tesi-pegaso/.ipynb_checkpoints/olive-oil-production-analysis-notebook-checkpoint.ipynb
2024-10-29 00:29:59 +01:00

2876 lines
1.2 MiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analisi e Previsione della Produzione di Olio d'Oliva\n",
"\n",
"Questo notebook esplora la relazione tra i dati meteorologici e la produzione annuale di olio d'oliva, con l'obiettivo di creare un modello predittivo."
]
},
{
"metadata": {
"jupyter": {
"is_executing": true
},
"ExecuteTime": {
"start_time": "2024-10-25T20:14:08.562468Z"
}
},
"cell_type": "code",
"source": [
"!pip uninstall -y tensorflow tensorflow-gpu keras tensorboard tensorflow-estimator\n",
"!pip cache purge\n",
"\n",
"!pip install tensorflow --no-cache-dir\n",
"!pip install tensorflow-macos --no-cache-dir\n",
"!pip install tensorflow-metal --no-cache-dir\n",
"\n",
"import tensorflow as tf\n",
"print(f\"Keras version: {tf.keras.__version__}\")\n",
"print(f\"TensorFlow version: {tf.__version__}\")\n",
"\n",
"# GPU configuration\n",
"gpus = tf.config.experimental.list_physical_devices('GPU')\n",
"if gpus:\n",
" try:\n",
" for gpu in gpus:\n",
" tf.config.experimental.set_memory_growth(gpu, True)\n",
" logical_gpus = tf.config.experimental.list_logical_devices('GPU')\n",
" print(len(gpus), \"Physical GPUs,\", len(logical_gpus), \"Logical GPUs\")\n",
" except RuntimeError as e:\n",
" print(e)"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found existing installation: tensorflow 2.16.2\r\n",
"Uninstalling tensorflow-2.16.2:\r\n",
" Successfully uninstalled tensorflow-2.16.2\r\n",
"\u001B[33mWARNING: Skipping tensorflow-gpu as it is not installed.\u001B[0m\u001B[33m\r\n",
"\u001B[0mFound existing installation: keras 2.12.0\r\n",
"Uninstalling keras-2.12.0:\r\n",
" Successfully uninstalled keras-2.12.0\r\n",
"Found existing installation: tensorboard 2.12.3\r\n",
"Uninstalling tensorboard-2.12.3:\r\n",
" Successfully uninstalled tensorboard-2.12.3\r\n",
"Found existing installation: tensorflow-estimator 2.12.0\r\n",
"Uninstalling tensorflow-estimator-2.12.0:\r\n",
" Successfully uninstalled tensorflow-estimator-2.12.0\r\n",
"Files removed: 40\r\n",
"Collecting tensorflow\r\n",
" Downloading tensorflow-2.16.2-cp310-cp310-macosx_10_15_x86_64.whl.metadata (4.1 kB)\r\n",
"Requirement already satisfied: absl-py>=1.0.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (2.1.0)\r\n",
"Requirement already satisfied: astunparse>=1.6.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (1.6.3)\r\n",
"Requirement already satisfied: flatbuffers>=23.5.26 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (24.3.25)\r\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (0.4.0)\r\n",
"Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (0.2.0)\r\n",
"Requirement already satisfied: h5py>=3.10.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (3.11.0)\r\n",
"Requirement already satisfied: libclang>=13.0.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (18.1.1)\r\n",
"Requirement already satisfied: ml-dtypes~=0.3.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (0.3.2)\r\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (3.3.0)\r\n",
"Requirement already satisfied: packaging in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (24.1)\r\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (4.25.4)\r\n",
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (2.32.3)\r\n",
"Requirement already satisfied: setuptools in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (72.1.0)\r\n",
"Requirement already satisfied: six>=1.12.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (1.16.0)\r\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (2.4.0)\r\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (4.11.0)\r\n",
"Requirement already satisfied: wrapt>=1.11.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (1.14.1)\r\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (1.66.1)\r\n",
"Collecting tensorboard<2.17,>=2.16 (from tensorflow)\r\n",
" Downloading tensorboard-2.16.2-py3-none-any.whl.metadata (1.6 kB)\r\n",
"Requirement already satisfied: keras>=3.0.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (3.6.0)\r\n",
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (0.37.1)\r\n",
"Requirement already satisfied: numpy<2.0.0,>=1.23.5 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorflow) (1.23.5)\r\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from astunparse>=1.6.0->tensorflow) (0.43.0)\r\n",
"Requirement already satisfied: rich in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from keras>=3.0.0->tensorflow) (13.7.1)\r\n",
"Requirement already satisfied: namex in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from keras>=3.0.0->tensorflow) (0.0.7)\r\n",
"Requirement already satisfied: optree in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from keras>=3.0.0->tensorflow) (0.12.1)\r\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\r\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\r\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (2.2.2)\r\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from requests<3,>=2.21.0->tensorflow) (2024.8.30)\r\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (3.7)\r\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (0.7.2)\r\n",
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (3.0.4)\r\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow) (2.1.3)\r\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from rich->keras>=3.0.0->tensorflow) (2.2.0)\r\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from rich->keras>=3.0.0->tensorflow) (2.15.1)\r\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.0.0->tensorflow) (0.1.0)\r\n",
"Downloading tensorflow-2.16.2-cp310-cp310-macosx_10_15_x86_64.whl (259.5 MB)\r\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m259.5/259.5 MB\u001B[0m \u001B[31m19.1 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m00:01\u001B[0m00:01\u001B[0m\r\n",
"\u001B[?25hDownloading tensorboard-2.16.2-py3-none-any.whl (5.5 MB)\r\n",
"\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m5.5/5.5 MB\u001B[0m \u001B[31m22.6 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0ma \u001B[36m0:00:01\u001B[0m\r\n",
"\u001B[?25hInstalling collected packages: tensorboard, tensorflow\r\n"
]
}
],
"execution_count": null
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"# Test semplice per verificare che la GPU funzioni\n",
"def test_gpu():\n",
" print(\"TensorFlow version:\", tf.__version__)\n",
" print(\"\\nDispositivi disponibili:\")\n",
" print(tf.config.list_physical_devices())\n",
"\n",
" # Creiamo e moltiplichiamo due tensori sulla GPU\n",
" with tf.device('/GPU:0'):\n",
" a = tf.random.normal([10000, 10000])\n",
" b = tf.random.normal([10000, 10000])\n",
" c = tf.matmul(a, b)\n",
"\n",
" print(\"\\nShape del risultato:\", c.shape)\n",
" print(\"Device del tensore:\", c.device)\n",
" return \"Test completato con successo!\"\n",
"\n",
"test_gpu()"
]
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-23T05:20:24.951279Z",
"start_time": "2024-10-23T05:19:34.057560Z"
}
},
"cell_type": "code",
"source": [
"!pip install numpy\n",
"!pip install pandas\n",
"\n",
"!pip install keras\n",
"!pip install scikit-learn\n",
"!pip install matplotlib\n",
"!pip install joblib\n",
"!pip install pyarrow\n",
"!pip install fastparquet\n",
"!pip install scipy\n",
"!pip install seaborn\n",
"!pip install pysolar"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: numpy in /usr/local/anaconda3/lib/python3.12/site-packages (1.26.4)\r\n",
"Requirement already satisfied: pandas in /usr/local/anaconda3/lib/python3.12/site-packages (2.2.2)\r\n",
"Requirement already satisfied: numpy>=1.26.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas) (1.26.4)\r\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas) (2.9.0.post0)\r\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas) (2024.1)\r\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas) (2023.3)\r\n",
"Requirement already satisfied: six>=1.5 in /usr/local/anaconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\r\n",
"Requirement already satisfied: tensorflow in /usr/local/anaconda3/lib/python3.12/site-packages (2.16.2)\r\n",
"Requirement already satisfied: absl-py>=1.0.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (2.1.0)\r\n",
"Requirement already satisfied: astunparse>=1.6.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (1.6.3)\r\n",
"Requirement already satisfied: flatbuffers>=23.5.26 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (24.3.25)\r\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (0.6.0)\r\n",
"Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (0.2.0)\r\n",
"Requirement already satisfied: h5py>=3.10.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (3.11.0)\r\n",
"Requirement already satisfied: libclang>=13.0.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (18.1.1)\r\n",
"Requirement already satisfied: ml-dtypes~=0.3.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (0.3.2)\r\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (3.4.0)\r\n",
"Requirement already satisfied: packaging in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (23.2)\r\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (3.20.3)\r\n",
"Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (2.32.2)\r\n",
"Requirement already satisfied: setuptools in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (69.5.1)\r\n",
"Requirement already satisfied: six>=1.12.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (1.16.0)\r\n",
"Requirement already satisfied: termcolor>=1.1.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (2.5.0)\r\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (4.11.0)\r\n",
"Requirement already satisfied: wrapt>=1.11.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (1.14.1)\r\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (1.67.0)\r\n",
"Requirement already satisfied: tensorboard<2.17,>=2.16 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (2.16.2)\r\n",
"Requirement already satisfied: keras>=3.0.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (3.6.0)\r\n",
"Requirement already satisfied: numpy<2.0.0,>=1.26.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorflow) (1.26.4)\r\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from astunparse>=1.6.0->tensorflow) (0.43.0)\r\n",
"Requirement already satisfied: rich in /usr/local/anaconda3/lib/python3.12/site-packages (from keras>=3.0.0->tensorflow) (13.3.5)\r\n",
"Requirement already satisfied: namex in /usr/local/anaconda3/lib/python3.12/site-packages (from keras>=3.0.0->tensorflow) (0.0.8)\r\n",
"Requirement already satisfied: optree in /usr/local/anaconda3/lib/python3.12/site-packages (from keras>=3.0.0->tensorflow) (0.13.0)\r\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/anaconda3/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow) (2.0.4)\r\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/anaconda3/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\r\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow) (2.2.2)\r\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/anaconda3/lib/python3.12/site-packages (from requests<3,>=2.21.0->tensorflow) (2024.8.30)\r\n",
"Requirement already satisfied: markdown>=2.6.8 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (3.4.1)\r\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (0.7.2)\r\n",
"Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from tensorboard<2.17,>=2.16->tensorflow) (3.0.3)\r\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from werkzeug>=1.0.1->tensorboard<2.17,>=2.16->tensorflow) (2.1.3)\r\n",
"Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from rich->keras>=3.0.0->tensorflow) (2.2.0)\r\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from rich->keras>=3.0.0->tensorflow) (2.15.1)\r\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from markdown-it-py<3.0.0,>=2.2.0->rich->keras>=3.0.0->tensorflow) (0.1.0)\r\n",
"Requirement already satisfied: keras in /usr/local/anaconda3/lib/python3.12/site-packages (3.6.0)\r\n",
"Requirement already satisfied: absl-py in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (2.1.0)\r\n",
"Requirement already satisfied: numpy in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (1.26.4)\r\n",
"Requirement already satisfied: rich in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (13.3.5)\r\n",
"Requirement already satisfied: namex in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (0.0.8)\r\n",
"Requirement already satisfied: h5py in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (3.11.0)\r\n",
"Requirement already satisfied: optree in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (0.13.0)\r\n",
"Requirement already satisfied: ml-dtypes in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (0.3.2)\r\n",
"Requirement already satisfied: packaging in /usr/local/anaconda3/lib/python3.12/site-packages (from keras) (23.2)\r\n",
"Requirement already satisfied: typing-extensions>=4.5.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from optree->keras) (4.11.0)\r\n",
"Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from rich->keras) (2.2.0)\r\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from rich->keras) (2.15.1)\r\n",
"Requirement already satisfied: mdurl~=0.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from markdown-it-py<3.0.0,>=2.2.0->rich->keras) (0.1.0)\r\n",
"Requirement already satisfied: scikit-learn in /usr/local/anaconda3/lib/python3.12/site-packages (1.4.2)\r\n",
"Requirement already satisfied: numpy>=1.19.5 in /usr/local/anaconda3/lib/python3.12/site-packages (from scikit-learn) (1.26.4)\r\n",
"Requirement already satisfied: scipy>=1.6.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from scikit-learn) (1.13.1)\r\n",
"Requirement already satisfied: joblib>=1.2.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from scikit-learn) (1.4.2)\r\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from scikit-learn) (2.2.0)\r\n",
"Requirement already satisfied: matplotlib in /usr/local/anaconda3/lib/python3.12/site-packages (3.9.2)\r\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (1.2.0)\r\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (0.11.0)\r\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (4.51.0)\r\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (1.4.4)\r\n",
"Requirement already satisfied: numpy>=1.23 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (1.26.4)\r\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (23.2)\r\n",
"Requirement already satisfied: pillow>=8 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (10.3.0)\r\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (3.0.9)\r\n",
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib) (2.9.0.post0)\r\n",
"Requirement already satisfied: six>=1.5 in /usr/local/anaconda3/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\r\n",
"Requirement already satisfied: joblib in /usr/local/anaconda3/lib/python3.12/site-packages (1.4.2)\r\n",
"Requirement already satisfied: pyarrow in /usr/local/anaconda3/lib/python3.12/site-packages (14.0.2)\r\n",
"Requirement already satisfied: numpy>=1.16.6 in /usr/local/anaconda3/lib/python3.12/site-packages (from pyarrow) (1.26.4)\r\n",
"Requirement already satisfied: fastparquet in /usr/local/anaconda3/lib/python3.12/site-packages (2024.5.0)\r\n",
"Requirement already satisfied: pandas>=1.5.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from fastparquet) (2.2.2)\r\n",
"Requirement already satisfied: numpy in /usr/local/anaconda3/lib/python3.12/site-packages (from fastparquet) (1.26.4)\r\n",
"Requirement already satisfied: cramjam>=2.3 in /usr/local/anaconda3/lib/python3.12/site-packages (from fastparquet) (2.9.0)\r\n",
"Requirement already satisfied: fsspec in /usr/local/anaconda3/lib/python3.12/site-packages (from fastparquet) (2024.3.1)\r\n",
"Requirement already satisfied: packaging in /usr/local/anaconda3/lib/python3.12/site-packages (from fastparquet) (23.2)\r\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas>=1.5.0->fastparquet) (2.9.0.post0)\r\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas>=1.5.0->fastparquet) (2024.1)\r\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas>=1.5.0->fastparquet) (2023.3)\r\n",
"Requirement already satisfied: six>=1.5 in /usr/local/anaconda3/lib/python3.12/site-packages (from python-dateutil>=2.8.2->pandas>=1.5.0->fastparquet) (1.16.0)\r\n",
"Requirement already satisfied: scipy in /usr/local/anaconda3/lib/python3.12/site-packages (1.13.1)\r\n",
"Requirement already satisfied: numpy<2.3,>=1.22.4 in /usr/local/anaconda3/lib/python3.12/site-packages (from scipy) (1.26.4)\r\n",
"Requirement already satisfied: seaborn in /usr/local/anaconda3/lib/python3.12/site-packages (0.13.2)\r\n",
"Requirement already satisfied: numpy!=1.24.0,>=1.20 in /usr/local/anaconda3/lib/python3.12/site-packages (from seaborn) (1.26.4)\r\n",
"Requirement already satisfied: pandas>=1.2 in /usr/local/anaconda3/lib/python3.12/site-packages (from seaborn) (2.2.2)\r\n",
"Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in /usr/local/anaconda3/lib/python3.12/site-packages (from seaborn) (3.9.2)\r\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.2.0)\r\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (0.11.0)\r\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (4.51.0)\r\n",
"Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (1.4.4)\r\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (23.2)\r\n",
"Requirement already satisfied: pillow>=8 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (10.3.0)\r\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (3.0.9)\r\n",
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/anaconda3/lib/python3.12/site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (2.9.0.post0)\r\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas>=1.2->seaborn) (2024.1)\r\n",
"Requirement already satisfied: tzdata>=2022.7 in /usr/local/anaconda3/lib/python3.12/site-packages (from pandas>=1.2->seaborn) (2023.3)\r\n",
"Requirement already satisfied: six>=1.5 in /usr/local/anaconda3/lib/python3.12/site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4->seaborn) (1.16.0)\r\n",
"Requirement already satisfied: pysolar in /usr/local/anaconda3/lib/python3.12/site-packages (0.11)\r\n",
"Requirement already satisfied: numpy in /usr/local/anaconda3/lib/python3.12/site-packages (from pysolar) (1.26.4)\r\n"
]
}
],
"execution_count": 17
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-25T09:07:08.001373Z",
"start_time": "2024-10-25T09:07:07.994803Z"
}
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import MinMaxScaler, StandardScaler\n",
"\n",
"from tensorflow.keras.layers import Input, Dense, Dropout, Bidirectional, LSTM, LayerNormalization, Add, GlobalAveragePooling1D, Activation, BatchNormalization, MultiHeadAttention, MaxPooling1D\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras.regularizers import l2\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau\n",
"from datetime import datetime\n",
"import os\n",
"import json\n",
"import joblib\n",
"import re\n",
"import pyarrow as pa\n",
"import pyarrow.parquet as pq\n",
"\n",
"random_state_value = 42"
],
"outputs": [],
"execution_count": 3
},
{
"cell_type": "markdown",
"metadata": {},
"source": "## 1. Caricamento e preparazione dei Dati Meteo"
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-25T09:07:23.151838Z",
"start_time": "2024-10-25T09:07:11.878633Z"
}
},
"source": [
"# Function to convert csv to parquet\n",
"def csv_to_parquet(csv_file, parquet_file, chunksize=100000):\n",
" writer = None\n",
"\n",
" for chunk in pd.read_csv(csv_file, chunksize=chunksize):\n",
" if writer is None:\n",
"\n",
" table = pa.Table.from_pandas(chunk)\n",
" writer = pq.ParquetWriter(parquet_file, table.schema)\n",
" else:\n",
" table = pa.Table.from_pandas(chunk)\n",
"\n",
" writer.write_table(table)\n",
"\n",
" if writer:\n",
" writer.close()\n",
"\n",
" print(f\"File conversion completed : {csv_file} -> {parquet_file}\")\n",
"\n",
"\n",
"def read_json_files(folder_path):\n",
" all_data = []\n",
"\n",
" file_list = sorted(os.listdir(folder_path))\n",
"\n",
" for filename in file_list:\n",
" if filename.endswith('.json'):\n",
" file_path = os.path.join(folder_path, filename)\n",
" try:\n",
" with open(file_path, 'r') as file:\n",
" data = json.load(file)\n",
" all_data.extend(data['days'])\n",
" except Exception as e:\n",
" print(f\"Error processing file '{filename}': {str(e)}\")\n",
"\n",
" return all_data\n",
"\n",
"\n",
"def create_weather_dataset(data):\n",
" dataset = []\n",
" seen_datetimes = set()\n",
"\n",
" for day in data:\n",
" date = day['datetime']\n",
" for hour in day['hours']:\n",
" datetime_str = f\"{date} {hour['datetime']}\"\n",
"\n",
" # Verifico se questo datetime è già stato visto\n",
" if datetime_str in seen_datetimes:\n",
" continue\n",
"\n",
" seen_datetimes.add(datetime_str)\n",
"\n",
" if isinstance(hour['preciptype'], list):\n",
" preciptype = \"__\".join(hour['preciptype'])\n",
" else:\n",
" preciptype = hour['preciptype'] if hour['preciptype'] else \"\"\n",
"\n",
" conditions = hour['conditions'].replace(', ', '__').replace(' ', '_').lower()\n",
"\n",
" row = {\n",
" 'datetime': datetime_str,\n",
" 'temp': hour['temp'],\n",
" 'feelslike': hour['feelslike'],\n",
" 'humidity': hour['humidity'],\n",
" 'dew': hour['dew'],\n",
" 'precip': hour['precip'],\n",
" 'snow': hour['snow'],\n",
" 'preciptype': preciptype.lower(),\n",
" 'windspeed': hour['windspeed'],\n",
" 'winddir': hour['winddir'],\n",
" 'pressure': hour['pressure'],\n",
" 'cloudcover': hour['cloudcover'],\n",
" 'visibility': hour['visibility'],\n",
" 'solarradiation': hour['solarradiation'],\n",
" 'solarenergy': hour['solarenergy'],\n",
" 'uvindex': hour['uvindex'],\n",
" 'conditions': conditions,\n",
" 'tempmax': day['tempmax'],\n",
" 'tempmin': day['tempmin'],\n",
" 'precipprob': day['precipprob'],\n",
" 'precipcover': day['precipcover']\n",
" }\n",
" dataset.append(row)\n",
"\n",
" dataset.sort(key=lambda x: datetime.strptime(x['datetime'], \"%Y-%m-%d %H:%M:%S\"))\n",
"\n",
" return pd.DataFrame(dataset)\n",
"\n",
"\n",
"folder_path = './data/weather'\n",
"raw_data = read_json_files(folder_path)\n",
"weather_data = create_weather_dataset(raw_data)\n",
"weather_data['datetime'] = pd.to_datetime(weather_data['datetime'], errors='coerce')\n",
"weather_data['date'] = weather_data['datetime'].dt.date\n",
"weather_data = weather_data.dropna(subset=['datetime'])\n",
"weather_data['datetime'] = pd.to_datetime(weather_data['datetime'])\n",
"weather_data['year'] = weather_data['datetime'].dt.year\n",
"weather_data['month'] = weather_data['datetime'].dt.month\n",
"weather_data['day'] = weather_data['datetime'].dt.day\n",
"weather_data.head()\n",
"\n",
"weather_data.to_parquet('./data/weather_data.parquet')"
],
"outputs": [],
"execution_count": 4
},
{
"metadata": {},
"cell_type": "markdown",
"source": ""
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-25T14:44:58.286583Z",
"start_time": "2024-10-25T14:44:56.063431Z"
}
},
"cell_type": "code",
"source": [
"# Crea le sequenze per LSTM\n",
"def create_sequences(timesteps, X, y=None):\n",
" \"\"\"\n",
" Crea sequenze temporali dai dati.\n",
" \n",
" Parameters:\n",
" -----------\n",
" X : array-like\n",
" Dati di input\n",
" timesteps : int\n",
" Numero di timestep per ogni sequenza\n",
" y : array-like, optional\n",
" Target values. Se None, crea sequenze solo per X\n",
" \n",
" Returns:\n",
" --------\n",
" tuple o array\n",
" Se y è fornito: (X_sequences, y_sequences)\n",
" Se y è None: X_sequences\n",
" \"\"\"\n",
" Xs = []\n",
" for i in range(len(X) - timesteps):\n",
" Xs.append(X[i:i + timesteps])\n",
"\n",
" if y is not None:\n",
" ys = []\n",
" for i in range(len(X) - timesteps):\n",
" ys.append(y[i + timesteps])\n",
" return np.array(Xs), np.array(ys)\n",
"\n",
" return np.array(Xs)\n",
"\n",
"\n",
"# Funzioni per costruire il modello LSTM avanzato\n",
"def create_residual_lstm_layer(x, units, dropout_rate, l2_reg=0.01):\n",
" residual = x\n",
" x = Bidirectional(LSTM(units, return_sequences=True, kernel_regularizer=l2(l2_reg)))(x)\n",
" x = LayerNormalization()(x)\n",
" x = Dropout(dropout_rate)(x)\n",
" # Adjust residual dimension\n",
" if int(residual.shape[-1]) != 2 * units:\n",
" residual = Dense(2 * units, activation='linear')(residual)\n",
" x = Add()([x, residual])\n",
" return x\n",
"\n",
"\n",
"def attention_block(x, units, num_heads=8):\n",
" attention = MultiHeadAttention(num_heads=num_heads, key_dim=units)(x, x)\n",
" x = Add()([x, attention])\n",
" x = LayerNormalization()(x)\n",
" return x\n",
"\n",
"\n",
"def build_advanced_model(input_shape, l2_lambda=0.005):\n",
" inputs = Input(shape=input_shape)\n",
" x = create_residual_lstm_layer(inputs, 64, 0.3, l2_lambda)\n",
" x = create_residual_lstm_layer(x, 32, 0.3, l2_lambda)\n",
" x = create_residual_lstm_layer(x, 16, 0.2, l2_lambda)\n",
" x = attention_block(x, 16, num_heads=8)\n",
" x = MaxPooling1D()(x)\n",
" x = Dense(32, kernel_regularizer=l2(l2_lambda))(x)\n",
" x = BatchNormalization()(x)\n",
" x = Activation('swish')(x)\n",
" x = Dropout(0.3)(x)\n",
" x = Dense(16, kernel_regularizer=l2(l2_lambda))(x)\n",
" x = BatchNormalization()(x)\n",
" x = Activation('swish')(x)\n",
" x = Dropout(0.2)(x)\n",
" outputs = Dense(1, kernel_regularizer=l2(l2_lambda))(x)\n",
" model = Model(inputs=inputs, outputs=outputs)\n",
" return model\n",
"\n",
"\n",
"def get_season(date):\n",
" month = date.month\n",
" day = date.day\n",
" if (month == 12 and day >= 21) or (month <= 3 and day < 20):\n",
" return 'Winter'\n",
" elif (month == 3 and day >= 20) or (month <= 6 and day < 21):\n",
" return 'Spring'\n",
" elif (month == 6 and day >= 21) or (month <= 9 and day < 23):\n",
" return 'Summer'\n",
" elif (month == 9 and day >= 23) or (month <= 12 and day < 21):\n",
" return 'Autumn'\n",
" else:\n",
" return 'Unknown'\n",
"\n",
"\n",
"def get_time_period(hour):\n",
" if 5 <= hour < 12:\n",
" return 'Morning'\n",
" elif 12 <= hour < 17:\n",
" return 'Afternoon'\n",
" elif 17 <= hour < 21:\n",
" return 'Evening'\n",
" else:\n",
" return 'Night'\n",
"\n",
"\n",
"def add_time_features(df):\n",
" df['datetime'] = pd.to_datetime(df['datetime'])\n",
" df['timestamp'] = df['datetime'].astype(np.int64) // 10 ** 9\n",
" df['year'] = df['datetime'].dt.year\n",
" df['month'] = df['datetime'].dt.month\n",
" df['day'] = df['datetime'].dt.day\n",
" df['hour'] = df['datetime'].dt.hour\n",
" df['minute'] = df['datetime'].dt.minute\n",
" df['hour_sin'] = np.sin(df['hour'] * (2 * np.pi / 24))\n",
" df['hour_cos'] = np.cos(df['hour'] * (2 * np.pi / 24))\n",
" df['day_of_week'] = df['datetime'].dt.dayofweek\n",
" df['day_of_year'] = df['datetime'].dt.dayofyear\n",
" df['week_of_year'] = df['datetime'].dt.isocalendar().week.astype(int)\n",
" df['quarter'] = df['datetime'].dt.quarter\n",
" df['is_month_end'] = df['datetime'].dt.is_month_end.astype(int)\n",
" df['is_quarter_end'] = df['datetime'].dt.is_quarter_end.astype(int)\n",
" df['is_year_end'] = df['datetime'].dt.is_year_end.astype(int)\n",
" df['month_sin'] = np.sin(df['month'] * (2 * np.pi / 12))\n",
" df['month_cos'] = np.cos(df['month'] * (2 * np.pi / 12))\n",
" df['day_of_year_sin'] = np.sin(df['day_of_year'] * (2 * np.pi / 365.25))\n",
" df['day_of_year_cos'] = np.cos(df['day_of_year'] * (2 * np.pi / 365.25))\n",
" df['season'] = df['datetime'].apply(get_season)\n",
" df['time_period'] = df['hour'].apply(get_time_period)\n",
" return df\n",
"\n",
"\n",
"# Carica il dataset\n",
"weather_data = pd.read_parquet('./data/weather_data.parquet')\n",
"\n",
"# Aggiungi le caratteristiche temporali\n",
"weather_data = add_time_features(weather_data)\n",
"\n",
"# Encoding delle variabili categoriali\n",
"weather_data = pd.get_dummies(weather_data, columns=['season', 'time_period'], drop_first=True)\n",
"\n",
"weather_data.to_parquet('./data/weather_data_extended.parquet')\n",
"\n",
"# Dividi i dati in quelli dopo il 2010 e quelli prima del 2010\n",
"data_after_2010 = weather_data[weather_data['year'] >= 2010].copy()\n",
"data_before_2010 = weather_data[weather_data['year'] < 2010].copy()\n",
"\n",
"# Aggiorna le target variables se necessario\n",
"target_variables = ['solarradiation', 'solarenergy', 'uvindex']\n",
"\n",
"# Seleziona le features\n",
"features = [\n",
" 'temp', 'tempmin', 'tempmax', 'humidity', 'cloudcover', 'windspeed', 'pressure', 'visibility',\n",
" 'hour_sin', 'hour_cos', 'month_sin', 'month_cos', 'day_of_year_sin', 'day_of_year_cos',\n",
" ] + [col for col in weather_data.columns if 'season_' in col or 'time_period_' in col]\n",
"\n",
"# Prepara data_after_2010\n",
"data_after_2010 = data_after_2010.sort_values('datetime')\n",
"data_after_2010.set_index('datetime', inplace=True)\n",
"\n",
"# Interpola eventuali valori mancanti nelle variabili target\n",
"columns_to_interpolate = target_variables\n",
"for column in columns_to_interpolate:\n",
" data_after_2010[column] = data_after_2010[column].interpolate(method='time')\n",
"\n",
"# Rimuovi eventuali valori mancanti residui\n",
"data_after_2010.dropna(subset=features + target_variables, inplace=True)\n",
"\n",
"# Crea X e y\n",
"X = data_after_2010[features].values\n",
"y = data_after_2010[target_variables].values\n",
"\n",
"# Normalizza le features\n",
"scaler_X = MinMaxScaler()\n",
"X_scaled = scaler_X.fit_transform(X)\n",
"\n",
"\n",
"def prepare_multi_target_datasets(X_scaled, y, target_variables):\n",
" \"\"\"\n",
" Prepara dataset separati per ogni target variable e restituisce anche gli scaler\n",
" per un uso successivo in fase di predizione.\n",
" \n",
" Parameters:\n",
" -----------\n",
" X_scaled : numpy.ndarray\n",
" Features già scalate\n",
" y : numpy.ndarray\n",
" Target variables (matrice con una colonna per ogni target)\n",
" target_variables : list\n",
" Lista dei nomi delle variabili target\n",
" \n",
" Returns:\n",
" --------\n",
" tuple (dict, dict)\n",
" - Primo dict: contiene i dataset per ogni target\n",
" - Secondo dict: contiene gli scaler per ogni target\n",
" \"\"\"\n",
"\n",
" # Inizializza i dizionari per contenere i dataset e gli scaler\n",
" train_datasets = {}\n",
" scalers_dict = {}\n",
"\n",
" # Scala e splitta i dati per ogni target\n",
" for i, target in enumerate(target_variables):\n",
" # Scala il target corrente\n",
" scaler = MinMaxScaler()\n",
" y_scaled_current = scaler.fit_transform(y[:, i].reshape(-1, 1)).flatten()\n",
" scalers_dict[target] = scaler\n",
"\n",
" # Split dei dati per il target corrente\n",
" X_train_full, X_test, y_train_full, y_test = train_test_split(\n",
" X_scaled,\n",
" y_scaled_current,\n",
" test_size=0.2,\n",
" shuffle=False\n",
" )\n",
"\n",
" # Ulteriore split per validation\n",
" X_train, X_val, y_train, y_val = train_test_split(\n",
" X_train_full,\n",
" y_train_full,\n",
" test_size=0.2,\n",
" shuffle=False\n",
" )\n",
"\n",
" # Salva i dataset per questo target\n",
" train_datasets[target] = {\n",
" 'X_train': X_train,\n",
" 'X_val': X_val,\n",
" 'X_test': X_test,\n",
" 'y_train': y_train.reshape(-1, 1),\n",
" 'y_val': y_val.reshape(-1, 1),\n",
" 'y_test': y_test.reshape(-1, 1)\n",
" }\n",
"\n",
" return train_datasets, scalers_dict\n",
"\n",
"\n",
"datasets, scalers = prepare_multi_target_datasets(X_scaled, y, target_variables)"
],
"outputs": [],
"execution_count": 8
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-25T15:27:58.094588Z",
"start_time": "2024-10-25T14:45:01.366071Z"
}
},
"cell_type": "code",
"source": [
"# numero di timesteps (utilizziamo le ultime 24 ore)\n",
"timesteps = 24\n",
"\n",
"# Costruisci il modello per ogni variabile target\n",
"models = {}\n",
"histories = {}\n",
"for i, target in enumerate(target_variables):\n",
" target_data = datasets[target]\n",
" target_scaler = scalers[target]\n",
"\n",
" X_train = target_data['X_train']\n",
" y_train = target_data['y_train']\n",
" X_val = target_data['X_val']\n",
" y_val = target_data['y_val']\n",
" X_test = target_data['X_test']\n",
" y_test = target_data['y_test']\n",
"\n",
" num_features = X_train.shape[1]\n",
"\n",
" X_train_seq, y_train_seq = create_sequences(timesteps, X_train, y_train)\n",
" X_val_seq, y_val_seq = create_sequences(timesteps, X_val, y_val)\n",
" X_test_seq, y_test_seq = create_sequences(timesteps, X_test, y_test)\n",
"\n",
" print(X_train_seq.shape, y_train_seq.shape)\n",
" print(X_val_seq.shape, y_val_seq.shape)\n",
" print(X_test_seq.shape, y_test_seq.shape)\n",
" \n",
" print(f\"Addestramento del modello per: {target}\")\n",
" model = build_advanced_model((timesteps, num_features), l2_lambda=0.001)\n",
" optimizer = Adam(learning_rate=0.001, clipnorm=1.0)\n",
" model.compile(optimizer=optimizer, loss='mean_squared_error')\n",
" early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n",
"\n",
" reduce_lr = ReduceLROnPlateau(\n",
" monitor='val_loss',\n",
" factor=0.5,\n",
" patience=5,\n",
" min_lr=1e-6\n",
" )\n",
" history = model.fit(\n",
" X_train_seq, y_train_seq[:, i],\n",
" validation_data=(X_val_seq, y_val_seq[:, i]),\n",
" epochs=50,\n",
" batch_size=180,\n",
" callbacks=[early_stopping, reduce_lr],\n",
" verbose=1\n",
" )\n",
" test_loss = model.evaluate(X_test_seq, y_test_seq[:, i])\n",
" print(f'Test MAE per {target}: {test_loss:.4f}')\n",
" models[target] = model\n",
" histories[target] = history\n"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(82972, 24, 21) (82972, 1)\n",
"(20725, 24, 21) (20725, 1)\n",
"(25913, 24, 21) (25913, 1)\n",
"Addestramento del modello per: solarradiation\n",
"Epoch 1/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m126s\u001B[0m 250ms/step - loss: 0.5388 - val_loss: 0.1221 - learning_rate: 0.0010\n",
"Epoch 2/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 198ms/step - loss: 0.1098 - val_loss: 0.0773 - learning_rate: 0.0010\n",
"Epoch 3/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m90s\u001B[0m 195ms/step - loss: 0.0750 - val_loss: 0.0659 - learning_rate: 0.0010\n",
"Epoch 4/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m83s\u001B[0m 181ms/step - loss: 0.0675 - val_loss: 0.0606 - learning_rate: 0.0010\n",
"Epoch 5/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m89s\u001B[0m 193ms/step - loss: 0.0626 - val_loss: 0.0594 - learning_rate: 0.0010\n",
"Epoch 6/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m81s\u001B[0m 177ms/step - loss: 0.0607 - val_loss: 0.0586 - learning_rate: 0.0010\n",
"Epoch 7/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 211ms/step - loss: 0.0601 - val_loss: 0.0587 - learning_rate: 0.0010\n",
"Epoch 8/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m102s\u001B[0m 222ms/step - loss: 0.0603 - val_loss: 0.0579 - learning_rate: 0.0010\n",
"Epoch 9/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 199ms/step - loss: 0.0603 - val_loss: 0.0577 - learning_rate: 0.0010\n",
"Epoch 10/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 200ms/step - loss: 0.0590 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 11/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m94s\u001B[0m 203ms/step - loss: 0.0596 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 12/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 207ms/step - loss: 0.0588 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 13/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 205ms/step - loss: 0.0594 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 14/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m99s\u001B[0m 215ms/step - loss: 0.0596 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 15/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m89s\u001B[0m 194ms/step - loss: 0.0600 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 16/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m90s\u001B[0m 196ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 17/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 197ms/step - loss: 0.0599 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 18/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m88s\u001B[0m 190ms/step - loss: 0.0594 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 19/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m87s\u001B[0m 189ms/step - loss: 0.0590 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 20/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 199ms/step - loss: 0.0592 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 21/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m86s\u001B[0m 186ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 22/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m86s\u001B[0m 187ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 23/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m85s\u001B[0m 184ms/step - loss: 0.0591 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 24/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m84s\u001B[0m 182ms/step - loss: 0.0599 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 25/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 205ms/step - loss: 0.0596 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 26/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 196ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 27/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m87s\u001B[0m 189ms/step - loss: 0.0590 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 28/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m90s\u001B[0m 195ms/step - loss: 0.0598 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 29/50\n",
