pred)
weighted_loss = tf.reduce_mean(loss * weights)
return weighted_loss
print("Caricamento modello...")
model_path = './sources/olive_oil_transformer/olive_oil_transformer_model.keras'
if not os.path.exists(model_path):
raise FileNotFoundError(f"Modello non trovato in: {model_path}")
model = tf.keras.models.load_model(model_path, custom_objects={
'DataAugmentation': DataAugmentation,
'PositionalEncoding': PositionalEncoding,
'WarmUpLearningRateSchedule': WarmUpLearningRateSchedule,
'weighted_huber_loss': weighted_huber_loss
})
self.model = model
self.use_model = True
except Exception as e:
print(f"Errore nel caricamento del modello: {str(e)}")
self.model = None
self.use_model = False
app_state = AppState()
server = flask.Flask(__name__)
server.secret_key = utils.SECRET_KEY
@ -1202,8 +1374,8 @@ def create_configuration_tab():
dcc.Dropdown(
id='variety-1-dropdown',
options=[{'label': v, 'value': v}
for v in olive_varieties['Varietà di Olive'].unique()],
value=olive_varieties['Varietà di Olive'].iloc[0],
for v in app_state.olive_varieties['Varietà di Olive'].unique()],
value=app_state.olive_varieties['Varietà di Olive'].iloc[0],
className="mb-2"
),
], md=4),
@ -1243,7 +1415,7 @@ def create_configuration_tab():
dcc.Dropdown(
id='variety-2-dropdown',
options=[{'label': v, 'value': v}
for v in olive_varieties['Varietà di Olive'].unique()],
for v in app_state.olive_varieties['Varietà di Olive'].unique()],
value=None,
className="mb-2"
),
@ -1286,7 +1458,7 @@ def create_configuration_tab():
dcc.Dropdown(
id='variety-3-dropdown',
options=[{'label': v, 'value': v}
for v in olive_varieties['Varietà di Olive'].unique()],
for v in app_state.olive_varieties['Varietà di Olive'].unique()],
value=None,
className="mb-2"
),
@ -1783,7 +1955,7 @@ app.layout = html.Div([
dcc.Store(id='session', storage_type='local'),
dcc.Store(id='user-data', storage_type='local'),
dcc.Store(id=Ids.INFERENCE_COUNTER, storage_type='session', data={'count': 0}),
dcc.Store(id=Ids.DEV_MODE, storage_type='session', data={'count': 0}),
dcc.Store(id=Ids.USE_MODEL, storage_type='session', data={'count': 0}),
html.Div(id=Ids.AUTH_CONTAINER),
html.Div(id=Ids.DASHBOARD_CONTAINER),
])
@ -2057,8 +2229,8 @@ def create_water_needs_figure(prediction):
for detail in prediction['variety_details']:
for month in months:
season = get_season_from_month(month)
variety_info = olive_varieties[
olive_varieties['Varietà di Olive'] == detail['variety']
variety_info = app_state.olive_varieties[
app_state.olive_varieties['Varietà di Olive'] == detail['variety']
].iloc[0]
water_need = variety_info[f'Fabbisogno Acqua {season} (m³/ettaro)']
@ -2128,35 +2300,6 @@ def get_season_from_month(month):
return seasons[month]
@app.callback(
Output('loading-alert', 'children'),
[Input('simulate-btn', 'n_clicks'),
Input('debug-switch', 'value')],
running=[
(Output(Ids.DASHBOARD_CONTAINER, 'children'),
[Input('url', 'pathname')],
lambda x: x == '/')
]
)
def update_loading_status(n_clicks, debug_mode):
global DEV_MODE
config = load_config()
print(config)
DEV_MODE = config['inference']['debug_mode']
if MODEL_LOADING:
return dbc.Alert(
[
html.I(className="fas fa-spinner fa-spin me-2"),
"Caricamento del modello in corso..."
],
color="warning",
is_open=True
)
return None
@app.callback(
[
Output(Ids.PRODUCTION_INFERENCE_MODE, 'children'),
@ -2196,7 +2339,6 @@ def update_inference_status(debug_mode, counter_data):
prevent_initial_call=True
)
def toggle_inference_mode(debug_mode):
global DEV_MODE, model, MODEL_LOADING, scaler_temporal, scaler_static, scaler_y
new_counter_data = {'count': 0}
try:
config = load_config()
@ -2205,12 +2347,11 @@ def toggle_inference_mode(debug_mode):
config['inference'] = config.get('inference', {}) # Crea la sezione se non esiste
config['inference']['debug_mode'] = debug_mode
DEV_MODE = debug_mode
print(f"DEV_MODE: {DEV_MODE}")
use_model = not debug_mode
print(f"use_model: {use_model}")
dcc.Store(id=Ids.INFERENCE_COUNTER, data=new_counter_data)
if debug_mode:
MODEL_LOADING = False
app_state.use_model = use_model
if not use_model:
return (
dbc.Alert("Modalità Debug attiva - Using mock predictions", color="info"),
"Debug (Mock)",
@ -2219,149 +2360,6 @@ def toggle_inference_mode(debug_mode):
new_counter_data
)
else:
if model is None:
try:
MODEL_LOADING = True
print(f"Keras version: {keras.__version__}")
print(f"TensorFlow version: {tf.__version__}")
print(f"CUDA available: {tf.test.is_built_with_cuda()}")
print(f"GPU devices: {tf.config.list_physical_devices('GPU')}")
# GPU memory configuration
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
print(e)
@keras.saving.register_keras_serializable()
class DataAugmentation(tf.keras.layers.Layer):
"""Custom layer per l'augmentation dei dati"""
def __init__(self, noise_stddev=0.03, **kwargs):
super().__init__(**kwargs)
self.noise_stddev = noise_stddev
def call(self, inputs, training=None):
if training:
return inputs + tf.random.normal(
shape=tf.shape(inputs),
mean=0.0,
stddev=self.noise_stddev
)
return inputs
def get_config(self):
config = super().get_config()
config.update({"noise_stddev": self.noise_stddev})
return config
@keras.saving.register_keras_serializable()
class PositionalEncoding(tf.keras.layers.Layer):
"""Custom layer per l'encoding posizionale"""
def __init__(self, d_model, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
def build(self, input_shape):
_, seq_length, _ = input_shape
# Crea la matrice di encoding posizionale
position = tf.range(seq_length, dtype=tf.float32)[:, tf.newaxis]
div_term = tf.exp(
tf.range(0, self.d_model, 2, dtype=tf.float32) *
(-tf.math.log(10000.0) / self.d_model)
)
# Calcola sin e cos
pos_encoding = tf.zeros((1, seq_length, self.d_model))
pos_encoding_even = tf.sin(position * div_term)
pos_encoding_odd = tf.cos(position * div_term)
# Assegna i valori alle posizioni pari e dispari
pos_encoding = tf.concat(
[tf.expand_dims(pos_encoding_even, -1),
tf.expand_dims(pos_encoding_odd, -1)],
axis=-1
)
pos_encoding = tf.reshape(pos_encoding, (1, seq_length, -1))
pos_encoding = pos_encoding[:, :, :self.d_model]
# Salva l'encoding come peso non trainabile
self.pos_encoding = self.add_weight(
shape=(1, seq_length, self.d_model),
initializer=tf.keras.initializers.Constant(pos_encoding),
trainable=False,
name='positional_encoding'
)
super().build(input_shape)
def call(self, inputs):
# Broadcast l'encoding posizionale sul batch
batch_size = tf.shape(inputs)[0]
pos_encoding_tiled = tf.tile(self.pos_encoding, [batch_size, 1, 1])
return inputs + pos_encoding_tiled
def get_config(self):
config = super().get_config()
config.update({"d_model": self.d_model})
return config
@keras.saving.register_keras_serializable()
class WarmUpLearningRateSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
"""Custom learning rate schedule with linear warmup and exponential decay."""