"\u001B[1m 43/461\u001B[0m \u001B[32m━\u001B[0m\u001B[37m━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[1m1:15\u001B[0m 180ms/step - loss: 0.0578"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mKeyboardInterrupt\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[9], line 40\u001B[0m\n\u001B[1;32m 32\u001B[0m early_stopping \u001B[38;5;241m=\u001B[39m EarlyStopping(monitor\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mval_loss\u001B[39m\u001B[38;5;124m'\u001B[39m, patience\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m10\u001B[39m, restore_best_weights\u001B[38;5;241m=\u001B[39m\u001B[38;5;28;01mTrue\u001B[39;00m)\n\u001B[1;32m 34\u001B[0m reduce_lr \u001B[38;5;241m=\u001B[39m ReduceLROnPlateau(\n\u001B[1;32m 35\u001B[0m monitor\u001B[38;5;241m=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mval_loss\u001B[39m\u001B[38;5;124m'\u001B[39m,\n\u001B[1;32m 36\u001B[0m factor\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m0.5\u001B[39m,\n\u001B[1;32m 37\u001B[0m patience\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m5\u001B[39m,\n\u001B[1;32m 38\u001B[0m min_lr\u001B[38;5;241m=\u001B[39m\u001B[38;5;241m1e-6\u001B[39m\n\u001B[1;32m 39\u001B[0m )\n\u001B[0;32m---> 40\u001B[0m history \u001B[38;5;241m=\u001B[39m \u001B[43mmodel\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfit\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 41\u001B[0m \u001B[43m \u001B[49m\u001B[43mX_train_seq\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43my_train_seq\u001B[49m\u001B[43m[\u001B[49m\u001B[43m:\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mi\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 42\u001B[0m \u001B[43m \u001B[49m\u001B[43mvalidation_data\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43mX_val_seq\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43my_val_seq\u001B[49m\u001B[43m[\u001B[49m\u001B[43m:\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mi\u001B[49m\u001B[43m]\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 43\u001B[0m \u001B[43m \u001B[49m\u001B[43mepochs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m50\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 44\u001B[0m \u001B[43m \u001B[49m\u001B[43mbatch_size\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m180\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 45\u001B[0m \u001B[43m \u001B[49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m[\u001B[49m\u001B[43mearly_stopping\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mreduce_lr\u001B[49m\u001B[43m]\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 46\u001B[0m \u001B[43m \u001B[49m\u001B[43mverbose\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\n\u001B[1;32m 47\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 48\u001B[0m test_loss \u001B[38;5;241m=\u001B[39m model\u001B[38;5;241m.\u001B[39mevaluate(X_test_seq, y_test_seq[:, i])\n\u001B[1;32m 49\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124mf\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mTest MAE per \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mtarget\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m: \u001B[39m\u001B[38;5;132;01m{\u001B[39;00mtest_loss\u001B[38;5;132;01m:\u001B[39;00m\u001B[38;5;124m.4f\u001B[39m\u001B[38;5;132;01m}\u001B[39;00m\u001B[38;5;124m'\u001B[39m)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py:117\u001B[0m, in \u001B[0;36mfilter_traceback.<locals>.error_handler\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 115\u001B[0m filtered_tb \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[1;32m 116\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m--> 117\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfn\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 118\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 119\u001B[0m filtered_tb \u001B[38;5;241m=\u001B[39m _process_traceback_frames(e\u001B[38;5;241m.\u001B[39m__traceback__)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py:318\u001B[0m, in \u001B[0;36mTensorFlowTrainer.fit\u001B[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq)\u001B[0m\n\u001B[1;32m 316\u001B[0m \u001B[38;5;28;01mfor\u001B[39;00m step, iterator \u001B[38;5;129;01min\u001B[39;00m epoch_iterator\u001B[38;5;241m.\u001B[39menumerate_epoch():\n\u001B[1;32m 317\u001B[0m callbacks\u001B[38;5;241m.\u001B[39mon_train_batch_begin(step)\n\u001B[0;32m--> 318\u001B[0m logs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mtrain_function\u001B[49m\u001B[43m(\u001B[49m\u001B[43miterator\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 319\u001B[0m logs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_pythonify_logs(logs)\n\u001B[1;32m 320\u001B[0m callbacks\u001B[38;5;241m.\u001B[39mon_train_batch_end(step, logs)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/util/traceback_utils.py:150\u001B[0m, in \u001B[0;36mfilter_traceback.<locals>.error_handler\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 148\u001B[0m filtered_tb \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[1;32m 149\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m--> 150\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfn\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwargs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 151\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mException\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 152\u001B[0m filtered_tb \u001B[38;5;241m=\u001B[39m _process_traceback_frames(e\u001B[38;5;241m.\u001B[39m__traceback__)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py:833\u001B[0m, in \u001B[0;36mFunction.__call__\u001B[0;34m(self, *args, **kwds)\u001B[0m\n\u001B[1;32m 830\u001B[0m compiler \u001B[38;5;241m=\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mxla\u001B[39m\u001B[38;5;124m\"\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_jit_compile \u001B[38;5;28;01melse\u001B[39;00m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mnonXla\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 832\u001B[0m \u001B[38;5;28;01mwith\u001B[39;00m OptionalXlaContext(\u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_jit_compile):\n\u001B[0;32m--> 833\u001B[0m result \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_call\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43mkwds\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 835\u001B[0m new_tracing_count \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mexperimental_get_tracing_count()\n\u001B[1;32m 836\u001B[0m without_tracing \u001B[38;5;241m=\u001B[39m (tracing_count \u001B[38;5;241m==\u001B[39m new_tracing_count)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/polymorphic_function/polymorphic_function.py:878\u001B[0m, in \u001B[0;36mFunction._call\u001B[0;34m(self, *args, **kwds)\u001B[0m\n\u001B[1;32m 875\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_lock\u001B[38;5;241m.\u001B[39mrelease()\n\u001B[1;32m 876\u001B[0m \u001B[38;5;66;03m# In this case we have not created variables on the first call. So we can\u001B[39;00m\n\u001B[1;32m 877\u001B[0m \u001B[38;5;66;03m# run the first trace but we should fail if variables are created.\u001B[39;00m\n\u001B[0;32m--> 878\u001B[0m results \u001B[38;5;241m=\u001B[39m \u001B[43mtracing_compilation\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcall_function\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 879\u001B[0m \u001B[43m \u001B[49m\u001B[43margs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mkwds\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_variable_creation_config\u001B[49m\n\u001B[1;32m 880\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 881\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_created_variables:\n\u001B[1;32m 882\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mCreating variables on a non-first call to a function\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 883\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m decorated with tf.function.\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/polymorphic_function/tracing_compilation.py:139\u001B[0m, in \u001B[0;36mcall_function\u001B[0;34m(args, kwargs, tracing_options)\u001B[0m\n\u001B[1;32m 137\u001B[0m bound_args \u001B[38;5;241m=\u001B[39m function\u001B[38;5;241m.\u001B[39mfunction_type\u001B[38;5;241m.\u001B[39mbind(\u001B[38;5;241m*\u001B[39margs, \u001B[38;5;241m*\u001B[39m\u001B[38;5;241m*\u001B[39mkwargs)\n\u001B[1;32m 138\u001B[0m flat_inputs \u001B[38;5;241m=\u001B[39m function\u001B[38;5;241m.\u001B[39mfunction_type\u001B[38;5;241m.\u001B[39munpack_inputs(bound_args)\n\u001B[0;32m--> 139\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mfunction\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_call_flat\u001B[49m\u001B[43m(\u001B[49m\u001B[43m \u001B[49m\u001B[38;5;66;43;03m# pylint: disable=protected-access\u001B[39;49;00m\n\u001B[1;32m 140\u001B[0m \u001B[43m \u001B[49m\u001B[43mflat_inputs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mcaptured_inputs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mfunction\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcaptured_inputs\u001B[49m\n\u001B[1;32m 141\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/polymorphic_function/concrete_function.py:1322\u001B[0m, in \u001B[0;36mConcreteFunction._call_flat\u001B[0;34m(self, tensor_inputs, captured_inputs)\u001B[0m\n\u001B[1;32m 1318\u001B[0m possible_gradient_type \u001B[38;5;241m=\u001B[39m gradients_util\u001B[38;5;241m.\u001B[39mPossibleTapeGradientTypes(args)\n\u001B[1;32m 1319\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m (possible_gradient_type \u001B[38;5;241m==\u001B[39m gradients_util\u001B[38;5;241m.\u001B[39mPOSSIBLE_GRADIENT_TYPES_NONE\n\u001B[1;32m 1320\u001B[0m \u001B[38;5;129;01mand\u001B[39;00m executing_eagerly):\n\u001B[1;32m 1321\u001B[0m \u001B[38;5;66;03m# No tape is watching; skip to running the function.\u001B[39;00m\n\u001B[0;32m-> 1322\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_inference_function\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcall_preflattened\u001B[49m\u001B[43m(\u001B[49m\u001B[43margs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1323\u001B[0m forward_backward \u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_select_forward_and_backward_functions(\n\u001B[1;32m 1324\u001B[0m args,\n\u001B[1;32m 1325\u001B[0m possible_gradient_type,\n\u001B[1;32m 1326\u001B[0m executing_eagerly)\n\u001B[1;32m 1327\u001B[0m forward_function, args_with_tangents \u001B[38;5;241m=\u001B[39m forward_backward\u001B[38;5;241m.\u001B[39mforward()\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/polymorphic_function/atomic_function.py:216\u001B[0m, in \u001B[0;36mAtomicFunction.call_preflattened\u001B[0;34m(self, args)\u001B[0m\n\u001B[1;32m 214\u001B[0m \u001B[38;5;28;01mdef\u001B[39;00m \u001B[38;5;21mcall_preflattened\u001B[39m(\u001B[38;5;28mself\u001B[39m, args: Sequence[core\u001B[38;5;241m.\u001B[39mTensor]) \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m>\u001B[39m Any:\n\u001B[1;32m 215\u001B[0m \u001B[38;5;250m \u001B[39m\u001B[38;5;124;03m\"\"\"Calls with flattened tensor inputs and returns the structured output.\"\"\"\u001B[39;00m\n\u001B[0;32m--> 216\u001B[0m flat_outputs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcall_flat\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;241;43m*\u001B[39;49m\u001B[43margs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 217\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mfunction_type\u001B[38;5;241m.\u001B[39mpack_output(flat_outputs)\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/polymorphic_function/atomic_function.py:251\u001B[0m, in \u001B[0;36mAtomicFunction.call_flat\u001B[0;34m(self, *args)\u001B[0m\n\u001B[1;32m 249\u001B[0m \u001B[38;5;28;01mwith\u001B[39;00m record\u001B[38;5;241m.\u001B[39mstop_recording():\n\u001B[1;32m 250\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_bound_context\u001B[38;5;241m.\u001B[39mexecuting_eagerly():\n\u001B[0;32m--> 251\u001B[0m outputs \u001B[38;5;241m=\u001B[39m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_bound_context\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcall_function\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 252\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mname\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 253\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mlist\u001B[39;49m\u001B[43m(\u001B[49m\u001B[43margs\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 254\u001B[0m \u001B[43m \u001B[49m\u001B[38;5;28;43mlen\u001B[39;49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfunction_type\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mflat_outputs\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 255\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 256\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 257\u001B[0m outputs \u001B[38;5;241m=\u001B[39m make_call_op_in_graph(\n\u001B[1;32m 258\u001B[0m \u001B[38;5;28mself\u001B[39m,\n\u001B[1;32m 259\u001B[0m \u001B[38;5;28mlist\u001B[39m(args),\n\u001B[1;32m 260\u001B[0m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39m_bound_context\u001B[38;5;241m.\u001B[39mfunction_call_options\u001B[38;5;241m.\u001B[39mas_attrs(),\n\u001B[1;32m 261\u001B[0m )\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/context.py:1500\u001B[0m, in \u001B[0;36mContext.call_function\u001B[0;34m(self, name, tensor_inputs, num_outputs)\u001B[0m\n\u001B[1;32m 1498\u001B[0m cancellation_context \u001B[38;5;241m=\u001B[39m cancellation\u001B[38;5;241m.\u001B[39mcontext()\n\u001B[1;32m 1499\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m cancellation_context \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n\u001B[0;32m-> 1500\u001B[0m outputs \u001B[38;5;241m=\u001B[39m \u001B[43mexecute\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mexecute\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 1501\u001B[0m \u001B[43m \u001B[49m\u001B[43mname\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mdecode\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mutf-8\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1502\u001B[0m \u001B[43m \u001B[49m\u001B[43mnum_outputs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mnum_outputs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1503\u001B[0m \u001B[43m \u001B[49m\u001B[43minputs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mtensor_inputs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1504\u001B[0m \u001B[43m \u001B[49m\u001B[43mattrs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43mattrs\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1505\u001B[0m \u001B[43m \u001B[49m\u001B[43mctx\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 1506\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 1507\u001B[0m \u001B[38;5;28;01melse\u001B[39;00m:\n\u001B[1;32m 1508\u001B[0m outputs \u001B[38;5;241m=\u001B[39m execute\u001B[38;5;241m.\u001B[39mexecute_with_cancellation(\n\u001B[1;32m 1509\u001B[0m name\u001B[38;5;241m.\u001B[39mdecode(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mutf-8\u001B[39m\u001B[38;5;124m\"\u001B[39m),\n\u001B[1;32m 1510\u001B[0m num_outputs\u001B[38;5;241m=\u001B[39mnum_outputs,\n\u001B[0;32m (...)\u001B[0m\n\u001B[1;32m 1514\u001B[0m cancellation_manager\u001B[38;5;241m=\u001B[39mcancellation_context,\n\u001B[1;32m 1515\u001B[0m )\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/execute.py:53\u001B[0m, in \u001B[0;36mquick_execute\u001B[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001B[0m\n\u001B[1;32m 51\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 52\u001B[0m ctx\u001B[38;5;241m.\u001B[39mensure_initialized()\n\u001B[0;32m---> 53\u001B[0m tensors \u001B[38;5;241m=\u001B[39m \u001B[43mpywrap_tfe\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mTFE_Py_Execute\u001B[49m\u001B[43m(\u001B[49m\u001B[43mctx\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43m_handle\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mdevice_name\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mop_name\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 54\u001B[0m \u001B[43m \u001B[49m\u001B[43minputs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mattrs\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnum_outputs\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 55\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m core\u001B[38;5;241m.\u001B[39m_NotOkStatusException \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 56\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m name \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n",
"\u001B[0;31mKeyboardInterrupt\u001B[0m: "
]
}
],
"execution_count": 9
},
{
"metadata": {},
"cell_type": "code",
"outputs": [],
"execution_count": null,
"source": [
"import joblib\n",
"import os\n",
"\n",
"\n",
"def save_models_and_scalers(models, scaler_X, scalers_y, target_variables, base_path='models'):\n",
" \"\"\"\n",
" Salva i modelli e gli scaler nella cartella models.\n",
" \n",
" Parameters:\n",
" -----------\n",
" models : dict\n",
" Dizionario contenente i modelli per ogni variabile target\n",
" scaler_X : MinMaxScaler\n",
" Scaler unico per tutte le feature di input\n",
" scalers_y : dict\n",
" Dizionario contenente gli scaler per le variabili target\n",
" target_variables : list\n",
" Lista delle variabili target\n",
" base_path : str\n",
" Percorso base dove salvare i modelli (default: 'models')\n",
" \"\"\"\n",
"\n",
" # Crea la cartella se non esiste\n",
" os.makedirs(base_path, exist_ok=True)\n",
"\n",
" # Salva lo scaler X generale\n",
" scaler_x_path = os.path.join(base_path, 'scaler_x.joblib')\n",
" joblib.dump(scaler_X, scaler_x_path)\n",
"\n",
" # Salva i modelli e gli scaler Y per ogni variabile target\n",
" for target in target_variables:\n",
" # Crea una sottocartella per ogni target\n",
" target_path = os.path.join(base_path, target)\n",
" os.makedirs(target_path, exist_ok=True)\n",
"\n",
" # Salva il modello\n",
" model_path = os.path.join(target_path, 'model.joblib')\n",
" joblib.dump(models[target], model_path)\n",
"\n",
" # Salva lo scaler Y\n",
" scaler_y_path = os.path.join(target_path, 'scaler_y.joblib')\n",
" joblib.dump(scalers_y[target], scaler_y_path)\n",
"\n",
" # Salva la lista delle variabili target\n",
" target_vars_path = os.path.join(base_path, 'target_variables.joblib')\n",
" joblib.dump(target_variables, target_vars_path)\n",
"\n",
" print(f\"Modelli e scaler salvati in: {base_path}\")\n",
"\n",
"\n",
"def load_models_and_scalers(base_path='models'):\n",
" \"\"\"\n",
" Carica i modelli e gli scaler dalla cartella models.\n",
" \n",
" Parameters:\n",
" -----------\n",
" base_path : str\n",
" Percorso della cartella contenente i modelli salvati (default: 'models')\n",
" \n",
" Returns:\n",
" --------\n",
" tuple\n",
" (models, scaler_X, scalers_y, target_variables)\n",
" \"\"\"\n",
"\n",
" # Carica la lista delle variabili target\n",
" target_vars_path = os.path.join(base_path, 'target_variables.joblib')\n",
" target_variables = joblib.load(target_vars_path)\n",
"\n",
" # Carica lo scaler X generale\n",
" scaler_x_path = os.path.join(base_path, 'scaler_x.joblib')\n",
" scaler_X = joblib.load(scaler_x_path)\n",
"\n",
" # Inizializza i dizionari\n",
" models = {}\n",
" scalers_y = {}\n",
"\n",
" # Carica i modelli e gli scaler per ogni variabile target\n",
" for target in target_variables:\n",
" target_path = os.path.join(base_path, target)\n",
"\n",
" # Carica il modello\n",
" model_path = os.path.join(target_path, 'model.joblib')\n",
" models[target] = joblib.load(model_path)\n",
"\n",
" # Carica lo scaler Y\n",
" scaler_y_path = os.path.join(target_path, 'scaler_y.joblib')\n",
" scalers_y[target] = joblib.load(scaler_y_path)\n",
"\n",
" print(f\"Modelli e scaler caricati da: {base_path}\")\n",
" return models, scaler_X, scalers_y, target_variables\n",
"\n",
"\n",
"save_models_and_scalers(models, scaler_X, scalers_y, target_variables)"
]
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T16:14:44.770508Z",
"start_time": "2024-10-24T13:29:15.181470Z"
}
},
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Addestramento del modello per: solarradiation\n",
"Epoch 1/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m128s\u001B[0m 256ms/step - loss: 0.5408 - val_loss: 0.1378 - learning_rate: 0.0010\n",
"Epoch 2/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 207ms/step - loss: 0.1200 - val_loss: 0.0832 - learning_rate: 0.0010\n",
"Epoch 3/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m93s\u001B[0m 202ms/step - loss: 0.0805 - val_loss: 0.0689 - learning_rate: 0.0010\n",
"Epoch 4/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m85s\u001B[0m 184ms/step - loss: 0.0687 - val_loss: 0.0826 - learning_rate: 0.0010\n",
"Epoch 5/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 209ms/step - loss: 0.0646 - val_loss: 0.0619 - learning_rate: 0.0010\n",
"Epoch 6/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m94s\u001B[0m 203ms/step - loss: 0.0616 - val_loss: 0.0616 - learning_rate: 0.0010\n",
"Epoch 7/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 207ms/step - loss: 0.0606 - val_loss: 0.0588 - learning_rate: 0.0010\n",
"Epoch 8/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m93s\u001B[0m 202ms/step - loss: 0.0600 - val_loss: 0.0580 - learning_rate: 0.0010\n",
"Epoch 9/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 208ms/step - loss: 0.0593 - val_loss: 0.0579 - learning_rate: 0.0010\n",
"Epoch 10/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 209ms/step - loss: 0.0598 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 11/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 211ms/step - loss: 0.0594 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 12/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 201ms/step - loss: 0.0596 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 13/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m87s\u001B[0m 188ms/step - loss: 0.0601 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 14/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m88s\u001B[0m 191ms/step - loss: 0.0591 - val_loss: 0.0576 - learning_rate: 0.0010\n",
"Epoch 15/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 208ms/step - loss: 0.0600 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 16/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m103s\u001B[0m 224ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 17/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 198ms/step - loss: 0.0591 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 18/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m88s\u001B[0m 191ms/step - loss: 0.0593 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 19/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 199ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 20/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m90s\u001B[0m 196ms/step - loss: 0.0597 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 21/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m94s\u001B[0m 204ms/step - loss: 0.0597 - val_loss: 0.0575 - learning_rate: 0.0010\n",
"Epoch 22/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m90s\u001B[0m 196ms/step - loss: 0.0596 - val_loss: 0.0576 - learning_rate: 5.0000e-04\n",
"Epoch 23/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 216ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 24/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 205ms/step - loss: 0.0589 - val_loss: 0.0576 - learning_rate: 5.0000e-04\n",
"Epoch 25/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 197ms/step - loss: 0.0596 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 26/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m89s\u001B[0m 194ms/step - loss: 0.0595 - val_loss: 0.0575 - learning_rate: 5.0000e-04\n",
"Epoch 27/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 198ms/step - loss: 0.0594 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 28/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m98s\u001B[0m 213ms/step - loss: 0.0598 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 29/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m107s\u001B[0m 232ms/step - loss: 0.0591 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 30/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m86s\u001B[0m 187ms/step - loss: 0.0596 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 31/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 205ms/step - loss: 0.0594 - val_loss: 0.0575 - learning_rate: 2.5000e-04\n",
"Epoch 32/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 211ms/step - loss: 0.0596 - val_loss: 0.0575 - learning_rate: 1.2500e-04\n",
"Epoch 33/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 200ms/step - loss: 0.0596 - val_loss: 0.0575 - learning_rate: 1.2500e-04\n",
"Epoch 34/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m88s\u001B[0m 191ms/step - loss: 0.0593 - val_loss: 0.0575 - learning_rate: 1.2500e-04\n",
"Epoch 35/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m94s\u001B[0m 204ms/step - loss: 0.0592 - val_loss: 0.0575 - learning_rate: 1.2500e-04\n",
"\u001B[1m810/810\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m37s\u001B[0m 45ms/step - loss: 0.0496\n",
"Test MAE per solarradiation: 0.0561\n",
"Addestramento del modello per: solarenergy\n",
"Epoch 1/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 185ms/step - loss: 0.4789 - val_loss: 0.1031 - learning_rate: 0.0010\n",
"Epoch 2/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m101s\u001B[0m 219ms/step - loss: 0.0913 - val_loss: 0.0683 - learning_rate: 0.0010\n",
"Epoch 3/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m94s\u001B[0m 203ms/step - loss: 0.0707 - val_loss: 0.0629 - learning_rate: 0.0010\n",
"Epoch 4/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m93s\u001B[0m 201ms/step - loss: 0.0629 - val_loss: 0.2182 - learning_rate: 0.0010\n",
"Epoch 5/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m90s\u001B[0m 196ms/step - loss: 0.0616 - val_loss: 0.0605 - learning_rate: 0.0010\n",
"Epoch 6/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 208ms/step - loss: 0.0608 - val_loss: 0.0588 - learning_rate: 0.0010\n",
"Epoch 7/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m86s\u001B[0m 187ms/step - loss: 0.0599 - val_loss: 0.0584 - learning_rate: 0.0010\n",
"Epoch 8/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m93s\u001B[0m 201ms/step - loss: 0.0603 - val_loss: 0.0582 - learning_rate: 0.0010\n",
"Epoch 9/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m82s\u001B[0m 179ms/step - loss: 0.0599 - val_loss: 0.0596 - learning_rate: 0.0010\n",
"Epoch 10/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m87s\u001B[0m 189ms/step - loss: 0.0606 - val_loss: 0.0579 - learning_rate: 0.0010\n",
"Epoch 11/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m87s\u001B[0m 189ms/step - loss: 0.0604 - val_loss: 0.0579 - learning_rate: 0.0010\n",
"Epoch 12/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m123s\u001B[0m 266ms/step - loss: 0.0600 - val_loss: 0.0579 - learning_rate: 0.0010\n",
"Epoch 13/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 208ms/step - loss: 0.0602 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 14/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 210ms/step - loss: 0.0601 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 15/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m94s\u001B[0m 204ms/step - loss: 0.0602 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 16/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m103s\u001B[0m 224ms/step - loss: 0.0598 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 17/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 198ms/step - loss: 0.0599 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 18/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m87s\u001B[0m 188ms/step - loss: 0.0599 - val_loss: 0.0578 - learning_rate: 0.0010\n",
"Epoch 19/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 216ms/step - loss: 0.0597 - val_loss: 0.0578 - learning_rate: 5.0000e-04\n",
"Epoch 20/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m96s\u001B[0m 208ms/step - loss: 0.0598 - val_loss: 0.0578 - learning_rate: 5.0000e-04\n",
"Epoch 21/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 210ms/step - loss: 0.0600 - val_loss: 0.0578 - learning_rate: 5.0000e-04\n",
"Epoch 22/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m103s\u001B[0m 224ms/step - loss: 0.0596 - val_loss: 0.0578 - learning_rate: 5.0000e-04\n",
"Epoch 23/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m91s\u001B[0m 198ms/step - loss: 0.0598 - val_loss: 0.0578 - learning_rate: 5.0000e-04\n",
"Epoch 24/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 206ms/step - loss: 0.0599 - val_loss: 0.0578 - learning_rate: 2.5000e-04\n",
"Epoch 25/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 200ms/step - loss: 0.0598 - val_loss: 0.0578 - learning_rate: 2.5000e-04\n",
"Epoch 26/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m92s\u001B[0m 199ms/step - loss: 0.0602 - val_loss: 0.0578 - learning_rate: 2.5000e-04\n",
"Epoch 27/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m95s\u001B[0m 206ms/step - loss: 0.0595 - val_loss: 0.0578 - learning_rate: 2.5000e-04\n",
"Epoch 28/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 210ms/step - loss: 0.0601 - val_loss: 0.0578 - learning_rate: 2.5000e-04\n",
"Epoch 29/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m98s\u001B[0m 213ms/step - loss: 0.0602 - val_loss: 0.0578 - learning_rate: 1.2500e-04\n",
"Epoch 30/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m101s\u001B[0m 220ms/step - loss: 0.0592 - val_loss: 0.0578 - learning_rate: 1.2500e-04\n",
"Epoch 31/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m93s\u001B[0m 202ms/step - loss: 0.0596 - val_loss: 0.0578 - learning_rate: 1.2500e-04\n",
"Epoch 32/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 210ms/step - loss: 0.0599 - val_loss: 0.0578 - learning_rate: 1.2500e-04\n",
"Epoch 33/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m98s\u001B[0m 213ms/step - loss: 0.0604 - val_loss: 0.0578 - learning_rate: 1.2500e-04\n",
"Epoch 34/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m101s\u001B[0m 218ms/step - loss: 0.0596 - val_loss: 0.0578 - learning_rate: 6.2500e-05\n",
"\u001B[1m810/810\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m30s\u001B[0m 37ms/step - loss: 0.0498\n",
"Test MAE per solarenergy: 0.0563\n",
"Addestramento del modello per: uvindex\n",
"Epoch 1/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m114s\u001B[0m 227ms/step - loss: 0.6634 - val_loss: 0.1552 - learning_rate: 0.0010\n",
"Epoch 2/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m109s\u001B[0m 237ms/step - loss: 0.1404 - val_loss: 0.1063 - learning_rate: 0.0010\n",
"Epoch 3/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m106s\u001B[0m 231ms/step - loss: 0.0984 - val_loss: 0.0979 - learning_rate: 0.0010\n",
"Epoch 4/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 216ms/step - loss: 0.0871 - val_loss: 0.0865 - learning_rate: 0.0010\n",
"Epoch 5/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m104s\u001B[0m 226ms/step - loss: 0.0821 - val_loss: 0.0823 - learning_rate: 0.0010\n",
"Epoch 6/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m99s\u001B[0m 214ms/step - loss: 0.0766 - val_loss: 0.0819 - learning_rate: 0.0010\n",
"Epoch 7/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m104s\u001B[0m 225ms/step - loss: 0.0757 - val_loss: 0.0741 - learning_rate: 0.0010\n",
"Epoch 8/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m101s\u001B[0m 219ms/step - loss: 0.0754 - val_loss: 0.0735 - learning_rate: 0.0010\n",
"Epoch 9/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m99s\u001B[0m 214ms/step - loss: 0.0748 - val_loss: 0.0736 - learning_rate: 0.0010\n",
"Epoch 10/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m105s\u001B[0m 227ms/step - loss: 0.0748 - val_loss: 0.0732 - learning_rate: 0.0010\n",
"Epoch 11/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m103s\u001B[0m 224ms/step - loss: 0.0748 - val_loss: 0.0726 - learning_rate: 0.0010\n",
"Epoch 12/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m104s\u001B[0m 226ms/step - loss: 0.0747 - val_loss: 0.0724 - learning_rate: 0.0010\n",
"Epoch 13/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m110s\u001B[0m 239ms/step - loss: 0.0747 - val_loss: 0.0726 - learning_rate: 0.0010\n",
"Epoch 14/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m106s\u001B[0m 231ms/step - loss: 0.0739 - val_loss: 0.0724 - learning_rate: 0.0010\n",
"Epoch 15/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 217ms/step - loss: 0.0746 - val_loss: 0.0723 - learning_rate: 0.0010\n",
"Epoch 16/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m97s\u001B[0m 211ms/step - loss: 0.0746 - val_loss: 0.0724 - learning_rate: 0.0010\n",
"Epoch 17/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 218ms/step - loss: 0.0747 - val_loss: 0.0723 - learning_rate: 0.0010\n",
"Epoch 18/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m109s\u001B[0m 235ms/step - loss: 0.0749 - val_loss: 0.0723 - learning_rate: 0.0010\n",
"Epoch 19/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m112s\u001B[0m 244ms/step - loss: 0.0745 - val_loss: 0.0723 - learning_rate: 0.0010\n",
"Epoch 20/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m106s\u001B[0m 229ms/step - loss: 0.0743 - val_loss: 0.0723 - learning_rate: 0.0010\n",
"Epoch 21/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m105s\u001B[0m 227ms/step - loss: 0.0746 - val_loss: 0.0724 - learning_rate: 5.0000e-04\n",
"Epoch 22/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 218ms/step - loss: 0.0744 - val_loss: 0.0723 - learning_rate: 5.0000e-04\n",
"Epoch 23/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m102s\u001B[0m 222ms/step - loss: 0.0749 - val_loss: 0.0723 - learning_rate: 5.0000e-04\n",
"Epoch 24/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m100s\u001B[0m 217ms/step - loss: 0.0735 - val_loss: 0.0723 - learning_rate: 5.0000e-04\n",
"Epoch 25/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m101s\u001B[0m 219ms/step - loss: 0.0735 - val_loss: 0.0723 - learning_rate: 5.0000e-04\n",
"Epoch 26/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m98s\u001B[0m 212ms/step - loss: 0.0743 - val_loss: 0.0723 - learning_rate: 2.5000e-04\n",
"Epoch 27/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m103s\u001B[0m 224ms/step - loss: 0.0741 - val_loss: 0.0723 - learning_rate: 2.5000e-04\n",
"Epoch 28/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m102s\u001B[0m 222ms/step - loss: 0.0742 - val_loss: 0.0723 - learning_rate: 2.5000e-04\n",
"Epoch 29/50\n",
"\u001B[1m461/461\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m109s\u001B[0m 236ms/step - loss: 0.0745 - val_loss: 0.0723 - learning_rate: 2.5000e-04\n",
"\u001B[1m810/810\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m36s\u001B[0m 45ms/step - loss: 0.0623\n",
"Test MAE per uvindex: 0.0702\n",
"Previsione di solarradiation per data_before_2010\n",
"\u001B[1m7122/7122\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m261s\u001B[0m 37ms/step\n"
]
},
{
"ename": "ValueError",
"evalue": "Found array with dim 3. None expected <= 2.",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mValueError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[64], line 233\u001B[0m\n\u001B[1;32m 231\u001B[0m \u001B[38;5;66;03m# Ricostruisci i valori originali\u001B[39;00m\n\u001B[1;32m 232\u001B[0m scaler \u001B[38;5;241m=\u001B[39m scalers_y[target]\n\u001B[0;32m--> 233\u001B[0m y_pred \u001B[38;5;241m=\u001B[39m \u001B[43mscaler\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43minverse_transform\u001B[49m\u001B[43m(\u001B[49m\u001B[43my_pred_scaled\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 235\u001B[0m \u001B[38;5;66;03m# Allinea le previsioni con le date corrette\u001B[39;00m\n\u001B[1;32m 236\u001B[0m dates \u001B[38;5;241m=\u001B[39m data_before_2010\u001B[38;5;241m.\u001B[39mindex[timesteps:]\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/sklearn/preprocessing/_data.py:566\u001B[0m, in \u001B[0;36mMinMaxScaler.inverse_transform\u001B[0;34m(self, X)\u001B[0m\n\u001B[1;32m 562\u001B[0m check_is_fitted(\u001B[38;5;28mself\u001B[39m)\n\u001B[1;32m 564\u001B[0m xp, _ \u001B[38;5;241m=\u001B[39m get_namespace(X)\n\u001B[0;32m--> 566\u001B[0m X \u001B[38;5;241m=\u001B[39m \u001B[43mcheck_array\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 567\u001B[0m \u001B[43m \u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 568\u001B[0m \u001B[43m \u001B[49m\u001B[43mcopy\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcopy\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 569\u001B[0m \u001B[43m \u001B[49m\u001B[43mdtype\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m_array_api\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43msupported_float_dtypes\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxp\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 570\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_writeable\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 571\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_all_finite\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mallow-nan\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 572\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 574\u001B[0m X \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmin_\n\u001B[1;32m 575\u001B[0m X \u001B[38;5;241m/\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mscale_\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/sklearn/utils/validation.py:1058\u001B[0m, in \u001B[0;36mcheck_array\u001B[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_writeable, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001B[0m\n\u001B[1;32m 1053\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\n\u001B[1;32m 1054\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mdtype=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mnumeric\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m is not compatible with arrays of bytes/strings.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1055\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mConvert your data to numeric values explicitly instead.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1056\u001B[0m )\n\u001B[1;32m 1057\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m allow_nd \u001B[38;5;129;01mand\u001B[39;00m array\u001B[38;5;241m.\u001B[39mndim \u001B[38;5;241m>\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;241m3\u001B[39m:\n\u001B[0;32m-> 1058\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\n\u001B[1;32m 1059\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mFound array with dim \u001B[39m\u001B[38;5;132;01m%d\u001B[39;00m\u001B[38;5;124m. \u001B[39m\u001B[38;5;132;01m%s\u001B[39;00m\u001B[38;5;124m expected <= 2.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1060\u001B[0m \u001B[38;5;241m%\u001B[39m (array\u001B[38;5;241m.\u001B[39mndim, estimator_name)\n\u001B[1;32m 1061\u001B[0m )\n\u001B[1;32m 1063\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m force_all_finite:\n\u001B[1;32m 1064\u001B[0m _assert_all_finite(\n\u001B[1;32m 1065\u001B[0m array,\n\u001B[1;32m 1066\u001B[0m input_name\u001B[38;5;241m=\u001B[39minput_name,\n\u001B[1;32m 1067\u001B[0m estimator_name\u001B[38;5;241m=\u001B[39mestimator_name,\n\u001B[1;32m 1068\u001B[0m allow_nan\u001B[38;5;241m=\u001B[39mforce_all_finite \u001B[38;5;241m==\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mallow-nan\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 1069\u001B[0m )\n",
"\u001B[0;31mValueError\u001B[0m: Found array with dim 3. None expected <= 2."
]
}
],
"execution_count": 64,
"source": [
"# Previsione delle variabili mancanti per data_before_2010\n",
"# Prepara data_before_2010\n",
"data_before_2010 = data_before_2010.sort_values('datetime')\n",
"data_before_2010.set_index('datetime', inplace=True)\n",
"\n",
"# Assicurati che le features non abbiano valori mancanti\n",
"data_before_2010[features] = data_before_2010[features].ffill()\n",
"data_before_2010[features] = data_before_2010[features].bfill()"
]
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T18:50:48.087413Z",
"start_time": "2024-10-24T18:47:52.511763Z"
}
},
"cell_type": "code",
"source": [
"# Crea X per data_before_2010\n",
"X_before = data_before_2010[features].values\n",
"X_before_scaled = scaler_X.transform(X_before)\n",
"\n",
"# Crea le sequenze per LSTM\n",
"X_before_seq = create_sequences(timesteps, X_before_scaled)\n",
"\n",
"# Prevedi le variabili mancanti\n",
"for i, target in enumerate(target_variables):\n",
" print(f\"Previsione di {target} per data_before_2010\")\n",
" y_pred_scaled = models[target].predict(X_before_seq)\n",
" # Ricostruisci i valori originali\n",
" scaler = scalers_y[target]\n",
" y_pred = scaler.inverse_transform(y_pred_scaled)\n",
"\n",
" # Allinea le previsioni con le date corrette\n",
" dates = data_before_2010.index[timesteps:]\n",
" data_before_2010.loc[dates, target] = y_pred\n",
"\n",
"# Gestisci eventuali valori iniziali mancanti\n",
"data_before_2010[target_variables] = data_before_2010[target_variables].bfill()\n",
"\n",
"# Combina data_before_2010 e data_after_2010\n",
"weather_data_complete = pd.concat([data_before_2010, data_after_2010], axis=0)\n",
"weather_data_complete = weather_data_complete.sort_index()\n",
"\n",
"# Salva il dataset completo\n",
"weather_data_complete.reset_index(inplace=True)\n",
"weather_data_complete.to_parquet('./data/weather_data_complete.parquet', index=False)\n"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Previsione di solarradiation per data_before_2010\n",
"\u001B[1m7122/7122\u001B[0m \u001B[32m━━━━━━━━━━━━━━━━━━━━\u001B[0m\u001B[37m\u001B[0m \u001B[1m172s\u001B[0m 24ms/step\n"
]
},
{
"ename": "ValueError",
"evalue": "Found array with dim 3. None expected <= 2.",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mValueError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[65], line 17\u001B[0m\n\u001B[1;32m 15\u001B[0m \u001B[38;5;66;03m# Ricostruisci i valori originali\u001B[39;00m\n\u001B[1;32m 16\u001B[0m scaler \u001B[38;5;241m=\u001B[39m scalers_y[target]\n\u001B[0;32m---> 17\u001B[0m y_pred \u001B[38;5;241m=\u001B[39m \u001B[43mscaler\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43minverse_transform\u001B[49m\u001B[43m(\u001B[49m\u001B[43my_pred_scaled\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 19\u001B[0m \u001B[38;5;66;03m# Allinea le previsioni con le date corrette\u001B[39;00m\n\u001B[1;32m 20\u001B[0m dates \u001B[38;5;241m=\u001B[39m data_before_2010\u001B[38;5;241m.\u001B[39mindex[timesteps:]\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/sklearn/preprocessing/_data.py:566\u001B[0m, in \u001B[0;36mMinMaxScaler.inverse_transform\u001B[0;34m(self, X)\u001B[0m\n\u001B[1;32m 562\u001B[0m check_is_fitted(\u001B[38;5;28mself\u001B[39m)\n\u001B[1;32m 564\u001B[0m xp, _ \u001B[38;5;241m=\u001B[39m get_namespace(X)\n\u001B[0;32m--> 566\u001B[0m X \u001B[38;5;241m=\u001B[39m \u001B[43mcheck_array\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 567\u001B[0m \u001B[43m \u001B[49m\u001B[43mX\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 568\u001B[0m \u001B[43m \u001B[49m\u001B[43mcopy\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcopy\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 569\u001B[0m \u001B[43m \u001B[49m\u001B[43mdtype\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m_array_api\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43msupported_float_dtypes\u001B[49m\u001B[43m(\u001B[49m\u001B[43mxp\u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 570\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_writeable\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\u001B[43m,\u001B[49m\n\u001B[1;32m 571\u001B[0m \u001B[43m \u001B[49m\u001B[43mforce_all_finite\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mallow-nan\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 572\u001B[0m \u001B[43m\u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 574\u001B[0m X \u001B[38;5;241m-\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mmin_\n\u001B[1;32m 575\u001B[0m X \u001B[38;5;241m/\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;28mself\u001B[39m\u001B[38;5;241m.\u001B[39mscale_\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/sklearn/utils/validation.py:1058\u001B[0m, in \u001B[0;36mcheck_array\u001B[0;34m(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_writeable, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)\u001B[0m\n\u001B[1;32m 1053\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\n\u001B[1;32m 1054\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mdtype=\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mnumeric\u001B[39m\u001B[38;5;124m'\u001B[39m\u001B[38;5;124m is not compatible with arrays of bytes/strings.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1055\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mConvert your data to numeric values explicitly instead.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1056\u001B[0m )\n\u001B[1;32m 1057\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m allow_nd \u001B[38;5;129;01mand\u001B[39;00m array\u001B[38;5;241m.\u001B[39mndim \u001B[38;5;241m>\u001B[39m\u001B[38;5;241m=\u001B[39m \u001B[38;5;241m3\u001B[39m:\n\u001B[0;32m-> 1058\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mValueError\u001B[39;00m(\n\u001B[1;32m 1059\u001B[0m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mFound array with dim \u001B[39m\u001B[38;5;132;01m%d\u001B[39;00m\u001B[38;5;124m. \u001B[39m\u001B[38;5;132;01m%s\u001B[39;00m\u001B[38;5;124m expected <= 2.\u001B[39m\u001B[38;5;124m\"\u001B[39m\n\u001B[1;32m 1060\u001B[0m \u001B[38;5;241m%\u001B[39m (array\u001B[38;5;241m.\u001B[39mndim, estimator_name)\n\u001B[1;32m 1061\u001B[0m )\n\u001B[1;32m 1063\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m force_all_finite:\n\u001B[1;32m 1064\u001B[0m _assert_all_finite(\n\u001B[1;32m 1065\u001B[0m array,\n\u001B[1;32m 1066\u001B[0m input_name\u001B[38;5;241m=\u001B[39minput_name,\n\u001B[1;32m 1067\u001B[0m estimator_name\u001B[38;5;241m=\u001B[39mestimator_name,\n\u001B[1;32m 1068\u001B[0m allow_nan\u001B[38;5;241m=\u001B[39mforce_all_finite \u001B[38;5;241m==\u001B[39m \u001B[38;5;124m\"\u001B[39m\u001B[38;5;124mallow-nan\u001B[39m\u001B[38;5;124m\"\u001B[39m,\n\u001B[1;32m 1069\u001B[0m )\n",
"\u001B[0;31mValueError\u001B[0m: Found array with dim 3. None expected <= 2."