def __init__(self, initial_learning_rate=1e-3, warmup_steps=500, decay_steps=5000):
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.warmup_steps = warmup_steps
self.decay_steps = decay_steps
def __call__(self, step):
warmup_pct = tf.cast(step, tf.float32) / self.warmup_steps
warmup_lr = self.initial_learning_rate * warmup_pct
decay_factor = tf.pow(0.1, tf.cast(step, tf.float32) / self.decay_steps)
decayed_lr = self.initial_learning_rate * decay_factor
return tf.where(step < self.warmup_steps, warmup_lr, decayed_lr)
def get_config(self):
return {
'initial_learning_rate': self.initial_learning_rate,
'warmup_steps': self.warmup_steps,
'decay_steps': self.decay_steps
}
@keras.saving.register_keras_serializable()
def weighted_huber_loss(y_true, y_pred):
# Pesi per diversi output
weights = tf.constant([1.0, 0.8, 0.8, 1.0, 0.6], dtype=tf.float32)
huber = tf.keras.losses.Huber(delta=1.0)
loss = huber(y_true, y_pred)
weighted_loss = tf.reduce_mean(loss * weights)
return weighted_loss
print("Caricamento modello...")
# Verifica che il modello sia disponibile
model_path = './sources/olive_oil_transformer/olive_oil_transformer_model.keras'
if not os.path.exists(model_path):
raise FileNotFoundError(f"Modello non trovato in: {model_path}")
# Prova a caricare il modello
model = tf.keras.models.load_model(model_path, custom_objects={
'DataAugmentation': DataAugmentation,
'PositionalEncoding': PositionalEncoding,
'WarmUpLearningRateSchedule': WarmUpLearningRateSchedule,
'weighted_huber_loss': weighted_huber_loss
})
MODEL_LOADING = False
return (
dbc.Alert("Modello caricato correttamente", color="success"),
"Produzione (Local Model)",
@ -2369,24 +2367,8 @@ def toggle_inference_mode(debug_mode):
"0",
new_counter_data
)
except Exception as e:
print(f"Errore nel caricamento del modello: {str(e)}")
# Se c'è un errore nel caricamento del modello, torna in modalità debug
DEV_MODE = True
MODEL_LOADING = False
return (
dbc.Alert(f"Errore nel caricamento del modello: {str(e)}", color="danger"),
"Debug (Mock) - Fallback",
"N/A",
"N/A",
new_counter_data
)
else:
MODEL_LOADING = False
except Exception as e:
print(f"Errore nella configurazione inferenza: {str(e)}")
MODEL_LOADING = False
return (
dbc.Alert(f"Errore: {str(e)}", color="danger"),
"Errore",
@ -2441,7 +2423,6 @@ def display_page(pathname, session_data):
is_valid, username = verify_token(session_data['token'])
if not is_valid:
print("Invalid token") # Debug print
return create_login_layout(), html.Div()
# print(f"Valid session for user: {username}") # Debug print
@ -2822,9 +2803,10 @@ def check_percentages(perc1, perc2, perc3):
(Output(Ids.DASHBOARD_CONTAINER, 'children'),
[Input('url', 'pathname')],
lambda x: x == '/')
]
],
prevent_initial_call=True
)
def load_configuration(active_tab, variety2, variety3, pathname):
def load_configuration(active_tab, var2_current, var3_current, pathname):
try:
# Carica la configurazione
config = load_config()
@ -2832,8 +2814,18 @@ def load_configuration(active_tab, variety2, variety3, pathname):
# Carica dati varietà
varieties = config['oliveto']['varieties']
var1 = varieties[0] if len(varieties) > 0 else {"variety": None, "technique": None, "percentage": 0}
var2 = varieties[1] if len(varieties) > 1 else {"variety": None, "technique": None, "percentage": 0}
var3 = varieties[2] if len(varieties) > 2 else {"variety": None, "technique": None, "percentage": 0}
if var2_current is not None:
var2 = next((v for v in varieties if v["variety"] == var2_current),
{"variety": var2_current, "technique": None, "percentage": 0})
else:
var2 = {"variety": None, "technique": None, "percentage": 0}
if var3_current is not None:
var3 = next((v for v in varieties if v["variety"] == var3_current),
{"variety": var3_current, "technique": None, "percentage": 0})
else:
var3 = {"variety": None, "technique": None, "percentage": 0}