]
}
],
"execution_count": 65
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Esplorazione dei Dati Meteo"
]
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-23T06:10:46.688323Z",
"start_time": "2024-10-23T06:10:46.586185Z"
}
},
"cell_type": "code",
"source": "weather_data = pd.read_parquet('./data/weather_data_complete.parquet')",
"outputs": [],
"execution_count": 21
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-23T06:10:50.718574Z",
"start_time": "2024-10-23T06:10:46.901554Z"
}
},
"source": [
"# Visualizzazione delle tendenze temporali\n",
"fig, axes = plt.subplots(5, 1, figsize=(15, 20))\n",
"weather_data.set_index('date')['temp'].plot(ax=axes[0], title='Temperatura Media Giornaliera')\n",
"weather_data.set_index('date')['humidity'].plot(ax=axes[1], title='Umidità Media Giornaliera')\n",
"weather_data.set_index('date')['solarradiation'].plot(ax=axes[2], title='Radiazione Solare Giornaliera')\n",
"weather_data.set_index('date')['solarenergy'].plot(ax=axes[3], title='Radiazione Solare Giornaliera')\n",
"weather_data.set_index('date')['precip'].plot(ax=axes[4], title='Precipitazioni Giornaliere')\n",
"plt.tight_layout()\n",
"plt.show()"
],
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 1500x2000 with 5 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAfGCAYAAAD4GfcAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1dfHv5uEFJJAEnrvvfeOiCKKoogdxC7YfyrYsRd4VUQRCyiICiqiICJFem+hhV4CCRASEtJ73/ePmLBJdrNT7syZ2Tmf5+Eh2czOPTNz595zzz3FZrfb7WAYhmEYhmEYhmEYhmEYhmEYphJe1AIwDMMwDMMwDMMwDMMwDMMwjFFhIzrDMAzDMAzDMAzDMAzDMAzDuICN6AzDMAzDMAzDMAzDMAzDMAzjAjaiMwzDMAzDMAzDMAzDMAzDMIwL2IjOMAzDMAzDMAzDMAzDMAzDMC5gIzrDMAzDMAzDMAzDMAzDMAzDuICN6AzDMAzDMAzDMAzDMAzDMAzjAjaiMwzDMAzDMAzDMAzDMAzDMIwL2IjOMAzDMAzDMG6w2+3UIjAMwzAMwzAMQwQb0RmGYRiGYRinvPrqq2jXrl2V/4YPH04tpuZs2LABr7zyCqkMe/bsKbvn27dvd3rM2bNny46JiYlR3eaECRMwYcKEst+HDx+OV199VfV5S1mzZg0mTpyIIUOGoHPnzhg8eDCee+45HDp0qNxxS5cuFXZNoih9Hnv27AEAfPnll2jXrh2xVAzDMAzDMIxW+FALwDAMwzAMwxiTp556Cvfee2/Z719//TWOHz+O2bNnl33m6+tLIZquLFiwgFqEMry8vLB69WoMHjy40t9WrVqladuzZ89GUFCQ6vMUFhZi8uTJWLduHW699Va8+eabCA0NRWxsLH7//Xfcd999+OSTT3DLLbcAAIYNG4bFixejbt26qtvWirvuugtDhgyhFoNhGIZhGIbRCDaiMwzDMAzDME5p2rQpmjZtWvZ7WFgYfH190b17dzqhLE7Pnj2xfv16vPvuu/DxKa/Kr1q1Ch06dMCJEyc0abtjx45CzvPtt99izZo1mDlzJkaNGlXub6NHj8bTTz+Nd999F9dddx0CAgIQFhaGsLAwIW1rRf369VG/fn1qMRiGYRiGYRiN4HQuDMMwDMMwjCpOnz6NSZMmoWfPnujZsyeefvppXLx4sezvpakvdu3ahQkTJqBr164YNmwYlixZgoSEBDzzzDPo0aMHrrnmmnJe36Xf2759O8aPH4+uXbtixIgRWLhwYbn2i4uLMXfuXIwYMQKdO3fGyJEj8fPPP5c7ZsKECZgyZQqee+459OzZExMnTgQAxMTE4OWXX8bgwYPRqVMnDBgwAC+//DJSUlLKvrd3717s3bu3LH1HxVQejm1UTH/y0Ucf4cEHH0TPnj3x1ltvAQBOnjyJZ555Bv3790enTp0wZMgQfPDBB8jNzXV7r0eNGoXU1FTs3Lmz3OcnT55EdHQ0brrpJtnPBwBiY2PxzDPPoFevXhg0aBB++OGHSuepmM7F3b1zRk5ODubNm4eRI0dWMqADJZ72zz//PAYMGIDk5GQAztO57NixA+PGjUOvXr3Qr18/TJ48GXFxcWV/X7p0KTp27IglS5Zg8ODBGDp0KM6cOYMJEybgjTfewNy5czFs2DB06dIF9957LyIiIsrJsX79eowbNw49evRA586dceONN1bqd444S+eyfv16jB07Fl26dMGgQYPwwQcfIDs7u9x3RowYgdmzZ6Nfv364/vrrkZKSgtzcXMyYMQM33HADOnfujJ49e+Lhhx/WbHOEYRiGYRiGcQ97ojMMwzAMwzCKiYqKwr333ouWLVti+vTpKCoqwjfffIP77rsPy5cvR61atcqOffHFFzFx4kQ8+eSTmDt3Lt5++200bdoUo0aNwj333INff/0V06ZNQ8+ePdG1a9ey773wwgsYM2YMnnjiCWzYsAHvv/8+7HZ7mcH6nXfewdKlSzFp0iT06NED4eHh+Oijj5Ceno6nn3667DyrV6/GjTfeiK+++gpFRUXIycnBAw88gNDQULz99tsIDg7G/v378dVXX8HPzw/vv/8+3n77bbz00ksAgLfffhutW7fGsWPHJN+fRYsWYfz48Zg4cSL8/f2RkJCA8ePHo3v37pg+fTp8fX2xefNm/Pjjj6hduzaeeOKJKs/XunVrtGnTBqtXr8bQoUPLPl+5ciX69u2LOnXqyH4+2dnZuP/+++Hl5YX33nsPPj4++OKLL3DhwgX06NHDqRxS7p0zdu7ciezsbIwePdrlNbZr1w6zZs1y+ffly5fj5ZdfxqhRozBp0iSkpKRg1qxZuOeee7Bs2bKyPldUVIRvv/0WH3zwAZKTk9G6dWsAwL///otWrVph6tSpsNvt+L//+z8899xz2LhxI7y9vbF582Y8/fTTeOCBB/Dss88iNzcXCxcuxPvvv4+OHTuiZ8+eLmUrZcWKFZgyZQpGjx6N559/HpcuXcLMmTMRGRmJH374ATabDUDJ5sW6devw2WefISUlBaGhoXjuuecQHh6OyZMno2nTpoiOjsYXX3yBF154AatXry77LsMwDMMwDKMfbERnGIZhGIZhFDN79mz4+/tjwYIFZfmyBwwYgOuvvx7ff/99uYKcd9xxBx5++GEAQPXq1XHPPfega9eueO655wAAnTt3xoYNG3DgwIFyRvTrr78eb7zxBgBgyJAhSEhIwDfffIPx48fj/Pnz+P3338sM9AAwePBg2Gw2zJkzB+PGjUNoaCiAEi/n999/H9WrVwcAnDhxAvXr18f06dPL0tb0798fR44cwd69ewGUGK1Lr0tJGpu6devi1VdfhZdXSQDo9u3b0aFDB3zxxRdl5x04cCB27dqF8PBwt0Z0ALjpppvw448/oqCgANWqVQNQksrF2XelPJ9ly5YhNjYWy5cvL/OmLvX6d0V0dLTbe+eMUg/45s2bl/u8uLgYxcXF5T7z8vIqu2+Ox33yyScYOHAgZs6cWfZ5z549MWrUKMyfP79s0wMAnnjiCQwbNqzcOQoLCzFv3ryy+5GVlYVXXnkFJ06cQOfOnREZGYkxY8aU9TkA6NGjB/r164fw8HC3RnS73Y5PP/0UQ4YMwaefflr2efPmzfHQQw9hy5YtZTIVFhbilVdewcCBAwEA+fn5yMrKwptvvlnmqd+3b19kZWVh+vTpuHLliqFzwzMMwzAMw3gqbERnGIZhGIZhFLN7927069cP/v7+KCwsBAAEBQWhd+/elVKOOHo1165dGwDQrVu3ss9Kjd0ZGRnlvnfbbbeV+/2GG27Ahg0bEBUVhb1798Jut2P48OFl7QMlqUe++eYb7N+/H9dffz0AoHHjxmUGdADo0KEDfvnlFxQXF+PixYuIjo7GmTNncO7cuXLnUkOrVq3KGYIHDx6MwYMHo6CgAFFRUYiOjsapU6eQnJyMkJAQSeccNWoUZs2ahZ07d+Kaa65BREQE4uPjy+6LI1Kez759+9CkSZNy6UgaNGhQ5aaB0ntX0VBeyhdffIFvv/223GfPPPMMnn322XKfRUVF4cqVK3jxxRfLfd60aVP06NGjUoqdtm3bVmrLcWMEAOrVqwegxLseAB577DEAQHZ2Ni5cuICoqCgcOXIEAFBQUODy2ko5d+4cLl++jEmTJpW7F3369EFQUBB27NhRzrDvKKOvry/mzZsHAEhISMD58+dx7tw5bNq0SXL7DMMwDMMwjHjYiM4wDMMwDMMoJjU1FatWrcKqVasq/a1iMUhHw2UpAQEBbtuo6Hlbmq4jPT0dqampAICbb77Z6Xfj4+PLfi413Dvyww8/YM6cOUhJSUHt2rXRqVMnBAQEVDLkK6Vim8XFxfjss8+waNEiZGdno0GDBujatSv8/Pwkn7NFixbo0KED1qxZg2uuuQarVq3C4MGDUbNmzUrHSnk+aWlpTgt31qlTB4mJiS7lUHLvGjVqBAC4dOkS2rRpU/b5uHHjyjY7AODOO+90+v3S5+3sWdauXRvHjx8v95ljOqFSKva50k2OUgN/cnIy3n77baxfvx42mw3NmjVDr169AJR4mbujVMZ3330X7777bqW/JyQkVJLbkW3btuGjjz7CuXPnEBgYiHbt2iEwMFBy+wzDMAzDMIx42IjOMAzDMAzDKCY4OBgDBw4sS9PiiI+PGFWz1ChZSlJSEoASA2mNGjUAAD/++GOZodGRhg0bujzvihUrMH36dEyePBl33nlnmSH5f//7X5nnsTNKc1JX9KrOyspyKoMjc+fOxYIFC/DOO+9g5MiRCA4OBuDaaOyKUaNG4bvvvsO7776LNWvWYMqUKU6Pk/J8QkNDcf78+Up/r3jfHVF67wYNGoSAgACsWbOmnDd2vXr1yjzCq6LUW9+Zcf/KlStl0QxqmDJlCs6ePYsffvgBPXv2hK+vL3JycrBkyRJJ3y/tky+//DL69u1b6e/ONjtKuXDhAp5++mlcd911mDNnTlmqnEWLFmHbtm0KroZhGIZhGIYRgZf7QxiGYRiGYRjGOX379kVkZCQ6dOiALl26oEuXLujcuTMWLFiAdevWCWlj48aN5X5fs2YNGjVqhKZNm6JPnz4AgJSUlLL2u3TpgtTUVHz++edVGoL379+P4OBgTJw4scwInJWVhf3795czkFfMy13qUR8XF1f2WVpaGs6ePev2Wvbv34/WrVvjzjvvLDOgx8fH4/Tp0y5TnTjjpptuQnp6Or7++mukpaVh+PDhTo+T8nz69++PmJiYcsbv5ORkHDp0qMrrkHLvKhIUFIRHHnkEf/31F9asWeP0mDNnzrj8fosWLVCnTh2sWLGi3OcXL17EoUOHJBX9dMf+/fsxcuRI9O/fH76+vgCArVu3AnCdjsaRli1bolatWoiJiSnXJ+vXr48ZM2ZU8pZ35OjRo8jLy8OkSZPKDOgAygzo7InOMAzDMAxDA3uiMwzDMAzDMIp56qmncO+992LSpEm477774Ofnh8WLF2P9+vWYNWuWkDYWLFgAf39/dO/eHWvXrsWmTZswY8YMACX5pG+99Va8+eabuHTpEjp37oyoqCjMnDkTjRs3rlTA0pGuXbvi119/xfTp03HttdciISEB8+bNQ2JiYjlv4Ro1auDgwYPYtWsXOnbsiHbt2qFBgwaYPXs2goOD4eXlhblz50pKTdO1a1d8/fXXmDt3Lrp3747z589jzpw5yM/PL8vJLYUmTZqgS5cu+P777zFixAiXHvBSns9tt92Gn376Cc888wxeeOEFBAUF4ZtvvqnSYCz13jnj6aefRlxcHP73v/9h5MiRGDlyJOrWrYsrV65g06ZNWL16NerVq4f+/ftX+q6XlxdefPFFvPbaa3jhhRcwZswYpKSkYPbs2ahZs6ZTj3u5dO3aFStWrECnTp1Qv359HDx4EHPmzIHNZpP0jLy9vfHCCy/grbfegre3N6699tqyDY/4+Hh06tTJ5Xc7deoEHx8ffPLJJ3jkkUeQn5+PpUuXYvPmzQBK8rQzDMMwDMMw+sNGdIZhGIZhGEYx7du3x6JFizBz5ky8/PLLsNvtaNu2Lb766itcd911Qtp4/fXXsWzZMsyZMwctW7bErFmzMHLkyLK/T5s2DXPmzMFvv/2Gy5cvo1atWhg1ahSef/55eHt7uzzv7bffjpiYGPz555/45ZdfUK9ePVxzzTUYN24c3nzzTURGRqJ169YYP348jh49iscffxzTpk3D6NGjMWvWLHz00Ud48cUXUbt2bTz44IM4d+4coqKiqryWSZMmISUlBT/99BO++uorNGjQALfddhtsNhvmzJmDtLQ0t0boUkaNGoUjR464zAcPSHs+vr6++PHHH/HRRx/hww8/hM1mw913340mTZqUpc5Reu+c4e3tjWnTpmHUqFFYsmQJPvnkEyQmJiIwMBAdOnTAG2+8gTFjxrjclBg7diwCAwMxZ84cPP300wgKCsKQIUPw4osvok6dOpLuXVVMnz4d77//Pt5//30AQPPmzfHuu+/i77//xr59+ySd46677kJgYCC+//57LF68GNWrV0fPnj3x6aefokmTJi6/16xZM8yYMQOzZ8/Gk08+iZo1a6J79+74+eefMWHCBOzbt69cAViGYRiGYRhGH2x2jglkGIZhGIZhDMiePXvwwAMP4KeffkK/fv2oxWEYhmEYhmEYxqJwTnSGYRiGYRiGYRiGYRiGYRiGcQEb0RmGYRiGYRiGYRiGYRiGYRjGBZzOhWEYhmEYhmEYhmEYhmEYhmFcwJ7oDMMwDMMwDMMwDMMwDMMwDOMCNqIzDMMwDMMwDMMwDMMwDMMwjAvYiM4wDMMwDMMwDMMwDMMwDMMwLmAjOsMwDMMwDMMwDMMwDMMwDMO4gI3oDMMwDMMwDMMwDMMwDMMwDOMCH2oBRJOUlAG7nVoKa2KzAbVqBfMzYHSH+x5DBfc9hgruewwV3PcYSrj/MVRw32Oo4L7HUGGlvld6re7wOCO63Q6Pf7hGh58BQwX3PYYK7nsMFdz3GCq47zGUcP9jqOC+x1DBfY+hgvveVTidC8MwDMMwDMMwDMMwDMMwDMO4gMSIXlRUhAkTJuDVV18t+ywiIgJ33XUXevTogeHDh2PJkiUUojEMwzAMwzAMwzAMwzAMwzBMGSRG9NmzZ2Pfvn1lv6elpWHixIkYM2YMwsPD8eGHH2LatGk4fPgwhXgMwzAMwzAMwzAMwzAMwzAMA4DAiL5r1y6sXbsWN9xwQ9lna9euRUhICMaPHw8fHx8MGDAAo0ePxqJFi/QWj2EYhmEYhmEYhmEYhmEYhmHK0NWInpSUhDfeeAMzZsxAQEBA2ednzpxB27Ztyx3bunVrnDx5Uk/xGIZhGIZhGIZhGIZhGIZhGKYcPno1VFxcjJdeegkPP/ww2rdvX+5vWVlZ5YzqAODv74/s7GzZ7dhsqsRkVFB67/kZMHrDfY+hgvseQwX3PYYK7nsMJdz/GCq47zFUcN9jqLBS35N6jboZ0efMmQNfX19MmDCh0t8CAgKQkZFR7rPc3FwEBgbKbqdWrWDFMjJi4GfAUMF9j6GC+x5DBfc9hgruewwl3P8YKrjvMVRw32Oo4L53Fd2M6MuXL0dCQgJ69+4NoMRIDgDr16/Hyy+/jB07dpQ7PjIyEm3atJHdTlJSBux29fIy8rHZSl4ufgaM3nDfY6jgvsdQwX2PoYL7HkMJ9z+GCu57DBXc9xgqrNT3Sq/VHboZ0desWVPu91dffRUAMH36dKSkpOCTTz7BggULMH78eOzfvx8rVqzA119/Lbsdux0e/3CNDj8DhgruewwV3PcYKrjvMVRw32Mo4f7HUMF9j6GC+x5DBfe9q+haWNQVoaGhmD9/PtasWYN+/fph6tSpmDp1Kvr3708tGsMwDMMwDMMwDMMwDMMwDGNhdPNEr8j06dPL/d6lSxf89ttvRNIwDMMwDMMwDMMwDMMwDMMwTGUM4YnOMAzDMAzDMAzDMAzDMAzjKeQWFOG+H/dj5uaz1KIwAmAjOsMwDMMwDMMwDMMwDKMp3+08j+f+PILComJqURgL8HP4RTz5ewRyC4rIZFhzIgGRiVn4Zf8lMhkYcbARnWEYhmEYhmEIuJKZhyl/HcOe6BRqURiGYRhGc+buOo9d0SnYcjaJWhTGAszaGoV9F9Pw99HLZDIUc0VOj4KN6AzDMAzDMAxDwP+tj8SWs0l45s8j1KIwDMMwjG7kFbInOqMfuQXc3xgxsBGdYRiGYRiGYQhIyMyjFoFhGIZhGIZhGAmwEZ1hGIZhGIZhGIZhGIZhGI+DMqEKJ3PxLNiIzjAMwwAAcgqKsP7UFWTmFVKLwjAMwzCWoLDYjo1nEpGUlU8tCsMwDMMwDFMFbERnGIZhAAAfrj2N1/45gTdWnqAWhWEYxhKcuZJV9vPRuHRCSRgqfj94Ca/8fRz3/bifWhTGQuQUFOFQTBoXvGPI4K7HMIwZYSM6wzAMAwD49+QVAMDOqBRiSRiGYaxBYfFVK8KJ+ExCSfQnJTsfLy0/hh1RydSikLL1bBIAICWngFgSxkr8788jeHxxBH7Zf4laFIZhGM2xG2jX5lBMGlJ5zjctbERnGIZhyDh+OQMfrTuN5GwOY2fo+PXAJSzcF0MtBsNYipmbz2FzZBKeX3qUWhSGsRwHL5VEvvx1OI5YEsaq2DlTNGMRHO33h2LS8PjiCIz4epfucmTmFRpqM8GssBGdYRiGIePBRQex7PBlTFt3hloUxqLkFhThs01n8cWWc0gh2szJyC3EtzuiEZ2UTdI+Ywystq65wjnAGYZhLEtsWi61CAwRBUXF1CKQcehSGkm7x+LSce3snXhj5UmS9j0JNqIzDMMw5EQn0xsP5+0+jzdXsWJhNRzTadw8dw+Jh8aMTZGYt/sC7lqwT/e2GTqu/2ontQiMAbDa5gljLLj7MVRk51vXkGpl7v5hHwZ+vh2LD+ibSsooY11eIU2/L424XXfqCvZfTCWRwVNgIzrDMGWciM/AkVgubMZYk293nMeaEwk4nWCtvMTMVQqK7Cgo0l/NPhKXoXubDD1puYUVPjHKEo9hGEZbftkfg9vn7cXldPZGtiqczkV/cgqKsOH0FWTlV9Q/9CPqP8epJYdiyWSg5PvdF6hFwBO/H6YWwdSwEZ0pIzo5G4/8chDbzyVRi8IQUFBUjAcWHsQjvx5CZh7dxMowFEQ5pNF4Z80pQkkYhmEYhmE8m5mbzyEmNRdfbY+mFoUh4q/Dl6lFIKHYbkfEpTRk5xfp3vbLfx/HqytO4NUVJ3RvuyLnU3KoRdCNYhf7RVpHv646Ho/Hfj2ED/49jfWnEzVty0qwEZ0p482VJ3EkLgMvLDtGLQpDQG7B1dCiDDaiMxbj6+1RZT+fuZJFKAmjNzYbtQSMlVhx9DKmrjzhNB/oJxvPIp8ozJcEzmPCMORQF5krJIj+YoxBdoH+RmQjsOxwHB77LQJP/B6he9u7o1PK/W8lqNKoACXR/s44qXH089urTyEiNh3Lj1pzw0or2IjOlJGWW0AtguVZfOASfg6/qHu7drsdK47x4MpYF8dNJIaxKhm5heQGFU/nvX9P49+TV7A0Is7p3/887PxzxnM5Gsdp9KxKYVExPt0YyVHAFqPYbsesLeew7tQValEYAlYcjQcAnIjn9JF6Mo8wjUqhC1d03kQ0J2xEZxiDkF9YjE83ncWsrVFIzMrXte1XV5zAzM3ndG2TYRyxwYa951Pwc/hFSxrxCouKLXndRsRKnulFDkp9+IUUDP9qJz5ad4ZUDqvwk4sN87QcdmigwFlkgF7kW3wRXWy3W3b+W3bkMhYfjCWNArZ49yNh29kk/LwvBq//Q59Sg2GsxJwd0YZKW8vDrzlhIzrDGIRihwVEaTi33W7HP8cu46SLECBRbDzDObIYWjLyCvH0H0cwa2sU+n62DRf0zpNXwXCqp1EvLj0XAz7fjr6fbdOtTQa4mJKDpRGxlbxAKHJUUrAnOgWDv9iOv4+URCF9t/M8AOCvI/pGJcWm5eLa2Tswc/NZXdulwNFQmGWRfmYG+szYioGfX30XGO3JKSjCkkOxiEvPxT0L9uHRXyMsaUiPz8ijFgGxabmYvl7/zdNSrLRxDQAzN5/Fa2w8ZxgSvt99AZ9v0d9x0NUwZ8V5zxNgIzpThpF0mAspOZi68gRyLJQrzdkQuud8Ct5dcxoTFh7UVZa/DschOjnb/YGMx0Cdh7di9MUd88M1b7PYbsekxRF4c9XJSn+7mKqfEf9tJ+0z2jN2fjimrY/EL/tjyn0+Y5M+xtxd0cm47bs92H8xVZf2KjJl+TEUFtvx/trTJO2X8sOeC8gpKMYv+y+RyqEHuQ7jrBGM6EsjYnH7vL2I0XG8c8RoS0fqd8FKfLHlHD7eEIlbv9uL6OQcHLFQSpsrmXnYEplYznmGmj9dpJfSCsfUBlaKvskrLJnrCizs/s9GQ+PNfVbj+GVtnRPlYOWxwMywEZ25ioFcAe6YH45/T16xfJjb2UQaQ/b8PRdx1w/7SNoGgGnrzuCd1WxY1JNNFoxGOJ2QiQMxaVhzIoFaFIaQg5fKG292RCXr0u5zfx5FbHoenvj9MC8qLYKUx6xnT5i2PhIxqbn4vw2ROrbKACXGtNdWHEdsWi61KCTsclLUTq+NpfPJ2egzYyse+eWQLu1V5PZ54Ziy/DhWHL1cbkw4ZiDDjtY4RvtlGCi1gtY4SxtlpM0UhmG0ITnbearegmKuyWVG2IjOGBq9vaEz8wrx6orj5OlNDLSfoTu5BUVYejgOK48n4HK6NReXFEyt4A1thYV9VRlbLPwKWo6Kz5r62ZMZ1K088ejEP1IKeBM8/0LCfOBWZfAX27H+dCJu+34vtSiG4VedolF+Di+JPqLyfs/7LyKl4kbCJaKIEIaW3w/GUotAypS/jnn8msMo9gWGjj3nU51+znto5oSN6AzjwLzdF7DhdCJe+fu47m07DqJsyijBgrXmDMNt3+/FgZhUajF0Y7cTrzi9OH0li6xtpjLUw863/+UmtwoxHr54dmTVcWNGvVD3ecZ6ONNz1526okvbhQby/EvI1Dcn+s6oZHy6MZI8hR+vc66y3OK1GLacTXKaVtGT+GFPefuCUaIPrVIDqCJJWc69wikwRk9g5MJGdKYMIw0oVFDeA7uTYdSKjoFFDoqFs3vC6Mc/R+OpRSDjzh/26aZcGiE3spU5EJNW7vf0XP1Dyx1Huvm7L+jeJgAcrHAf9GLfhVSSdq3O0sP65kBmrqJn4Wqj4syIlJmvz9i7/rRxvEH1Hnf/t/QoFh+Mxe+HaL2fdS8ezxgGZ6Of3pHHvx64hJ06pe4DgKRsY+b9/36X/k4bRthAyCPeRDQKVqpHIRo2ojNl8IBSHkovjRVH4xGZSO+dSrHQcwxrTDWo0sF4Bu42qb7eHqWPIA5Y2bjy2orjWLgvxv2BDGNSpHid6jECxKTmYNq6Mzq0VDUGWEvrzs/hF3HNlzuoxSAlv7AYsen6emA7YqT1jp4GpVMJmWU/61X7wxWZFsqD7g52GNLXG/dQTBo+23QW/1t6VLc2TzjUOzgRn4ET8ZlVHK0fFJGAT/9xRPc2K5KVX4TRc/cgOomm9lw5CF//67/e5fGplLSCjeiMUzaevoIsnTxCjITjODboi+26tFlUbMfE3w7hndWnyj6bu+s87vtxvy7tV0UcQU5yx3DeZYetHeJITZGHWziOxFadD/X4Zf2V3F/2x6DQgob045czsP50Ir7Yco5aFMtgJEOSEdh7PkXzOixXMt1Hu+mxuK7ofeThQ305CoqK8eCig5i+nmYTYdbWKMu/exGxNFEvRkPvYNP7fz5Q9jN1BNCyIxwJozcHYlLJHbTCL2g/z7rDcTP7p70XdWnznIOx9oGFB3VpUwqbziTivI7Pw263I9wg0YeXM/Jw14J91GKQr/m4Losy2IjOOOWVFScwdaVn5ydzRkXv8z065Ek+EZ+Bg5fSsTkyqdLfbFbM5+KA3t4ZxXY7Ii6lIbeA02sA9IssrYlONl448aytUVh8QJ/iakZCinGRYURxKj4TKdlX+1xkYhae/uMI7vqBfkHFxQW1ZWdUMo5fzsCfEWzEKyUtpwDHHTwlGf2wqp7vWB/CSpt4ztDj+i+n52LS4sOkDlpnE7Pw1JIjuGcBvZNYKV9u0z7i1OiFu6fpsKGcX1iMQzFpiCOMQDIqSw5Zb83nCbARnXHJ9nO0oX4UVKyarYe3jAWdTl0Sl56LAgdlQ2/F+tf9l/DYbxF4TscQPyPDfZOGLWcrb6hpTXRyNmKIjHfFdjsupV1t+98TCegzYytWHbdOTn6rGxH05PjlDNy/8ABu+GZ32WfnDJA+TVcqGO707n6JmXlkBc2KHC622G4nG/eMxK3f7cWDiw5iw+krSM/lNHp6Yk0TOqM3lwyQsuFsFfOsJ+tAn246Sy1ClRQUaX/z31lzCo8vjsBXOmxamI0951OpRWAU4EMtAMMwrknNto535uHYdDz666Fyn+mtU5UWWtO70NPRuHT8cyweTw5qjpoB1XRtuyo8WKeVhCfn7Bz5zS6EBFTD4od6Iz23oMwDd9tzg+BfzVtXWd779zRWHrtqMJ+6qiQK6u3VpzCqYz3h7f0ZEYvMPGNFm1j9XdOTvee1jzBTg6f3hcSsfNw0Zw98vGzo2rAGqSzvrTmFlQ4esVbkcnousv+Lvnt1xQkAwJ4Xh8BLQw9pmwvTMYUhLT23ADX8qfQuNqEzJak+/jochzFdG1CLYgn0jv7gqKerqVrXOqRstQrHL2fgwUXGSeHDiIE90RlDE5NKu3NOvTM+f48+udpcoacn8it/H6/0md4VvC+k0HikPfzLIfwZEYeZBssHTV1BvbDYTlpoM4o4b6NWHItLR3J2Ac4lZSM1uwCnE656ByVm6b9x52hA14Pp6yMx22DeMFzYpwQ9vJM93UgthUobCTqO9aW1KAqLacrpTXcoqGp1A/qTv0dg9HeV86FmGWyTUUs+30yrd+llz6uYrpKCZYfjsLlCxK/VcJW67kMdCz0XEevWztBTmotEaz3GmrzsxL5hNIwwP5gNNqIzTBVk65Abm9pQWRXrddox/jn8olPjnZ53xgh50PUs7iIF6q455a9jGPnNrkpF8DyJ1Gz9ry3F4X7mGTxXI2Mtvt5urM0NT+Xr7dHlfj94qeoiy55EigfPJ3LZd9F51N25JG3TG7kyHFNs4lLXRtHLJ7aYWKE7n5yNj9adwUsmMChpRW5BEe6uopDhkkOxyMrXPgKy/8xt6D9zm+66dRKBvluRuTuj8c2OaGoxyHCWviwqKRtLDsV6dPQtJTkGsC+445f9MdQimA42ojNMFfyy39rFHi6k6GPUnbXVueFET53/VwsWc3QH9fbOjqhkpOUWYqUH58b+60jlME8O8NYOI29aUrLJIN6BehQ3dGZMsmpxv4pEJmbhkM7pzBiGFp4T9CC1CoOtVZ7Ajqiqa419vCESn27UL3/2PzpHAf5+kH6d9d2uC9QikPKFk4jnjLxCfLwhEtN1KDDqDK308uz8Imw8k2gKIzY1kVarCyQAzonOGIoLKTmYY+EdYqNBrdjq2X5FzzwK2L5nPYqcPPRzSdpuXhmln11Oz8XUlSepxWBgjnBTUXy743zZz5l5hQjyM5YqnFNAFx1y34/7AQArHu+L+jX8NWkjw8HbTe/6I9QYIWR64+krWLT/Ej64uT21KIaAsuCizQbEpueRtc8Yj+3nqja0K6XASdSh3tEJVW1Vs4ODPmyOTHL5t21ntel77th4JhHXta0j/LxvrjqJrWddXy/DqIE90RlDccf8cEsWnWCco4dSZbfbDZMf75gOXphyYKVWexwNeqVU5bGlNVk65KQuZcams4iItU4aiVIKi4pxKc0YY47ROBKXgZHf7NK9XSP5oScRpLSoSJyGhj2KFFZGYc0JmhzsWfmFeG3FcWw8k4hXVpzA4dh0Mq9Do5FsoP640SARQVrA6iTtPLPaydiz+kSCrht76bnGTBfCax1a9l1I1eS8bEBntISN6AzDuCSTuLjUZR08dH47GIux88M1b0cqfWZsxcl4YxjTPV2tjLySSS0COXa7vVx+2vt/PqD5giKvsBifboys0iNGK4zQpycuPowx3xtnzDEaRjJqWQk9cvFandxCGp1q/u6LWH86sVwB9xR+zwzHhtPaGdGpU1Y59n2K3PdGYL+LGgSOaPWUnEU4nbmShYd+OahLLuzComKkGdSI/rmTFCeeRrHdznM84xLq+cGMsBGdYVAyuRh9J5qikvrWs0nYfzFV93ZL0cNL1YjpgyYsPKhre3kGCDGngLqYHtWYU1FXenv1qXK/P7/sqKbtLz5wCYsPxmrahlGx2+04Emc973ujEvHfGMDrB2DYlzt1aYfvtf4kZ1c2Wp6Ip9tETsw0lhGVag2g56sgpS0tC006LmEKLVrQ/IAB01eduZKFa2fv1Dy1VrobQ30uYRoz6vpn2TpEgD615LDbOZ7nZjq0igj53aJrLT1gIzpjeQqLinHXD/vw9B9HqEWpEqqq2d/tqpxugvEsLjqp1g5omy/xzJVMrNS5qJHRCNcohNEdFR9rfEb5iI+dUSmath+bTpeDlmEceX7ZUfwZEYsrBjPqMZ6KOawUWtuTNxgsbcm9C/Zj4uIIajE0RYqBbJ9OTjMVu9epBO03dLafS0L4BW11GxFoZch0d9p5u2nXetkWLv749fYozduQEgWhFe5SprIXNLBwX4wm5/1kY6Qm52W4sCjDYO+FVFxIycEFg+TFNhqUE68VyHWhOO6ISsagFmE6S1MeLRfS4346IPlYT1Ww4tiYrDsGDzhiCJi+nhcZFfHMEZeOnVHJ+L8NkehYL5haFENA0b9OxWfilRXH8fSQFpX+FpVcUsw7Lj0XDTQqqOuMAicRpqcSMtGubpDwtqjfaUc17mxilq5tp2YX4IVlxwAAe14cgiuZ+Zi9LQoTBzRDZGIWhrQMg4+39n6FlKosqz7G5bjB6mGJhrLOk1k4Q5xelHp+MCPsic5Ynv8t1TZ1gTukGnVYAdKGQoI0OY64CmF8fulRHDJg6KfV6DNjK37ce1GTc++ONr5XFCOW87xZW0ZmXiGOcmoby+Gpm6JV8b+lRxGblov1p6+4PVaLCDC5Z/TER/TqP8dxKS0Xr/9zwuUxn2/WPjeyY+HgXVHJlf5+/8/SHQxEo1fayNMJOhvRc68a8ex24Ja5e7DmRALGzg/Hy38fxw8a6XhmQmsHAw8cUhhGGGzjMR9sRGcMg5apI9SQW1CEhAxtClza7XbEpLFRhRIj5wPXOney3W5HjItULiV/17R5yRQQP6PZ27QJtVyvYRExI0O5mKLu0lNXnpR0nKsIFU/iwUUH8fAvh6jFYHTG6MaU9Fxar7nw86mk7QPi5/5SXYOy9pAUXS9fh1zdCZlX1xN63o1UCUUdfzugT27oNCfv2B6dnAqcRR1vkLC55elQ60aM52JU+04pfWZsRYZBi94yxoWN6AwpjtWit51NIpbGOTfN2Y2b5+7RJN3LjE1n8e6a05KOpcqJzmgMoUXh+10XcPu8cHztwkhsN4hanckV5YWS4TCWFFEUU/NEN0eJSA1rXXbkssaSVI2WBeZK4RRqxsUYIz8N1321i6SQeyl6GHL15vMt53D7vHAsMLjHrx65uam4VIXDRClH4rRLK+E46ztTOzStv+TQHmX0kxTNRyv9yN1Zta7Rk8ZGSpckZhmjJkuWRgVON0dWbd8xworg2x3RpO1n5dE6zlh4WaYYNqIzbtFyB7G0WnRcei5+1ckDQi6Z/w1sa06IL4K4WEbV5Hm7Lwhvn7E2c/9btGw7VzmkGDCOJzojFkfP+tXHEwglYVxBHX0xZycXlLYymyOtGSVTipEj1MzIL/tL9Puvt0e7XVNE/5efXDRS9Bk9CgxLkYPSY3/NiQSsOaGtXnA+pfIzzrXAO3f6ir5pbByhVufnEBspjUxceh4Ox3puarsMEzgBUm9k7D6fgnNJdOMDIx82ojNV8vo/JzB67h5ka7Q7WVq0cs2JBMMXsNQ7h19FtHoGDC1Vbf5SG7FzC4sRmya++GWhTE873iAXi6OhQA+jQUUonyd1mhSz9OUsjaM//ib2tGeqJknDBSV7PFWNJtM+tTLhwPDZO6uMQnl1xXEdpTEmWjwtqR7Ob646iTdXnRQ+B5yIv+rlvzOqcuqWK5napM2syHv/Vo7+tRloZqaURCunuWK73bLpC6Vi1Gh8ERjn7XKNEWbIPw/FUYvAyICN6EyVrDt1BQmZ+dhKOLhXlbNZT6gHWOr2Gf2hSLVRkTvmhws/ZxFXOWOI2OImrJQpQUsjKgC8v1ZaGjOGYTyLrPwiRCa6dko5m6iNJ7oR0TPiQa53u2jZVh6rOpo3OZu2FoFR0Erd3XTGvRFbu/pfmpxWNnIdePTE6HnDteSiAew81A42jPlgIzpjCKqaO+I1mtTlQhleCUhTgBhxGCGs6qdw+vyhhYS5YT0Zoyhszgp8eTJS8/xPWhyhSftSF0pavnWfbozE26urLnBq4fWcxyNFl9Hy+VPn/pSCUeqBMJ6HFMcgq46/ORrpRdS3M6egCEdMkK6D+j5pSWJWPl786xi1GC5ZbuHoPCNsoO3SqbCxUWFXNfmwEZ2RhNYLCl6wMEbjngX7ddnA2RHlPB85cDUfv6chd7Le6SJnu5mhLhxZygYXIbZx6eLT+JTy91FjXHtVHIjRJr1YgsT0OVqF9hbb7Vh8MBarOBe+7mjl5SeXTUTRGEXFdlxKyymrxcE4xwgGVAOIIBwjXFNuQRHeWFn1BiZAm85FK6Q0//SSI9oL4gStb82Tvx/GI78ekiaLtqJUSaHsMFFpGOHdu+nb3YY2lHLhVYYxF7oa0Xft2oW77roLPXv2xKBBg/D+++8jN7dkoR4REYG77roLPXr0wPDhw7FkyRI9RWPcoLVS7+78WfmFwj3BC4uKkZwtPWTdCEqAFqQaYAe4KrLzizQLc3NnzIvUoQjQ26tPad6G2TmZkOn+IJORY/AaB3s0XGxQFhAzgoFKChHEXmsmuU2mISu/EB+uM0YKm/Wnrrg9Rovn/+qK4xjzvfj0YFLJzBOvR2qDeBnPV5GDnNEPyYYyDfqp3L5P8aociaOZ97S+1mOXMyQfK3WjXQtWHNPIwcEE4+709Wc0K2psddxtUp1KyESmCYqPak2R3W6YKGXGPboZ0ZOTkzFp0iTcd9992LdvH5YtW4a9e/di7ty5SEtLw8SJEzFmzBiEh4fjww8/xLRp03D48GG9xGOIqaoq9extURj25U68u0assXHA59sx8pvdQs9pRs6n0CoN7tKFXPPlDjz5uzZjwfzdF6r8O0dIaAOnODc+/7chkloETeA3mnHHZcFRGDvOJWPYlzudFtMzKlrYPDYT1iMIv5CCa2fvxCcbz0o63gQ2H1kcjZNuxGMYLaAs3ulOl68qR7+VSM3RxqlqmwmiSf+MiMNjEqMFGPFcO3sn1p60doTknxFxGDJrB7IJnKxWcnSqbHQzooeFhWHnzp0YO3YsbDYbUlNTkZeXh7CwMKxduxYhISEYP348fHx8MGDAAIwePRqLFi3SSzzLo2dxG2dUFWJVqvzzC+6ZLI1wX41aq9QK7vC0hbRSTsTzAtxqcC58z0SqGYP66VN6JWUL9gT6Yss5oefzVFKy8/FnRKwmz/6b7dEAgCWHYoWfWzSsd3gue86bZyNNOAZ3npi68gS1CORoNfZk5ZvDy5hTqtAiJdWVGUmX2a9OJvCa2wz46NlYUFAQAOCaa65BfHw8evfujbFjx+Lzzz9H27Ztyx3bunVr/PHHH7LbYA9HZXwnIUelu3tb+nctnwH18/XE9qWcU8vrjpJYwLMqGeT0vTUnEvDtjmh8elsnt8fGpefCZivJY7krOgV9moYgyE/XYZO8zwHAAwsPYt+UocLOp+SaqO+Dq/aVjnvuPKOor9dTZZBzOurr33I2Ed0b1URIQDWnf1fS96TmxbXJPK9o8gqLEOyv71jrCPWzp9ajiux2YXOuVO7/+QASMvMxfX2k0PlGCTYbXR+wg77/AVU/fzkUKdiQ1WS9IdFCqOW9f/9fiSmdNOh/Xl4yTyhYBqmn0uL+Z0nw7Pz35BV8eEsHt8fJ6XtFxfYq6x65a0NvtBp7KJ+9XChlOHY5HZ0b1HD5d7azeG7bjlDp33rrfEZF6jWSrFDWrl2LtLQ0TJkyBc899xzq1auHgICAcsf4+/sjO1t+molatYJFiWkpNpxxXlyulKAgf9SuLe3eavkMpMrgjm1n3OcErUi1at7C2leKFu2HZLkP39Pyuv1dGIiUyCCl701duRUA8M6/p+HlXfVI+cnGs3j6hvZ4belh/Lr3Iga3ro2Fj/WTJK8UEjLcpw2g7nOliJSjoEh+5IvI9hftOY9/JERAyGlf7riX7KZorBGeu2gZlh+6hEV7qk6hpLUMQUGpZG3LZcpfx9GyTiA2Th5W5XFazLnhF1LxxupT+GZ8L/nGlyo4n5QFLwkaalhYEGrX8BfWrhxCQwOFPntvH/lBn1r2PT8/93PupjOJwuZcqTjmAhZ9/T7VvGUdv/pMMp4c1kqoDFIJDpaub2tFzZrVhcmw/NAl2d/RYr1RKNGWT33vASCsVhD8fOT1WXfUlKDrl5MhLBC1g8WNwd7e0sZBLe7/X+ukpaeT07a7vme32/HKn4fx+74YyedUIodI/P2qadJ2ULC0aGIjvHuUMryw7BgOvnWD2+PMYGdxxN/fl7R9M7TtSA2B868c9Nb5zA6JEd3f3x/+/v546aWXcNddd2HChAnIyCgfupCbm4vAwEDZ505KyuBQSJkciU1HjJuiQxkZOUhMrDq8xGYrebm0fAbuZJDK238dlf2d/PwiYe0rRUT7uQVFyMwrRO0gP2yOTMSUv47r0q4r9pyVlie1KhmU9L3zSVkIq+5+Yk9MzMDi8IsAgO2RiULvxct/HZPUvkiKiu24nJ4Lb5mGMZFyFCowoots/41l8t9/V+0rHfdy3OSefOvPCDx3TUs5IgpHdN/732+HyGVIz5ReYI96vAeAc1eyhPc9qfx7LB5rDl5E32ahQs6XW1CEa77YIenYpORMeOXTFL1OTs5CokD7VTHxeOdISnY+VkRIS2kies6Vg+jrL5SZoufohWQkJtYVKoNU0tLd69uay5CWjcRE6YaPqlAy7j/1UzjeGtkWPi4Mr0r6n9TCmtT3HgCSEjPhq2DzrSpSU+U5piUnZ8ErT9wYXCRxHNTi/mdmSyvWKaVtqX3vz4hYRQZ0qXJowfYzVzRpOzI2VdJxWrRdbLcjLk16nRPK9z/HjZ3BTHYWR07FSk/JSnn/jTD2AyVjtaj5Vw7Ufc8olF6rO3Qzoh84cACvv/46/v77b/j6lnSM/Px8VKtWDa1bt8aOHeUXVpGRkWjTpo3sdux2zicol4d/OeT2GDuk31ctn4Go855Lkh/lYIedvG+JaH/kN7uRlV+ElRP74eXl7g3ootp1xspj8ThzRVo6FykyyOl7OQXFuCRBsap4PpH3QkqhNdH3/o1/TmL9afmRGCLlsCtIjmn0d0/uuOduOflTeAyeHUprRKe+51rIYJdhzzTC9QPi+54c8gvFzXsp2dINMsXFdPc/OTsfdrt8Jw5XKLkMra595mbp+dlFz7lyEP7eG0AGs7QNAMXEa6lVxxPQs3FN3NalQZXHadH/qO89oM39l3s+qvW0Wd47d/dn+ZF4XeQQyaW0XE3a/naH+5SxgDbXPfWfk1h7Svqah/r9Fznv5hQUwdfbS5bTlBbXL6euGeX9T8spQA1/adHxWmLksZftrFfRrbBou3btkJubixkzZiA/Px+XLl3C//3f/+HOO+/EyJEjkZiYiAULFqCgoAC7d+/GihUrcMcdd+glniUpttsle2Zo8cLsjjZ+tW5HPGXQKM0NeDAmDVJTVSrJaSmFd9ac0uS8jGuUGNAZDfCUAcWDiVKw2cqYnw/WnhF6PiXJcIo1Gh8SMvI0OS8jDp4aSkjLEVvkL69QfkQIFVLXZhoLIfZ0Qs9mnrapic/Iw3c7pRmxPRE5BnQA2Owmva1ZyMgtxNBZO3DfT/vJ5ZDDOYl10rTgbCLr/Ix0dDOiBwYG4vvvv8eZM2cwaNAgTJgwAQMHDsTrr7+O0NBQzJ8/H2vWrEG/fv0wdepUTJ06Ff3799dLPMuRV1iM2+eF4+W/pXkiX04Xv/B69k/5KRUosbIStuywvPzRnoYR1jOeRGImG3KoWHMigVoEUuS8yg//clAzOcyCuwK42rVLR6yM0G+t6PfZNqw8ptyTkVGHlCgxrdBqA8VsiL4LZjKia8Hx+ExqEciQuimRLDHti5l45o/DmLvLukZ0uXyyUVr+fKmckvHeiSzaGH4xFQC9M4gcL3QAuGeBGKO/krShDCMHXXOit27dGvPnz3f6ty5duuC3337TUxxLs/d8CmLTciUvFtNyaXKTMsYgxU3+Zk+Hl7RiGf3dXmoRyJHSp/rM2Iotzw5CdV8xCZr3X0zFm6tOCjmXWZHzLpdG7Yjg+OUMeBugrH2+TENSdHIOAn3T0KNxTY0kco4hPDEFoSR9HFASqXVzp3pihTFAHzQDIt99hjECn206S9o+tTFPCnfO34fRnevhBQFFhY0y0kYnS68Dw4hf713JYqchCn4/JK32ixGhcl5h5KGbJzpjbhYfNO9gJIqjcenIzBMbXmoWftkfg1yZhbncscQkE9xSi3vhG4UjsenC+6AZ2BElLu2VUmMeo46cgiI8uOgg7l94gFoUfLTutKzjv9hyDhMXRyAmVf1CXK5HEiOeaBljQKFGadyYqjktsU6Mp+NJG2lyGTJrh2ZpFKWitvWIS2l49NdDOH7ZGMX6pJCRV4hf9l+iFoMhhHLYySkQ6D1tgPFzZ1Qypiw/RtL2QQX6plE2vgzw6BgJsBGdkYwRDFhphB7RmXlFuPOHfcLOl5VPa5CX45CWmVeEIbN2uD9QBh9vkBcyl03kGTZtndj8uIwyHvn1EJ5fpi4FlN1uxwxibyyGjtTsAmQRbIQaafN174VURd+LTla/AXMkNl31ORh1JGZJT1fw5VbpRUiNjpkWpT/uvUgtgqXZdpYulY8jSoxARuKx3yJwODYdT/weQS0KCRz0Y05ETxVUc48Rprz/LTVX2l6jYIRnx7iHjeiMZDIMYAiQmsNdK5JkLEDdYaZFnRGwap5Qzut2lf0X1S0qIxOz8NsBY3gZWbQ7y6bPjK04Ga/eky07vwgjvtmFWVujBEhlXijX9dzlzQV7ZNJRbLcjh9BxxQjzE5UIL/4l3nNy9Yl42cUdi4zwEAQg1LtWIR5yK02JCP2NkY/V+7zNxLtYR+PY4cQMsBHdoph1bOFwcMZTkBqq/NX2aG0F0RlKhTrXAIu5Uiyu38ripeXqN09FpCNh9IPfD8bKPPrrIQydtUOo4wYjHdGpZN5adYqLO0qEcvOIEc+EheYq0M5jrmegxMwVJSDiUgR/HOI0smaAjeiMZKy+qykavp/y8LT7te2ctFzXC/fFaCyJvphNofYkTLp3issZ5i7MZNb77kh6rvpINDlpEjxtvGcYORyNK9ls3mqQ1CJWg8sB0I3BBRpEX1JciifM+4x5caxpcogdECUhulZbTGoOlh+RbxDXYgxkxMNGdIaE6evF55lOzMrHtrNJlk374el4WrVqOZ6xSw/HkReZ8gSMFIFTWKT/8zTS9esNvz0lJGQq87JaGqHOMyY+I09W21HERXA3nkkkbb8U9ooTA7//8vA0fcuqFNvt2HY2SVYtBE/EykVq5XI5PZdaBI+Cquf94WAQpiruSYkSHU70Eun2eeH4YC3XVfNU2IjOSEbkRPCnygW5M+6YF44X/zqGlcfihZ+bKeHVFcdZGSVg2roz+DNC7A65XKgL4YrASDbk9aevSDouJ78Ixy5nWP69U5uOZXd0iiBJrMkRlTka5Rpx1BYRdsX7/56SdNwrxPVXSrnx293UIpDww54L1CIwxFBvpFFTKMBxYuWxeLz41zHcMS9cgET64DmqjpE0TulYfcPFU4hwKOSeJiCS0AoYJY+6xwyBHg4b0S2KzaSTe1Vk/5dHb2eUOYwlBcW04To/7Lko+zsbTifiSBxNTmvPUaxLkHs9myNpw7p/2ecBReYMoiDJ4f21p/HQooNYd0qa0b0qzHf1V3lrlTTjpyv2X0wVI4hF8YRAmPiMPPx9lDfZzcDXHlYLhBKzRmdeSrO2R+zzS9VvJO6MKkkbmM15xhkC9rDzAsPIxqxzttVgIzrDELH6eAJp+5GJWYq+pzZX14WUHNz1g3yvGJ5SaMnK50UYJWtO0I4X1Kj1hCbFhJs3FWkc4k8tgmo4JRZjNkSMHNsl1l9hrsJjBZ3OrUW7cs+ZV1iMQpVrHbOmRBJpv3vmzyPiTiaDxKx8fLwhEmeuZJK07wjbQ82DUTR17jPmgI3ojGSsnk5ANHmF1iwc8fhvhxCdrCA1g8W7H/Xlm3VB4IhRFCQlCLn7HmDMZZSRmJmH73adpxNAgf7wyt/H0e+zrYgl8khlncdzOJ9sztQgIrTEzDz5ofxG6PqUMvyloBgcIwgD9L1hX+7Ard/vVXWOo0RRu2oxwO1XzburT2HJoViM++kAtSiMiTDKEskI8y/jHjaiWxWDDBRWJTW7AN/siKYWg4Tk7AJqEQwBz5H6YwQFyW63Y9Vxc6SUyPag6AOl75snGFLXnkzAzXP3YO5OQiO6AjaeSUSxHbhNpTGjFLmbCH0/2yakXbNzNjELK4/Fm/pdMGsklVWdLQAgITOPrO1Dl0wc+WRydkSJj5zIlfkeFRbbcUVhEW6zU1BUjL8Ox+FSmro6NEqYt1uMjnLaAB7oSjkQk0otAkMMp98yB2xEZxgClhyiKRKZnG1epdATPKHVsO9CqiHOYWYMYEPH9nPJeHu1/PzeIkLy5V7/NV/uMLXhrBwKL0PEgp6y3x2OTccbK0+qzmnuCdkN/uGi47LpM2Mr7v1xP95ZcwobzyRSi2M5RIwdZh3C4zPojOipOeKcPS6nU+Z2V96DqOb+d9acQorgtYpS3Ve0HHqjpEjown0x+HDdGYz5Xv9itN/uOI8EwvfeCExafBgPLDyAL7eeI2k/yQCFZanGHqMUFgWAgzFpurf5zppTWHU8nsxGZTbYiM5YDrU5vSlJVOmZkyLAC3wT0ULajOvAzLxCPLXkMJYeNkZo8JNLDiv+rlkX4kZDjYfM2pP650W/mGrt4m6nEszr0QQAUUnKal+IhocP83P8srnfBSVsPJOIib8dUmUIVWLIosbq76vI60+wqEezGtJy5Kcg0gKjyKEUJZsA1M42SQI2Loy1XpEvzIn4TPwUHqOBLO5JEbiBqBSRm5hyMI4JHZi4OEL2d2Zvi0KfGVvRZ8ZWzN99Qfb3Vx6Lx9urT+HjDZFIM0A/MDpsRGckY5Q5yd0uqbuNxLUnrwiURl9umrMHs7bQ7E6XspdIwTKWUiSNhftiEH4hFdPWnan0N4/x8DURNgOoSGoe+2qC4qKe0k+tHsnCMIw8cguK8Mrfx3HwUjo+3hCp+DxqdDZqg5ZVKTZI6M3FFP1TahgBY9x948ihJ55wzUYwBJsWA3QAKhEM5IiuiB/3Xiz7+Zsd0fhXxZqRaiPDTLAR3aJQjhO5KnM9Fas06uQWmjvX1M/7YhCTqkyxFjExUfUdA8zrsqkqD2tarrk8XMx4/ythAAVpDmFeaiWX7xHPHco3L4oMYkwhh3gzxYzevJ6Htd6FIbN2lP2crmK+zlBQ2LOULWeTFH+XUc6BmDQsjVAf0m632/H19ijF3z96WV1udrMahY5fNkZRTrNvvhvBcUQu5pOYEQ2VuulpfW/qqpPUIng0bERnZKHWgF1yDnXfVyuCERwr1SpmlMWmyJRyIzw4gZgtrZAIj2QR44caPE1Bkouid9ezXjvZfLdLfkhkRdSOmdHJ2Yq/a5RhU+28X6hivIxLz5VdVJSpjFH6EgVknnECzqFI3zTIs6aMhJq2PhKFKgeuw7Hp2H9R/9y2ZuedNfLrxrji043Ko0gYRi1mmzeNsHFEJ4HVV4mMHNiIzkhmzYkEXPvlTuw5n0Iqh5qcwrkFRfg/FWG5RkFEbnOlUHk2UKWRYcSw9mQChs/eSS2GYqg3AKiw5lWLRW3X+TOCvqaCmks4EZ+BR389RNb+pMURmEsYAeIp8FjA6A21AVqtEZ9D4ulZfFB5RIHp1T6VyzU16SBOK6wnYwTveavq+4aB6P5nF5grQpyhhY3oFkWJZ9zX26ORXVCE//15RLxAMvhgbeX80lLZGZUsUBI6Fh+8pOyLAuYlJX2noKgYWyKTkKEiJPqShxU4NJuOdjZJuTcsALyx8mSV6W30QE1YvdmelyiM4JUiAsqr2HtB3cbz30cu48754YrTeIlATf9/b81p0vbj0tUV5DY7v+yPwd0L9rmtJ+MOq46BgLWvnZLYNFq9z8rP/fZ54fhgrfqxG1AXSUSJhR8/AHXpIJRG0G09l6SqqKHalLEAkKiyGHBpccdMFWsOKoww5tkBLDkUi1XH43Vt92yiunUuYy3YiM7oRkp2Ps4lZak+jzvPkKpsvGqMaCIpMsAkpSdzd57HlOXH8PQfhxWfw4yeAfT+FOLwhAJnm84kKv6u+XpfZZR4+JjwtXMK5WVEXlE372UXFOF8So5HRFEpxVM2cyiYufkcopKyVae0EaG/mZUjcepyU1OiZAw3yvu2ndjxRe1dUDt/7opStwGrRgctLLZj+ZHLqtovZYmCaKopfx0jr0kSY8LCrp9ujMT7/5akw1Hy/EWlC1XqNDN353k8/luE4nb3nE9V/N1SXvzrGH5yKNKolI2nla85qDDCyJ+aU4CPN0Ti7dWndF/7T19/BmtPJuC8ijSKjDVgIzojG6XD2Q3f7MY9C/aTVptPJkyD4sjuaNqUOGpQopSt/i8k8ES88lQ85vRjcY0RFBVGBp5gTVbw8nrAVXsMlPMG9wPzo7YOxxmVm0FWxZM20/VG1OZ9YqY5o1H2X0xV9X2jROEo8UTfcjYJ28/RFtZ96e/jpO3LpaCoGIsPxuLvo/GISzdv9G4UsQHzVEImvtymvCCwI2bTndafuqL6HEXFdlxW0f8cU9bqvY/2Z0Qc3lh5Enf+sE/fhhnTwUZ0i5JboHwxpdaWdFilR49RDOFqyCukTWuhhtNEC2nKAlNaoOR6qL1yrIyaW5+YmYePN0TibKIJjVDc5QRAZ0YT9fjUjL+RAvr9+WTzeQR6GjwUyCMrvxCfbozEkbgMalEUkU2cfk0k09cri+Kh1jvVtP7HoVhTR1AA6taqVsSxuxYV21Fo4rDnw7Hm7rtmZY2KPPilPL/0KEZ/t1fx943Sa82ahorRBzaiW5CU7Hy8rGJ33SiDGxVZ+fQpYWxKEpPDOCG6SvAwG7oiRCg3jDISVHiyTV11EksOxeL+nw8IlEg+SjZhzDxmlINwAFE4XDMO/G/pUWoRyFCby1wUavK7UhsjKZiz4zwWH4w1ZXHJjWcScc2XOzBpsfK0CiIQNf9sOUvr0awUNa/N19ujhcmhFqVrlgMxtIVlqVCawsLxW2m5hbh/IZ3OqVbtUVqMfBtx9IIjdtix97x5I8+VslvtNasc9kU5nBklBTBjTNiIbkG2nSXOMUi4lhJhyxj25U7VC0K11cfNZpMRIa8ZnbBFG88uZ5g3PNMIFKroRGqMCUf+86hR0z6gPh3DXwrym3qK7YvyMsw2XjPG4qXlYlIKqEmnBqjLlbtLQSqiaeuUF5E3Ar8eUFgA3gEROoSSsW/Z4ZK5gtqImUPsiax2A8RDpk8ylh6Wn0vdE7j3x/2qvWDXnqR1uqFyHhCVx18Edjvwh4J6AFZH7eapqIKulzOUO09dMWkKMUY6bERnGAUcv6wuPNdjvDslImQh6CnWvP9Qcjlm3EgwEn+qUGYTMvNxzwJlOfLyBYXUqi2YpCSdDHc59RxVOV8YAe4HdIhKyUCR09xut6PPjK2KIgmWHo5Dnxlb0WfGVmxUURSaUUefGVsVf1dt9Bx1CrsX/zpG2r6noGYJEJVkvQJ/UUnZOKoyDdQv+9Vv4qlBrbMYQ5NSywiRk0bRN9WsGdNz2Yvd02EjuhUxwACpJXpMAOeJK7YrvUYqO7SIR2KUSZUS6o2EVcfj8eTvEaYMTxfBOQsu5jzlxaN8dUQVx1OChzw+xqSk5YhZSL5isgJ/TAlvrjpJLYIqLhMX5lQzfnuKs05iljU9OpU8Peo1AlMetU/ju13nhchhNtR2Y1F2IDVRDfwmej5sRGcYBage4C2UzqXYblcVEuV4Hk8iX0GoJrUn+turT2HfxTTM2RFNK4gCOLROWTqG2PRcyy/MUrKNkZOaYRhGNtYevlWh1hCt9tZ7ytyrxqhFEUFjBEy/CWKmhapGqH2C+SpSqDEMoy1sRLcg35PvbJpcMYAHKDc68vbqU0KMvx6ylihDWX5qY9wEJWlBqPlg7Wkh56EIrxRBpMKF6Mt/H8e3Jtw0qYiaN+fzLeeEyWFWDDL06M6SQ7FYsOcCACCnQP67Lyo3J2NNqDfOPQE1Dhhqxz21UXvJ2daM+nOEMpKLEiV97+FfDgmXQykXiCO2PQFPcx6TitqrNkIqoRyTrhUZ6bAR3YLEEYcnUqK0QrzxUHYdFNOx2pyYpZhNlYhOznaZk1BpwR+jLKgPXhKTo1dPdkaprBb/H9d8uUN1wScKVh6PV/zd+XsuCpREOQdiUhV/96CKAnknLmcaZgOL0ZePN0Tiq+3RePiXgxg6awe+3Bol+bv5hcW4dvZODaVjGMYdlN6cX2+TPl644nSCsoLAoqasE/Hqa3qokcWqM68SA2qkgRxcftxrDL2REjXFuAGavm8EG9FPKvsOtaPjon0xeOTXQ6QyMNrDRnTGEpxNzMJDiw6qMqQ4Qm3M9Ji9ABlsFlBYTM8iVXf94LwIZWZeId5YqSxPqBrx954XY0RmgCQTeofFpedSi6Cab7ZHK/peVr46b+Co5Gy8uuKEqnOYHSMYMpYdjiPz7C4t8vZTuPTFnSe8cwyjlEtp7ImaJcAbcfzPBwRIopw0Bd70n206W+53NdFcSVnK06ltiUxS/F1qsvPN56zBlEdt1K7SzSe1Th/U0cYHVNhqiorteHDRQYHSyIciepW6CLcVYSM6ozsUDn33/rgfxy5nYEdUsv6NVyCnoEi1t4AVB0sRedWVprQQiZKUAKWoUYye/uOI4u8yjJmZtu6M6nNsFLCJR4KgCdcInvgfrTuDDwWlZWKsgxojnBFIUKH75BUW430B78yyw3Gyv5Nqws1mEUQlZaPPjK0YNWe3ITYf1ZKUJf85/nrAeRSmEk7EK/PEj0nNwZTlx4TJoT/m6z0/7b2I+37crzqNEVOC0nQu6bnqnA0STTxnnk/JRkyq9RwYzlxRNk4yymEjOsPozNurT6k+h2KDjvl0MsYBC+6dMIJQGhJuJJQG4JjWAG5iHlh4AH1mbEWi4IK+G07zszQTGQbICZ9icmPuV9uVpwSZufms+4Mk8JGAjUi9KSwqxovLjuLn8BjF51Biw1p8sMSAfCWT1hAlwgseAObujBZyHr2JF+B4oxQRKYTUpgKh4MttUYhMzMLPMiK2PBm1QeNKfReeUes0ZaC1JucWZ4wKG9EZRgFqvPI2sUHH0qhRqqjzvDHmZFd0Mi7q6Jnx+8FYTF9/Rrj3cgHvIpmGUu9BkR6JjPmY/19RVkY5aoxpyxUUMBcGcd7B9acTse1cMubuOq/4HEp0Lk/zws0r4nlXLuN/3q/6HErTPhqBAg/pM2o3YtTeBaWe6Cc9wGmmlF8PyNsENXvkmVKMUEzVarARndGdIgOEhavFAy7BkogwQqtOpaNiYZmQYU3lgFGHCO9dOcr8Jxsj8WdEHPZfFFODohQ1qZAYdSQr9OYVXYPXivVAzAxVDntHfj/EGzkUUL+quUTzRXRyNkm7WmGEVF5mIzqZ6wGIgNob/0hsuroTqHx1zBeLIB45ETUxqTl4aok1U5eyk53+sBGd0Z2Zm/UvuEBNVFI2fthzQagRKL+wGAv2XJCVpkHUIHtFcIi+XohwZKU05O27mErWNqMMEQVxjcBTSw7L/o7agp6isLINwNMu3Z1hLiY1B/N3XzCE8ZahJzOvEMsO6++NLXLsM+v45QkbXmrvfbEHRE95wCWoZvOZRKw6Hk8thuWgjtx+7R+VBeWp8rmoZMYmZWnAqDfc5u22buTbpMXy12iMOnyoBWD0hXpX11OQO03cvWAfAOAHgaHNC/fF4Jsd0fhqezTCJw91e/zG01eQprLYSCmHLqVjRLs6Qs6lJ8/9qX6HWo2OYLfbsVqFIl5YbM73t9DCq7CX/j5OLYIQRHuVK4HDFeUjck2TU1CEgGre4k6oAeN+2o+cgmKcT8nGuze1pxbH8tiILalKCmKKIOKSSg9GB9S8wpS3n3q0FqF35CpYMzmOuXprPoXFdqw6Ho+ejWsKOye1YUwuqTkF2HQmEWHVfYWds1SP69UkBPVr+Ak7r6eyUtCGw8VUk3v0q92EI3r1ohRE01xIycGjvx7CuF6NhMoiR+9XW1DVzGRzpK7usBHdYny7I1rIeYrtdngZ1M2EetFWFTkF4oygcnKenYjPwCsrVO6oewAiNhGU5qgDSnJ0ztqqvEiYWTkWJ86gwCiASBFPyi7APQv2YUzXBrivp1jFWg5W3sTJF5hPZcams5h6Q1th51OEm/m9dI49FEO/6cPQ4wnz7QEVEWiekptYCVasofH7wUvCo33TcgtxKS0HjWoGCD2vVoz4epdm507PLWAjugREGTPn7jyPxwc0E3IuM6Jmvak3X2w5h9ScAny9PZpaFIbRBU7nYjF2RiULOc9Diw7i042RQs5lRswzrZXgKTkan/w9AutOXUFOQRFOxmeQeMhc//UuxXnRj8VlqGqbPXEZJX2+kEgR/27neZxLysZnm85i0T55xYGc4Qn1NPRG5C3bGpkk7mQKkTsCJqgsDMaow6ozlkhfjrTcQpyIV6c7UECtryw5SJMLv0B0IQgZHNAoYmzM9+GanNds6K2CnEvK0rdBk3Mq3nMKagJAbBrrLwxjVNiIzijiRHwmFh+MtW56GDbmkLDvYhpe/+cEhs7agQkLD2IjUb68z7dYL68/YwzmK0gJtfKYmNDaQzFpsoz4jl7QIt6ZqKRsyZ45hUXFuJKZJ9SIarawdkDshq+ZvKIAYP/FVNw8dw+1GELYeCbRdPefEcfxy+Yyov+w5wLuX3hAyLlWn1A2f11MzRXS/uV0eecR1a4SuG6OeJZGxJK1fc+C/TibyIZ0qRw34WZjVRzhKF6PqK3BeCZsRGdUYUajggiMcNWU9z6/sNgQhdvWnEggafcgpwpgiPh2x3myth9fHIFJv0svXqOF7vuaxLRUj/x6CKPm7BFqRH3ol0Oyjj+fnI2PN9BGbImcJ0TV1FCD1AVVbHoenpDRV+VwKU3/PK2v/H0cQ2ftkP29+cSFtigXwJROHqIvW+5rnFtQhBjCfMIiQ/rfWnVK2LmUMPq7vfiLKLe+XLLyOS+uaKatp53D7/1xP2n7UlEaoesprD4Rj/m7L5TTuew6WwuK7XZ8vV1MCrPwCymyjreqPagixwRueFvWUdUksBHdYqTmFFCLwBAQnSQ2ncs7a07h2tk7kWuCQhZGmtjVGhQyZG5c2O32sn+UWFy39iioN5CkRp+c0CCs9/jlDEnFobPzi3D9Vztx5w/7sOQQnRebFlCPJUZwSnr2j6oLVJfeo8vpYkOxlSyovhFUB8dsZOcXYeis7dRiCGOTjKi7lOx8DJm1A7fP85wUHNRRGFZ9j8zAwn0xGD13jy59xIqqrNR13r8naZyaHKF8Pm+tOoVvdkSXq1emd0qrrZFJ+GHPRSHnempJ1XoO45yHFh0Udi5qfZupGjaiW4zkbLFGdKnGMdHKzZoTCaQhbmYb1+YLmlQrEpNGF7YqheikbIz4ehd+Dhd7/UYw5Lij2G7Hw78cwvVf79K00JI7YlJzMHFxBFn7jHgSM6UZB002TEpCiofl19ujDOG1rQXjfjpAWqjVCIXDq0rXEJ+Rhxu/3Y1vdkTj76OXdZTKmFA9rcOxaaSbt6KNJ3svpEo+dosBaheIJp898ixNVcakL7acw+WMPPx1hMdbLTgp0SEhnuuPACjvrFhYrO+4dSUrX9f29IBe46PDE9dQngQb0RlVnEyQFrZyMUVsWOmbq066DHHTY8Dlgc0cTPo9Amm5hZi1VUx4WylK7Th6KgOXUnNx7HIG0nMLSQ16s7eJvfcRl6R7QhcV2/HkksP4aN1poTJYnfsXivO08ES0jPiS65kiesM3MjELxzhPp0u+33UeydkF5GlUjEJBEWtLjPkR7YAkl/Rca0cRS4nESMnWwYAoYTjLMUGErmj2XUgVmsLJzBQ6zHkrj9N75zPmZWdUMnkUFuMaNqIzpoYqBxt1nltGGtQLH0Y8j/0WITnX69G4dOy7kIplhz3LQ4k6xC/JA71dzEKMzKJ1WvQUOd7giVnsnSaSbJPlPN5y1vO8oiVB6D5HveTeEim+4Dv1NVGzcF8MtQikiMwzrDV/e5hHvJR378kl2tQfkQ2BbpyWU4BzSVcj43dFy8slLhJKr22t7jx18CHleuvVFSewQoOIxv7NQoWf04qwEZ3RBa1CsAuKOMTTyHBRDGtzODYdG06LX1CfT5ZmRPdUL0izhC1bOQxTK4pkKvSOiztRyHmu/568QtY2NWtPib12AJiw8IDwc8ohKSufbF6nTOFnJqhnPS0KMVrdGc/dO2e323E53djpFdVgpudf4GFFgH7ZH4OZm8+SO28YlRu+2YV7FlyNjD8RT7fhI9prOc1EdfT+OXYZWzXYtN8Z5X5TJD4jTzOnzm1nk4Wfs34NP7fHBPp6C2/X09DViH7y5Ek8/PDD6Nu3LwYNGoSXX34ZycklnSMiIgJ33XUXevTogeHDh2PJkiV6imYJPDEkhPKK5uyIZqXCDb8fvEQtQhknBSo2SjeFqHfURTJt3Rm3BYce/fWQJm1LqXhvt9ux8ni8Ju1TYxYjulURbThWwyoNwok9aRwTjdb35oLg1HhyufHb3Rg7by9J265S+DlD74JuAHApLQefbozEpbQcU232iKZYA2PCzM1ncSAmVfh5zcIv+6vWpRfsvYjR39G8l1ZCiu5JhVZF3zdHJuGX/ZdwOoE3MZ1Rcbg7GkdnRP9k41mh57v+610uo98Ki+2GcpR7d402aTsPukkhujMqGbfM3YPJfx3TpH0tdMpnhrRwe4yPN/tZu0O3O5Sbm4vHHnsMPXr0wPbt2/HPP/8gNTUVr7/+OtLS0jBx4kSMGTMG4eHh+PDDDzFt2jQcPmyQ8CAPYb0GXlFSydEoBJlyY+D73Rew5zxd2JYZEJ2LXA0TLJbHWWtjztLDcWQFS6W89k//cQT/HPNMI7pZ8NTimqQYYA1PaSBkAz49CZl06ZykOi58syNaW0Gc8OwfR7D4YCye+eMIEilTXnmgc8dfRy5j0mJeE7rC0/NRm6lHa+G9KyXqeunhOOHtOpJtglzvZuonUqHeOL+Qku3083sX7MOwL3e4daZSj7GVvl//2+DcESXeYxwADmiwOVYzoJrwc1oR3YzosbGxaN++PZ5++mn4+voiNDQU99xzD8LDw7F27VqEhIRg/Pjx8PHxwYABAzB69GgsWrRIL/EsQSZhLs3Pt4jdHS3F2VpBz0V2UhZdqJPR10meGPlQivIuZmxlQC65BvJCqEj4hVRqERjGMyG0ZFN4GDPGQepClSKH8sX/6hXEpOZizQm6gnKeq3kxVsUoxaylZAjM1yDN6EWJdYAYzyMzj9YZxVWXP5+Sg8JiO07GZ+oqj95QmzLS2RnJsOhmRG/ZsiW+//57eHtfzbHz77//olOnTjhz5gzatm1b7vjWrVvj5MmTeonHaMyhS9ooQNRGPCOH9lGTkOG5BeXYG5IWq7913P2sixH6Pvc/17CRH8gtKML09Wc0ydFM6ZW3zapFUhmGmIMS15BaO++cM3BdBi3SKDlilJntdEImTic4N9xqUSbttRUnxJ9UBtQ6n7tXilo+atgOZF1IEt7Y7XbMnDkTmzZtwhtvvIGsrCwEBASUO8bf3x/Z2c5DSKrCZuN/Lv+JeoCO97vCPa/qGWjBhtNXnJ5fj7ZdtaXXtTs+UJL2Ufn563nfAcBms1XZ97TiaFwGXvn7OIrtdsnXHpmYiex89TvKct55PaBqn/LaP998lnTcs1fRXsV/2QXaeDFQ9rv8omLS50/73tkrtaW3LF6EY48Rxryq5NDD0lBUxbyj53Mo/b/iv1dXnMCfEXGa5GimvO4X/zqGPedTJLUZoYHjyKTFETh2Od2w717pv4Ji7ZxbpI59ORqkGDDCO0c57km59i2RiXjy9whd29cTLy+b276nlUnN3b3XopC11Pa1JDErr6ydvMIijP/5AMb/fMCpHvhnRKzw9tc72Bko+p8N0sc9LViw90KVbZX+rtUmjhR9U9vnULW+5ci2c+I32is+fxHXL+V4V21InQfN/k8KPvJuu3oyMzPx2muv4dixY1i4cCHatWuHgIAAZGSUD73Mzc1FYGCg7PPXqhUsSlSPIyhIfP7umjWro3bt8vfc2TMoKcQofoCt5letUvv+Tj7TisAgf93aqoiv79XXl0qG0NBAl23n+Wg/vPj5+pRrX8/3f+OZRBxLzsHw9vUkHX/fjweEtCv1Wed46VNZm6LvZcNWrt2E9FyEBvqimk6FUNafTkTN0MBy7Tnre1oVHj5+OUPyfb9t+kZNZKAacwBgxtYofHZ3d7L2Ka/9QlYh+rZ3P+dqSVXjvtbYbDbS+1+KKxn8/bXPNbn/chZu7trA5d+z8wuRV1CM0EBfzWQo7XPO+l60ht7i1av7kT7/KcuP4eT7N7k9Tov8wQdi0vDQokOInn5zlccFBvkLbxuQPu5l5mmXOlLKegMArvlkk/C2/YL8EVzF+51fWIy2U1cLb7cU6nEvqGZ1+FerWq+c8ulWzdp3d/2BOowNHZuGVTn2AUCAv/hxNySEbs4tJSo9H9cTyPDFtvP4dkIvAMAVhwjn6sEBZXOc3W7H5fRcnEuS73wpBcp7XzNEmp1FKzadSUJhtWqoX9P5vFKjRgBq1w7GzmhtasT5Behn03FGQHXfKtt3tMW8uEx8cVE7gCNJObi2XV1h55RyP2uFBTnVIdnOehVdjegXLlzA448/joYNG+KPP/5AWFgYAKBt27bYsWNHuWMjIyPRpk0b2W0kJWWQ5y8yKpmZ4kNr09KykZhY8pLZbCUvl7NnUKhFjBWAjMw8JCZW2IDJKyj3WXqudnnLMzNyK7WvF2fjr7brSobComK89o92aZFSUrKQ6GIUSdEglLsiefmFSEzMqLLvaUlCUpbuz19qeylp2t9/QLo8IklLzylr93RCJsb9dABt6wbilwd66SZDYmIGqnl7Vdn3TmiYl1fqfb+kUS5NqnEPAJLSXY+7kVey8Psh8d5IjlBe+7+HYzGsWU0AVc+5WpKamoVEP5JARmTmFZLe/1JcyZCnob5RypXkzCrvQb/PtqFI49D+pKQMl32vWENP5KysyjqfnuQWFJP3P3ftZ2ZoM/dTXzcARF9KwfpTV5BTWIxnb2jvcuw7r4Ex7eN/juN/w1q6/PtfGhd2pL7/Z2NSUC/Yj6x9d9efnpmLVq+v0lSGoty8Ksc+AMjJFV9UuKq1ll6En0vE7R3r6N7uBYd1VrJDweak5EwU5ZRsan249jSWHb6smQyU715qahYSA0o2r6h0vt2n4jG4ZZjTvznagbRgzpZzeLxPY83O747s7Pwqn3++gAhzdzz8Qzj2TRnq8u9yHbak9GfH9wug63sUlF6rO3RbBaWlpeHBBx9Ez549MW/evDIDOgCMGDECiYmJWLBgAQoKCrB7926sWLECd9xxh+x27Hb+5+rfOg1CvewV7jkApGQXYP7uC4hLy4XdDuTkF0Gr9Vyx3V6u7TK5HGQ6Fa9dDjup914LHHfcXbW79PBlbDqTqI0AqPz89bjuSjI4tOXYdpwORmSKa5fzzuuBq7azNPRGg0M7q4+XFHA7nZCl67UXF7vue2X3QMNiztR9gLLfVdX2vT/ux9IIbY0ZlO+d3WHOq6rvaSqL3UZ8D2jHvFIZiovtKCou/zwOxKRp3zaqvgdaG9CBqvue1u1Sz31G6HtV/TuvUSSAEe796YQsfLD2DGZsPIu4tBxdZUjIzKvyuvM0rtFEPe4VVxjrjPbe/XMsXlsBgLK5ryp5tLgPmXmFpPceAEDUtuMc6zi1ObavpQG9Ylt633dn7ektS0W907GtYoPM+1rxc3gM/buHqtsf95O8SHe7HWgeFuD2GDl9z9P+SUE3I/rSpUsRGxuL1atXo1evXujRo0fZv9DQUMyfPx9r1qxBv379MHXqVEydOhX9+/fXSzxLEH4hVfg5Vx1LqLRge3f1KXy9PRqP/RYBADger90OrrMiMjqkKCtDy9yPIojVyRvZGTYdksVdTs/FxN8O4Xxyea+jJ36P0CQfa0V0mjtNyccbzmh2biPcdyPIwFgPHeyjbtEi37AZ6fvZNvT7bFs541mURuHkjny/6wK0ShUlAgOLZgkydIiGoMKxiJumG/XO2uZ+bWi0dFooReSy5uaO0tMzfLrxrLiGFaJH/m9nuJrriMSxJFqMfbd0kpYKlXHPmSvynUW9qF5oD0I3I/rDDz+MU6dO4dChQzh48GC5fwDQpUsX/Pbbbzhw4ADWr1+PsWPH6iUao4LlRy9jWYUQxr3/GevjHXKXaQW1DfvX/ZdoBXDDQR284ig5EZ+Jg5fSccf8feU+339Rn+s2siGDen48mZCp2bl3nEvGjnPJSM8tcHqdeow9WyK1i/Bgqmb7uSTkWtSQm1tIf93Lj2rr9WU2TgpyFJBqVLmUlovd51MqfX4qIROnNRx3HXHmwFDKZR3GX0p+2R9DLQIDwNlW9rmkLNz9wz4nx6pnV3QKiu127IhKRmq252xUDGrhPE2D2UjP1T6tgju9+mJKDn47IG1d+M5N7SW3q6U+bXRyHSM8BK65FozrLuxcWiLlknMLivDQooPayaDBOa9pVUuDszJS6dqwBrUIpocmqSXjUegRvuyKIgmzi11Dn1GtwmZFcUzDnMzusMIeZ2ae9kp7RZ74PQKX0qrud3a7HW+v0i4XPjW7z6fg+WVH/4t2qdzTbpm7R3MZ3lh5Et/vOu/0b5l5hYhM1C6NlNUptgPTN0RSi0HCzqjKxlO9GdA81OXf8guLcULD6DNPpmlodcnHbj+bXO73nIIi3P/zAYz/WUwBa3f8HE5jSJaizRVqHK4xc/M5Tc/PSMOZ+v/WqlOIStYmGiQjrxDLDsfh+aVHMf7n/Zq0QcHnYztTi2AabG5WNmPnh+skiXW44GKdrcZR6P9Gd0CnBvRGxKk3uK/9N229+6jeVcfjydb7J+MzNU9lZWTMGpn5v2ta4olBzajFMDVsRGdUU1GR1dN4agRP4MSsqovI/Bx+USdJjMUVN/fFE0gi8EbafzEN7605XeUxx//z0Pd0SlIn0I0Bc3Y6N6KP/m4P7vtxP44TbmIBwJdbo0jb15KVeuQ/ZZxSM6Ck2FB8Rh5e/+cEIi5d3Uh/ZcVxPLBQO4+oqug/cxtJu6JQs+GfoYMXpiNnDbxJyFFCnkuKG50r8oq2HrvT15ds3iZker5+y1RGdIRnu7pBYk/o4YjS9v2rlRTqvLt7Q0FnVMZtXRq4PebMlSy3qVkLirRdB1U0tThGgn6+5Rye+eOwpu274lBMGl7/5wQup9Olrj0SR7POs9vtuJyeq9gOFuTng0f7V2FEpzevGR42ojOa427nXg0azxvSZHDj9TTLgw1ZVaFXWHlFonXISUvNKTf3toDIKyAjtxCfbTqrq/H4JyKPyKrI/C9X646oZDdHaseFlBz8ZNENPL3IKSjCzM1nyxmRrUDpjP7OmlNYd+pKWf0TANh+jqbPZ+QW6lJQU0vkiE+drsvI5BZY1ysOgCk7R9PQqouclfLqihNlPzt7XYywJvBU+Na6dhLbEpmIb3dE6ymK7uhR50oOImwLU4a3EiCJ9mS7yfev/btZvoWMClHYhxQ4bXl52dCopr+kY12lz3p8cQTWnboiuwZa76Yhso4vRUQayQ9vlp7GqSrm7b6A0d/txbzdF4ScryJSMj1YHTaiM8LRc55NN0ABJSN4wzNXWX/6im5tUamUehRQUsIXW87h1wOX8OCig7rkJTc6lEsOq+YM15N5uy/gl/2XyhmRrcRFonRmzkKHzW5Al0tFg4beV7/+lPN5Ni1HW51Mir5lMFuPrkRcSjNllM6iCT1lf4dVb32hvt9GSBPmypA8ZflxzYxZpUQqKB7IVI3RNgZckUdcC0eLd39g81C8MEzaJkaB4AJ4N3WQXtS3lGWH4zBk1g78fURdTaAb2stv2xmlkdCuIqLVUlBkcWcECbARnREAnWa1O7okP+yHax3SW1RcXLKiTYI5VBN1GFX/opLLMQ94qTe21Tga5/lpdJgSzmuUe9fo/HbgEj4mzEnvqQbztnWkh/aLHuLv6SEvrD3fhctvPi+8SNFyQy8mVbtNs9L0CgwNUjxCb/t+L5I0SNO46ZmBko5zlspHbycm0eOunPOlETuNXcmkd4wR9bjlnubvo5cRLVjf69m4puRji+wlec9djcFavwUiZ/WGNfzw64O94OPthWre0t4ALV7z90a1Q71gP8nHf7SuJDf9+2urTqeqFQVFxVhx9LJuqWu0ThHkCbAR3SJoueBdfzrRZeEPrelUv6QwyF8qdwYZsRQV27H7PH0BPCpGfL1L8zZSNfL4G9m+jibntQoP/3Lo6i+Euyx6qD8HYlLd5mrUko83RJbzuA+/YN0xxxnJ2drk7d12LhlLDsVytIlA3rmxHYa2CpN8fMWhRa0x6eZO9VR9Xy9iUt2PN0bd3DY7X22rOjVhUbEdLyw7qpM0NIXdPZViieOHFgWFg/x8JB3nTEa9Cxo6G1uoCjo6ciRWe+eN/RfFpq179frWko/tM2NrpeevapyXOV2+/+9p3PXDPhUNVqaGv7R+DwB/H7mMt1efwpjvrxau/etwHPrP3IYNp6/gksINzjZ1AiUdlyBQ1+vSsAZa1y5pV+oz1GJz/qYO9bD0kT7Cz6sVP+69iPf+PY27F4jth66QOidYGTaiW4D4jDwsORSraRu/H7xU9nPFPGVarme8DdCDnQ0zOQVFWBoR67Eec+7460gcNpymKe5lhDuulYHbkQV7tMl3/cHNHRR/1wj3Xm/PpLi0XMSlOVdg9bDlZOUX4tk/j2D5kbhyn2t9H07GZ2DS4sO47fu9KLbbsexwnO5GjSWHYvHKiuNlvz+15Iiu7Tuj0EBj/th54e4PEkQUcS2KIyaOAHnnxna4uVM9WaHlomvNmMXuHCvBC6s0QpERyxU3xTT/OBSra02EST/v160tI9BnxlZ8s12bGktx6dKMZGqKH6vlhWXHyFKIuSIpKx8PLZJfSLt0vG0cIq0WAHDVG/dATCqe+D0Cxy9nYGlELAqL7brNv0/+HoHd0erf8WA/H9zRTV7008GYNGG9j7IfVyTQ130UzvKj5R0FL6fn4sN1Z1BUbMerK07gssT3tyILJabR0ipNm1S944st5zRp38ssig+u6jU5BcVI0chBhpGHAUyQjNb8rHNxOcfcVVrnVDLCRpkzGYbO2oFp6yMx+a9j+gtkADYSGdD1Rsuiue6o6t0yS54/LdA7Kmb0d3sxYNpGp8bT8Aupmre/MDwGu6NT8MHaM+U+PxyrrXfUUYeK9NPWncFH687g2tk7NW3TGWcT6Yy3zsb+mZvO6i9IBU7FZ+L1f07oWjvh7gX70GfGVt3aq8iLJp5rlXiBG22ILygq1iTVgxL26TDuWpEIN96uG87oq/clGiC9BFAS8TN15QnVnrp+Pu6X5PM1cp4wC2+sPOH+IB2JU5haoW+zEADAI/2byP7upMWHsf9iGh5cdBDT1kfiyd/1q8my72Ianv1TfbSJEiO2yBSRonwdlh2Oc3+QC3z/8wIc06WB7O+er7DO2XI2SZEMXhIVie8F5vt3vF6pa9XNkcquzxV9/yss6uPtVfaz0XGcf2/4Zrfi80zo3ViEOAzYiG4J9HaMc8yjpPUiXsqlaX35VSkDO6L088oxEgbY22AsSgGRJ3C+zmHFpWS6GGO3RGpr0HDMf39Yh1Bis/C7xlFfUrh/4QGsc1H4kfEMHJeecem5mEG8eTP+5wO48dvdwvPGSiGvsLhc6HGCG49pT4XrcdDw6caz+PfkFWxUuYlwd3d5nrki6dwgWNJxotd03RvVkHW8UTbqSlHqyOX9nwtssMRUNlVx6FI6Zm6h37yXg7L7ZryVZWmebDnc3rU+AOCpIc0BAF1lvgNmp7eD0VpvX4Atzw7C6kn9UL/G1RoQM8Z0cvs90Z743oQu8M8ObUHWtqfBRnRGCFXZrbT0mHLm/WkwBy3Gg8kuoCueWdV7RfUOHDdAbkircCAmFQDds87W0cuZYYzMwn0xOBWfqWubjh5c//vzqHBPLbmUphPQO41bZl4hrvlyBx5cKD+lgqdRrh6HRlSZJowwNHTS4gh8upGm2LFSb+SKjJPoIUiZq/bMlSz3B0nE28uGL+/oIux8erBTkGNUr8YhAFDOmOeOqhy2RHppG5Viu7g0hZRR7K+PaIvwyUPRqKb0VD4V8RQ7h54Rdf2bh6K6rzdqB5UvJiqlqPX1guucUaaRqej9P/naVkSSmB82ojNCKC3uFp1YXsE6n5yNx3/TLtQsKikLq0/Ea3Z+KWTk0hc3ik3LxWO/HhKmzKuF1F9Ax8Z/3Gvt0FojQqWbhF9IxSYdw9knLT6M45czsO3cVePZnxFXvaAjE8Utdp3hSvnVqpilKyiKy3HBHWNBHfG1OTIJ9y88gEIF6es+H9tZUZuFDmnzogi8v43C/oupKCq242SCvpsYQEkKm9f/OYH1For62Hs+lVqESkQmZuFATBoWH6SPAlKDt0Tl5a1VJ4W1WTfIF4B0o2KWwPm2c/1gSQYsRyoagPSeiT/ZWN7jW2n7Xg5WNKnFDaWm3jADpf3t09s6Sv8OXEdeym/fODpcrerVZH9HTVd49frWaBLij88keGA7ooVuL6dP5xYU4cnfI3AoRlnaLCNt2BnpTa4mdeJhKsFGdEYIpdPRsE83l/v8sd8iNFVyopNz8NaqU1Ueo3V+zGWHL7s/SGPu+iEcEbHpuPW7vegzYyu+23WeWiSGED11bao0Js7IzCtUdO3jejVS3fbkv47h5b+Puz/QBW3rBMr+zoOLDiIm9erG2fT1Vz3xkrO1L27rjNFz9+jaXlZ+EWJS9c2Dv/p4AoDKC2glRlQlbD+XhDwX750eRY2NxvNL1edolUu0k0JuO2UWtBzZvg4GtQhT1P4v+y+5P8gDKa4QfajWFvJgX/k5iUv5dONZrDt1Ba/9Y6w8zVpysYqxVmlar/tV5mjVquidFCIupZWrD6IGXwk50QHg35PlN22URIX9/lBvtK0TiHn3dZf1vXyN5rjfH+qtyXm14EJKDg5cUFe82FFNbRIqzSPZg2zo6NmkJgCgeVh1yd+x2+1YezKh7PcMAgcKLZBzD4CSOVBNPa5+zUKx9NG+GNKqlqzvPbH4sOI2S3lORSqRjzdEYt/FNDy+uMQx0wg1MRz7oxyo6pa1rl15nVnNm03BSuE758EUFBVj8l/HsESHHK3/HItHKpHRxhWp2QX441AsFmjsLbz0cBxe/+dEmXfik0vUTzRyyS8qv5Kcu5PYiG6gXX5GW7RaVClh1tZzipRLI3j4PDqgGbUIstjj4JF4zsGgWHEs0oPb54Xr2l6psajiBu0umUZUpbyw7Bg+cZG6YIGKwnPVvG2SitsxQExaZWPir/tjCCQRg1yPUFdo/Q7srfDOXc64upDOlZlebVjrWnhmiLJFfW5BEZYfUV5UTiSpOQXYHa0uGuOdG9th+ugObo9zlbrxQkoOlA799YNLwuvv6Ca/wB41b6xU5hVevcL7Nqx1LQT6KsuPrSStYIta1bHogV5l6USkPjpXm7dKGOvwvFvUkmdIFElIgDxP4LHzwjH2652ITcvV1aPZy1D+qyVk5hXKqr/j42XDxAHN8PaN7QDITGdjL7/5UKSi/lF1XzHznQiCZObFj/gvlaPeiIh469G4Zrnf5ay9YtLKR9rfrLPDTkWKiu2Kx/97e6p33FLCp2MqR35wGlbl8GrJg/n3ZAK2KqzYrATROaPUMuKbXfi/DfrkSFx36kqZQUVrz3cjceJyhlMlkrKwV3wG/e40NRTF3YzAssOX8cZK+V6BI9vX0UAaeXSRWNjLKBitwJeelOYmrWi80LOo7fIjziOg1Gxq7Xx+iKLQYivibLMi10BROXKR6w3nitg0fVPKUaVWEpUbWQQjvt6FZ/+UH41xT4+rhSxv7lQP17WVMg86v99q0ocF+5cYkVoqNKRS7YF/tO60Yn3zoX5XIyD+mdgPn9wmL7UCFde1rYMrmXll711SVj4K/ptzRshcAzaT6IHtiOOjTsjIE+KvozQ/8XkVevbglvIjkBYZcJP22tk7MWW59AjMbo1q4PGBzco2Lvx8vPDWyLaSvltsryorvDyUFnbUYn0pVxY1mwcAUKdCTnA9qXilci79YIU0LnJuQw1/9QV8KzJzs/JivpMGNsOYLvUFSiMNZ3n4lUaQMWxE92iy8827oDMjIj00zMJ7/57GPQv2l/2ekJGHPjO24kKKvukVgJLIi3+OXsbyo/TpdajZf1FZzjhPQEnhq/b1gvHKda0BXM0Rqjd1gvzwSP+mJG0z8jByoI1aexJVmKkcsvLpw7gjnCw8RKV1YPRBzXv8ygpjpHBR4wkbqMAbU+Q+4XNDW+DmjnVxQ/u6AIAxXZR