# Carica costi e marketing
costs = config['costs']
@ -2842,8 +2834,8 @@ def load_configuration(active_tab, variety2, variety3, pathname):
transformation = costs.get('transformation', {})
marketing = costs.get('marketing', {})
var2_exists = var2["variety"] is not None
var3_exists = var3["variety"] is not None
var2_exists = True
var3_exists = True
return [
# Configurazioni base (15 valori)
@ -2924,7 +2916,7 @@ def update_simulation(n_clicks, temp_range, humidity, rainfall, radiation, count
"""
Callback principale per aggiornare tutti i componenti della simulazione
"""
if n_clicks is None or MODEL_LOADING:
if n_clicks is None:
# Crea grafici vuoti per l'inizializzazione
empty_growth_fig = go.Figure()
empty_production_fig = go.Figure()
@ -2980,9 +2972,9 @@ def update_simulation(n_clicks, temp_range, humidity, rainfall, radiation, count
# Estrai le informazioni dalle varietà configurate
for variety_config in config['oliveto']['varieties']:
variety_data = olive_varieties[
(olive_varieties['Varietà di Olive'] == variety_config['variety']) &
(olive_varieties['Tecnica di Coltivazione'].str.lower() == variety_config['technique'].lower())
variety_data = app_state.olive_varieties[
(app_state.olive_varieties['Varietà di Olive'] == variety_config['variety']) &
(app_state.olive_varieties['Tecnica di Coltivazione'].str.lower() == variety_config['technique'].lower())
]
if not variety_data.empty:
varieties_info.append(variety_data.iloc[0])
@ -2990,7 +2982,7 @@ def update_simulation(n_clicks, temp_range, humidity, rainfall, radiation, count
current_count = counter_data.get('count', 0) + 1
prediction = make_prediction(weather_data, varieties_info, percentages, hectares, sim_data)
prediction = make_prediction(app_state.weather_data, varieties_info, percentages, hectares, sim_data)
dcc.Store(id=Ids.INFERENCE_COUNTER, data={'count': current_count})
@ -3006,7 +2998,7 @@ def update_simulation(n_clicks, temp_range, humidity, rainfall, radiation, count
# Creazione grafici con il nuovo stile
details_fig = create_production_details_figure(prediction)
weather_fig = create_weather_impact_figure(weather_data)
weather_fig = create_weather_impact_figure(app_state.weather_data)
water_fig = {} # create_water_needs_figure(prediction)
# Creazione info extra con il nuovo stile
@ -3147,18 +3139,40 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int, help='Port to run the server on')
parser.add_argument('--debug', action='store_true', help='Debug mode')
parser.add_argument('--host', type=str, default='0.0.0.0', help='Host to run the server on')
args = parser.parse_args()
env_port = int(os.environ.get('DASH_PORT', 8888))
env_debug = os.environ.get('DASH_DEBUG', '').lower() == 'true'
env_host = os.environ.get('DASH_HOST', '0.0.0.0')
port = args.port if args.port is not None else env_port
debug = args.debug if args.debug else env_debug
host = args.host if args.host else env_host
print(f"Starting server on port {port} with debug={'on' if debug else 'off'}")
print(f"Starting server on {host}:{port} with debug={'on' if debug else 'off'}")
app.run_server(
host='0.0.0.0',
port=port,
debug=debug
# Configurazione del server
server.config.update(
SESSION_COOKIE_SECURE=True,
SESSION_COOKIE_HTTPONLY=True,
SESSION_COOKIE_SAMESITE='Lax',
)
# Aggiunta middleware per la sicurezza
from werkzeug.middleware.proxy_fix import ProxyFix
server.wsgi_app = ProxyFix(
server.wsgi_app, x_for=1, x_proto=1, x_host=1, x_prefix=1
)
try:
app.run_server(
host=host,
port=port,
debug=debug,
ssl_context=None, # Disabilita SSL a livello applicativo
threaded=True
)
except Exception as e:
print(f"Error starting server: {e}")

View File

@ -1,7 +1,7 @@
# Data handling and analysis
pandas>=1.5.0
numpy>=1.21.0
scikit-learn==1.5.2
scikit-learn==1.6.0
# Dashboard and visualization
dash>=2.9.0