5oqtJbaAGNakcb+pQt+xnJc9BNLd1rifpuKSsfIyaswcvLz+OCyk5uPHb3bj3x/0ottt1TSW2/Egcbp67B1OWH9OtzYp8uS0KhQpfiGYKNi21KB59Sydpz10UzoarYIme2Jl5hU6/r2e/u2XuHiw7TBuBVGxXt3FoxWjDDvWChJ9TTQ2Oat5eeOOGtnjUAGs+H8oqpybHem+SpTDwSl9DLhIYcAGr3u3yIV6U4VUp2fl4Z81psvb1pqoJnKdE+dzRrQF+HN8Diwlzc17XprbqcxQW23XPS241XI71BrCuq7WBm8CGXi59kFo+vlV6YTNPR6l3nt64KiQr9+1T+7Y6pi/Zo1Mqp4q8969ynadiaL0UXN0zJT1ndKf6eOem9mWLeKk5wUW0DQADmocq/KZ6hL5rAuad27tK28DY+F/x9C1nk7D5v5/1dJopnZ++3BoFoKSgu1r8Ffa70wlZ5AZVtbx9YzuETx6KhRN66tKes54qVeeYtj6yXHrWZYfjYLfb8bFOEeelfLUtStf2KlJst5t2jVevQvoevZw22tQRb0RXQkWjeVMF0TiiMUI6U7PCRnTG43DmIaYHk/86hlPxmSRtO+PncG1zwTPa8caINrIrp4vg5f+8seXw4VrP2Liw2WzoWD9Ydn5Co/Fz+MVyeYIZaQT6euONEW0kHbv8yGWnCzd6E7o67xizsNvBYJmporhYmzqBilNIGIHComKsPBYv7HzDBWzi6YFjIVnHRTjlHtYzfx4hafcfFc+/f/MwfDG2M/5+vK/k77jaLFC0DBe0dldqAwgLpIk6A4Dagb4Y3DIMw1rXUq1zVCw0qgSbzSbbW9MTbC+NQ/zxf7d2xNJH+ij6/iWd01dplYO9XV35RkZxddCUdaSfwmPQ97NtldJ8eDrFdjt5xODldGVrjNqCxtyMXPpoRCVUNJpf17aOJl7ycjCL84QRYSM6wwjk/oUHqEUoY9ZW2t1yvSlWmU3nNYkGNGdk5hViR1QyCgUV2fSy2WRXTgdKvPHH/bQfKxQurO/q3tD9QRVYfzoRiw9cUtQeUx4Ry6Ovt0cLOIv5eGGZ/JzAjvzxSB+MkeiNB8Bpwe5NZ6QX2DIqZvBKWbjvam5YNXnIW9UOFCEOGYv2X8I7a04JO9/rI9rg1evlb6RSosaopGdRQNH8HH4RfWZsVX2egS3C0EBGcb8dUckCjWdiUGpEo3z+NpsNM2/vLCQXerKg56HmdpxQ4EAU7K+8/oaotELLHu2L9vWC0UShR6jeXchII9ZzSxVsHDq5YWpVjkSi+jyrjovbwJaD3S4mAkMNc3eeF3IepfbbTTKK2QLGjc728/HCT/f3RE0NcrZLxduoN8cEsBHdgzHx+oBhZLPsIJ0h95k/juD5pUcxb/cFMhkAYP6ei4pygqvl003KC6wwxiHYz8cQ+VmVsP2cukJ/pYWu1CDCI1AOa04kICFDX0840Yzv1VjR90RsWJp97bD7vNgUIkF+PrijW0ME+ZlnDCjniS7TxGRmFZnSSSLFIQdxSnY+nvnjMNaf1nfsc0RpUdOAat4ICajGRoT/OJkgzxDu+O5FJcl/BkpSGZS2KK7EpDr0roVlpHW9ko0Tp+lc1IuiK6X9/u3V8jewlRSUrUix3Y5TMt9VUTz35xFk5RcKe/+UetSflnn9chxkrAZ1VIOZYSM6wzAewdrjKguKqtBOj10uKSj3vSAjulIFJa+wSEj7Snhr1Umythkx2GE3rRFdLWYsrjN15Un0/XADtRiqGNpa2aLyg//SSJnwsYlDI4uK0o0NChwfv90OJGZKDzOv5s1LILV8tS0ae86nKtpApH51b+tSH6sm9cPmZwcRS2JOHMdevYy7pRs4RjEmK93AUUp0srh6IGo4QpQ2VQs+vLk9Hu7XBO0lprRRM26JSNNZbKfr/7uiU7BoX4ywYs566W9GyD1uVNiGrhzWID2Mn/ZexL8nEgCY28uGMRdKK9SL5CBxeJsWmMmYsfq/cYdRjhEMuSI8shkalgoockbfA6Wx8njJeKNG3lqBvqbWk7SadvW6J3891gd/PNwb39zVVfE5HGVde+oKbpojvajyrZ3rKW7Xyjhu8jt6pYvgqcHNhZ6vKtrXDUI1by/4VzPfxnGRAXRuR/SSJqegGIsPXEJWPp3DiBY81LeJpOPu/XG/kPZu6VQPzw1tofj7j/x6SHG7FfHSSe99uN/Ve+xoOLyhfV08NbiFZGOiGqOjK6/fN29oK/kceQVF2Ho2SbkQKknPLRQWBdeo5tVUYi8Nl55Kjtp7+qe9YmvOUV6PUTYkzQgb0T2IUwmZ+HJbFKayRyijM38fMXeFejUscsjPK5pn3Ci5+YXF5fJ6qpkM+zcPVf5lRghGKHLo52M+g4IRKCbWRHMKijBt3RnV56Fcm7x7Uztd26vuxHjWsKb0/NDUiOhxLwxric3PDix/Xol92W63q8or3ahmAJqFVUfvpiGKz+GI3P7vy57oinB85Bm5Yo3oD/drKvs7Sg0Q1IYYNchNvaIFjvdvoYZ6cEU8MX2g3hGAb9/YDhP6SDPci+TWzvUrfRao0ybWpIHNq/x7dYnPQFQNAkdu7VL5vrhi4s9iNlKMQA3/avjj4d5Y8Xhf3N1Dek2u34jrcH25TWw6NfPORNaGNUgPIrWCR4jaBZazBaZZMIJntJWYtj4Sl9PNnZtXKZ9vOSf8nKWLVHeeydvPJWHkN7vx+8FYZOYV4q8jylPaGCWNx8/396AWgQybzUZaYIZRzqMKPbNEUVgkKEclgTo/556uuKdHQ4zqKN8zWLRH4o0d6go9n5aIeObjejVGoG/5MUeqXfyOb3bi5jl7sO6U/vmwF+wpSZ2mprcaQUv8v1s7yv7O8f/Sx1FR2j+2RCbi4CXlaR1qWHSuCxUQ7fXQooMCJFFHXNpVnT8qyRhpRqTQrWENahEsi7ONK732srzdrKf82YFEEudTcoSer1lYddSXUdzazAxtVcvp5x3qS0slpCdKiy1bCTaieyh3L9iHHefUhfu8OkJ6aI3R+J2wyKRVmSOoWjcjnQ/WnkFKTgE+2RiJd9fIL3LjiFF2wtvXC6YWweIYwbRkPo7G0Rq2hC1ECQaCno1DMEVGKK8j/xyLV95whWt9aXhrPKrAE5aKE/Ha9DmppfIOXEhFQmY+Xv/nhOo2J/SWl7rsq+3Rqts0wlA3vE1t2d95kzja9L6f9qPPjK2Ysvy4qvOI8gQ3iu6iN/EZedh/MZWs/V+JvUGV8sUdndGhXpCqNFKMODrVD9YtZ3X/5qFoHOKPLg14I0Upu6PFFjS3CuGThyLIz/nG8YTe+keFlOJKDfIycaSWXrAR3UOJSsrGnvOpqs5B4ZEminCF+bFXPN5XrCAWgqpauChErafVhLeXnUPycVeP3BxJlyOP8Qw4N545sdvtijbRPhjVvtJnZpv1Rco7tmt9+PqwWkwxELQgTGV1E3H0QUA17nOOfKLAO18tY7s20K0tUdEut8zdgyd+P4yDMalCzmcVAn198NP9PYWlkZLLpIHNKn1WN9iPQBJj4OPthSUP99alrVljO+PPR/o4LSptBZvhHd30G+cY6fRqUhMvXtuKWgxGJqy5MYajQz26sBarhBRpwZkr+lap9zTqKVCiRW501Qvmvm8E2IjHyGVLZJKiTbSRTow5ZltIWtlbRitTN8VeWp//DFpBfvJC6tU8/XZ1S3TN90a1x8zbO6k4kzp+HN9TlnHDAPWnDcPe8ylCxqzujfXzTBVtLDlCHAXlKXx5R2fN2/jp/h54bEBlI/rI9nVlj31m42YnRUVL0Wset9lsltYZOF0kDe5Ss9psNtzXsxF6Nq6pk0QOsPeUYni17kEUFEkNwpUG1TRTK9BX9TnMlJ+P8SwuZ+Qp+l6bOoGCJZGHP3vDGYKJThZYesLqlPlYoSalSQX0jkDzqtBe8zCZYd1qxTVxhy/SqPYLRUmZ+jX8sWpSP6ya1F+3NkOqX81NPahFmG7tAsDI9nXKCum2qFUdr17fRvJ3r2TmayWW6Vh/OlHIeUa0q4ubO5qnHgIjnv7NtR8DOrhIV+jtZcMLwzzbE7UVYbSRaGZuNmdxWxOrO6bmh3HdJR3XmdMMmQq2mngI6bkFeGHZMdXncdwJp9qsvbdHI/Ruom437lKaNYtcMvSIKPolVdHJyCtU3VYpzcM8R8E1M3UsHNZrdf58pI9ubTlL5QIA3Rrpq8R3rdCe3HHosIrChpWwsIeaEagT5IcAooL2ovJzS+WDmzsoKqQLiC+ma2bsdruQbT8fLxveucn5mGgVfL15/KPk+rZ1dGnn89u197h3xp3dG5K0qwW/7DdnPQB2OqZBqn4h24lEBlYt5K0lbET3ELafS6YWQRgBvt745u5u1GIwFkOUcqH0PJTLl3t7NhKWp5MxN6xk06G0uFZeofwotIEVPG9fGNYSANC3WagiGZSiJrR69Yl47D6vvMiVEU1GD/SRV2BTC8wyBhQV25EvOAKTYaxKq9q00ZChAdXcH+TB6JHKL3zyUAxq6dzj/qs7u2jaNtUGqVSMqA+IxtnU/tLwVroUdhWRZcDTuaWKlEdqWf/UAKefm0TdMyRsRGdcoiRHswhEFGZkGDk0qGFt79/JXNDEMFhBkWfKEz55KMInD1X8/d3Ryg3JpXSq7zzM3Mi8tUp+MVWj8+zQlrq1dU2rWk4/N4sOlpFbiFlbo6jFMCVU+v0owSlTziVlY+XxBGHnm3dfd2HnMip/PeY84onayPX8MP3GPqYyfZuFqtJDGOPjbGq/u0cjXaIgq1m4mEdLiamMtIyI0zvazgqwEd1DSM0pEH7Obo0IChwwDAGd6otLYSDE/EBsxOjfXF9vVOYqrOfojx5eOGahawNaY/qDfZuQtm8l7urhPLy+M3EfkMr601eoRTAtXYie8cvXtQYANKopppB5hMh0TgBaE3tj60Gjms7nO54HiWvSmGTz0lOhNjLqUdiW0u+42ML925t4A+G9Ue1c/s3Cj0U1bET3ELTyxvn1gV6anLcq/H2MHfLFaM+w1s495LRD3Czy1+E4Rd+jVuAc8TaQLBTUCbJu2KHV9KmxXRtgli6LF2NTqkjXDvLDmif0K+5YEb0LK1mtvzviyuO8uq85dLDELLEFNqmLe+sJVb8P9PXB1ucG4Q8d6z/IQeu+T7V5IYWJA/UxII/r1Qif3tap0ueBvvQ5eyf0aYx7XGwuMualpgnyQetR2JbSYEpRsJwpwcYxzprARnQPoUij0YnCmNS2rnUWMkxltj03CI/p7A3iJzBX394LqcLOxdAw+84uZAYVX2+elvXktRFtynnmheicl/VmDXMgysFRg6gV6IsxXeqTyUKF1ZYZrtRGPXLzVoXU+obzdl/QVhAPhtKgEVDNGz6Ennm9m9TUPP+zK+beY9x6T3oZsV8Y1grXOHGUGdIqDKM71SuLVqDAv5o3pgyna5/RhtoWdoxxhNKObWVPdDmznRV1b7PCq3XGUHRpEGwoj1yGBr17wE0d6hrKI5FaFqu/gi1rBeKT2zqStN2jMV0aLbvdPPmQtWK2zsaVN0a00bU9V9grjDpv3NCWSBL9MOo410Unb3xX6Ru6cyo/TaEO7QasPc5/fGsn3Qsol+JDvElu5Cg7L5sNb93YDnd1p/cE95W6kycQ676R2iPFE5d+VNYeKxuyKZFj19JC966q9eZh0vK1M5VhIzrDVKBxiJhcjXKpG+SLYD/jhJyFVdfXI5MS9v5ljIKXUS17FqFd3SD83636baBUM8jYw2sra/H8NS3ROMS5EZ18DKJuX2PeudF1flK9oKh51JNwg5gpweopFYa0lJYyw19gdKpR6N00hFoEMqRMKR4+7ZDTu0kItQiME6hsXp6AMVZvjGEJ1jmPmBH0u+/u6YZXCMIJHx/QDP2ahejerisaCir8JBeKSISKXpgUOF41tUGLdUlr5pCjeg+MloPUek+ecaQagRei3vRsYlyDJtXdf+OGtvDz8cILw1pq2g6Fl2sp1bxteG1EG9xLMOZywXJ6ii1uRZfqdUnxhmq99gkirHVxtwGiC9zRsb629QqMsIlIubZ8cnBzusYZRgPYiM5UCblHko60qxsEoKSw2p3dG5IY0o0E5ZM3SrcziBgMAUbpg1bgThMssDydIANFQVFDUVBdb1oYOIS3fb0gknY71Q/GlmcHYVyvxpq2Q5mysHHNAIzt2oAkrYjUqw7Q2Nhn5Ll94YSe6KShMY/TOUiDYu2rdZ0Ayv2Tl4jX01LurPb3n/7dq1/Dj6xtV5FvDGNW2IjOGArKOebH8T3K/X5n94ZY9+QA3do3mmJ/d49G1CLoht0Op6l0QnVMaeOq8A2F0xp1XYIp17Yibd+q+PvQeCo1DgnA6if6k7Rtdd4a2RYTBzQr20Q2GgM09F6t4V/NafRFM50MzK4MmXp4whs5XcG0WzqQta1HvvLqhB6hlFF3UvWKvhZOO9GubhAeG9BUs/O7M6TOuacr7uzWQLP2zQKVCuynYVFnIxhxqZAy9mi97ikq1vT0bmkS4m+IegOM/hjNvuQpsBGdYf7D2eIpRPe84MYZ6Ya2qkUtgq5c364ORnWsW86YpKVCW5EnBzUv+5la1dWzF9YPruwZ0csAi2jjvIn60ap2dbKNzNqBviQbRs4wiBi6MLpzfTw+sBm1GC7RyqA9sn0djOlSv9xnei80nnBx3ydbfBOxfg3PztFJOb6YwY5GvYlPDeX192wcgleuN0axa0qoorCnj9ZuA9HKb5WUjUut7w/1JsaL17YyTA0ePfn78b6yjl8h83h39FaQOo86UrBtnUDS9s2C9d4mxlBUHChMoN9bBio93gaafNQ+Xja8e1N73N71qmFFLykCfb1RM8D5hk0vgmIsej377+/thq/u6qpPY4zxMYjxxCBiMBrywc0dSBeU4ZOHujQWt60bZImUMoxrwicP1eS8vjo6BjDKqG7gKBGzY/S5fXDLWqjrIiqVUc6DfZq4PUbrvkFtRLdqOYQGEjblb+5Yt+xn0Zv4berIj/IUPU/L3RQM4DlIEqxNeQgG1wtcUo8wP5cjrWobNz8oY208OfyuW6OaCKhWeRoy63jmCVDq2fzcmYrYzeA6qwUGeRk6EOUnZ7ThvZvak7Xdohbr2VLwd6ITMWKQWu9A6/zYjL4E+dEbBYusasU2AX2baZc2UMnmicjxp0O9IMtlFtALnqk9BLPO9xXFplow396FPgegDTZDeUkYSBTNcex2DWs67ELr9EB6VKja7ihPfw1zAhsBZ3m4neWnF827N7WDr7cNn4/t7PTvVg8pp8BVNAZjXaxqQzcKt3SqRy2Cx0E1tcy5pytaE4Zp92gkP6xdNB3rByOQMCe9FLw01L6trNbseXEIagVK8/LWurgtYz3Yhm5NlOiwIo3oP93fU7Znu5XnCTmwEd1DMKvBxyhim/X+eQoj2tUp/wHh4+jfLBT/u6YlZt/ZRbc23x7ZTre2pNBEhyrq9/Qo8bAP9vepFL5a10medNGM6lgPW58bjEEtwpz+3ZIjAvE4WNon6LHk0zckvO6kht8F0dTw481CKhaM6258fd8A4r2oUV2GXgryA1NgVse0qjB8vydG6/vzzNAWmp7fHfz0aVCiw3ri+OOJsBHdQxA19vdsHCLmRCbDsiHjVaBnvthuDWvo1pYzHFOK2Gw23N+7Mfo1C9VF6Xi0f9MqC9hS5O19bID2hQanDG9d9vPTQ2iUS2fFhCm4r2cjahHKuL+3tHBnLTBK6iIrrDWleNr1axaivSBu0PodNerUr+VVXyMrtNegN8ikXN+2Dtq5SJHTLFT7zWt3VEzf80j/pkSSaIPVDYl9m0qLbNRKJ6kn0UFiZPs67g/SEIq6TIx2tKzlPgJHyye+YFx3lw47jGdDnQuf0Q42onsIIiqJf3pbJ929BKpX0z5tgxR4iLvKyPZ1sP6pAboaGB3vP8Uap2P9YKef0623rt4Rby8b1j81QNfWpVSy93T0fPZPDm6uX2NuuLFDXfcHaYTeeUhDidLHGCE/p5R73ViHiBR31PTXT0cwktlEy3ehYvqwquhugBQcnsTjA10bpVvW1jbVihTD4LTRHbRr30gvmIHRchp844Y22p1cAh3qOde1K/LuTe2x9JE+GkvjGi36qjf3f93Z9MxArHmiP4Il6BFaPp7qvvS2jjaEqbyaGmCDuCpaaTz3yoZ4suShShokRvTk5GSMGDECe/bsKfssIiICd911F3r06IHhw4djyZIlFKKZFhEdvlsj/b2BJw4s7/FKtWFnlJ1CIwxcodV9yXMT630fjO6dRP08rIiePcLYvc9z+ZNgkR4+eSiGt6mte7tKELE5zyhDy0WnlwQr3b9P9sfC+3uibV1tCotKzU1sJYzwtjWqaWxjhxXQ0gs6SId6M1UhNWWbt5cNTQgNb1o8gfdG0RX1tSpBfj6GmGuKZNoYbhZci+TXB3uhfg1/9wdqxACD1/ZqVzcI741qh4UTego/t1HsS4x4dDei79+/H/fccw8uXLhQ9llaWhomTpyIMWPGIDw8HB9++CGmTZuGw4cP6y2eaTHrYrdmAP3urGGo8AhXPN4XEwc0Qw0dPfGoMGrvpZKL51yG0R4p3klWppOLCB2zs+xROg9HqWi5sXtrZ/cL9LDqvi7TjojAqHN+KX2ahujeplHU+HIRqayM6I9B+oEWGN1hpRQt5KROH2iOOy+OO7s1kHW8ll2zWGZV0S4NxOperSV4WvcmmPOMxE0d6qGdBk4DSqZQ6ne1V5MQYgnMga5G9GXLlmHKlCl44YUXyn2+du1ahISEYPz48fDx8cGAAQMwevRoLFq0SE/xTI2IwZ/ipTWKfm4UORypX8Mfjw9shu/u7QY/mZWVGTGYReHXgl8f6IWpxKG/pFjw2Vvvip2j9X14pH9TBFTzwrhexsmF74ybOtKl9tGK/7u1oyHS1FASaIDQcqMPr1LTTohE61si9fwB1a6mm6L2XBbJj+N7SDpuQu/G5erkiKJFreqSjjP4qyGbinn2zQClvfvuHsbWC8zC/65pKfMb2j10qTaGJQ/1xusj2mBMF3kbAFXhL9F+oGVNjgHNzZUPXlS0aEA1LzzcT35dEer0N0pktiK6WuYGDx6MdevWYdSoUeU+P3PmDNq2bVvus9atW+PkyZOy27DZrPlPRP7M0nO5+l0TKpy/Ra3q+rRbATvsLu+tXoOZDc7vf6vagdj63CBdZHBsV89n4FjkzsumvwLr6tnr0jactKezLM6uvU3dQIzpKk6Rq6rNgS1CAQAtHd5/rfuAuzFVzz7o7WUjee8qUnEM0q1domuv6vlr2WbjkABsfnYQXry2FcmYUyqHu3/eXjbNC7y5u/ei78l1bWu7bE/P5yDl/lO2TS2HHlTVvl2jSjmO833lf1cvXIt7oOSZi0ypQd3nOjUIltT2/4a1xOZnxevcdYN8Df3OaSXD+w5pTCjHHjntauU1LqXth/o10aTtJqEBZH1PSrtLH+2DGwTqGwG+3rKeuZY6f3EVNgbHfy1qV8fYbg3gIzCB/vjejUnHHACoHVTN0H1Pq/d/87OD0CjEX3b7vgIdJ+Xe9+FtasOvmpfL45TcTzP+k4KuLgZ16jgfHLOyshAQUF5R8/f3R3Z2tuw2atXyzPBjd1QT8MLVqhWEwMC0st9r19b+XoaGlg8xem9sV9SWWL1dJNWr+7m83lu6NcTXm89qLkNQsD/8/K7mvtbj/jsjwN9X97ZbNwrBKze2R6CfN+rXq4kMnTNNubpeH2/t5ahevfL9Dgx03R+1gKKvObZZG8DRd0cioJp3mfIS6OeDjNxCXdp3ht0vT7O2K9KwvjGK91Xz9abpC7WC4OPthdyCIn3bdXGtNRPl6x5SaBIWQDauV0SqHI5zEoUc1auL1QcqtpdUWP5vekUfUfWDsED953dneHnZyOWoqv1GtbXxng0NDXTZrp+D17cW96Z+nWBJ5/V3eOeDg8Xl0a1VKwjB/nT1Xaj7m6+vjyQZcry0KTzdu1koyT3o0aYu9rx+HcICfVFNpk4d7C9OD6xbR3rdrwANIjCCg+nm/wn9m+GVm9qTRZZIue7atYMxNSwIa09u0q1NR4KCtLM91KhZnezZTxnVsZyjmiv8NRybQ0Jcz3tao6RdP0HvSb26ymoNVg8Ql8ff3fWH1Lhqfz38zg0I9vOpUg+2qp3VGYaI0wsICEBGRka5z3JzcxEYKL9ablJShiFTc2iNiGVfUlImsrJyy35PTMyo4mgxJCVllvvdlpePxLx8zdutSEZmnuvrLdTHsJOVmYu8vIKy3/W4/0Nb1cLWs0nlPsvJzdelbUcy0rNxV+eS1AGJiRlIScnStX1X11tYVKx529nZle93VlYV/VED9H7ertrMdfjZrvFA7u6aU7L0G4co7r8z/Gw2mr6QlAkfL5vuRnRX15qelqNJey3Dqru9vy3CqiMqWRsjviNSn7PjnEQhR3a22M2siu05zjUV9REtoXrnv76ziyHGG3uxnVyOqtq/pW0tTF8tvs2UlCwkurBnDGkegn8Ox6F+sJ8m96aer7TxvSD/qtEyPT23iiPlkZSUiTzC9DDU/a11WIAkGbSKfS0qKiLT9by9bEjLlz+XyM0l7U4Oqdg10P3T03NI7n/9YD/8b3Az5GbkIJfoFZB63cmp4nQvufe6TYh2hTeTU7KQGKDN5pg7stKzIWVFnZurna7nV1RI0vcDfb0VtZuXJ2bjTuk15+SIWX/2aRriVoaRrcLwAYCejWsiPzMXrtRgm63EgG4FO2vptbrDEEb0tm3bYseOHeU+i4yMRJs28vPx2u3GzG+tNSIKi1a8d3rcx4r6EdWz69wg2GXb9/RohN3RKTgQk+b8AEFUbJ+sHxO8Q5XfW328AR3bd4YeUtidtK/3OKb3867h70M6TneoF+S2fZuOfZB6zhrfqzGOxKXjxWtbkchS2t8pxh3naPTsDaSfmEUO0XJWGms1bEuOHHrRqnagaZ69ljSs6V9l+34+2hg8nM33pVzbujbm39cdzcOqC783JXmpbZLOq1U0BvX6jKrtIS3D0L1RTdzfpzHxuyft+ZdSzduGgiIxAhthzJF37eKjUKt697Wkd9MQ0vv/5KDmktsXKafcc7WqHYiFE3qidqAvbvx2tzhBULIZRPUMKO59RUICfCWdv6a/D9IERiB3b1RT0XWJcuKiHve6NKzhVgb/at4InzwUgDR5qedxI2GIaoUjRoxAYmIiFixYgIKCAuzevRsrVqzAHXfcQS2aaRCRv0mnKOZyaO1tKpWqKhFX9/XGnHu6oR5BmhmtIXjkpoLinQCgUTZW42CGflczwAeDW2pfDGf+fd0rfXZzp3qat+vIDe3rYN593cnHOBG1PRiGMT4DWtAWGvtsTCfS9p1hs9nQpWENBPuL92+Ss0ZwPFSkLuJJRUrlcF3bOnigbxMhzk5qkNt65wbKUhF4AlroInLWu53qi0uZQL3ODvKTviFJ/IqgXd0g1AoUl0qjFIpC1WZEq1oEVoXvprYYwogeGhqK+fPnY82aNejXrx+mTp2KqVOnon///tSimQaBNSh0pa6JDNMmvcUu6VQ/2KnCQq3EAJ53rxnzYbPZMPP2zpq306Vh5YXqOze207xdI6JHDQJKjDC2yuUWnTd0HHlEowJrVPRsXFL7oL6J9B6gxJNWJC8Nb40Xh7USek65ePpGdUXkZMVwHKbSc7RN52QFhrWpRS2CaeneiKZeTO0g8YZUOTSqKS61iMCMOIro2yyUVgADQGUbrq3BhoCWiN5oVHo6av1Ar9o8jDrIVqynTp1Cv379yn7v0qULfvvtNxw4cADr16/H2LFjqUQzJQMFefX003myo/bMkIPWog5sEYZxvRoDKKmOrDWf3tZR8zY8Cd4gF0er2vLrXTCei+MmcGsj9A1+18vo3zwMO58frGubLWtVBwDc27OR9o3ptFpqHOKPj27pgEf6N8Xce7vp06ggROtpd/doiOoSCp1pSUA1z96wq4gcb1THBXyhIAvciHZ1hJzHjAT6GsMDP1DmOyfqrVdzHiqHApFjXvOwkiz3fZtKX1+LHHKpDYL+PtLH2npBfrzWEoicd75+DfrNfaM8e4MkSVCNmRxVzYgxZnZGNWHVxew2tqodiH8m9kOt6tpVaWacUyvQF7UCfbHx6YGywt+UUlvDSuRy0TP/tBwc5fLz8UJOgfaFRgH68Eutefcma3paM+VZ99QA+HjZDOd1QSlN32YhuhQWlYMW+WGrYtEDvZBXWERqfPLxsgkzIALAF2O7oFagL54c1FzYOeWidNz1pNno1etbIz23EI1qalW+0fyM6VIf605dAWDO6BnGOU1C5fV5Uc9ezfwe4gFr0V8f7C17PhNpxDfTesLH2wtbnh2EIbN2uD9YQz65tSNe+vs4qQwiGN+7seRjx/VqjIspOVhxLF6oDHIyJYjesNciNY8eiLoLtxJGkloBa7liMFVSajCsF+zn8WH1StBrLRHs72M4o5LuGOXybY4/GkUo82O2EENPh8oDJSSgmmXz5LpiyvDW+GJsZ929v42Ej5dNEwP6Hw/3lnysaGO3yPB8pYzqqGxBVUxghBnXS5sohDu6NcTD/Zpqcm4jI2c/yBPTL7w5si21CLKooUFefLlYWeMVOeQpmc+uaysuGpnahi63ef9q3ujqJM2hngxrUxt3dW9IKoMI/GREAfj5eOEtDSI/NjwzUPKxoj3RnxnSQtH36hCncxKBn48X2/I0hu+uh2B1myujDGceht7cmcpwvBN8WxhPRVQkkwj4PStJ7SXa+3uekwK2VqNZWHXJxzYKEWv0pu7XZkvf9sKwVgifPBTPKlwEM+UpTSlBRX9Cw/xLw1vh1s71ydpn6Nkkw5BnBIa2quW06LwSqP3QlRjxZ9/ZRbwgMvGEQvfUKXNrB/rK2kAa0upq/YiGApx7QgKURbIEEjv3UOuLjDTYiM5YmjZ1AnGf1LyrHjiqPTe0BRqH+OPFa1vhiUHN0DQ0AA/08axibozxkKJTl3qCauG1XtdAqYysymP9jesN6oFDPblnFwB8NqYTtQhkUC9mA6rR5iBXyoQ+0sPRGde8TVys+pbOlGHlHjigK0B2NKWHTIRfjO1MFvE26w5lxeltNpvTovNKoE7nYldgxjfCfPUA8dzz4c3tVZ/jWh3qq1XFogd6yjr+eYeC4y+oLD7epo4B6isRQv3eWwH6eDGGIeSXB3pJPtYz1Mny1K/hj2WP9i37/dH+zWgEsVX5KxmdGwTjXJKx8hOrpU2dQJy5kkUqg5S5/e4ejXB3j0bYdyEVTy45LLT9e3qaP0zTzPz2YC9DF5c1yvhTw98H6bmF1GIIw9HLiNEXNcsppd5cIrDZbHhvVDu8teoUmQwiqU5kHFIa2SJiLOzTNIR8E0kJLWtVJ9P/7unREN/tukDSdikinpgRIqAGtggja3tAc7q2S6HWtcxqy6tJOO8BwA3t66JxSAAeXHRQ8TnkpHPRArlRro7e/w1VpsB7aXhrVd83OyZ97UwFe6IzDMO44IVhrfBo/6ZY/FAvXZ1yahkovYYWyJnctbjvvpwnroybCQrPGMHLyAx0qBdELYLHo8RLzmq0kJEGxx2/ynBcKMUTUsxd26Y2ujQIRv0a9Lnx9UbJG9a9EX3kDGW3mziwOV3jAjFCBJQSPGlemMDRxeQo7U0d6wcLlUMKt3lI6itVtVwE7PyETx6q+hxqkFMHhVEGWxI8BBG6HpXCaARlmWGcEeTngycGNUfLWvp4cvzfrR0xrlcjXN+uji7tUcFhZsYhlNjbpiL1gjnVjifz/b3dqEWwJGcTaaOPgBKvuNYmCrEWpRKP6VIfH9/aEfPH9RB0Rs9HZPoNpWsb6mLyb45si0cEpD0L9C3ZtB7RXp5eaf6tK/Pz2og2qs9B7Y3MmMsbf6pBijCrtUlRFEQXhZC5x8TXbxZ4ZGUYiXiAM5RpsBnwZuuxoBrepjZeGNYK3h5Q0KYqRBdNZJRxbZvaeJQgN3lVXl6vXd8G17SqhUGEIdiMdnRrVBOjCaIfzMi7N4nLY22E4sFKIyuo9AFRzZp6PhdwE25qX1f2d0Qa0VsrTGdBrYbe2rl+WW0YNfz75AD89VgfdJLp1Up9/QwwtmsDahFUE1pdf0eNwS3V648ibZAU5szhxPnQGVrYhK49bMlgDEuXBvqHMTE0NA4xfoizVguKZmEB2pzYoPRrFmJuo4IH8fGtHckKbrmibrAfPh3TCb2bhpDJQO2ByFzFrOkARDCqo7jNBqWGREDc3PfVnV0Vfa8JkX7gKaPAUMJaBO+NaofRCoqK+nqLu/sUKRGMhJ+PFxrVtJaeqRazO3EaSccO9NVfxzSaow5FNEDtQPqNczVQyt+1UU2ytgExOpfZxzAzYKxRhlGMET13peJK8i/GdtFVDqYyWveqXx7oiW/v7lqlgj/tlg4aS0HLTR2s5ZXZOIR+MUc5Xvp62+DP4bWWhHqebl+3xBNYhJeWXvRtFoqH+qrP6dq/eagAaczJ7Du7GCKNiq/Cca9+MNEmu4n1akd6NqYzCHRrWFPRuCeyEKlSA5YnPH019Qx4M9mafHVnF9QP9sNzQ1tQi6IYI6WMpHIINM4dkMfC+3vi+3u7IZQwem6gSn0xoBr9Gs+sz99M0D9lhnGhLAf7+5Tl8mNo0HoN2aZOEHo1CancrsPP17Sm86JyhJcTjAhm3dFF0nv13ihxqRyMhoHWN87R6GWv6U/r9f/FHZ0x5dpWQtOEKEHu4xdh9FfjiU1Jv2Yhqr7fIqw6+jWz7gaCGnjOp8MInrQiNj2p81F/dnsn5V+mfwQMAX2bhWLFxH7oa/F5w+hqqjuMtJEgh3b1gtCN3BPchiUP91b8fbW3nodec8BGdA+BXzjPp2FN/b2xuF8x1BjJGXDqDeqLPEn1xL+pQz30IPQg9ETeG9UOr1zXGgBIvKyeGULr2RVW3Rf39GyEGv7yc5QObGHuBfVtnes7/bzJf+9jsMHSGpXSpo6yPOKMetrWFXPvjeIIoASq6VekJ7pS6CVQjxFqITCM3hQbyn5MM5KouQUf3txemBxqeKCP+ihEpYQGKM/lr7b7GWD6YyTARnTGLd0snJPU6nRwyCVJNaYbZTOdOhUDQ4/SdARKMYI3nqdxZ/eG2PD0AEwgUM6Nln9eDkEEeU1LaVlLvRd581rO0xr4V/PG1ucGYc0T/VW3oQWPDWiKIS3DFOcFr6qIr1kI8lMXkRgaUA13dGuAb++Wl5P9/0Z3UB0JAAADmiuLpJBbCNIValWXBeN7CJFDDqLmPjV9J0SFEcUTsLL2YfZRs6+AmjLUtarU1MUxqxe2UbihfV2ETx5KLQb6NGVHIqWIrCvCOIeN6B6Clva97+7tpt3JYW1FzehQebGwvdpzCatu3oWpqByhUs/Dr4FYSu+7O09svu/GItjfB72aaLeYCqjmrfsGmVQCfX3w2e2dsfTRvoq+L8IjT8QGchsVOdl9VBaJC/TzxqvXt3GaOq4q6tfwx9Qb2qpqWw03tK8j5Dz+1dRtQqgx5tcMULb5Jmr/+PEBzRR/987uDcUIYVJYDzcvImoPURQEFYUIE7qPoEGoeRhNHShP2EdQs+airL9VrPrmq+977etZu6C2Hhhz1cAYCq09cFlRMwdWf05aXD5lwS8q7u7RSNbxRipuJUISG4z/Ln14c3vUDtRuA02KfsmeRMaCus9q2R89mcKiYmoRyDH4cOuxNKzpr9gQJyqdy3095ekbjgxuGYbBLcPwcD+6lAKUGEn3YqyHmt4nQn0UFQ3TJJTGmKvekGtuGtSgi6Qwwq3n0Vt72IjOlFFNpbcP49lQpTMxwFwEQBsj0s2d6ok/qcExQoi00kep9ytApQTd0L4u5o/rTtQ6PVo9Z2pDtFEwypheFf2bGy8HvJICqyLmGBHd1uoLeiUY4ZapefZ3dmug+LuiDFhq9FZvLxtm3t4ZTw2mrWXBMHIxiqqhJh2smmvg+cYcepZbjNKRZcI50a0BW00ZAMDL17UmryLPVE1Nf/1D63gc15ZbLGhEl4ua4i5GxCzKkZZieoRybzGsVhPC0YO2fzNjGNSbKAhPVpqPWzSUNg2r9V2j0FfFe+Mp6VzNHFFllNdmpKC0RrJweGxKoxk4ekpdOjE1/c9Ibx3Za2Skm6AQgwxBslE77jcVEL0wZXgr1edgqoatph5Cak6hqu8PIPS6MusgqTcf3dKBtP0aJi6KZ1REhSx7Mq4KAlKg9/Pi7kEDh7FXxsp3JJhgA1sUIjx6RYxDJrYlkmGEWxZKVhfHyiOOOEQVFlZb3FcNviqipEWk4nnx2lZ4YpD83Pp396DLqW+U10dN/1OyaVxK45q0RVFFotSBzhOKipsVtfrOzR3rKRpznr+mZdnPnBNde9iI7iGEX0ihFoHRmMYhAVj35ABd23RUxFqrKAymBjN78jCehYiFSU3/apLP46nGXKp32jPvpj6M7mzdqBlRRQ7VouSt8QRjCqM/H97cHuN7NcaQVioiGVQ8clHpXKyOJ6jPasawWzrVFyJDNS/55hJOKQIUqXBFf3qI8jRKar4rmhoqN+GVbih6Qvej1F/UzEFqb723lw2P9ldeFJvRBzaiM/QYZZXHVImeT4m7hDaM66W8yBaj/h0Y1CIMvj5eHmscF0mvJiHUIjAO9GkaimWP9pH1nerVxHkvtqsbJOxccjGzV6x5JReHWe+BqM1GJQu9G9rXxfPDWpJFy3mb+J1zhNqOpaYL2cr9LP95zLqjs/LGHdtW0BfG9WqEvx/vqzgtQoBv+bnLX8FcpiaViVoG/Vc/gzpNq5p7EKQi+lnNd0VSN8gXozuL2ciRS3VfuugRT8AofYgxLmxE9xDMvMhjzEGdYD/d2jKikdET3jHHUC8ro/RRtqylLhqjZoB5lDIt+7uUdVXH+sH4cXwPLJzQUzM5XKFZYVFtTqsbjWWGV398W0enn/souMH3924s+zuiMMpzU2JUNeJcaiWahylPSSDKG/uG9nWFnEdP2BFdDGoiQBx1ALlD9mP9mwqrx6CkL/hX80aDGspTejzavym6NqyB10a0AQDc1EH+O1RMaEXv1TgEP4zrjn8e70cmA2DdSOJagb4InzwUKyf1RzUV6YjU8JgHeDJT6y+TBiq7hw1r6GcvccSLJ05dYSO6h6B2x7ERYf6wql75SYOaAyAqLMOUU6LDdCzw2KCGH/o2DcE1rWop8gDRAtFTk95FRb1tJc/zkX5NdW3Xk1Cbn710PSF5QWpxfahj/WDUqk5fWLZLgxrUIpiSfi4KC04a1AyNQ/zx3FDpIdeUm5imXpeYWXYDQNnvbutSHy3ClM85HeoFIXzyUDKPRDUGXKPVi6HYzBWBKDuu3Kch8vEpMaSpSSMCACEB1TDvvu4Y27WB4nNQmo/tADo3qIEQYv1J7T24oR3t2l+p45HIzQMlr9KL17Yif/Y+placSmimcP69q4f+Ud/Xta2NWzvXQ4uw6phA6HRiJdiI7iH4qixlb1Qv2/t6NkL45KH44GbxRTWnj6Yt1Mm4xmaz4au7uuLTMZ2oRSnj3ZvaCTtX+OShePtGceeTQum9vL5dHYRPHoqO9bnoiN7IzZFpzFFZX8ICaQrblRI+eSju7K58IW0EPrnVuUc4FXWC/LDs0b6Y0Ed90TctGdqqFmr4+2Bo69rUoihGxBgiQj+kdEjs3JBuE0yNJ12grw9+f7i34u+b2Qn0BoM5zlCmk1KDGmOeUfQPJcNPZl6hUBk4vzkNbYnfu/EKjZFdCeccwBgRADMErN+pTVNKm7+XoKhw7UDfMp3hOY461wU2onsI1CEvalCas04t17U1lpJuRMrlRDRvFxMCdY7mhRN64tH+yr3IB7esJVAaRgmleu3Lw1sDAB7sa1wjoqavuwz93stmE5bKw6pj2LA25jUCU/LpbR3x75MDEGTmSD+D9Pk6QXSbYWqdTNRAWeCO3oyinGCVxfgAoFVtdZFjapj4XxqAV69vQyYDoK4PqBk7gv3FecEqiUowgtGbcug1ghFVBPf1NF8dp0Y1/TH1hrakMhjh8Q9soT6dU2ER7YUoHQN9iFL4MPpingStjMfyzJAWKLbbcaOCnHOMtpSfQAyyGrco7eoGoV3dIMzbfUHXdtvXDcLJhExd23RFi1rVEZWUTS2GYkojjEd2qIv+zUNR002KJEoDmFGMb4DJ02kwwmhXNwindByLbDYbfGzqU0t0b1xTkETyMYqDxW1dzB3NoZRrWtNtXlMbEtW07u+jbuPqnh4NMeW/zWoKHh/QDHd3b+h2jteCNnUCceZKFgAgWFBxPLnRKCL3rYwxgjFKUPvsfIkLoyrhr8f6Cj2fEvWDeuwXRZCAzVSG0QrzjU6MxxHk54PXR7RFz8Yh1KLogifkCbMinqGSyGfa6A4Y3FJMgajPb++s6vsUb04tgelEHBVbisW1UTD6u2SkDYRSRL2DZoZq6lTdHwQtaJXUBxGhb4i47aKKZOqNOaUuwcx2lIr9Ze493YgkUQ7VHD+kZRjWPtkf/z4prqgh5XugZPw1yuYhFSZ+9ZkK1FBgSDbz2O+In8JNFH8Tbr4w5oN7GUPGtSYLMReVdkZEnjAKujfi4npWpHFIAGaqNH6XMkilIVCUcVPOaRoLTMUgPye6tReCVGh139Xklu7ENQzIUDvuiCru96DMHPIj2tVBszCadHkVoUwvYNVxVE1hTxGIuusj29dBD8JoDrMRUt0XodV9EVZdnQOAowGeNirOnO8vpdhGMaKa9dkZif9TUNNGlCc6ZSo6NXx7d1dqERgLwEZ0RjZqvUlLeUdmYcU2dQKFtKuUabcYqzibHjiqP5b3hFSglNzZzbgh7HobNa5rq37TzOzGkJa15OVo1WL94e/jhRljOmHZo32qPK66yjzQVUFt3DEjvBalW5B7qRx3RC1o5eaJ/uiWDkLuGXc9c0JtSKMuCmhVQgV5wD87tAUa1vTHC8Noi9QpCWIRPVUo8QamYkjLME31N1f8M7Ffpc947lBPy1rybR+ihv4fxnUXdCZlKO0/nRqIcfrr3zxU8rHsaGg92IjOkFDN2yZ7km8SQutRJUopMZcx5KqwnuRR0K9ZiOzvKFFKtAjn/eYuc+6wi9iE8aAuSIbNBgxtVQuN3Yyngb4++GxMJ2GbpgwNvZuGUIsgDNOmc2FQN8iPWgTT0kWhQYDaiK62loAaPElflYuoK29Qwx/LH+uLcb3EFPZWihGcJ8zUnz4zkM4WYrG0hZRFrLUgVGU0i1qoX7tAXx9MvraV2+NGtKuDsQZ2mmO0gY3oDAnUyj0lZppiqScwraBc3KnFk4xicjHvUytBzbAn6trljL1DWtVSnYJHrQwUGLGfKTUk3NCujmBJlCHHo8cVRnguu18YIjsqLkhQcT8zQ1lc9Q4Vi1sjqArz7lOWD9zsET/D/ivKel/PRsSS0FJdQS0E0VAakc1WTqFOUInh8aYO9YgloUdUGlSzUFtgDSU1FInKIQeQR6JQI2X4+eiWDprL4Q4lNXMYdbARnWEI4fAfGoywMGbkYyZvIGfINR6P7Vpi/OnSoIal+6zRje56YJTnv+N/gxV9b2R7EcZ8+pvg7WWTXayvvcnTWqjpe8sf64tdLwxRLUNANfnLlRr+Ptjw9ADTpxVROu9l5hUJlkRfPr61IzY8PUBYaL5Z+eXBnri1cz0sfqgXmQxmKyxKyZy7u2Hj0wPRhMCAfEsnWsP9q9e3xsQBzUhlEM3Tg5tLPlYrVbVDPXlzmEidmTISxRhRKNKOo1in1A3yxU0d6gIAHuorr2YOox42ojPyoR/TTI3jpCDCO48xLmz7E0uwn/477SK9SOVWmh/Sqhb+fKQP5tzTVdgGghFye3obfFVcUTwzR66IxtfHCwsn9JT9PRELDKM8BkoxqHOUysEGoGFNf/gIcCVVspi2Aajhb610Ao7kFprbiG6z2RQ/P4MMFUJoVDMAb45spyg3MhVt6ojbuFKi+wQQemXabPLrV4iiJ3EB3ju6NcTjA68a0Y0yZ6vhoX5NJR+rlSH1+3u7yzpeVB0WM7LuqQGCz2jcTjzvvu54b1R7hE8eyhGPBLARnSHBusO7uTDK1NG5QbBm514k0SAk1/uQEcf00R3QsX4w3rihrZgTytDsX7m+NTrVD8aHN7dX3ex9veSHpTcNDUA1b7WlDa8y0wD5MpuFmSvEtzStACVGGYulIsbzvDxGCeuXaxgQqe90JvHKVXbjRV63Jxhj9MbCdhRLo8W7Infs7SHQmCu37a4Na+DhftbyyixNxX29QdK3WRUfjXKi+8p0wPGUoV/J3RSdh591D8YVbBViGB3RwrCgJUaZPIa1ri30fI5ebXJCvUtzHTL6cl3bOvhxfA+3xTC1oEENfywY3wM3tK+r+lyBvso9BUS8i+/c2M4QqQ2o0vIobde/mjfCJw8VLI0+UA3hTw1uUe53EYs6g0xHhpHDSmhRpFsKbIhmmJI0VmRtO5m3XRVwbBoagHn3dSeNQBHtETqht/t0GrtfHIrwyUOFe+DXD+aC0HKYZoDc2ABg95SJywDKVouw6tQiMAaFjegMoyN2OwwxKTDKkK2XeIoiw5Bj5WGD3yLz1QPQRFzD3AN5cpi9/yrd/O/VRJw3aq3q8o1iHwiIHopKyi77+c2R7iOhpo82hhEFAOoGWdcAdo0BooeoqKPBc6c0ojvz7u3dNMTpsZSFHXs0qoFPb+so3BO2mkbezVJYMbGfou/d0a0BfLxsGC9hA8BTmH1nF7Svp13UtBzMrnMYid5NQ/DWyLZY4CaV3tBWtRDs54PBLcP0EYwhh43oDAmta5snt59I2IauDLX3bNtzg4TIIQIRCnZ1md4mXTRMhyMVIxSIMTMijKiGsUEysjH7owsVMO5R2XEq5iK22ntUM6Aa3hvVTvb3ZozppIE00unfXMBi1uFZD5BQw+a6tlc3HJoRFBa8t+fVlGHD2ljXkNyU4N4bBZGpVEqhrAti9BoqpbxwbStcIzhqFgBGdaQtFqqEV69vg23PDUKDGv7UouhGsMY5qTvWl76OE+2/NXEgTbFYo7z5ozvXd1vgOsjPB2ufGoDPiPUeRj/YiM7IRu2gdmvnevjkto5CZDEbRnFMvrNbA2oRcF9P+fmhleJfwehMqZP3ceFBIwcvmSP37V3FPe/BLcNwa+d6eEpGxXoAsBP4RrSs5TlheCL6jVnR+3UV6fXdQlAfVFoQltr+8P6o9hjXq5EQ7xyqSwn298HqSf2w+dmByuQwysSvAh+5kw7Upa8yCo4bN8VuHmObOuU3W8YReGE6yvtAH2vlhXakpkULyvZopE3NhLzCYk3OKwVnRTqNOKR20MgLuVlYdWx4WnSxROkojSjysVAdqYf7NZFl5FZCexmpGLsL3kh7fEAzrHtqAAJ96Qr2mgEfL5vpokYZ5VhnhGMMwZ3dGuDNke0stTvtSPcKCm5bgRXs5dBEopeOVpPBS8Nb4cVrW0k+vpdBDIhywyq10vNv7Vxf1vG+ApXZtnWD8ObIdrhWA48b0fx0v/OisWZUcUYYoGDUXd0bkrRbT+e8nCL7h6jclDd3Mq432uw7u7j8240d6uKFYa3EzCWEi5PaQX5lRmHKwqLWhebZO3rgFrt5l32MUvn2P0TnZjYTcgvxMVVDWc/JWeSy1cbUGv7VMO++7iRt92ocIuk4owx/FKmHKtaA0YIbqngHK0Y9aaEzhwRUw2QZ63YRaFWo1aw8N7R8P2ODPS2sZTC6YjXFpyJt6waVW4APaVULk69thV8f6EUnVBUYZXjuVD/YbT4yPejeSHyYrBLu6SHNi39QizD0bRqC69pWNngPbVUS6l1XYbHU5ibw8vbTYCG94vG+ws8pBSPoSlQh8s480axGNYN6dV3TqpZT46E7g6MSXBWT0xtjSKEvVrxmQJ4R3YjesZ4E1dxrJoziuCGSImcvlgXfta4NtYkycIdUvU+LXPxKqKazEX3Zo310aaeq9czPEyo4DGn0fui9Dmko0+HytetbaySJa/TUSyum1dLbwYgpjzFXZYyhqV+DX1ql2GGvlBv63p6N0LqOvjnizbh72alBDUwRsAv++ICmir/rZRBXC6liPD6wGb66q6vTsMqH+jbBR7d0cOmt7RKFlgJPyYlenyiKRsT9M+FrLxQrXj7Ve1dYJH4VN+Xa1qijcNNPKDJfJDauqodq6nVs191zNMJj7tcsFO3qBuE2QqPn7Du6aOIYQjX3yqXUQYECrcYaysKiznKid3ORtkbL+cHI0WCUPNCnCRZWNOISUTfIF1/e4ToyTgsah+jjXFJVXYKACilLtUqfqbcuY7PZ8KoMw/jYbvpHyz7UV7lNQQ1WTtdmFNiI7iHo5an3QJ/GlYpsMdIx22LaaEY3EcpKax1T6Gj1vOsK2H328fbCiHZ1UCtQH6MURU50T8Ig+zckGG0ckoPZxnwpSMmLWaCBEb1JaABWPN5P+HnlIrc7ekIXGNgiDDX9fdBfQnFNLaDawG7lkErCXU70iqmbBgq8V8Pb1Jb03nl72bBwQk9MHdlWWNsVCZ88tMq/92seqrtjiJHw51QyQnGW376iAWnWHZ3RPCwAr17fRjM53rlRfnFlK9C7aU20k5GvWyuahgZg5aT+wvOBGwUjFNj1BF1GNHqubRvUdNxI5qdBDc/0HsKLw1rq0s4N7erq0o4nY4B5kNGRazTwSqrKI8ER7mra8HA//T0AKPPblhbMG9Zafl/u34zG6KaGUgNQkJ/6IkrUam5IdfEF9hw3M10NRQXF2hSiM8L8KdeeS7GR8lh/sd5R1X29sebJAZg1trMmabLcQZXJx7GeiNt0Lv/9v/fFIdj23CChntPTR3fA+qfcFxcUVYPBzIQG0BYVpXwCWrVNOe7WCa7s6FEx5/2A5mFY8nAfS9cB0Ap3fcoAU7I1kHGjNZsGCAY3o/evQne76wK51mENVtsg6ZOsDBvRPYQQYqXRisgtMgmYzyvx5o4l4YttjOJVJGg2rVVdL+9r4JPbOpZb/CqtdG8UTNaFnaI2t/dTg1vo5sFfCmU49U/398TGpwcqMgo9Obi56varV9N3YRxQzRtbnh2Ef59wb7QyKl42YFyvRhjSMoykfa3mOilvgeZ5MY1gyXfDpEHNhZ/Tx8sGm81Gog9I3TgW3+7Vn6X2aZvNBv9q6jfgKp7TWVq2iui4ngdAVyejKm7rQpfKBtB2I0NOagORUL1/1G1L5VHBm5YMUwkZw0rDmtqkvmpZ21i1sO7o1oBaBBTpNOkOahEGm82Gz8Z0wh3dGuCOrvTXbnXYiM7oitmMyFVRXcEiqVlYgNMibEalb7NQ/PlIH/wwrge1KADE7Ug/M6QFhrQMw6e3dRR0RtfYbDbUDKiGTc8MxOe3d8YdBDnbjIARcqKvf2oAVk3qJ8RbSW+PPxF3T+kz8PGykRb3HNwyDDd10DcKqrqvdyVvNyWI7CcvX9dacjTAzueH4IVhrXSpf3ExJUfzNkqRcj3D29TRQRI5eJDiA5qxnCqdi2O77jzRtSimK5eM3EJNzuvq7reubRAHCwe0ipR4+TppBmwte8F1bsY2reZJSu2NXnN0TyONjJZS2PzsQLK2AaAFp3g1FA1r+GkWkUFRyLJrw6uOZzdWGN8e6qtvVPAP47pX+kyvjetS1XdIq1p49fo2QtYnjDoM9QSSkpLw1FNPoXfv3ujXrx8+/PBDFBZqoxB6Grqp7mbQZjREbU68OkF+6NKwBoa2qoX7ejYSJJV85DzGpqEBJOHbWhJSvRo+u70zrmldW7c2g/x8MIjIK1QkjnaCCb0b0wmigJoB1VDHpCFwIryxzDp8e3vZ8N6o9ujdNETVeUzg0FYld3VviE9u6yTpWD0jF0KdpIwx+72uimoy760BbKtCoXi2u6NT9G8U5cdMd48xNUf/9Uqn+sHlfj8en6FJO9/f1x3t6wZh7j3dyn2ud9du5sbzvVvDGrhXI91aanovLY0qIdWrVXoGjozVyTNTSSSuUvTYCFbL9e302bj998n+mDigWbnPAn21dXBoWcu19/GiCT1JDKvMVSoWvNUyStaVLqMk1aNUHOtrdGkQXMWR2tO5QY1KNUE8Tb9jpGMoy9jzzz+P6tWrY9u2bfjjjz+wa9cuLFiwgFoshilDRHV2L5sNM8Z0wovXthIgkbUwgS5dDk+fXOV4J1MVFv327q6oG+SLz8ZIMz4aFbP1fS0w4y3w8CEAANAs1FghvhXHmhZhYuV7aXhr1A/2q2TAtApS9hBu7mi9+jnFeudSAfD57Z3L/a6Vw0PXhjXw84Se6FGhaJ/eEVnuru/7+7pr5oVZVQSGY1oBre9JxWdQym1d6muW+qSiIfvu7vo5AVW8otJUFaVREFQpy0oJ9PVGgOD0Ta4Iq+6Lxwc2c3+gQNrWDcIXYzu7/BsF9YL9MNZi6Swc9Zopw6/aD/wqpPnScvRxde7/Z+++w6Oo9j+Ofza9k0DovfdeQlcRLCiKiHoVUCxg99rLT716r2K5ig07FkSxYbmKgr2gSO8gvXdIIaTX/f0Rsuwmu8km2Z3Z7L5fz+Mj2TLnzOzZszPfOed7pp3XWU+c39n2d5M479xY8cU1D4y6tu3RJM6QcuA+nwmi79mzR8uWLdM999yjyMhINW/eXDfddJPmzJljdtXgQTXpbMxMJwDfUBuDaGbypcBrXYPy0JfVt3m8vr1+oIZ5eIHX7o2NPaFxNtq3NvBkG6xFmbBs/P1GWlsfTOfgbc0TIjVvapIu6eVeai5/awLujAw1e6pxTWcNVocZ6VyKy7SuBgbPtAqk9ZgiQ1236ftHtrf927Q+34vlmvnba1/2p5P76avrBkiSZozvrjtOb6NHzzX+ux5oBreuq6kGB+8r8s3UJD0wqr3DY2Ysqnypm+cAnlbRbJuOXryx4eoYhwZbNMpuNkaXRp69PurXvI7qRIRoRHvH2eO+MEvFiGbXJC5cE2vZzO9A4DNB9G3btik+Pl4NG54a6du2bVsdPHhQJ06cMLFmtYPRC6/UjykJiDWIMS4wdtvw1pKkO05vU+NtvXZJjxpvA77rlmGtza6C36ru+YI3T+zM8NBZHVw+543prW3qRetuZq/AR8ya0FvXDmzhMiel+Zc2vsPfgugt4itfTNLTi20NapVQpdd7YwHvytq0GZ9z2TV2jI4pBNJNtJAg9y6ZzYuhe6/kss3KyJmF9oEy+3ITo8N0Rd9miosInBs5ZpoyyJwg+pX9Xee9Lptaw2j3uLlOgjeVXm98eGUfXZ3U3NTr308n99PkAc09vgDyq5f00Hc3DlJEaLCiw4yZ9eEub95IfvvyXrpuYAt9dk1/hbqxsDiM5TNDe7OyshQZ6XhiXvp3dna24uLcu6vlAzelaiV3j1uz+AhZLCUpEmYt26fJA5rr4ndWeKWssupEhmrF3SU/mM//trN6Gzmpf8v4Gr1fqt4d0Jq2T0+1b4vF/O9Kdcp39z2DWifo5T92OX2fpZpll763aqymHuea7GuF2z25zaqMTjKjzXmzvIRo1ydOk/o307O/7PB4ff7Rt6me/bX8dt1lCTLhM3D2WHW/fzWsfPcmcTXa/66NYrXxcPVzDle17L7N47V0z/Fqvdfbn3O3xrHqVpqf0klZZv7GlJ215q26RLuZI9mM3wFvlvfP01vrqw2HK3xNsdWzdYioYBSwM974zC2WkmD+Yhf52a0e3ufK3Dq8teqUuYAPCbIYWoeyZQ1oEe/V8iv7DfDqvlewbftyrVZzzvs8/Z2zZ6niUHSPzkCz++ob/R1zl6nn+X5e9m2ntdbs5fsqLdfqxfpc3LOxPl97yOGxc7s0MPTYN7dbD8JikV4Y102/b0/WhH5NZbGUpNbxdnodV2shlP7etkmM0i3DPR/Et1gsTkf9htnVJ8ikc86hbet6rdyeTePUs6lvpHEp3Udf7H89zd199JkgelRUlHJychweK/07Otr9kQ716gVmjsqamDy4lRITKz5uqx8epfyiYjWMK8lFl5gYq74dSmYNjOrSUD/+fcStsiIiQistywieqENQNeY31rTcoKz8Gr2/1OldG1erLpf2a6ZPV+yvcfkxMRHVKr9vqHtdVq+2p6aV3TainUNZcXHVK1uSwsOrdsc5MirM1PYeHx/t8fIjI0/tU1S0+yOu69aNUaIHRmhfOailZi/e49ZrzTr29eKd52A2u++LjY30Wh22Pn6uJr61VMt2pzo8Hh9f/ve7unUIrWbe0XWPnqWM3EI1dWMEbUXO7dG46kF0u7Oxqu73ved3VZ82iRrcrp6iqrh4mJFt7Xhx+ce80fdUZsVDIyVJiWVSWgQFB3mlLuPqxujPPcf11ZqDFb4uKirc0GPxzzPbe7U8d5bjDg0L8WgdwqrY/uMTopXogVz99tPXExKiNXvKQLV/cIHT157Wsb6hn/Ndo7uUe6xlozqG1iG6zDlAaFiwV8sPqSBN0IBWdb1adp1kx2vUsOAg5ReVdH6JibFqlhCp/Wk5Gtu3uSm/9cGhXjz2EXkOf0ZGVjwL2ZP1sP8OxidEmX4eVVaIl35f3BWIZTsrN9iLn8Mzl/XWDSPaa9TzC22PDe3YwND9T5S09P/OVHhIkOKjwjS2XqzGDjB2doCr/U1MjDUstUpYSJCy8oskSR1ankrTGR3u2XMOd8XH+16f5E3EWU/xmSB6+/btdfz4cSUnJysxseQUfceOHWrUqJFiY93/wFJSMvw+B6knfHxVX/3jvZWSpMSIYCUnVx4YCJaUnFxQ7vEbBjZ3O4iem1vgVlne5pE6VKOh1bTc49nlj39VDW6VoEbhQdWqS15eYY3Ll6TMzNxqlR8qac6VfRQXHqIxM5e5fF3G8Szbv+NDHff1xInqlS1JeXlVO/452fmmtvf09CwlR3h2ClhOzql9ys7Kq/C1PZvGae2BknRcKamZsuTV/CZQbq77n4FZxz4zM9fp42b3fRkZOV6rw4njWRrQPK5cEP243XexVHXrUFhQVK335WfmKrwG5ZbKyq56+y0uPhVhrk75vRpEKftEjrKr+D4j21paWvnaHT+ereRwg6ef5pZ8Psm5jp9TfkGR147HwyPbVRpEbxETatjnMapjfU3q3dj0viYrx7O/ffn5VTv3SE3NUkRR9foLe/Z5ztPSslS3gvt4fZvEGnrcnZV14oT3+nhnssqcAxR48bsmSYWFTu7YnfTiRV28Wnb6iVNB9Kcv6Kx/zd9i+zs5OUPvT+itbccy1btZnCnfv+wc711fpZX57cuv5DzMa/VIy1JyiG8NhRzQIt7U/jYQy3ZWblFRsVfrk1Cm78/IqP61ZHWFWKT4uFifi3WlpGQaVla7xGgt33tckmM7sFqtprTHtLRsJYf5f6oVi6UkgO5rbc8bSve1Mj4TRG/VqpX69u2rJ554Qv/5z3+UlpamV199VePHj6/SdqxW/1/IyxPaJkbrtUt66OsNh3VpryY1Ombu5gmUSqYb+sLn44k6NK0TqdQqBrVrWq4n6t25UWz1t2P3vlfGd9fNn62vdj2qW4cO9SufrhZs1yajw4IdyrLWoOyqvs3s/sgb5Ttus+KLmU4NYmxBdE/VpSqXT2Yde1flmt73ebE9VuXzNfo4eKy8amzHoe8xcL9NL8uLba1f8zpasS/dvXpIKiwqNvW717tZvGHlW61W8/sZScXFnq1HVbdV7KHjUHYbFW1zZIf6pnzvhrSuq0W7Um2PmfrdN+mcp05EiEKCgrxbdgV9udUqxYSHqHezeKfPG6HQw985B1bHM69J/Zvpl23JOpB+asBAs/gI7T+eq+Agi8frMaJ9olKy8tWmXrRP9G/2ejSJM/08P9DK9oVzbDOv78y+tizLyLr0blrHFkSvyu+zJ/1ndEfbTVRPnWvUFr7W9szkU7dOXnrpJRUWFurMM8/UpZdeqmHDhummm24yu1p+q1+LeP1ndKcaT8EJhPxIrjzg4cUzPOE+Ly50ck7nBrZ/D2hZtYW+4C/c//X08Npy5ZRdVA2uxYQHa3DrujXezr/P7eiB2lRPIP/W+DIjF5mTpI4NqjadtNDbHZEPaVPPNxZ6nDLYs9PM4yJ8ZsyPU6HBFkVUM91UTb0wrpvt30b3kUPb1Pw3BZ5RWOR6lH6NlWlXCVFh+t91AxwW/P3oyr6664y2+uzqfh4v/ukLuuity3spyOSTgPO7NrT9+9PJfXXPiHYa36uJiTVCKcMHZxhbHE66akBz3X1GW31+TX/T6nBu51P9QACdXqIMnzorTUxM1EsvvWR2NVBFERXkKPRvxq9wE+JiUQ9743s10dM/b3f5fGJ0xbkMK9KvRbz+uG2IWxeLA1rEa9nJu8WmIvLmUVU5US3ywtlFQ7u86q3rRWnbsVPpQupFhynFQ+sG1ERsuE/9tEqSfrxxkEI8sLr76C4N9ciCLZW/0AvCQ8wJUtVEZFjtq7NH+FC328ADazHUFpP6NzO7CpI8H8y/bXgbfb3hiPq1iNcKN84rGCnlXcvuHKa8wuJy54L+fLrVqeGpWZC+2L4KvBjNcWe8QkRosP7Rp6nX6uALwu2ud9skRqu1j9y0NMqnk/vp0lkrzK6GT0iIrNoaWfCMsJAgXeZL/Ywv/hjAEIEa/YQHJURVIShLX1MjMeEhqhtVsx/usd0b1ej97o62evHi7rq0VxM9NaZzjcrzVae3q1fpa8xu7haTI1mFdvmgPXWicVnvprq4Z2M9N7arw+O/3jJYzeMjPFJGTXVuFKOrk5qbXQ0Hngigm61pHXM/X2cjrs/r0sDJK09pER+pKYNa6J4RnpshNGdSH49ty1vCfai9TernG4FlI5g1Gtrb6kSGavldw3WlwTcJ7H9BG8W67n8C7TraYjFv5L0zRhz+enYDUMz+uMOdDF7yxqCFUq7OJc0+DkYL9MBp63o1X6zZW4xuiyM6uLPENrytdGxhn5OptIzWPCHSlHJhPt8bLgfUElaZEyj4/sZB+nNniu74cqPtsYEtE7RkT5pb7zcqmBYSZNE9ttQymwwp00jPXNhVE99fpS1HjVtQxddUFqL3xkVdWEiQ7h/ZXpL0/or9tsdjwkMMWx2+1Ij2ifplW3K5x61W6aahrRUeEqTXF+3xWvkhQZZalaqiRUKkJg+o/s0FXxvk2LpulB49t5O+/fuoy9dYJU0d3Mqj5XZoUPm6EEayn2I/ZVALpWYXqJUPXWz7UrDPm9yYqOYxidFhSjZh1k+Sm2nkPPVTYLFY9OONg1RYXKyoCmaV+Eov7Gt9pKf5yv5ZTb5r0r1xbLl1IbwaRPeVA2+yif2baVtylsb1861BEjBGeEiQ8k4ubmx2aiGU+OOfQ7VwR4pGtDf2psZPNw1SXmGx4iIC+8ZaIPOdoUIICEbnTvUmq1Ua1bG+KWWXvZi7op97U5uevbBr5S+C20jJ7WjelAEOIwWLvPx1/9fZHdS5YYyePL9ktoPRn0dl+cG9fZJ9TucGWn7XcK+W4Un/vaCLxnSr2UwYXxIdHhjB2cq0TIjUmR0SNa5HY00d3Mp2kwveccuw1k4f/+fpbQ2rQ48mcYaVZa+yPrVJXLhGdayvJnGem7USHxWqxJiKUwKd27niGSn+zH5tks4Nq7ZegacE4kyAsswIogfaujTRYSGaPrarLuzlQ+kkAkwM512wExocpDM71Dd8EFWdyNCAShWI8giiAzUQ5iP54GPC3JtUcpobKUjgOe3r+1++xIou0xrFRejqpBa2v4u9PEq6WXykZk/so5Enb2YZfTln9ghXby4i7CmebAG+OvDn/goWmDZ7xKIRLBaLnhrTRQ+M8s3geUM/u9C5rLfzheyCffULYqAHRrXXE+d3NuyCull8hB4f3alW9MXe0t3uhsq1A1tU8ErvMWOAzvUnF889u5Pxg2mctW5vnm5FuTjXufP0tmoUG667zzDuBh5OucbH0gYaYcH1A82uAgAQRAeqy5dDI2ac1PuKsif7ZS824jy46GNlo67OMXt0mhfiCPYxQWdxCvvHjM40Urcq6zN4kRFx04GtEmxB/Pcm9PZ+gR5Q87iWbwYJq7QuCGosLsL9Pjw2PERtE/3vZqbZfDVeb/R5WWx4iM7u3MD0G6q+wtvHIchHRj5brdKk/s21/K7hevw849f9MTqll/1Nqf4t4m3/bp4QqXlTk3xrob8AMPfqfrr7jLa6dmBLs6tiOJd9jAEn3oEwKKIy15h0oxTwNQTRYahA/v2J9+CCNG0rWRE+MdqYkXet6vreghpntHc+2v7Cbo2UGB2mfnYXADV16/DWujqpueZM6qMGMeUDaYGYM89+Aapiuy+8EV99Xx7537mhZy96z7CbVdKlkTlT6I1m9tepOr9f3m73kQEYvJtYhYVCTb+R6QW+MAPO7EV+4ZwpfaSBJ/b2ef8/nnpqRKrR1xZmX8pMHdzSyShkY2plv8AqzNGqbpQu69PUJ34LfIXZ38lAceOQVlp8+1B9eKXvL3APeBO9bwCpG1USxLXPWQzvCS9zcuPJVd3r+MgK8T45CsLFVeRDZ3fQghs8Ow0wJjxENw1trQ4NYhRs4gipitJJGM3+8HszR6cvc7bXsyd65oRz6Z3DNPfqfhrX03lKB18TZHdTpVGsfwbeIkMd+/or+ho3Ks/sGwtmqErgwB8PT5DFoo+u6mtqHa4b1NKnFo8tZXQw9bLejMA1kv3AhIFtAjc9YWRosG4c6rg2QoCebiGAJFZwA+fQiTwDaxLYQoKD1L5+jKYMaqF7RpDKCYGJIHoAuW14G318VV/d7GJRKiP4wjleTfOjlo52rWwhqdgyaUPMXlTV0yNhJSnWzWn1C28bomcu6OLx8p0Z3tacCyujFzWxN6BFgtPHvR3Y79OsTrnH7EssCtCpJ9487EEWi1rV9b3glUt2x6Lsgsg12JRPSWrp+P3z5KKGlfHVY4ISC65P8sp2I5zcSDDyJygqLFhPXdzDuALdZPQvznldGxpcYmDzmXQuPnE148ioGvnGJ4BAMmtCbw1qlaAZ47ubXRXYmTq4lS7lRjICFEH0AGKxSG0TowMyxYQnvXlZT712SQ9d0qvikaBTBxs3SjvRSSqRshp7IbDj6nqmU5l8jZGhwTq9faLHyy9rQt+mDmkujGTmt6p5gvO0Om29MFLQ/jPv2jiu3PP2NxOKDQ6im3kjo9TIDvVJdeAlvhJAKavsb+qF3RsZVrYvtHlfZubhCQ8JUmKMd1Kr+cJ5nPk1cML3YpuGspjwqRg5C89VUYancwnAdlaaNu6qAYG3mCXM1bVRrF66uLvamby+SWl6uO6NAyOFIgDXCKIDVRQTHqJ+LeIrvXAoTZ9jhMZxEbpmYAs9OKq9YWVKri+iy6Y3MEqvZnXKBZWMurwrOxrVF3gywDZlUAs1qROhSZWkg7Iv0X56caBcdD45prPtuPtkkKkWu7xPU4UG++ZRfXl8d53TuYGW3TnMYeErb7f7tgYvMOcr3r2il9lVMFVMuPm58H3xppYRI4QvPTmA4sr+BBMl6b4z26tBTJjuO9P7aeXK3jwqvWE9uLXvnX8Z4V67Y+7tRQ/fm9Bby+8azkLNCFj3jGinx0d30gvjupldFQAmI4geQHwhiFWr0hDUUNkApqePf7eTd8JL09PcOKSVxvZo7NlCKuFq1FNlF9dD2tT1RnW87txOrlP4/PO0NgbWpLw6J1PrDPRSMH/q4Fb66roBSoiqeNaDfbMvJklnQIlzM71TdcVHhurLawd4tYyKVNSak1om6LHRncr3+14O6g01aeaN2Wqals0IPZqUn6njKXERoYalSHPF90Loxpzn3nNmOy2/a7huHW58asTStHy+NNupVb0ofXv9QI2vZHamJwSX6V9n/qOn7ji9jf5vVAevl+2L7GfE+sI1HuDPIkKDdXbnBoqL8I11yQCYhyA6DHV5n8DJnVX2ZN/T/ntBF13Zv5neuMy9vKReOb+220X7C/qWCc5vliy7c5j+uG2ImtZxnn7E1yW1StAftw3R8ruGl3uupvmea+qnmwfrj9uGaGwP41JJ2CtdSNdXcqKP7OD99EG+5Okxnc2ugi7s7v2beJX1qnERIZo8oLnGGXxD0SxmpG9A5RrHhevx8zp5tYzT2yc6LGBudEtwNdMp0PpeIz17YVdd2b+ZXr3E8byvdOZj9yb+nWZgclLJ6P9RHetLkhrEhuuKvs3cXp/HU3wxYO2DVQIAwC8Ze9aBgNYgJkxhThbD8ltevqKtHxOuW4ebO/rZ1YDzW1wsXmuxWBxSHXhCzyZxWnvwhCRjLmzcrX+ICVPdPX1sq6J0b+0DKzFh5v3EXNzT+6PifImrkbljuzfSGQasRyCV5MYd3DpBf+1Ksz3m6W9BRfcmz+/aUDcOaaUGseF64bedHi65enwx2BJIzMoZf8uw1qpbyawdT2gWH6EdydleL8cZZ4d23pQBhs8SSIwOU3JWviT/DyQ2iHV+3jdvSpLyi4oVE+7fl3V9m8frxxsHKT7K3P30yYVF+bEBAMAQ/n22BQe+eNLnz3wwXajHuRoFaeSooNFdGtiC6DCffWDlkl5N9PuOFOPKNqwk9/jCoo8PnmXsNHdvX8c7O6IXdmukh84OzOn8CGxmzkRoYZee74cbB6qw2Kr6XlpItSKx4SG2IHrbxMBJGWgvLCQoYAapxEeFmrpgsK/iCg8AAGMQRAe8JEhlc+P6H/sLmcZxvpOj016gXWy1NGndgdLjbH+44yJP/cRE+8BCeH4t0Bp6LeGP/X5tYta3oolBOavN/NonxoTro6v6KCIkuNK1Mjzpnct7acvRTDWMDdcbf+3Rv8/tqKiwYKXnFNTaVHGoXRj0jUDnC4tbA4BZCKIHEE76Alu3Rt7NldmxYYwu79NUnU4ufGUUq8O/A6eR921eRyv3patrmc+1XWK0XhjXTQ1ijAtq2LMffR0aFKS3L++lomKrok1M7QJ4RHW6l8DpkgyVGO3YvyW1jDenIi50a+y9RUXt9Wser23Hsgwpy5n29WMMP7fs3iRO3U8u2jqs7amFdX31Rj78jy9261zjwQhPjems6b/u0JPnm78ODwCYhagGDOMLqQ0CVeu6Ubq8r+cXde3WOE4JkaFqGl9y8XrnGW09Xgace+r8Lvr27yM6t0uDcs8NaV3X8PrYpxVoXz9a6TkFalU3UiHB5kwx94XuxsgqdKgfbWBp7mtTL0qJ0WFKOLnwXY05+WDNunkW6+f5h31Z2fOJx89zfkFvRj9g5KK2Nw1tpY9WHZDkG30eEBB8MGBt1OwXBLYzO9TXmR3qm10NADAVV4BAALi0dxOFeiGYGR4SpPnXJynIxATw9qNvAmkkTnxUqCb0a2Z2NZz6YFIfFVvNWVw1UIUGB2lkh0T9tDXZ7KrYDGqVoJDgIM2bmuSxNSJ8qUW5k28+kGbHmCk+0kM3aTzgoh6NDCvLzMWkAfiOczuXH1ABAAA8LzBWoYEkYwdOfDK5r1e33yjW+MWrqqJxXHjABE9CgoMUxBC4gGffBIIsFlMC6PZ1CA+QRdbsPTmmix4b3cn2d4sE4/MD2/d6L4zrJqnkZoq/9RHL7xquhj7+OwRjjevRWD/eOEidGno3dRoAc/ni+X1piiMAAOBdgRdlgCGCvRwwmXt1P69uvybO6dxAn0723fr5m8ovZfwreAf3lM0Vb4SLexqXxsGVdonRTv/tST/fPEjzpgyo9HXeCJw726Qvz0Dx5br5i/O7NjS7CpJK2ma8p9IWVUN3g/KwA4HOl/r1X24erK+nDOCmLgAABiGIHkDMDiV6svyI0GCfWdTkqgHNHf5uER/pc1Os/WwQKFApM9ZguH9k+zJ1MLwKapsY5fUy4iJC1SguwrTFa2sTH4q1+K0wk9Zd8BXfTk3Su1f0UocGxi7qDQQqX+rXYyNCWFQXAY/LXABGCuwrjwAzokOi17b9+61DvLZtV0Z2rK9bhrU2vNyybhnWWu9c3qvS11kNHLpyYXfjcrKazZdGBAFmM/LmQXSY8cuqRISYd4PSF6fwo+KbVZYAuLRuEBuuboxCBwAEKDPX5gIQeAiiB5BwA4MPRoUaJvRrptZ1o/TIOZUv8OZNzi7iezWtY3xFTmpdz/ujUQF7zHaAEaLCgvXshV3NrgZqCfolAJ4ytE1dhYcEaUR77w1KAlB1/NQDMBJBdHiEWReqIUEWfXp1P53f1fXI608m99WV/Zt5tR5t6tnlHj55LHwppUtCpHl5Wr3v1C0bZ6PSCaIYo3Vd7+Tf9nVdGgZuCgVnC5c2reP9aeWntavn8Lcvjw9vYsDxAAB433Nju+rXWwarjl+fUwMAgIoYPxcbMFibetG6dXgbzV6+32tlRIX5TsDcmdMZNQMv+WBiH320+oBuGNzS7KqY4vbT22jqJ+vMroYpHhjVXrERIRrX49SCqjcPba2ComKd29k3Fns0y+uX9tC3G4/otuHmpxwLZNxDBeApFotFocH0KgAABDKC6DBMoI8IHtPNnDzlI9onKsiPDz450c3VsWGMHj2no9nVMI0ZC5j6inrRYXqkzGcfGxGih88O3PZQqm/zePVtHm92NQAAAAAAHkI6F8AgV/ZvbnYV/JJ9DJOF/4DA06eZMetPcMOu9unRhAU3AQDwR90ax0qSzuncwOSaAAgkjESHd/hIsOHC7uaM/i4rOixYwawc7lH/6NNUf+1K1XldG+qZX3aYXR0EqIq+1YE8St0oQ9vU1XldAzt1DMr74pr+2nYss1z+fAAA4B9euKib/tqdqtPbkbYUgHEIosNvNK0ToQPpuQ6PXWXC6G/CZsa464y2uvP0Ng6BSmf3bvg8AgdB68AzqmN9v05XheppnhCp5k4WvgUAAP6hTmRowK/BA8B4pHOBR1QUwrigW8mP2y3DvLvA2lgno865iPbvXPQETWE6miBgin7NS9L4XNS9cSWvNMbQNnXNrgIAAAAAL2IkOrzugZHtdfOw1qobFebVcgioAjBahelcDKsFEHheHt9DGbmFio8KNbUei28fqv3Hc9WqXpSp9QAAAADgXYxEDyAhZuXktli8HkCXCFiBhf8AeA/di28JDrKYHkCXpJDgIALoAAAAQABgJHoA+GBSH3VsEGNomfbBBoLbMJORKX3CQ4KUV1hsWHkwHzNg4Cta14vSrpRss6sBAAAAAH6JIDr8RmsfGQnmazE1H6uOYT6Y1EcpWflqVde4dvH5Nf11/ptLDSsPjnytrftaXwD/NrZ7IyVGh6lHkzizqwIAAAAAfocgOvwGi3rBntGzLySpYWy44WXCXMTJ4SuCLBad1amB2dUAAAAAAL9ETvQAEChBHovFoj7N6phdDQABhNHm8BXkbAcAAAAA7yGIDgAAUAmC1AAAAAAQuAiiI+B4e+BoWLBvfK3qRoVKkk5rl2hyTYxjtRLmAkq1rx9tdhW8rnPDWLOrAAAAAAAIAOREh1dY7cbsGZnuoKKyzu/aUN9sPKJ/ntbGK2XfPLSVFu5I1fheTWyPXdqriT5dc1B3j2jrlTIr8snkftqRnEWKGyDAfHFNfy3YdETXDGxhdlW8Zt6UAUrJyveZBaUBAAAAAP6NIDo8wlILEgM/ck5HPXJOR69tf3JSC01Ocgxa3XNmO91zZjuvlVmR+MhQ9W0eb0rZgBlqQTdkiOYJkZo6uJXZ1fCqRnERahQXYXY1fAozcQAAAADAe3wj7wS8KpACSwG0q7AzoEW8wkOCNLRNPbOrggDToX6M6kaHqV1i+dQpteHmIgAAAAAAqBwj0eFfCFoFpFcu6a46CTE6cTxLDMaEkcJCgrT0/85UWmqm2VWBt9G5AAAAAEDAYiQ6gFrPYrEoLITuDOYIDQ5SEDfwAAAAAADwW0Sd4BVmDdgjjAUErp5NfWsR3V5N48yuQsBqX798eh0AAAAAAKqLdC5+pF/zOlqxL10jOyTqp63JtsfrRoV5vWz74HVwkMXlc0bWA0Bg6dooVm/9o6ca+8iCk50bltSHBTCNd17XhjqckavhbVknAQAAAABQc4aPRM/JydFll12mL774wuHxXbt26aqrrlLv3r01dOhQvf7660ZXrdb77wVd9e9zO+qhszs4PF4v2vtBdHuhQYSyAZijZ9M6ahAbbnY1bHo2raOGPlSfQHLtwJZqXz/G7GoAAAAAAPyAoUH0bdu2acKECVqzZo3D4wUFBbrhhhvUvXt3LV26VG+++abmzJmjBQsWGFm9Wi82IkSjuzRUdBgTDAAA8CSWFQUAAACAwGVYEH3x4sW66qqrdNFFF6lJkyYOzy1fvlxHjx7VbbfdprCwMHXp0kWTJk3SnDlzjKoeAAAAAAAAAADleGzIcm5uro4cOeL0ufr166tTp0769ddfFR4ernfffdfh+W3btql169YKCzuVdqRdu3Z68803q1wPC5lEyjHimNiXUXa0nsVi3OdSthzaQ2Ao/Zx94fOODA1STkGxejWN84n6wLt8qe3BOL70eZf2OQNbJfhUveC/6PdgJtofzELbg1loezBLILU9d/fRY0H0tWvX6sorr3T63CuvvKKRI0e6fG9WVpYiIyMdHouMjFR2dnaV61GvXmyV3+PvEhO9f0zyC4sd/k5IiLb9u379OK+XXyqsTCobI/YdvsMXvv9rHjlL89cf0oU9myqI9QEChi+0PXhXlN0i3b7027LswZFKzsxX68Toyl8MeBD9HsxE+4NZaHswC20PZqHtneKxIHpSUpK2bNlSrfdGRUUpJyfH4bGcnBxFR1f9gjAlJUNWEpc6SE7O8HoZBUWOQfS0tCxDy7fVo6DI4W8jy4Z5LJaSjt1Xvv/DmtdRamqm2dWAAXyt7cF7srPzbf/2pd+W/Kxcxcq36gT/Rr8HM9H+YBbaHsxC24NZAqntle5rZXxiBcr27dtr9+7dKiwsVEhISZW2b9+u9u3bV3lbVqv8/sOtKiOOR9kyrBU8ZyTaQmDh+w+z0Pb8n/3n60ufNW0PZqHtwUy0P5iFtgez0PZgFtreKYYtLFqRpKQkJSQkaPr06crLy9PmzZv1/vvva/z48WZXDdVg5dsFAAAAAAAAwE/4xEj0kJAQvfPOO/rPf/6jIUOGKCoqSpMmTdK4cePMrhqqwcwQetM6ESaWDgAAAAAAAMDfmBJE/+WXX8o91rJlS7399tsm1AaeUHb5xEax4abU46ahrfTTlmNKzy00pXwAAAAAAAAA/sUn0rnA/8SEh2jelAH67oaBhpYbFxGqR8/taGiZAAAAAAAAAPyXT6RzgX8pTYneKI7UKgAA/9CtceWrtRutRd0os6sAAAAAAAGBILqfiwwNvMkGlnLJZQAAqJnhbevpyfM7q0ODGLOroufGdtWCTUd1Sb9mSknJNLs6AAAAAOD3CKLDI4KDTgWum7C4JwDAz1gsFo3sWN/sakiShrWtp+Ht6sli4aYxAAAAABgh8IYpB4hJ/ZpJkm4/va0h5dlfyIcEcVEPAAAAAAAAwD8wEt1P3Tq8ta7o21SJMeGGl12aE900xPABAAAAAAAAeAgj0f2UxWIxJYDuC4ihAwAAAAAAAPAUgugAAAAAAAAAALhAEB0AAAAAAAAAABcIosPjrDI3KXrdqFBTywcAAAAAAADgP1hYFH6nU8NY3Ta8tRrFRZhdFQAAAAAAAAC1HEF0+KVJ/ZubXQUAAAAAAAAAfoB0LgAAAAAAAAAAuEAQHR5nbkZ0AAAAAAAAAPAcgugAAAAAAAAAALhAEB0AAAAAAAAAABcIogMAAAAAAAAA4AJBdHiclaToAAAAAAAAAPwEQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOjxm6uCWkqT7RrYzuSYAAAAAAAAA4BkhZlcA/mPq4Ja689zOykzPZnFRAAAAAAAAAH6BkejwqIjQYLOrAAAAAAAAAAAeQxAdAAAAAAAAAAAXCKIDAAAAAAAAAOACQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOgAAAAAAAAAALhBEBwAAAAAAAADABYLoAAAAAAAAAAC4QBAdAAAAAAAAAAAXCKIDAAAAAAAAAOACQXQAAAAAAAAAAFwIMbsCnmaxmF2DwFV67PkMYDTaHsxC24NZaHswC20PZqL9wSy0PZiFtgezBFLbc3cfLVar1erdqgAAAAAAAAAAUDuRzgUAAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0VSk1N1ahRo7R06VLbY7///rvGjh2r3r1764ILLtCPP/5oe664uFjPP/+8hg8frr59++rSSy/VsmXLbM8nJyerY8eO6t27t+2/ESNGGLpPqB2q2vasVqtmzpypESNGqE+fPpo8ebK2bt1qe76oqEhPP/20Bg8erN69e+vGG2/U0aNHDd0n1A6ebnv0e6jM5s2bdfXVV2vAgAEaMmSI7r33XqWmpkqS1q5dq0suucTWbubOnevw3i+//FKjRo1Sr169NG7cOK1evdr2HP0eKuOttke/B3fUpP2VevfddzVp0iSHx+j7UBlvtT36PlSmum3ParXqlVdesV1vjBkzRt99953tefo9VMZbbS/g+j0r4MKKFSusI0eOtHbo0MG6ZMkSq9VqtW7YsMHatWtX66effmotKCiwLl++3Nq7d2/b83PmzLGOHj3aevjwYWtRUZH13Xfftfbq1cuam5trtVqt1l9++cV6xhlnmLZPqB2q0/bee+8964ABA6wrV660FhQUWGfPnm1NSkqypqSkWK1Wq3XGjBnWMWPGWA8ePGjNyMiw3n777dYpU6aYto/wTd5oe/R7qEhOTo51yJAh1hdffNGal5dnTU1NtU6ZMsV6/fXXW48fP24dMGCA9YMPPrAWFBRY//rrL2vv3r2ta9eutVqtVuuSJUusvXv3tq5YscKan59vfffdd61JSUnW7Oxsq9VKv4eKebPt0e+hMjVpf1ar1ZqVlWV98sknrR06dLBOnDjRYdv0faiIN9sefR8qUpO29+6771pHjBhh3b59u7W4uNj6888/W7t37257nn4PFfFm2wu0fo+R6HDqyy+/1N1336077rjD4fEFCxaoT58+uuSSSxQSEqJ+/fppzJgx+uijjyRJO3fuVHFxsYqLi2W1WmWxWBQREWF7//r169WtWzdD9wW1S3Xb3jfffKNJkyapT58+CgkJ0aRJk5SQkGC7Szp37lxNmTJFjRs3VkxMjB588EEtXLhQ+/btM3wf4Zu81fbo91CRgwcPqlOnTrr55psVFhamhIQEXXbZZVq+fLl++OEHxcfHa8KECQoJCdGgQYM0ZswYzZkzR1JJv3beeeepb9++Cg0N1eTJk5WQkKD58+fbnqffgyvebHv0e6hMTdqfJF144YU6duyYLr/88nLbpu9DRbzZ9uj7UJGatL0TJ07o5ptvVtu2bWWxWDRixAi1bdtWq1atkkS/h4p5s+0FWr9HEB1ODR06VD/++KNGjx7t8HhRUZGioqIcHgsKCtLOnTslSf/4xz+Um5ur008/Xd27d9cLL7ygl156SeHh4ZJKvmCHDx/W+eefr4EDB2rKlCnavn27MTuFWqG6ba+i5zMyMnT48GF16NDB9lxiYqLq1KmjLVu2eGlPUNt4o+1J9HuoWJs2bfTWW28pODjY9tj333+vrl27atu2bQ79liS1a9dOmzdvliRt377d5fP0e6iMt9qeRL+HytWk/UnS+++/r+nTp6tevXoOr6PvQ2W81fYk+j5UrCZt77bbbtO4ceNsz+3YsUPbtm1T165d6fdQKW+1PSnw+j2C6HCqfv36CgkJKff4qFGj9Oeff+r7779XYWGhVq5cqfnz5ysvL0+SVFBQoAEDBmjBggVatWqVrrvuOt122206duyYJCkuLk59+/bV7Nmz9dNPP6lVq1a6+uqrlZGRYej+wXdVt+2dffbZev/997Vp0yYVFBToo48+0q5du5SXl6esrCxJKhfojIiIsD0HeKPtSfR7cJ/VatXzzz+vX3/9VQ8++KCysrIUGRnp8JqIiAhlZ2dLUoXP0++hKjzZ9iT6PVRNVdufJDVq1Mjptuj7UBWebHsSfR/cV522V2rXrl2aMmWKLrjgAvXv359+D1XiybYnBV6/RxAdVdKnTx/997//1csvv6whQ4bo7bff1rhx4xQXFydJuvfeezV8+HC1adNGERERuvnmmxUbG2tLazB9+nTdd999qlu3rmJiYvTAAw8oKytLK1asMHO3UAtU1vauueYajR07VjfffLPOOOMM7dy5U0OHDlVcXJztRyEnJ8dhm7m5uYqOjjZ8X1C71KTtSfR7cE9mZqZuu+02zZs3Tx988IE6duyoyMhI5ebmOrzOvt+q6Hn6PbjL021Pot+D+6rT/ipC3wd3ebrtSfR9cE9N2t4vv/yiyy67TGeddZamTZsmiX4P7vN025MCr98jiI4qOX78uNq3b6958+Zp6dKlevXVV3Xo0CFbDqSDBw8qPz/f4T0hISEKDQ1VZmamnn76aR04cMD2XFFRkQoLCx3ypgPOVNb2jhw5ovHjx+uXX37Rn3/+qfvuu0+bN29Wt27dVKdOHTVs2NBhWtGxY8d0/PjxclOXgLJq0vbo9+COvXv36uKLL1ZmZqY+++wzdezYUZLUoUMHbdu2zeG127dvV/v27SVJ7du3d/k8/R7c4Y22R78Hd1W3/VWEvg/u8Ebbo++DO2rS9l555RXdddddevjhh3X//ffLYrFIot+De7zR9gKx3yOIjirZs2ePLr30Um3evFmFhYWaP3++fv31V11xxRWSpBEjRui1117Tvn37VFBQoPfee0/Hjh3TGWecoZiYGP311196+umnlZGRoaysLD322GNq1qyZ+vXrZ/KewddV1va+/fZb3XTTTUpLS1NWVpamT5+usLAwjRgxQpI0btw4W9vMzMzUE088oQEDBqhFixZm7hZqgZq0Pfo9VCY9PV1XXXWV+vTpo7ffflt169a1PTdq1CglJydr1qxZKigo0JIlSzRv3jxdfPHFkqTx48dr3rx5WrJkiQoKCjRr1iylpKRo1KhRkuj3UDFvtT36PbijJu2vMvR9qIi32h59HypTk7b37rvv6t1339WcOXM0ZsyYctum30NFvNX2ArHfs1itVqvZlYBv69ixo2bPnq2kpCRJ0kcffaSZM2cqLS1Nbdq00d13361BgwZJKslD+Pzzz+uHH35QTk6OOnbsqHvvvVc9evSQJB04cEBPPvmkli9froKCAiUlJemhhx5S06ZNTds/+K6qtL2CggI98cQT+u6771RQUKB+/frpoYceUrNmzWzPv/jii/r666+VlZWlpKQkPfbYY04XBQI82fbo91CRd999V0899ZQiIyNtozpKrV69WuvXr9e0adO0detW1a1bVzfddJPD4j5fffWVXnvtNR05ckTt2rXTQw89pJ49e0qi30PFvNn26PdQmZq2v1IzZszQsmXL9P7779seo+9DRbzZ9uj7UJHqtj2r1ar+/fsrJydHYWFhDu+7/vrrdcMNN9DvoULebHuB1u8RRAcAAAAAAAAAwAXSuQAAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAAAIILt37za7CgAAAECtQhAdAAAAqOVmzJihSZMmVfq6X375Rddee60BNQIAAAD8B0F0AAAAIEAcP35cVqvV7GoAAAAAtQpBdAAAAKCWWbVqlS6++GL16tVL//jHP7R//35JktVq1ZtvvqkxY8aoX79+6t+/v+666y7l5uZq6dKleuSRR3Tw4EH17t1bR44cUX5+vl588UWdeeaZGjBggKZMmaI9e/aYvHcAAACAbyGIDgAAANQiaWlpuv7663X22Wdr+fLluueee/TTTz9JkhYsWKDZs2drxowZWrFihT7++GP9+eefmjdvnpKSkvTvf/9bTZo00erVq9WwYUM9//zz+u233zRr1iz98ccf6tmzp6655hrl5eWZvJcAAACA7yCIDgAAANQiv/32myIjIzVlyhSFhoaqb9++uvjiiyVJw4cP12effaZWrVopNTVVaWlpio+P15EjR8ptx2q16uOPP9add96p5s2bKzw8XDfffLMKCgr022+/GbxXAAAAgO8KMbsCAAAAANx35MgRNW7cWBaLxfZYixYttGnTJlmtVj3//PP69ddfVbduXXXu3FkFBQVO86CnpqYqOztb//znPxUUdGpsTUFBgQ4cOGDIvgAAAAC1AUF0AAAAoBZp1KiRDhw4oOLiYlvw+/Dhw5KkZ599VgcPHtQvv/yimJgYSdKYMWOcbichIUHh4eF655131KtXL9vjO3fuVMOGDb27EwAAAEAtQjoXAAAAoBYZMWKErFarZsyYofz8fG3YsEFz586VJGVmZio8PFzBwcHKy8vTO++8o61bt6qgoECSFB4erpycHBUWFiooKEjjx4/X9OnTdfjwYRUXF+vLL7/U+eefz+KiAAAAgB2L1dncTgAAAAA+a/PmzXr00Ue1efNmtWzZUj179tSuXbv0xBNP6IEHHtDGjRsVFRWlvn37KiIiQidOnNDrr7+uo0eP6pprrtGBAwf08ccfq1WrVpoxY4bmz5+v48ePq3nz5rr11ls1cuRIs3cRAAAA8BkE0QEAAAAAAAAAcIF0LgAAAAAAAAAAuEAQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAAAAAuEAQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAIATVqvV7CoAAAAA8AEE0QEAAGCISZMmadKkSS6fHzFihO6///4al+POdu6//36NGDHCZd3mzp2rp59+utz75s+fr06dOumNN95wqy5ffPGFOnbsqI4dO2rXrl1OX7Nw4ULbazyh7P537NhRM2bM8Mi2i4qKNHfuXE2aNElDhgxRt27ddPrpp+v+++/X9u3bHV47Y8YMj+2Tp5R+Hvv375dUvh0AAAAAzoSYXQEAAADAk15++WXFxMRU6T2PPPKIw9+vvfaaBgwYUO51o0eP1qFDh/TGG2/oiiuuUGxsrFvbDwoK0oIFC3TTTTeVe27+/PlVqmtVffLJJ2rUqFGNt5OZmakbb7xRa9eu1aWXXqqrr75asbGx2rVrlz744ANdfPHFmjlzpu24XXLJJRo2bFiNy/Wmm266SVdeeaXZ1QAAAICPI4gOAAAAv9KlS5cqv6ddu3Zuv/baa6/VmWeeqeDgYLff06dPH6dB9Pz8fP3000/q3LmzNm3a5Pb2qqJXr14e2c60adO0atUqvf/+++rTp4/t8f79++vCCy/UFVdcoYcffljff/+9JKlRo0YeCd57U4sWLcyuAgAAAGoB0rkAAADAJ40YMUIvv/yynnzySSUlJal379666667lJWVpTfffFPDhw9X3759deuttyotLc3hffbpTNLT0/XAAw8oKSlJ/fv31zPPPKPi4mKHsuzTuYwYMUIHDhzQl19+6ZD6Y/ny5br22mvVv39/nX/++Tr//PM1Y8aMcttyZvTo0dq6dat27Njh8PjChQtlsVg0fPjwcu9ZsWKFJk6cqJ49e2rAgAG67777lJqa6vCazZs36+qrr1bv3r11xhln6Ouvvy63nbLpXDZv3qxbbrlFAwcOVNeuXTVs2DA9/vjjys3NdVn/0uNx5ZVXOgTQS4WHh+uOO+5Qjx49lJGRIcl5Opf58+dr3Lhx6t27t4YMGaJ//etfSk9Ptz0/Y8YMjRo1Si+//LKSkpI0cuRIpaWlacSIEXrppZf09NNPa/DgwerRo4euvfbacily5s6dq3HjxqlXr17q0aOHLrzwwgpH+jtL5zJ37lydd955tlQ1M2bMUGFhocN7rrrqKj3yyCPq16+fLrroIhUWFio1NVX//ve/dcYZZ6hbt24aMGCAbr75Zlv7AQAAQO3FSHQAAAD4rHfffVeDBw/W888/r/Xr1+u5557Txo0b1bBhQz322GPatWuX/vvf/yoxMbFcShZJKi4u1nXXXaf9+/fr7rvvVr169fTWW29p3bp1atCggdMyX375ZU2dOlVdunTRTTfdpAYNGmjz5s2aPHmyzjnnHD3//POyWq366quv9PLLL6tVq1YaM2ZMhfsxZMgQ1alTRwsWLNAtt9xie3z+/PkaNWqUQkNDHV6/fPlyXX311Ro4cKBeeOEFpaen68UXX9SVV16pzz77TBERETpy5IgmTpyoFi1a6JlnnlFmZqaeffZZpaSkuKzH0aNHNWHCBPXq1UtPPfWUwsLC9Ntvv+m9995TYmKibrjhBqfv+/nnn2W1Wivcz6FDh2ro0KEun3/11Vf14osv6oorrtAdd9yhffv26cUXX9SaNWv06aefKiIiQpJ08OBB/fjjj3ruueeUlpamhIQESdLs2bPVt29fPfnkk0pPT9e0adN0//3365NPPpEkzZkzR48//rhuueUW3XfffTp+/Lhmzpype+65R7169VKTJk1c1q3UG2+8oeeff14TJ07UAw88oE2bNmnGjBk6dOiQnnjiCdvrVqxYIYvFohkzZigrK0vBwcG6/vrrlZ6errvuukv169fXpk2b9OKLL+pf//qX3nnnnUrLBgAAgO8iiA4AAACfFR0dreeff14hISEaPHiwvvzySx09elRz585VbGysTjvtNC1ZskSrVq1y+v6FCxdq3bp1euONN3T66adLkgYOHFjhYpJdunRRWFiY6tata0uFsnnzZg0ePFjPPPOMgoJKJnMOGTJEv/32m5YvX15pED0kJEQjR47U999/bwui5+Tk6Ndff9Urr7yilStXOrx++vTpat26td544w1b2piePXvqvPPO0+eff64JEyZo1qxZKiws1MyZM1WvXj1JUuvWrXXppZe6rMfWrVvVuXNnvfjii7a88YMHD9bixYu1fPlyl0H0vXv3SpJatWrl8HhxcXG5kfjBwcGyWCwOj6Wnp+u1117TJZdc4nCzo0OHDpowYYK++OILXXHFFZKkwsJC3XfffRo8eLDDNuLi4vTqq6/ajsfevXs1Y8YMW6B93759uuaaa3TzzTfb3tOsWTONGzdOq1atqjSInpGRoddee02XXXaZHnroIUklNwbi4+P10EMP6eqrr1b79u1tdfz3v/+tli1bSpKOHDmiyMhI3XffferXr58kKSkpSfv379fHH39cYbkAAADwfQTRAQAA4DPKBl979OihkJBTp6z169dXTEyMw4Ke8fHx2rp1q9PtrVixQqGhoQ7pUqKionTaaadp+fLlbtdr7NixGjt2rPLy8rR3717t2bNHGzduVFFRkQoKCtzaxujRo/X5559rx44datu2rX799VdFRUUpKSnJIYiek5OjtWvX6tprr5XVarWlEmnevLnatm2rRYsWacKECVq5cqV69eplC6BLJYH2ioLFpaPFCwoKtGvXLu3evVtbtmxRamqq4uPjXb7ParU6ffzee+/VvHnzHB578sknNW7cOIfH1qxZo/z8/HI3G/r166emTZtq6dKltiC6VBJcL6t79+4OeehL863n5OQoISHBlsInIyNDu3fv1u7du7V48WJJcuszWr16tXJycjRixAiH9C2lN1wWLVpkC6JHREQ45FNv2LChZs+eLalkJP2ePXu0Y8cOrVq1yu32AQAAAN9FEB0AAACGiIqK0vHjx10+n5+fr8jISIfHSkdL2yv7moqkp6crPj7eNnq8VP369d3ehiTl5ubqscce01dffaXCwkI1a9ZMvXv3VkhIiMsAc1kDBw5UQkKCLaXL/Pnzdc4555RboPTEiRMqLi7WzJkzNXPmzHLbCQ8Pt+1bs2bNyj1f0b4VFxfrueee05w5c5Sdna3GjRurR48etm260rRpU0kludFLA8mS9M9//lNXXXWVJOnYsWO68cYbnb6/NO95YmJiuecSExNtedTtHyur7Ode+pmWjoTfu3ev/vWvf2nJkiUKCQlRmzZtbDnZ3fmMStvm1KlTnT5/9OhR27/r1atX7obP119/reeee06HDh1SfHy8OnXqZEtRAwAAgNqNIDoAAAAMkZiY6HLEeH5+vlJTU50GT2siISFBaWlpKioqcghWVxTMd2batGn6/vvv9cILL2jw4MGKioqSJA0aNMjtbYSEhOiss87Sd999p8mTJ2vhwoWaNWtWuddFR0fLYrFo8uTJOu+888o9XxpMTkhIUHJycrnnK9q3N998U7NmzdKjjz6qs88+2zaif/z48RXW/cwzz9TTTz+t7777ziGI3rx5czVv3lySKlxAs06dOpKk5ORktW3b1uG5Y8eO2bZRXcXFxZo6dapCQ0P16aefqkuXLgoJCdH27dudLrbqTFxcnCTp2WefLZe2RnIe2C+1YsUK3XfffZo4caKuvfZa2yj5//73v+VS9QAAAKD2Car8JQAAAEDNDRgwQAcPHtS6devKPffTTz+pqKhIAwcO9GiZgwYNUmFhoX766SfbY/n5+Vq0aFGF7ys7cn3lypVKSkrSyJEjbQH0DRs2KDU1tVxO8IqMHj1a27Zt01tvvaXExET17t273GtiYmLUpUsX7dy5U927d7f91759e7388staunSppJKR7atXr9aRI0ds792+fbv27dvnsvyVK1eqXbt2Gj9+vC2AfuTIEW3durXC/WjZsqXGjh2rmTNnusw/v23bNpfv79mzp8LCwsqlflmxYoUOHjyoPn36uHyvO9LS0rRr1y6NHz/eIQXQwoULJcmtz6hnz54KDQ3VkSNHHI57aGiopk+fXuFNgtWrV6u4uFi33XabLYBeVFSkv/76y+3yAQAA4LsYiQ4AAABDjB49Wu+9956mTJmi66+/Xl27dlVxcbFWrVqlt956S+edd16Ng6llDRo0SEOHDtVDDz2klJQUNW3aVLNnz1ZqaqpDLvGy4uLi9Pfff2vZsmXq0aOHevTooQULFuijjz5S27ZttXnzZr322muyWCzKyclxuz4DBgxQ/fr19dZbb2ny5MnlUoKUuvPOOzV16lTddddduuCCC1RUcL+FpAABAABJREFUVKR33nlHa9eutaVMueqqq/TZZ5/p2muv1a233qqioiK98MILCg0NdVl+jx499Oqrr+rNN99Ur169tGfPHr3xxhvKz8+vdD8eeeQRpaSkaNKkSbrwwgt12mmnqW7dujpw4IC+//57/frrr2rTpo169OhR7r3x8fGaOnWqXn75ZYWGhurMM8/U/v379eKLL6pdu3blcqhXVb169dS0aVPNmTNHjRo1UlxcnP7880+99957kuTWZ5SQkKDrrrtOL774ojIzM5WUlKQjR47oxRdflMViUadOnVy+t3Sf//Of/+jiiy/WiRMn9MEHH2jz5s2SpOzsbKepiQAAAFA7EEQHAACAIUJDQ/XBBx/o9ddf19y5c/XSSy8pKChILVu21B133KGJEyd6pdyXX35Zzz77rF566SXl5eVp9OjRuvTSS/Xzzz+7fM8111yjJ554Qtdee63effdd3X///SooKNALL7yg/Px8NWvWTDfeeKO2b9+uX375pVy6GFeCgoJ09tln64MPPnCaqqXU0KFD9fbbb+vll1/WbbfdptDQUHXt2lXvvvuuevXqJakk6PvRRx9p2rRpuv/++xUdHa3rrrtO8+fPd7nd66+/XmlpaZo9e7ZeeeUVNW7cWBdeeKEsFoveeOMNpaen21KvlBUVFaWZM2dqwYIF+t///qfHHntMx48fV506ddS9e3f997//1bnnnusyiH/rrbcqMTFRH3zwgebOnav4+Hidc845uv3226uU596VV1991XYswsLC1K5dO7322mt64okntGLFCk2aNKnSbdx+++2qX7++PvzwQ7311luqU6eOBg0apDvvvNNhMduykpKS9K9//UvvvvuuvvvuOyUmJiopKUkvv/yybr75Zq1cuVKnnXZajfcRAAAA5rBY3V0JCQAAAAAAAACAAENOdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAAAAAAAAABcIogMAAAAAAAAA4EKI2RXwtJSUDFmtZtciMFksUr16sXwGMBxtD2ah7cEstD2YhbYHM9H+YBbaHsxC24NZAqntle5rZfwuiG61yu8/XF/HZwCz0PZgFtoezELbg1loezAT7Q9moe3BLLQ9mIW2dwrpXAAAAAAAAAAAcIEgOgAAAAAAAAAALhBEBwAAAAAAAADABYLoAAAAAAAAAAC4QBAdAAAAAAAAAAAXCKIDAAAAAAAAAOACQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAteCaKnpqZq1KhRWrp0qe2xtWvX6pJLLlHv3r01YsQIzZ071+E9X375pUaNGqVevXpp3LhxWr16tTeqBgAAAAAAAACA2zweRF+5cqUuu+wy7d271/ZYenq6pk6dqrFjx2r58uWaNm2annzySa1bt06StHTpUj322GN66qmntHz5cl1wwQW68cYblZOT4+nqAQAAAAAAAADgNo8G0b/88kvdfffduuOOOxwe/+GHHxQfH68JEyYoJCREgwYN0pgxYzRnzhxJ0ty5c3Xeeeepb9++Cg0N1eTJk5WQkKD58+d7snoAAAAAAAAAAFRJiCc3NnToUI0ZM0YhISEOgfRt27apQ4cODq9t166dPvvsM0nS9u3bdfHFF5d7fvPmzVWug8VSjYr7iWs/WqO1B06Ue7xZfIQOHM+V9eTf9aJClZJd4PCaxXcMVUiQRZYyB/CNRbs1c/FeueOJ8ztp5pKV2pWcVeHrZlzcTbd+vkGS9NxFXdWmXpTGvrVckrT8rmHl6lBq9rJ9envJXmXlF7lVH2fqRIQoPbdQktQ2MUodGsRowd9HJUnvTeitro1jJUn9nl0oSVp21zBl5hXqgpnLlJl3qty3/tFT037Yptb1ovTLtmSX5f100yCNfHWx7e8Vdw/X4RO5uuHTdbqweyN9vOqgUrLydUmvJpq75mC198sbBrSI1960HF3QvZHe/GuPR7d9dVJztU2M1kPfuvcdf+eKXgoLtmji+1VP83TPiLZ6f/l+Hc7Ic/p8m3pR+vTqfk6f234sS3d+uUFTB7fU+d0a6dU/d+mXrcmaNaG3YsJDtP7gCT0wb5MGtU7Q4l1pevTcjqoTGaK7vtyo64e00nldG7qsV2kb++q6/moaH1nl/SpltVplsVh07utLdCwzX5LUMDZMc6/ur6iwYP22PVnP/rxDj5/fSZ+vOaRDJ3L1xmU9tXLfcd00d71a143S3Guc778kLdmdqse/36am8RE6lpmvdy7vpfio0HKvS87K1+QPVuuMDom664y2enTBFn2z8Yiu6NtUn6w+qKJiqx4/r5Ne+WOXbhveRqM61a9wv0qPj72GseHq3SxO32065vJ9z13UVXd+uVGS9Mstg7TtWJZu+3yD8gqLba9pHBeuy/o01cR+zZxuw1W/d3HPxvp87SE1ig1Xi7qRWrbnuO25/13XXxm5hZr0QUkbnXNlH939v42a1L+5Pll9QKM61NeetBz9uKWk7gNaxuvVS3rY3r/mQLoe+maz7j6zrQa1qqshL/wpSbqoRyMt2Z2mZ8d21et/7lZRsVV/7U6TJIUEWdSneR0t23NcYcEWvXZpDz14chunt0vU5iOZmvj+KtWJDNFDZ3XQ9F926IkxndWjSZwe+naTvtt0TNcPbqkpg1s67Ofnaw9q9rL9mjG+uzYeOqFX/9yt6WO7qkODGJfHvTKln+fY7o300NkdKnl1iXeW7NW8DYf11uW9VC86TJK04O8jevXP3Xp2bFd1dFKfrUczte94js7sUL59PfXjNq3cl673J/XWTXPXq0VCpB49t6Mk6fCJXF3y7grlFJS0kxV3D5ckZeUX6uo5azSsbT3dOry1pn68Vqv2p+upMZ11ZodEPfPLDn26uqTv/udprTWpf/Ny5f65I0VP/bRd/xndUX2axzs8l19YrFGvLlZWfpH+b1R77UnN1pyVByRJwRapyCpNHdxSU09+Rn/uTNXtX5T8ft49oq1uOauTIec9c1bs16erD+qNy3qoUVxEld5bbLUqyIuV3JeWo4veLjmHKP3cytp/PEdL96Tpgm6NFBpcMn6ksNiqaz9co7aJUfrXOSXtYMXe43p0wRY9MKq9Nh3J0OuLTv32RYYG6Y9/DpXVatU5ry1xOI/q0SROM//RU38fztDVH66RVPLdXbwrTfePaq+hbepWaZ/+t+6Q3lmyVwdPnPrdWnH3cBUUFevaD9eoY8MYTRnUUvVjwmSxWBz6y9BgiwqKrA7bqx8Tplcv6aHW9aKqVA9XSj/OQD7nhnlof45W7D2uGz5dpxYJkfri2v5mV6da3l26V1+vd/y9d2b6rzv00coDevScDjq/WyOv1KWi83Oj215+YbEGnzwfdPX7Zs/+t3rf8Rz9e8FW/d9Z7TW4ddV+g0p9vf6w/vP9Vg1rW1fPX9TN9nhadr7+75vNurB7I53TuYEKioq1en+6ejSJU0RocLXKKrUnNVuFxVa1TYx2+Zo3/9qjhrHhSs8p0BfrDmnmP3qqfky47fmtRzN12+cb1LVxrK7o21R9m8fbPtfFdwy1nQfYK7Za9dLvuzSmW0O1TYyW1WrVrZ9vUFhwkJ67qGuV9uGF33Zq3obDqhMZqrcv76mEKNdtuqzMvEI99dM2ndOpgZrUidDMxXs1ZVALta1fcjxK215uQZH2puWoff1oW+zkszUH9dRP2yW511684b6v/9bPW5P14ZV9qn3dcCQjT1+uPaTxvRorMSbcdl1W02vmqsgrLFZ4SJCe/mmb5q45ZHu8e+NYHc3M05GMfJ3dqb6SWiboP99vVZdGsZo9sbfH67H1aKbu+t9G3Ti0lUZ3cR1XqKncgiINfXGRpPJtJ5B+c93dR4vVarVW/rKq69ixo2bPnq2kpCQ9+OCDKigo0H//+1/b83PnztWbb76pH3/8UaNGjdL111+v8ePH256/5557FBYWpmnTpnmjen6p1f3f1ngbO54YreCgU63HE9uszJB29bRoe4ok6fd7TlfLes5/NI2oy+6nzlNhUbHaPbhAkvTLXafp/s/Xa9nuVI9sf92jZ6nHoz94ZFuB5PwejbXhQLp2p2R7Zfu7nzrPebkz/tCGkzemdj91nq0Ndmkcp1cm9NFFry7S8TI3pDo1itXmwxkVblc61Z5vG9FOd57VsVr1PpSeowtfXqQJSS31/E9bHZ47r3tjJcaE6b3FJUGgiNAg5Z4MEL47ub+unrXc9lp36mnv+ct66vOVB3T9aW00tF2iVu87rnGv/uWwvcq+r7ueHF3uhtmOY5n6aOleXX9aW/Wf9lOF73fH1OFt9ObCnVWqg1S9vmZ4h/qyWq364+RNtcSYcCVnOr9xU8r+uHf913e2G4QzLu+tWz9yvGGUGBOm5JM3SVyJDgu2bWPbtHN1y4er9P3GI+Ve99jYbnr4fxvK1WN/WramfbtJCzYcluTYN7dvEKMf7zytwvIrUvaYLnvwTDWIrTgYW/qeyYNb6dELujo81rZ+tH6+63SX7/nipsHq0yJBkrT9aIbCQ4I17L+/lnt9aRu445M1+nL1Advjax85Szn5RTrtmV9tN2DKtuth7RNtn7dUErzcNm10hfte9ru2YP0h3ThnVQVHoUTpb6P9tmLCQ7Th32dX+t7KFBVbHX73nSkt96LeTfX8Zb2cvuavHcl67oetevyiburUKE6StGRniv7x5hI9fXF3Xda/hSTpj23HtGxXqm4f2aHSct3x3+8269Xfdkhy3ZeV1v+uUR1065ntbfWY9PYy2/te+XW7nvl+S4Vlnde9sYKDLPp6bfmb3tcOba23/9zl9H0V9bEV1bfsNn7edETXvrfC9tgNp7XV/ed2cqvP6tsyQZ/fOLhK9QBgvqy8QuUXFivBRXD5uveW66dNJQOCdj4xWkFBFlmtVn26Yp8SY8J1ZmfvBV48xdnvfVmLd6To8plLbH9XtV+tal1qcn7uKfPWHrSdD95zdkf1bhGvpTtTdfMZ7RQWUj4QXFr3C3s10Vd2g7Oqc6w+XLpX//fleqfbuP/zdfp4+T5J0tMXd9emQxma9ddundutkV6b2LfKZZUqKraq7f+VZCLY8O+zFRNefrznxoPpOu+lP8s9Xlq/E7kF5a617c/fPpk6UElt6pV7/4yft2n6j1ttrz94PEeDn/pFkrT+0bMUG1F+AJEzmw+f0Dkv/GH7e8qw1nrwvC5uvVeSHv/mb7118lyibnSYUrPyVTc6TKseHuXwutL9ufH0trrvnE4Oj0nSkgfOVKM67g16+G3LUS3anqyrh7TWe4t3646RHZSeU6C60WEqtlp156drNbx9ou08Tjo1iMtqtarYKo16/nddM6S1Hjp5fXFmpwZ6e3L1buqNeu53bTuaKUna/Ng56vTwd7bn1j96lt75c7fO69FI7RrEVmv7lVmxO1XjX1/s1rWXvd1Pnad1+4/rp01H1a5BjC7o2UTXzlqupDZ1NXV4W7e3k5aVr8U7UzSyc0P1eexHZeYV2rZvL7egSD9vOqoh7eopvgo3asrKzCtUt0e+d9gPVMyjI9FdiYyMVEZGhsNjubm5io6Otj2fm5tb7vmEhIQql5WSkiHv3BbwbUXFntnpNduPqmVdz4xUcldWzqkgZFpaltbtTJbFYtHAVlX//GsqOTlDhXbH8qO/dnksgC5Jny52foGNiuXlFSqnBjMQKrP/0HGnIyeyT85akKRP/joVjP370Amd8exvigwtfwKbm3/qPcnJGeWeL1dGdr7L11mtVv3fN5sVGRpkGylpb9DJURVlA+iS9O36Qw5/59uNxLYPoEvSiq1H9Pv2FF3Wu4lbI0ju+GStJOnP7cm6sn8zpZa5keDOfn+7cq8GtnIcGXP+S38qp6BY6/alVfp+d1QUQJekXv/5Qa+M76FODU+NlFizP71aZeXkFmjbsVOzcPILK2+vpcfJarUqp+DU69NPlF8PJLeg8u3Zz9IZNf037U51vq6IfQDdvh43fbhG6w6ems1UGkCXStq1O5+ru57+5m89MKq9W6/Nys4rV3ZuflGF9Zn9x061OLuD/tiRojtOzkxwZuveVNWLDlNmtuNJcs9/l7/ZWba8P8rMQrJaT72m2GpVcbHVNjuk1MINB9Wl0amT/rR0924MnvbMb/pksuOFaekYiJqc97zw2059vvagPr6qr8vRPaUn75KUWUF/dcXMksXkr35nmeZNTZIk/ePNkoDHfZ+v17YD6erUMEZ3f/W3JCkxPNjpbB2r1aqCIqvTAIEzOTmnjnFlbfTPrUd1ec+S0YvHj5869snJGXr5l22VllW2X7XnKoDuTr3ckZycUa69vP77Dl3Xv6lb78/JLfDYd9hikerVizX8nHvF3uPadCRDE/s1czlrUSqZQbI7JUddGsVU+LqayC8sdruNesv+4zlqWifCa/voq8xqf0Yqtlr19uK96tUsTjd+WhLI/O3WwbagYrHVqqJiq0KDg5Rnd97Z5v/mq2fTOIeZyZ4ekZpbUKTMvEIl2o389ZTMrPK/95L0+/YU3fU/x9/ysq/Lzi9SVFjNRkE7bM/J751Rbc9qtepf87dowcmbI5IcbvJaCwp1ducGyi0ocnrdXvacpjp9v30Avew2jhw/dX553+enXrdgw+Ea/c7Yzxrdvi9VzZycl+w97Pw8PTk5Q38fztCVH5SftWxfp/T0bCUnlw84Ltt56pzut/UHdM/JcxVJSknJVE5YsKxWVXrz/+BRx/3PzHJ93uTMnmOZtn+nZuXb/p+SkuG07b322w5d26/8ecD2/akKKag8yJxfWKzJ75ZcF878o+Q85o3fT10/3XdmO3277pC+XXdIZ7Yuic0s2pmqh+dv1m2ntdbrf+5RRl6h8gqLbQF0ScrJq/45R2kAXZJDAF2Shjz1i07kFur5n7Z6bbT9f74u6WuqEkCXStrZBS8vsv39995U/bz5qH7efFTjujRwezvOZmNL0uEj6Vq297h6No1TdFiInvt1hz48OXu1Jsdi+i87HP42q9/zBaX7WhlDgugdOnTQokWLHB7bvn272rcvuYBu3769tm3bVu754cOr3hisVvn9h+vMN05GG1aHGcfPvrzMvCJbqpc/bhtS4ylhVfX1+sMa1fFUGoAVe497dPuPf1/5RTqMt2R3mvq3SLCdfFutVn2+9pBDAOy+rzeVe19p6gdX3PkuWSt43aETebb0H/ee2V7hXrpgH/9OycjG1KwC3X56GxUWWxXi5gjR2cv3a3SZE4PNRzJdvPqUWz47daL13Q0DVS86zHY87dOkeFN6TqEmvr9KDWLC9O31A7V6f7qmnrxBUB3H7W4IunP00rILdOeXG7T+kOPJiif6YFcBdGdKy9t/vOL3ePK34fO1h3T/yPJB9IzcQkWGBjnczMwtKNbGQxmqH3Pqoqeo2Fphff63/rAePKtDhQF0qWq/eY9/X/5mlb3Ck3XafCRDN85d55ACrNT6gxnq3PDUyVlVjulls1Y6fdxqLUlp0jguosojuz9YsV+S9M7SfXroLOdpdj5Yvr9ceRVJzS5w+pq3ljimSDqYnuv0df2nl4zgWnDDQCVWMK3fWX3c6nNPvsb+pT9vTa60P68Jdz/nrPxCLdyR4vS5vak5sjqporvbrui3prqMOGcsHe0mSTd8uk6S1Dw+Uqe1S3T5niveW6UD6bm6+4y2WrDpqP51TgdtPZqlM9on2n5HcwuKqn2OuT05S5e/V/J9XH6X8VPmrVarhr20yBZwMqIOP2w+qneW7tW/z+mkjg1jlFdYrLTsfDWMDTctiG/kNcua/elqUTdSdWsw2q8qrv1wTblzg10p2erWuGSWz/Ufr9XqAyf01JjO+mOH42Cfsqk9l+5O082frdf9I9vp4p5Naly3MW8uU1pOgeZNGVDl9F6VKe2n5qzYrxd+36mXLu6mQa3qlgug6+TrsvOLdNmsFUrOyldhsVWPnNNB53f1TJqXivpMb7e9bzYecQigl7UjJVvnvVFy4/qnmwapTmTFo6Q9UVe3f2tqUFbZ3/Ndydl69Lstum5QCw09OXq82MVPtdVa/nzF6XZd1NH+e3TNh2tkPz5xf1quJn5QMmtw8R3DKrxGKrvtqv72utpy6TbeWLSnXJpVZ9svdqONDpi+UJVV7emft5cr558n0wpWFtfwxnfkhN0AN299B6ubqKPs2xbvSnP5XHWMe3u5Q5o/exm5hU5nbrgjPddxMJxZ/V5tYsgQilGjRik5OVmzZs1SQUGBlixZonnz5tnyoI8fP17z5s3TkiVLVFBQoFmzZiklJUWjRo2qZMsotSfVO2kujJZtN5Iyv8h7F7Su/Of7rXp4ftVz8cP7vHmJdvdXfzsET99avFdP/7xdGXYjMN3lKnhZWGzVjkrWCyhr3NuOI8Z3p2Rr7pqDKvTSd2P9oRM6fCJXg57/Q/2nO78L7kzZiTAT3688PYW9mz9bV6XXe9rRkzdL/tzpPHjljpQsx9EK6bmVt53/fLel3EWyJKd9kLOArJHcmeyUkpWvf83f7PZo/rJB++TMPI145S8Ne2mRhr106sb7vI1HdNWc1Rp98oJRkg5n5Okf763QhkPl1wGpiqp8J/+3/rBbr/v3d1sr+LwcD2RuYfW/y1n5RdqVnKV5Gw7roreXa+DzJcHnE7kF+njVAVubLCgq1v7jOcopKNLGwxkOsw3ccejEqZmCeYXF6j99ofpPX6jj2QX6Y0dKuZlwpX31T1tcr13gjmV7aj4j5actx7TFbkTT/uO5+mHz0XIXSPd9/XfZt3rUsUpSO5X6z3db9a/5zlPK/G/9If3sZA0Wd/vq7VX8/amumX/tUf/pC7XbA+elu1OyNeC5kt8j+37xQHquy/fkFhTZnn/21x3aeDhDl81aqYfnb9bri3ZLkr5cd0jDXlqk/tMXlvu+uOOXrTVr2zX1+l97HEZsetunqw/owW83a0dytiZ+sEp703I09MU/NWbmMg147g+98FvFs75qYvHuVK+l8qtKHaZ8slZj3lzq8LjVatWX6w5p69HKBw5UlbNzA6tVWrX/uPpPX6jVJwPl988rP8CjrJs/KxkpXJoruabSTg4YWObhgUalrFarXjg5Eva2zze4fF1OQZHeW7ZXhzPybDfe//2d85vd+9JydPsXG/THjhSHmZm+aleK+wMhRr66WNuOObbBNU7WSPOkioKMj3+/VWnZVRvB68r/fbtJGw9n6I4vNyq3oEhLd6dp1rJ9Luvkqla/VbB+mTNlz3lvnHvqOmVncpZbs0Orq7J7ks7WKcspKHL7PMOeN+Ohf+1K07HMPPWfvlDDXiyffseZgqJizf/bMwNDa+KEG9dw7lhbxfPtyrgKoEsl+fCr64iLdePgmiEj0RMSEvTOO+9o2rRpeumll1S3bl099NBDGjhwoCRp0KBBeuSRR/Too4/qyJEjateunWbOnKn4+HgjqucXPJTNRXvTcgxP5+JrN7R+s0thsNrLJyFwz8H0XJcLg3qKfaDlveXOT9CqqthqtQWUBp0McN13ZjuN69nY9pov1h5SVGiwrhxQfkFC+9G4Gw6dsI3Cm7vmoMOMCffq4t7r7BfKdTdQUNOlNXYkZ+vwCddBkdpgZzUu8v/Y6blUUZ5QUVqwioJWkvTNxsN6f/l+7UzJ1oJNR7X8ruE6dCJXseEhLkdG5JS5CPnr5IiNQjcb647kbF394Rq9c3kvdW8SV+n2nUnJztcPm4/aZnx42//WH9alvZva0lK8tLBmKb7OePY3h78Pn8jVmJkleb6/3nBYH17ZV1M+XquNhx0DMt9OTXJI/+Pqmi01O1/f/n1qNJz9KOlRry129hbbjYEHvqk8uFNdx3MKFF/JyLv5fx/RIwscA9IH0nP14Leb9d6yfbpleGuv1a+s0W8srXT0mqQKFyo/kpGn7zdXv50WFFk186895RYS9rQ3T67Dccm7K2o8QnrBplMX099VMCrTnv0NuLJ+3npME/s10xM/nho99+iCLfpjZ6qm/7pDr4zvrgEtXacSzM4vcprGzWjvlJnV4W2Ldjn+Vl38juMN/jkr9+v209t4vNxNRzJsQVQzRvyXKv1tyi+zYO9PW5Ntbam0fgVFxfph8zH1bV5Hz/22Uy0SInXLsKr1Na6C8v/+bov2pLkfXPWEhTtS9NOWY7p/ZHtFhQU73Lz5bM1BXeCFxT3dvdE7vILveln3zftb245ladGukhRu390wsMr12pOarS/WHdL/XdBNuQVF+mtXmga0jFd0mGfCKVarVZ+uPuiQYtCVb8vMQJ/2wzbNmnBqUcOq3BR05lANzsm/2nBYGXmFevoC9/OAu5JuN8Nz4vurKmz/25OzHK7l7N1Twxvl9oOqJpwcKLTon0NNT+lVytl3wRdGDJcOfnF3wMj7y/frtZM3u71t27FMJUSFOZ3xWN1+1ktLTbrleE5JGz2YnqvXFu3WXae3VXyUe3n8V+6rXirTQOa1IPqWLY4XLt27d9fHH3/s8vUXXnihLrzwQm9VB266838bDT9R9YVOHr6tbADIW27/YoPO6lTfYz+CSc+VBM7PaH9q2vnTP2/XDLvAWVpOgWb8sUtndapf4bTY0gC6VDKl19lIBE+YbTcV8j43RjhJqlFgp1Rp4A/mcWf0vDOfrj6oZ35xHOF26ESuLpi5TCFBFi2+Y5jT95V+zX7blqw/d6bq7yPV+55f89EavTy+u5LKBL9Gveo8yGvP1ajfmqhoFNG2Y1ka9uKfNRqBXhH771Fpjn5n/efUT9ZWemOk2GrVrZ+tr/A1rrjTh1bnxpMkzVi4S7OX79N/RnfUuRUsmPfoAtef7dZjWdriRtopTzp9xiJ9dnW/aqc/8EQ/++ZizwXRrVar+j27UBEhQfrjn0M9ss2y8go9e4J46ESeznl9icNj9jczb/5svf7Rp6ma1InQ5X0cc8yWpnA5s0OiWldjsMmhE7n6YPl+/aNPUzVPcL7+ABx5Y4R3dfy1q/wNb2c36STnQaCqBtGzXawBZHQAXZItjUqD2HCFBwfZbpJJ0qYjmcorLLalSFqx97je+Gu37h/ZXm0TS9Y9O5KRp9+3p+j8rg3dzlc+5WPHtHpVmRnpykG737uqBpi/3nBYj9mlc/tw5QGN7JCon7Yma2CrBM24uHuN6yeV3LB49teS3MRX9i8/sKYieYXFWrnvuEfqkV9YrOs+WlOjbexJq97ve0UjvCtr/0XFVu018DtyID1XretF6fftycrMK3K6xotkbmDV0ya+v0pju3v+xlmpPw0aXHQkI09XzC65GeLJuJenBrVWR2lKlgvfKrkO+O7kgCZJKiwq1tZjWerUMEZBAbaGirf4xu0z1Jgn+2czR4TytYaZFu1K1SMLtpQbbVRTv5YZXZjt5CQxp6BYX6w9qMlzVut4mYU6jVTT0SvwX/2nL9QdXzpOrf5rV2q5ALokrTo5qqGw2KpvNjpPgzLh/VXqP32h7vn6b3214bDDwqxVdYuTYK+R6Q5KuXOx5K0AelWUDaDbn1M//9sO3fv130p67g9treZnMuDkDcSKOBv9bz/qzJXZJ2cKlV0IqazKPolX/txdaVmelFdYrOs+XuvVaeCelltQpJX7jjudHfL3yVRK9u3ZVfsvtlqrNbJxzkrn+W1dyfDAFOyPVx3Qc7/u0LNl+rVPVpUs3vXz1mSH/P6lqSGsVqt2p2a7nNFz+xcb9Omag7r+07VKy853e8ZNWe70MUXFVs1etq9WpK2wl51fpNf+3OV0NOnSPWlu9Q/e4Cww5yyAbrVaDRtFabTkzDyHAHqp37efOr+9ce46rTlwQveeHPW7ct9xnf/mUj3zy3a98HvF/XWpz9ce8rkZys//Vr7uP20t2e8lu9NUVGz1SPoS+3SQBVVM27g9OcthsE11Wa1WnfP6EluaQyO9+ucujXRj8IM31CQVxt1f/a1Hv9visfiJp9aY8MYM7i1HMx1ypHtabmH1z482HjqheRvcS7u4vQbXGxUxs++qqNU8+t0WXTVntd5y0oejegiio5wxM5dpqQdykbpr42FSpgAWSU/+tF0bD2do1GuLNeSFyoNQ8JxLZ61wO+e1v5m9bJ/bF4B/7kxVpt201tLFhcqyz0zpKkepP/q/bzbV6GaAp7l7wvzlusNavLtkBNCHKw+Uu/FnlOV2OXYzq7Emha87kpFXYboRX3P3Vxt1w6frNLrM6G2pJD1MWa5mjT32/VZdMHNZpRe42flFuvWz9fpi3SEVV2N0yFtLPHeB+MnqgyostmrN/nTd9b+NLkd53v7lBv22LVmj31iqS95doX9/53wGROnMi2OZ+TrrtSW65sPV1aqXOwGMgc//oRl/7NIQN/PQVuavXcZcE7y2aLfeWbrP6boqt3y2XpM+qNp6K848/v1W9Z++sFrtS5J2pmQ5vZFx1ZzVOm1G7flu28svLNbF7yzX9xWkTDrmIqh6JCNPGw9n6LHvT7X7vWk5ysgtdAjqfrnusDZXc7ZZTe1OzXZIXyaVLJT76eoDbr2/sjVpbvh0rc56bYnLVCLV8dEq9+rmaYXFVpfrQXl79ta7Sx1TaW47luWVoOQLv+203ezccOiEpn6y1iOB4dI82jUdee6pAYXeXuvFG2oy+GXyh2v0n++3llsfoCplL9qZWrOBDh4Y1Vrd36aKlM5knF1m4d0D6TkemekTiAiiw6nP1hys8uJj1WU/GIcZJghYZdq+p0fDo2K7UrI9tpBMbTPjj10Oea8r4wsjqZ1Zstv8HPOlo9N8xRtVSPt02+cb3F4U1gjP/LJDR/14saOle9IcFset6shDb/lq/SHb4rFL9xyXdGohwcq4Sgn1zcn8vTMruKmz+UiGTpuxSEv2pOnJH7dpbTXWpDnu4ZHKl81aoSmfrNXCHSnad9z5KMPle4/rnq//VvLJWVwL3MzdvskuIOXORfOinan6ccsxfb72ULnnft9essDvtmOZPnFBXFBUrAPpOSq2WvX+8n1asjvVYR9Ts/OdBiq22AVZ+09fqJ+2OPanhypYVM1dX528keNujv2y9qXlaNnJ74W9vw9nKKfA+XfY3aCatxaNr8xbS/Zob1qOHjq5eG+x1VruJmZFi4hOnrNaX29wzNH9yp/l1/twddPdm/ILi3XJuyvKPf7gt5v1zC87tK/MLIPq3LwtXcTz87XVH80s+X7aj4l2N7Hs1w9zxuKBUPC9X//t8uZNTWw6kqmbTi4UevWHa7S6muc93gpZ+HMspNhq1W/bkr26kOWuaqYKfOqnbbr9yw1OZxkZ6ZsN1VtY1VW7qahfuWzWymqVBYMWFkXtdG0N86FVh4+fPwBe48fnTKgFXvx9p0e3Z0Zffuvnxl+g+5spn6yt/EUGuvurjZo9sY/Z1fC46z9Zq1UnL9yv/nCN/tGnqT42aOShfQ7jshZsOqLHf9jm9Dl31CQIVHbkZUWBjZ+2HNPfhzP0/eZjGtejsR4Y1b7a5VbEiPy6+9JyNO7kQp2l+UuPZebpgXmbdGnvJjqrUwNZrVbd/qXr/u3urzZWu/z8wmLb4njHMvP0v3WHNbZHIyVGhyklK1+JMeFubWfpnjTbuhSDXyg/Ar5ro1jNmtBbxzLzNPqNpYqPDNWL47rp9x0punpAc0WEBpcbdbrEi7Niy45MropbPq/aWhHL9x53uWDt4RO5+n7zMdWPCbMFbx4+u0O161aZnSlZalMv2uGx5DKByls/W69le4/r82v6V7scZzd7XI1w9iZX+eVL2dcpI7dQI175y/b3sj1pumFIK7fL+mHzMf3fKPc/u282HtbSPcf1yNkdFBJs/rjGnSlZARNUW+WFAQMWi/MbolUNGHvyejAjt1Czl+/T2Z0bqF1idOVv8LIFfx/Vo99tUZBFWnqneYtFO1N6s7+iBd4r44lLn9+2V6/8rzcc0cNndyz3eGnud2fMSHvpLwii+wmrhyc8+cJIQ0/cxQZqC0/lwKtRHcyuAGqViqY8Hs303xHEMM6mI5l6/IetenBUe605cEJ5NciX6UvKXsAbFUCXpJ+3HtPoLqcWQHt36V69+uduje/ZWJ85CXyVmr1snwa1TtDXG46oS6MY9WidWO411Y2hFxYVa36Z2TAV5ZZefyhD6w+VjFr+Yt0hrwXRva3YatW7S/eWe/y5X3dq7cETWnvwhM7q1MBr5a8/eELXfLRGVw1orluGtdY/v9igbceytHBHiga3TtA7S/fp7jPaurWtZXuOK6llgssbKaWpflacTItzPKdAV805mdLGatWNQ1s75IT2XVU/U3KW+qjUtR+tKZd/2n4RS0+7/L2VlQavSkedu5Nf+HiO+4FxV8ehskB3VR0+kWtbwHnhzkpGTNt9nGXTi5b2Me6q6myi0lR3fZrV0UU9Glfpvd7gTgB9zf509WpWx4Da1A72/d28DUf0zcYjumZgC4fX/LY9RSv2Hle/FvEG1062m0Kzlu3z6AKa1VWaLtjMBTi9qSbnQINe+FPndvbs731GbqG2J59KMcl1vueYf9sTPmnJbuNyotvzgTgiYApfaPrHWFQUbigsKtZPW47ppYXlp2uXen0Ri9egcmUXgtyZUj6f/FfrD+uPnama+slat2YbzFi4U+e/udRjdfQ3jyzY4jDq+9WTC6xWFECXStI+XTF7lT5edUD/mu98unN1F8v0tTRIRvnPd1s0b2P5qdsZeafS0jz+w1b9xwtB1cJiq645OeP0vWX79PfhDNt6DpuPZuqdk/mJn/3VvQUhSy3cUXHQ0pkdydmyWq0eT8fjCcvKjIavzgKSz5VZmPLwiVxZrVa9t2yf4Qs4VvYVHWqXR9+dheZLF3p21xkvL1KO3Q34lKx8j+eSt0/V480bEp5SumCuN+OKV36wSu8tq9pn5Yy7s9UC5Xp+j92Nv49WHVBGXqHTmZ1frKv499XezmqmI4H5qpvPfNbJ76a76eBcOZDueCPafmYNPIsgOnxK2Sk0eYXFpuUIBIzkCyecB9M9s7I8/NuYmcv0wDebNHdNzfJ/Ak/8eCrAsT05SzMXlx+VK0nP/+ZeIG/zkQzNXr7fq/k2/cFzVQyMurvNe6u5kJmv5IP3lJ+2HFP/6QsrTQfjai0K++vwr9Yftk0z96RFOx3XkLCNCq+mv49kqP/0hbr7q4rbwGYnixMmZ+VrwHPuL6aemVeo137bof3HnR/f+X8fUf/pC/V+FQO8Zc1YuFM3f+aYumXaj1VPd2TfDr5ef1hjZi7TtB+36eU/XN+INov99H5nN3hqKjOvSK+dvHEnSee9UX7R4pp6xW77lSk99d6dkq33yyy6J6lKawz48uDaTUcyfbK9SdL2Y1keWcth0gc168OqzCLdOHdd5a+rgsJiq8N6GWVl+eGC674gtRo3R53ZkVx+IEhllu1Jc1i/qCYz0y96a3m134uqIZ2Ln/CX1Ccfrjw1Ouq2L9Zrw8mpdKe3q2dWlQAAgBcstVugb0UFC9ftd7GoY1lVGe0Fzyqb0zyQPfDNJknSxe8sN30Kvasc+J6+cVHR99ee/Xl+qdJUL+565uft+vbvo4oOC9Zvtw4p93xpbvGXFu7SpP7Nq7Rte7OdBFVrqjRN0VfrK0+V4k37j+fo5rnrNKFf9Y9Pde07nmMbIFVBphtDWGRRRm6hLplVfvHRqioosqrYalWQL4yKMVnZWWYVuf5T31qLxV0v/r7TtqB0ZX7cckxPnN+50tfdVEFQ/qXfd9aoT3rs+y06eCJPr4zvThstw1PpZSZ/uKbK73l/heNnWpO1IyrbDT52zyGI7ic8nRPdF2ywy0VX2SrgQG33+A++P+UUALxlzgrPB6zg2u/bU9THB3LbLth0RDMX1zz9U1p2vp8MJ/HsiNbqTi/3ZSv3lawpkJVfpOz8IkWFBZtco8o9umCzy5kHRisqtmr6rzt08ESenvlluxrEhBla/p87UzXIyeKzprBI6w6eqPx1bvpmwxFd0L2Rx7ZXWx2uwmywE1UIuHtSTUe//1lmNk91WK1WbTuWpRYJkdp3PKfCBbVrelPv6w0lM0v+Ppyhbo3jarQteE9FbQC+g3QuAOADSi8KASBQZOQVatfJ/J9Vueh25ct15o7urE3u/mqj0xz07nrsm1NpO1wFal9xI33Av+Zv0aETNfvs31++T2e9tsRngpT25v99RLOrmIvYiLB3bQ2t5xUWO9T9tBmLlFmNkXtGpxDypbY57p3lDnnJjc7LboSKFj63Z5FnB6It3p2qYqvVdnx/356sLUcyXS6468+q870MNLOW7dOE91dp2EuLdMXsVYaUWWwtWdvoX/M3G1Kevcq+BVX9npQOvthwyHM3wvyZv2Su8AUE0QEAAGCKWz7zbE5RuO+6j6s/jX6l3YKLZ7262OlrZi3bpy12+V29FUeqaJFjsz2yYItmVDUXsQcPVHVytPqyT1eXTwez6YjrdDCli3iW9fxvO21BvpSsfF0xe6XDsXKVb90fHEzP9fuBG4dO5OnrDZXfVPV0egOrpKTn/tDwlxbpnSV7dfdXf2viB6s04Lk/Kg0Q+ttaHme8/JdPLhZslgWbTq0xsCslW3mFxZq1tOaLvVaVRdL8v4/WeBFLX/DCyUVcb/+i/KLzRcVW3fDpWj3uZHHhwmLHm6jbjrnOQ+8pb5xM5QX/QBAdAAAApjiama/dqdnVeq/VatWsKo7yheelVzAdf3+6/wYjvcWT9xrsUyM6lGHCyNj5f9d8ocqSGybl6261WnX3/zbqji8dgyljZi7T/fM26fYvNuilkwGXUktP3gg65/Ul2nYsS/94b6WSM/P00LebdNHbLNBWm1ll1WNOgmdl7UrJ9ujNPfvR16+VCZqlVRBQfmTBZn2+1rw1PdzN7S1Vre9Ye+DUzZpjmXnanZqt/EL/WkjaXf+aX7JWw2/bknXprBW6/hPzcsE/9XPVF0j2tDQPLeYpOT8HeX/5Pq3cl66vTt5Me/63HZr4/iqtPZBebgHsO5wE4T3trSV7vV5GZQqKA/O75w3kRAcAAIBpLnm36ou6pecWasBzf3ihNvAkJg+7z2q1ymKxqNhTq5zJt45/6YKfNXUkwzH48sPmY+rUIFa/73C+ftIv25IlSYt2VZ7D+Nw3lta8gjCdu3HeB7/drA71oz1Wrv1i2e6yqmRksFkKi6069/UlXtn2o99t0Q831lVocJBG2323/nlaG03s18wrZfq6L9eX3CzZeDhDkaHGj2e1WEoWwTVa/+kLNbJDfdvfZ722RO9P7K1ODWO1en+6pnrwpkJuQZFe+XO3w2Oli1o7m4Fn1OHYkZyltome62+qqvRzT87Mc7rIN9zHSHQAAAAAMNG2YyXpRFYf8Fx+V/t0FSdyC3TAD2cG/G/9Yduo8qp4+qftKvLgDQv4jqp8qluP+VfKo4qkZueXyxe/oIozRNZWoX/KzCvSJ6sPlnv8vWX79NOWYw65+QOF2enxb/lsvWll/7T1mMPff5xcnLUmAfQVe487/P3gt5s17KVF1d6eN91s4rG3N/nDNXp/Rc0Wqg10BNH9xEYX0zUBAAAAMxCidN/3m49V/qIaOPOVxRr71nIdPpHr1XLM8M7Sqk+VT8sp0M9bvXvMYZJa1PG8WmbErDed/doSjX5jqbYczbTlYP+simlkplQx4OlsfYHjOQV64JtN+s93lafc8Tf2NyHMCKhn5fvOjYsDHlh74sa5tWddnfSTKZ0+XX1Ql59MH2b0bLEv1h3yu/UXzEA6Fz+x9iCrEgMAAMA3WVWSJ7hLwxid1i7R7Or4nNnL9+nW4a09us1nftmhZ37Z4fDYej8ceLOtmqOJH/x2s4drAl9w+eyVZlehnH9/t0URIcG6dmALdWgQY1o9MvIKNfH9VZKkK/o21d+HzesPyo5MDgTZATj63pXtydVbD6e2e+aX7ZLKr5tghFequtA5nCKIDgAAAMCrjmTk6Z2Ti2stv2u4ybXxTf2nLzS7CgC84K9dJSmHFu5I0eI7hplcmxJG5EXOC9CFRFG5LUczDSlnTwWL13/qJN2QUfKLrFq8u+qpyGA+gugAAAAAPO5YZn7lL4Kh8guLFRLkS0uOAoGjMMDy8H+z8Yha140yuxo+KbBagnP5BtxkcbaYaKnSUeFmyPah1DqoGnKiAwAAAPC46b/uqPxFMNSj320xuwoAAsgMUkjAhfwi7wfRj5/MRe4LFu9Otf174Y4Uw8s3e2Fbf0EQHQAAAAAAwMte/H2n2VWACTYcYg27QHfb5xvMrgI8gCA6AAAAAASI1QfSza4CELA+WLHf7CrABFd/uMbsKgCVsjJcvVIE0QEAAAAgQHy+9pDZVQAABLitx4xZXNQXBNp6CP6MIDoAAAAAQzHaCQAQqPIMWFTT113/yTqzqxBQMvIKza6CXyCIDgAAAMBQv25LNrsKAAAAgNtCzK4AAAAAgMAxYfZKbT2WZXY1AAAAALcxEh0AAACAYQigAwAAoLYhiA4AAAAAAAAAgAsE0QEAAAAAAAAgQLHke+UIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAEKCsVrNr4PsIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAEKCsZlegFiCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAAAAAAAAApXVanYNfB5BdAAAAAAAAAAAXCCIDgAAAAAAAACACwTR/YTF7AoAAAAAAAAAgB8yNIi+ceNGTZgwQf369dPQoUP1+OOPKz8/X5K0du1aXXLJJerdu7dGjBihuXPnGlm1Wi86PNjsKgAAAAAAAACA3zEsiF5cXKzrr79eZ599tpYtW6bPPvtMf/75p2bOnKn09HRNnTpVY8eO1fLlyzVt2jQ9+eSTWrdunVHVAwAAAAAAAACgHMOC6Onp6Tp27JiKi4tlPbnia1BQkCIjI/XDDz8oPj5eEyZMUEhIiAYNGqQxY8Zozpw5RlUPAAAAAAAAAIByDAuiJyQkaPLkyXr66afVvXt3nXbaaWrVqpUmT56sbdu2qUOHDg6vb9eunTZv3mxU9QAAAAAAAAAg4FjNrkAtEGJUQcXFxYqIiNDDDz+s8ePHa8+ePbrlllv00ksvKSsrS5GRkQ6vj4iIUHZ2dpXLsbDCJgAAAAAAAAC4xWJxjKmW/jsQ4qzu7qNhQfQff/xR33//vb777jtJUvv27XXzzTdr2rRpGjNmjDIyMhxen5ubq+jo6CqXU69erEfqW9tYAqFVAwAAAAAAAPCoevViFRZSPmFJoMZZnTEsiH7o0CHl5+c7Fh4SotDQUHXo0EGLFi1yeG779u1q3759lctJScmQNQDnIFgDcacBAAAAAAAA1EhKSoZCg08F0S2WkgB6IMRZS/e1MoblRB86dKiOHTum119/XUVFRdq3b59ee+01jRkzRqNGjVJycrJmzZqlgoICLVmyRPPmzdPFF19c5XKs1sD8DwAAAAAAAACqylWs0ex4py/FVS1WA4cw//XXX3rhhRe0c+dOxcbG6oILLtDNN9+ssLAwrV+/XtOmTdPWrVtVt25d3XTTTRo3blyVy0hO9v87JM6c8fIiZeYVmV0NAAAAAAAAALXI9zcOVN2oMNvfFouUmBgbEHHW0n2t9HVGBtGNEAgfrjMjXv5LGXmFZlcDAAAAAAAAQC2y4PokJcaE2/4miF6eYelc4F1W+XmLBgAAAAAAAOBxRBUrRxAdAAAAAAAAAAAXCKL7CYssZlcBAAAAAAAAAPwOQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOgAAAAAAAAAALhBEBwAAAAAAAIAAZbWaXQPfRxAdAAAAAAAAAAAXCKIDAAAAAAAAAOACQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOgAAAAAAAAAEKKvZFagFCKIDAAAAAAAAAOACQXQ/YbGYXQMAAAAAAAAA8D8E0f2ElXkXAAAAAAAAAOBxBNEBAAAAAAAAAHCBILqfIJ0LAAAAAAAAAHgeQXQAAAAAAAAAAFwgiA4AAAAAAAAAAcrKYouVIogOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRPcTQRaL2VUAAAAAAAAAAL9DEN1P3HF6G7OrAAAAAAAAAAB+hyC6n2gWH2l2FQAAAAAAAADA7xBEBwAAAAAAAADABYLofoKM6AAAAAAAAADgeQTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEET3ExbyuQAAAAAAAACAxxFEBwAAAAAAAADABYLoAAAAAAAAAAC4QBDdT5DNBQAAAAAAAEBVWc2uQC1AEB0AAAAAAAAAABcIogMAAAAAAAAA4AJBdH9hIaELAAAAAAAAAHgaQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0f0EyVwAAAAAAAAAVJXVanYNfB9BdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSC6n7CQFB0AAAAAAAAAPI4gOgAAAAAAAAAALhBEBwAAAAAAAADABYLofoJsLgAAAAAAf3X/yHZmVwEA/JZVVrOr4PMIogMAAAAAAJ92cc8mZlcBABDACKIDAAAAAAAAAOACQXQ/YSGhCwAAAAAAAAB4HEF0AAAAAAAAAABcMDSIfvz4cd17771KSkpS//79ddNNN+no0aOSpLVr1+qSSy5R7969NWLECM2dO9fIqgEAAAAAAAAAUI6hQfRbb71V2dnZ+vHHH/Xrr78qODhYDz/8sNLT0zV16lSNHTtWy5cv17Rp0/Tkk09q3bp1RlavdiObCwAAAAAAAAB4XIhRBW3YsEFr167VX3/9pZiYGEnSY489pmPHjumHH35QfHy8JkyYIEkaNGiQxowZozlz5qhHjx5GVREAAAAAAAAAAorVanYNfJ9hI9HXrVundu3a6dNPP9WoUaM0dOhQPf3006pfv762bdumDh06OLy+Xbt22rx5s1HVAwAAAAAAAACgHMNGoqenp2vLli3q1q2bvvzyS+Xm5uree+/Vfffdp8TEREVGRjq8PiIiQtnZ2VUuxxKgaU2CAnS/AQAAAAD+L1Cv9QHACBaLYz9b+u9A6Hvd3UfDguhhYWGSpAcffFDh4eGKiYnR7bffrksvvVTjxo1Tbm6uw+tzc3MVHR1d5XLq1Yv1SH1rm6P5zLsAAAAAAPinxMTAvNYHACPUTYhRYr2oco8HapzVGcOC6O3atVNxcbEKCgoUHh4uSSouLpYkde7cWR9++KHD67dv36727dtXuZyUlIyAzONz/HiW2VUAAAAAAMArkpMzzK4CAPit1LRMRVmLbH9bLCUB9ECIs5bua2UMy4k+ePBgNW/eXP/3f/+nrKwspaam6vnnn9fIkSN1/vnnKzk5WbNmzVJBQYGWLFmiefPm6eKLL65yOVZrYP7Xum75u0UAAAAAAPgDfw/iAICZnMUaXT3uj/+5w7AgemhoqN5//30FBwfr7LPP1tlnn61GjRrpiSeeUEJCgt555x199913SkpK0kMPPaSHHnpIAwcONKp6tV5IsGEfJQAAAAAAAAAEDMPSuUhSw4YN9fzzzzt9rnv37vr444+NrA4AAAAAAAAAABVi+DIAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAwGe0rhtldhUAAHBAEB0AAAAAAPgMq6xmVwEAAAcE0QEAAAAAAAAAcIEgOgAAAAAAAAAEKCsTgCpFEB0AAAAAAAAAABcIogMAquWO09uYXQUAAAD4IYssZlcBAAAHBNEBAAAAAIDPYGFRAICvIYgOAKgWi4URQgAAAAAAwP8RRAcAVIuVlUcAAAAAAEAAIIgOAAAAAAAAAIALBNEBAAAAAAAAIEAxz7xyBNEBAAAAAIDPGNqmntlVAADAAUF0AEC1kBIdAAAA3hAeQqgCAOBb+GUCAAAAAAAAAMAFgugAgGphIDoAAACM0KpupNlVAAAEOILoAIBqsZLPBQAQIH6+eZDZVQhItwxrbXYV4CNmT+xjdhUAAAGOIDoAAAAAVCAuItTsKlSoTkSI2VXwioRI3z7uME5kaLDZVQAABDiC6AAAAABQi3VqGGN2FbzCSvK4gGUxuwIAEGAax4WbXQWfRxAdAAAAcEMwUR34KItBIUdGhksx4YEzIrpTA/+8OQPAfdFhgdPnBbrQYELEleEIAbXc5AHNza4CAlSjuAizqwAAhqoXHWZ2FQDnDIiht0iI1A83DdJFPRp5vzAf1qNJnNlVMIyFG4dAwGvMNR9gQxAdqOWCgzi7hTnO7JBodhUCXmy4f+bABQDAVz1yTkezq2CIetFhshBFBwDAhiA6AKBagriwMt3XUwaYXQUAgA8w4hd5dJcGkqRRHesbUJpvevL8zqobFRgzUmZd0cvsKgAA4FMIogMA3PLBpD5mVwFlhDATBQBgkKsGtJAk9W+RYHJNzBNI+dAjQwNnXwG4Vj8mMG4cAu4giA4AcAsnUAAABC5u3Bq3gCukMzsE7owHwFf0bxGvB8/qYHY1AJ9BEB1ue/3SHmZXAYCJAmX6cm0SFsLPOADAfxeAHNAycEe9B7p29aPNrgIQ8J4b21UNY8PNrgbgM7j6htv89eS8uuIiWNAPJRIiQ82ugtdd3qep2VWAE+SlB4wz87KeZlcBcMlfR0g3joswuwoBy2p2BQAA8DEE0YFq6NciXvUYlYuTWNwRAPxfr2Z1zK4CABjHasyCtQDK69fcN845LAzYARwQRAeAGopg4SUAAGAi4hwGCbDjTLsCzNG6HumMAF9EEB0AAAAA4NKAFvFmVwEAAMBUBNHhtvAQ3xpt+9LF3Uwr25cGZfhSXQIRC60AQOAgRzB8lbfPB80YkRwbzvpDAAIT1/iAbyKIDrc1iAnTDUNa6uKejc2uiiSpaZ1I08rmRw2lggKkMZS9eL6weyNzKgIAAAxnNeEOktUHblu9cJHjoJ0AOe0DAABOEERHlVw7sKWu6NvM7GoAPiNQL6Z6NokzuwoAAABeNaRNXbOrYBpfuImBU4ID9aIDpgoPIWQI2OMbAQAAAMDnPDa6k9lVqDUsfrwCZN2oULOrEJBchdBnXdHLyGqU88ONA3VNUnNT6wB4my906fWiw8yuAuBzCKIDQE34whkOAKDGHj2no9lVgJ0JfZvpnM4NzK5GreHPZyMhgZI7zwc5O/JdG5s7GzEhKkzN4s1L6wkACFwE0VFlnMYCp3j7+1AnwjcX1WKCL3xB+/rRZlch4Dx7YVezq+A153VtaHYVYIdUEoAv4MoPAIBSBNHhUZ9eP8iwstw5pevbvI76Nq/j9boA3uIshMCILKDEeB9Z6Nrf/aNPU9u/6X4A38TEOGNwnBEoyIUNAOXRM8KjfOnEsmVCpF6/tKfO6ljf7KoA1WZ1EkVffMcw4ysC+CJf+tHxY+0TT434D/Sxwc76ZASOHgG2qPY7l/cyuwqSzOt3IkPLXypbGJkNsxh8zkNLB4DyCKID1UDcBqXifDTdCvwfqUwAwFhvXtbT9u8Luvl/+p/udjcNzAhkm3nTqnfTOM2/fqB5FUCFIkKDza6C34sK4xgDQFkE0eH3/H3QGAF9c90/sr3ZVQACFt2fOWZd0UvXJDU3uxqA4YJ9OJ+RhRNCj/q/UR0UEx7YAyVCg3w3VHBG+0Szq+D32iUyWMNMZvXpl/ZqYkq5MF9Sy3izq1Ar+O4vI+DDmMqJUo3jws2uAhCw6InN0bVxnG4c2trsanhFbIAHzewlRIaaXQWfRmof4xh9rE9rW0+t6kUZW6gPubJ/c911RlvF+vBsS9YH8j66uMB0z5ntbP8OpG/ZkNZ1za6C6ZrUiTC7CrUCQXQAAODznAU3ezVj4WjAWyKZyo8AFRMe2G3/0t5NbAtKM8HBPFGkrIHJAulGSpsAvnGKqiGIDr8VSJ0+zMOsBMA8jeMYMWE0fx/8Z+XsAbWUP381Df9WEjm24UiYp139aN15Rlvb3/7++wvfk5KVb3YVAJ9DEB1VxnklYCdQvw/EmWAwgpu+IYiTABiEdClV489fTSuNIeCFhwRm2ML+a/3iuG6Gls23DoHEn39D4VmB+WsEj7lhSEuHv5snGDcNho4OgYBRJ4BrfD2MR58EIJBx/WGsj67qqwYxYfpgYh+zq2K63s3ijS2Qm1emoqsxGkcc7iGIjhqZ0LeZrhvYwvZ3o0BZjIA+Fid5uymYtTK7r/r1lsG6xq7PAeB99rMAAj2F1XldG5pdBcME6ifdvn602VWoFm9/XmaE05oGynUFXGqXGK1vrx8Y0Au9IjBxCQijBfo5vrsIoqPGwgJ0eh0QSHzlRzUmPESR9DkByVfaYKAL9Iu66we31HNju5pdDXiRu03c974LPlehGmt9MnAaHxlqaLldGsYYWl5lujeONbQ8/2tJ/sHoz4Vx6ABQHpEI+D2jZ6J1qKUjmOCbuJA55dJeTcyuAnyMxSLdM6Kd2dXwe/Y3MAI9J3pocJCGta1ndjUMYfZHTQAHpa41eAbauJ6+db4RTB4tADDMmR0Sza6CKcw+76stCKID1UD/glIx4SFmVyFgNEuINLsK8EGX9vatYIe/8/cTbHdvvD9yTgfvVgSmcTeNmq+lC/bn76bR51ohPha0NrM2/tyufJ1FUlLLBElShAmzMH2tjwOM0qpulO46o63Z1YCPIvqDKkuIOjWlMiSY+zBmI8WBuRgdBBjD6mRcKt8+4wX6SPRSw9oExmj0QGRGsAoV698i3rCyjB717uvo8c3Vul6Uvry2v8P1t1EiQ4MNL9OTujSK1d+HM8yuRrVZZFGwRSriZobhOOSoCGeJqLLosBB9OrmfPr+mv8+N1LA3tnsjU8qd0K+Z17ZdPybMa9sGAF8WiCOi5k7up9cv7WF2NRz48M++oepEhqptIgvd+SMWFnXPnEl9DCsrNDhIjePCDSnrukEtK3ye+4gwWrP4SEWHhRja9n6+eRADhUwUZJGuHNBM7000rp8NdPTtcJcpQfSioiJNmjRJ999/v+2xtWvX6pJLLlHv3r01YsQIzZ0714yqwU2t60WphY+nVriir/eC2RV1sqO7NNRTYzp7pdzXLqk4mDKsTV2vlAuU5WxUsNfLDMQoagU41/N/repFqW/zeLOr4cDdVBeBoFMD31p80N+Y1efTxt3TweD2z6cCo0WH+dZIbCO/A3ERxo98xylfXTdAdaPC1JHzDMPwGwN3mRJEf/nll7VixQrb3+np6Zo6darGjh2r5cuXa9q0aXryySe1bt06M6oHP2Hm3fNm8ebcYGju4zc2AABVVyfCd7LvBdJFxvzrk8yugqksksb3bGx2NeAmr8f+uZENGCo+0txANoNXgBJTBpmb5iuQzr1rA8OD6IsXL9YPP/ygs846y/bYDz/8oPj4eE2YMEEhISEaNGiQxowZozlz5hhdPaBW8aXASiAKCzb+J61NPXPSB/jaaBxAki1q1Ld5HZMr4l1NTbox60wgXVLXjwlXeADnx7ZYLLrrjLa1Om0Nv13wNNYiCixPj+msh882ZyHpe89sZ0q57ujdNM7sKlSKmwC1163DWptdBQdTB7fSon8ONa18Jsj5FkOvDFJSUvTggw9q+vTpiow8dUG4bds2dejg+OPUrl07bd68ucplWCyB+5+3uSrXrAHfle2zkcfGWbne2ra9Ny7raeityc4NmVJW6qebBumXWwYb3sbqRoUaWl5IkEUDWsRrQv+mjuWa+N3iROIkjoWCTh6Dy3o3NbsqXmFr7yZfCFotp8r35+9h2X1y9rc/778zoSFBujrJmBFYzmYQ+tJxLve5+1DdJO8cK1/4DtSkrDPaJ1a7PFf7acb3v36sMfngSznsu5N9NWL/m8SFm37tK0lndqyvC01aZ6uhk2NgFFef/annfawDdKImNRzWtq6GtzVvAfGgIItp5xq+0OeN7Fj1vrum7PfRUvZvixQe6hg6NWtgmzeV7rezfsfsWKdR/7nDsGGsxcXFuueee3T11VerU6dODs9lZWU5BNUlKSIiQtnZ2VUup1692BrVE67VrRujxLiIco9HRRt7YleqbkLFAd3ExJK2EB1Tvs41FRYWouCQApflHskv9niZkpSQcGqxq4fP76KBnRtpyYETtsfiYz2/r/Zio3xzYdMPr0vSFW8tNbTMdi2MyT8fVCao0DAhyta2jTBxYEs9ekHXco/HxkQYWg9Jio4uKdOsPsfXhAQHG/4ZmKnsd0Eq6W+DgyxKOFr184XaoPTzDQ4xdzRtrN3vaJ06xvZBRkpMjHUIDJTdz7J/h/t5ztjg4CAlJsYqNvZE5S/2gNHdG2vNvjTtS82RJEVGhtW4rQVV48o/0kUKhbJ1ifSxzz8i3PP1sd/n0NAQw7/74eGhtjItQVUb+7X5sXP0zPdb9Ou25Cq9L7FejEKCXZdlRh8YZXBbq1s3Rol1Svr99o3itHq/Yx9gxP4Hnex/zBRksZhaB7PLDg9zHSqq6DlfERJa/XOna4a11RmdGqjV/d9Wexs9mtXRuv3p1Xpv3brRSqxjzizEys59jFC3rvED9yIjT8U5oqLCFBN96m9nxyDEwJmKRg2lqei8izjrKYb1fm+88YbCwsI0adKkcs9FRkYqIyPD4bHc3FxFR0eXe21lUlIyzB6w5bdSUzMVnF8+cJydlefw96W9m+jT1Qe9WpfHRndUalpmha9JTi5pU5kZuR4vvyC/SEWFzgPlyckZOn7cOwGdtLQs27+zsnKVnJyh7Ox822PjuzXQq7/t8ErZklRYUOS1bddExwTjgqpTB7dU0zoRtvblbcXFpzq08JAg3TG0lWFlS1JOTr7T8jIycw2th2TX5sv0OYGqsKjI8M/ATKFOgujJyRkKDrIoIyPHhBp5X+nnW1hYs7531oRemjxnTbXfn5F56nc0PT1bycm+f/FcHcnJGWpaJ0Jbjmba/i77vL3RHRP1xaoDhtXPaEVFxUpOzlCGF86jnAkqLtbnV/fTgOl/SHL9+1MVxdW4KMjNLX+ue/Ow8r+9OXavc3Xue1GPRvpy3eEq16E68vIKPb5N+30uKCg0/DcnL6/AVmZxcdUGqGSmZysnJ7/yF5aRnJKpkAqm2Zb0gcYGtb3x2VYkLS1TIQUl7fuGgc316Yr9Ds8b0Q6KT/Y/Ziq2Wk2tg9ll5+W7bnchFt8PuNTkujX9RE6Nj3+hi1iBO1JTsxRaYOz3vlRl5z5GSP1/9u47PIqqbQP4vem9AwESSggECOmQ0EEkIB3piiiggIiiiA3F9imKBVFBlBcFREGUpqBYQEQFKaEIgrTQOwkpkEBI2++PmJCyfWfmzO7ev+t6rxezu3PO7p6d8sw5z5NlOM4jh8rHixs3CuFRKXSt6zOw5vs1m0I/t4KCmuddGk1ZAN0R4qzl79UYxW6ffPfdd9i5cydat26N1q1b4/vvv8f333+P1q1bo1mzZjh27FiV56enp6Np06Zmt6PVOu7/5GZq20rkbwsP8DT6niv6J3tvdLcr17ZrtFPpb74yzEKq0r6sW7eckjv0ce0aonfLOhb9/oK93fDV/UkWt73l8Y7w93RV/ACm830qtN8x2g9H5mCfxeTOEWgUVHNWjlJj4v424fI3Uo0U7218+4aIDrUud6lGezugZM+/Q60WmNmvBe5sFoLF98bXeI/V9/tx9ew7Fz9Q9j4VW8WtRY1800LGmRao7VN15d2o1uE6j4M6/21HjP0GlOqDobb05b23tH9Gr7EE7P90pTqSU+X3ruvaQunvXtS1b+U+iCDqPVduW/8TgM/uiVeqOxax6uOS4PO25lcr8lxL335f0T4o2xwA4M6mtW63X+0Niz7vVa4+j0bvfkd0rFOp/5lCsSD6Tz/9hD179mDXrl3YtWsX+vbti759+2LXrl1ITU1FZmYmFi9ejKKiImzfvh3r1q3D4MGDleoeWcEWcqJJTdRb1vm7dryP36ZF1jJ/hQ2RLo627w31c8eKMW10PqbEJ2GrH7ehGZVUU1iAJ2b2a4nouuovmiY3X3f7XHFgiq8esPyGtyhy76PUep9A6QCzkrr9l9N9XLuGgnsigK0edB1IbD37PU5qJdjjWTOEHfn4C4gJWIf4qDNtLVA2IYbUQ9HCovoEBgZi4cKF+Omnn5CSkoLp06dj+vTpaNu2reiukYVe7RUlextynFslhdv/rDKyT5+OiFO0PW8V5ULsZkHhMCK1k+oQ5+ehnt8q2ZamSt/0rTboRc768jMzB3Xlc1JRxcb8VZajnaz3Vv+WSJvaGfX85a15ZI7HOjUW3QVSAbXeVFOT6iurzOGlZ4UNycfc2JKS9/mCVFqXzlEJu7KaOXNmlf+OiYnB8uXLBfWGpFZ5p5IaVQsbjmRIun25Zp3U9pEmt3ZkiJ3ONrbH9fsqF+TtiuybuovYVqbUTKxn74zE/gvXcAcD1w4lpq4f/rmoTHFBS1hSPFDtRiTWt3obqVG10L9VqAS9uc3V2f4+a0OqL+klx9E3ug6+P3jZ7Nf56ylMKre4+n5Y/+9l5BaIyaNL9m9y58YYJSC1GRERkVqoYiY6SUOt17X6chVaQ+1BanteWkrKquWtXNFUUwyJr4f/691cVWPcDuOnqrPw3niEB6hnJly58q/ew1X/6Uw9fw8MiaurTIckJMW4fqNvC7g6S3OqNyYlHL1a1Ebz2j4Vf9M3O3JAjLSBe3JMom9fhHjb1swvDYBHOjYS3Q3FGbrPVcdXXedQpE6Ng8SsHiEiItvDILodkepCuVxjE5ejdo8qm5EaVenC2prlSyaRKWrmpljRBiJpcbIkOZoGgZ4m5YX/7qFkPNvd/ELlVNUjHRvj/3o3r/KZf/1AEibpCNqFqSj1AJHS2jYMrPi37OfDlfGOcg0jEuujTYMASbdpKx/zJ8NiRXfBbE1CxASzX+jBcwR7JPrayJJ9hbuLEz4eanu/Xfuknp29UsedIfG2N+lIBEYMSa+E+qblB6/v74lfJ7XD5/clyNwj+T3coZHoLpARXSODRXdBMfe1DhPdBSLVCvJynPy/oi8E9RXY8nB11jkbnff05PHugGjRXcALqfIFm/RdIyq90rL8YtXccfzXEx2x5sE2aF6n0qQS9VyD2zxL9oNOGg3mDY2Fl6vj5RdOCg8Q3QWzLX+gtZB29d2QF33sJcfTrWkIWkt8448s42jH71d7RSEiWN3ZHtSCQXQ7IvI47+fhChc96R1En3+YcwJkbOluedCmcxPHCeSqTceIoCoVqmubWEm7d8vacnXJZObk1v15Yls83iVCxt6QKHIGoeQkel8umruO1V4tQ31Nfn1sPT+L23b0z57KdFHBTeSBscrPUqqt0pQc1X+Xrs5OCAvwFNIXoOwmhJT7iue6R0q4NWUFVstLzyJ9ZIiDxcpsWr/oOnizbwvR3TAJx5VlGgSKO446Mke82WwpBtHJZDwBBZY/kIT3B7USl++VkRQAVXfy9yaZNlu7Z3PxQXRz2GsV7vpM84CoOj74clSi1duJsyIoaw+UniF2T1J9tKg0wxQA3h3Q0ujrGgV54rdH22PBiDiz2nsgmcXb1MCUlEFq1bSWuBlF97eRbiWV7X4Dts3Vqeploq3Myt3yeEf88kg70d2waeb+5ji5SHrvDRS/8siQJoLqk710VxS6R9WSvZ1wgTdEq2voYEHlun7ib5zbyOGOBGEQnbD5sfZGn/NYp8bwdnNRoDemC/X1QKMg6Q8qX49O0vtYoJcbOjQOgpMNX1TbG1Pz2LdvHIRNk9ojbWpnmXskzqqxbSTfplQBpO8eSsaGie0wkAUHAQCeEtztn9SpsQQ9kU7P5vJf1FjD1FUr+vi4u2DJfbdvfgyICUUtH9NO9H3cXcw+bkh9I23Ng23w2T3xFr1W0bzOKmPOCiK1GS3wRsxjne1rJZUtnPZJ3UV9aZzUILlRkN7H3K2sb6RvZa21pnS1r99EZa/cFSXZtvpE1wEAjGvXQLJtVjfKBtIldlL5jYmH2sr3/YgWGeKNhhIUm00IMy01rjHhDhZEF8UGDvOkEgyiEzxcjAdz7lfhjDhnJw2+Hi197ryIYG/8MD5F8u3KhTt80/l6qOtGkNTUvvwtwIFyWEvB0LK6Do2DVLc6SIobA5YyJcA1f7h5M8HtTViAp1UpZRyV6DBi+UX4sPh6gnsiv+q/YyluYCi1+kkNKxZU0AXFLJZh0oDc7k0Ks5k0FPro+0lKeX79Us9mWDsuGX2j5Zt08YiOgtgEPN2tCQDgyTvK/n9Aq7LvQNekNQ8bSP1g6REkuWGA1W33aVkbcfXNP+dypP04ka1iEJ30soWduL3OCI+pa3qeXUej1drG2KSqyr8zXUUISbeOEfpn2pH5wgI88aAdz5xSE+6ipXN3bCjWjUvGU/8FNxyJFDcw+rZSfvUTb1bJz0tlq2NNVdcBzoFaWXkN46TRoK6f/X9OajQsoT7SpnbGPYn1AQBdm4bgm9GtsXSU/lXapFt8fWlmoQO2k0pLKq46ahDZmvAA29uHuShdxd2G2f4IJZNEh/oibWpn9FAgh5g5OjRWZ5BIdJD24Q6NZG+Du0n7Iur8qm2jQLOen6qyfZAIpv72DO2H5Fpm7+Nu+cwi0ftNtXLEVChqWyVh60L9PFQx09kWWXNNaOlLfdxvB3gTJVrOT9aR8udTx4pCt9Z0Q6rUEHITsaca27YBfn+sg8WvtzYFkD1rHOxlcupMuo2HbMtN6ap70sCrvaRLGyUFQ+f3qx9MtrkUsu0MpEmjqrhHdBAib2Cq+Rjy88S2WOCgS/x5cLcNas5JCgD9zZzlZ00gSN9MDA5ldXDEYLFIKRIsN5ZLmIQFuaoXcyUHpPAJixQrptaOS8a7A1oqUgDP0Sl9nhQqaJZ089r2uy/sEVULyx+wfLazswbwcLU8rKGvCHOQN9MQkmV4Tmy5eiooLAoYTqsJyHdqYqxdU0SHmrciKG1qZzjLVA/EHjGITrKwlZ9gkJcbdxikOmq6UDKWk7ZrpLoLHzmS8mJc9sqRb/zF68irOXdIDO5RqF6J2m/mkTyUXlKtlqDDUAvyz1c/Vtb180CXyJAq72hwXF0re0Zyu7+N+mpAOYIZfVugSYjuQLbcIoK99E7wmDUwWuHekJSsTS0ESFs0l0yk5/eodFqbHs1roWNEEB7vorsotL5JHknhlq8aitOTDs6Rr4HUiEF0O2JK4E1tl8HcIeim73NR2/enBvaYJ86WbuzYQ946Eaz9hnWNe3cJvgtDQSxzZzWoka3uLiZ1aozHOjXG1DtuL3HVaDRws+A7f/muZlJ2TScpP2elCkNSTWMdtIZA+XHN2Dj2Vl3aIo2s50Si959KtP9Y58YKtGK7TPsObOcc1piIYOUD+yHebqpLW2GrHuvcGOPbN0RtHzeLt6GGCSqcyKA8bzcXuDo7YfbdrXBf6zCdz9FXm29a96YWt6uG8UbGMfphR95QacV38bt98T3QRXSeTEtOcdX5SZKc1JiHN9aCavdS0JUv3Nfd/OJm5vyO9C3pE/FbfPbOpgaDamE2WETHVNbkwJWCp6sz7k8OR4NA69Ok2FrBtiAvyy9+pdCliWOutkmb2hkh3mI/e7V6qWcztA73x7h2DSv+5uchvtCl1Idra2+S925ZW6KeGFe+euDHh9safa41swTJPrioeALI+gkp6N2SgTQpeLu5YFy7hogQtMrBFukLGDuCygWrhyWYvyINAMamhKNhkJdUXSKVUu8RhMxW29cdoyVc2u3tJv8FgfrCcw5EhcFRUwV6MUehI0sMC8DcITGKt/umiTcqPxkWK0l7DYO80K+Vei6kfD1cMNFA0eM7moZI0o6+3KSGmJoGwtKgoK5Cmba7B7Utog9V9yQ57gUl6davVSg+HhYHf8/b5yKdVHCzRcqfSoi3G7o3szyf+zv9WyqaBuGZOyOx88lOJu3jPxoizTFaacMTLQvqUFWTVb7aQI2TV9SulpGZ5klmTlxLddBaFmsebKP634ec3F2csGJ0a3wzujU8JchLLiV9K0+jVJQC1pEwiE56ZzTeHWtewUBDXuwp//JxUpapAUWpaQH0iFJudpM9sGYWrVpP5VMaBorugl5J4QGSbKd1eAAmd47AuwNa1sw9r+BU9EX3xuv8e6ivO94dcDtfqL5ljeaqHJgyxJKPQI4VQPryF9oTUbmqV4xuLdm2XJ0tew+x9fzwdv+W+Op+y4veieJjwUoZXaoHdZrVlmdWn75diK4/uyic9sxYa056nmGrK/jWT0iBm4vll4m1fNwUDwaa2p7IlHnWpJWo7++pXM52Cb+7tKmdJduWPpYco8onnj1ZKU0a2Z7OTYKNBjzN+c2vebANWtWV5rxOTTWuTBEW4Kmamzii0rU2CvZC42D1zSSPr6/7+uXLUYk6/66Sr9FuMYhOeoUFeGLZ/YlYPyHF6m31bxUKC69fbZaxGTxSHRvKc2e1aRAg0RbVT+kLoJb/5YJ+SsUn2oYKgNb2UUeVc1un7wRGl2X36z6pAQB/D9NXUri5OKFLZIhkgXljquddHN+uod6Libta1FbNfsfUPYIcJ5UdIoKMNCpdW7ZyUuxRLfhmSXG2ad0j0UjCCxlrPro7moYg0oIVEiJ5uzmjXSN5bjY2CDCcVmiklbP3h8TVhYuTxuCyctN/CxoMYUFPs6klkGJvQnzcK3LpW1KYXQ1pg1RJY/6N/EmdGuPPyR0qJmVse6Ij5gxuZXM3xn97tD1+MiGNkT1w0xFMMHT9Y4kwI8c3UyWG+yPEgusvXaPYHut/GaLvlyxnbnh3K24aV2HlsVPfO+QhWV0YRCeDmtbyQS07D8DpisdKsZ+qr1B+4Lp+Hvj9sQ5mp7fgvth0D7VtgC2Pd8TwxPqiu2Kz5BxvSi2585CoHUMrAx7Uk3PclM8vwoSA4xN6KsybY9sTHfHJsFhM6uS4Sz5FsZX9dvXlpZ2bBOORjo3M2oZUvzdd7mwmTeohJVgyw3Lu4BhsfqyDsECor4d1392z3Zviz8kdDAYzzAkqMD+pbRmbIv1s6ye7lk2CuL+NdOmZeja3LOXDb4+2x5bHO9rt9ZW3jvoxSjF31nvl44yLsxPaNgqyudUjPu4uCHaA+hV3NA0xqeaBWkgVjBdNxCRIEacuUjUpxXZYSFb9GER3EFLfpRVNyn1r8zq+iKnra1XuR2tVXyauL++VPl5uzpKlUjCVyOWwIkh2h9pM+n66nq6Osfs2dDE9vUdTRIf64hEZgrkv32VaCipLT3R0/VwDPF3xsIGc4/r8b3gc7m8Tji4mzGobHFcXHY3NnDbCxdmpYma8p6sTYur6omktb4T6SRcQGN++ofEnKcm+DqEmeb13c5OeF2virD01HDE+GNQK/9c7CvX9bau4qrnaNAwQ3QWrqaHwnxrGrCOqHHwaZUL6ElMucbpH1cKvk9rhsc41byQnWJjm67XezS2aAazRaODu4oRSG7w2M3QuPKNPc7So44Np3Zsq2CNyBP4eLni7f0v4mbGS01HJtQINgPBzJxvcZZKdEn+GSoqyl8CblAFcZycNFt6bgDf7icnxDZQV7KsswNNVZwG/uhIGqayNuVsbiCP9fE3IY7vkPv3pQqpT6v5Kdxlmd07sqD9APiCmLhaPTLC4WKQhfaND8cGgVujQOAh1fN0xU+D+ATD8HSaE+eMxEwsBebg6Y/bdrSTqVVkw4LN74vHlqERJb+TpSgfRKtS2lljbspn9WqBHpVmWJQauXEL9PPDdQ8l6H4+p6ytp3yylBdC+cRB6tahj9xdicu/ylZ7hPi21LCj3cAeV3VwTbM2DbWr8Tc6hHaZQAKXye5CyaJq+AFw9C9+XRqNxiBnAQFkxzqRwfwyM0V8vq0fz2lhyX6LFnyeJ1SRE7IodtaQHVDtjE2bk/P0tf8D2asPIqXkdsTnvhyew2LQo9hFRJZNN7NgYLRT4wVfOEVt+qaXrxF7XhZjcBV7aNw5E42AvvCRzsVNrLtI1Gg3Gtm2AtpWKJ26Y2E7W5e3mcnV2Mnt5PpmmPGBgSCMzlqfbS8BIqbdRnnO0feMgvD+oFb4fn4I79axUEVVwUU258TQajaQBdA3KVtdUZ02RO3NsmNgOXira14pwZ7NaVY7P53IKDD7f0EXbGwoUoW4Q6Iktj3c0+Bx72Q+ay1BecVuR0jAQWx7viAfb3g6iq+3rNGVVkqvEs+uVShfwv+Fx6N+qDh7XkQ4sob6em5syHKRa/xdk85c4L7gSh9Py+kWVqW0m+os99F8XjWoTjk+GxVW5DuFkGul56zj3cRRD4+0nIGjqCj1TVd5TvHJXlMHnyrk/U1McQg36Reu/qagER8sKoCYMojuYEG83LLkv0Wgev6V6Kv2ayseEmbSGSBngrpx/+PnUpnirX0t8M7o1+rWSe8dn+OTYUKErXbvEAC9xS9i+Gd3a4ExDfbYaCWpYouanqq6LEClwFo/tGiD7fqVMMwln51VW/aZA5ybmFz5Ts0ZBXogONTwz2svNGasfbIP3B0k3Y99c/XQEXKRiSdzG3FQ9lZf8l8/+tDRlgikaBHpanHLrof/qEAy20+KTugKftkhESjUpzi6cNBrc3yYMA2NCEa5QrRypJYT548WeUfD3rHkeGhGiXMHdp+5ogsmdG+MLK69RRNAV+FdZDF1S5QF2S/PGiyTyexGVOtLWyR1KNOfG3YLhcWbXKTNH9dXrcikfi3JdbzgKEVkg+sp4DUFlWOKbdJJjh6nrpETfQa9fq1D8389HJWm3c5NgTGjfEC1DfdG+sXpmTaipL8Y0NqFgIekW7O2Gq/mFortBCpjQviEealc2U1LXDPUXezSDh6sTnJ2sm7ndINDT5NmlHwxqhcdXH7CondVj2yA8ULqZjm7OGhSWiI0aOGk0WHRvPFbvv4iZG9P1Pi/Y2w0djOyjm0gUPOrVojZ+PHQFQFnqgudTm5p8DFbq0ywqKTXr+a7OTvjq/iSUaLUVqwri6usOog+ICcV3/1yyuG99ouvgUSvqIoxv3xB9ous4zM3LBcPjsO10NhZuPyNbG+XnexqYN0bN2Sva0vyr8jzc3+w9L9k2m9aquf+RavK36Ly3+vi4u2BUm3BVrcSyhj0H0Wf0aYHtp7LQzoauddTAmjHxf72j8NL6I9J1RkFBVkwUq+PrjjPZN816TW0fN1zJM/3arPrNjdbh/th1Nlfnc+NlnDBgCkvTrVVfgbnkvgQs33MeY1MaSNEts9jJLh4AFK9Z9+OEFAR7u+HBr/5WtF1Hw9udDqr1f0XhAPmrLhs6H9C1X5G6OxqNBg+1a2hTQWslKLFLt+PrA5MFeLpUpAdJNHBi1TDQEwNahWLB8DilumYSe7lYlUvlJfzGPqv+MaHo0bw2AOvqG6wa2wYBOmYE6mLNfk/KADoAPJBsvECcEjQaDQbHWb5sePHIBDzSsVHFaqJwIykVjP2Enq+UvsnbzRktQ33horIlmsUm3PyYM7gV/D1c8Fb/lgCAyFrekuYz1ueVu6L01kWY1j3S6Os1Gg3CAjwtvtCxtTyu8WH+CNSx/zCU6s/S0fjduGS82isKk02s2WAORz42tarri2X318xNK1V6sU+GxUqyHaDmNcbYtg3wvrG6HDZ88uhhxkxiSwqTm5PKz1yWFkrXxcvNGd2a1YKnQukfHHh3UKFXizpWBaNFsuScZ87gVujVojYmmpBatHpguUUd62q1DE2ob/Jz/6ey6zpTRQR74/nUZgj1q3pT1VXuwBF03wgYGBNqE4eG6rPAzT5X0XMnTdefq6cNGpMSjhAfd7NvpMi5UtReMYjuoPq1CsWMPs3x3UPJ0Gg02PxYeyF52EwpoCiCriWrclt0b7yi7UlRGMzbTZ3fn9p8PjIBD3doaDDXeViAJ6b3bCZ8BoM1bOHkRi00Gk2Ni53qS/0rzwppaSQFiaNTMqAWHeqLMSkN4PJffmNd136V04gZElfPDx6uznitd3NEhnjjBQM5aQHl8x+W3+zpZEJan7aNgrDhkXbo1tT0AsPmBJwskRAWIOv2AWCSFbPgrfF0N+M3CMyxeGSCpNsDgLp+Hujdso7QFAX69g1P3tEE7w2MNmM71v/2pM6JLpcQH+mK2AdVu8E1sUOjKnWTdJEymGsKKfeqvVrWNvm5pRa8zc5NgvDsndL+9suZOwtaTTPpjf0806Z2VqYjClgxurXexyKtWCEnqsaPpdo2CsL/9W6ut2CwWkgRoJT7XMkc3z5ofnpXS4T43D52LB2ViOe6N5X1QlOK64gPBrVSpFbJuHYN8GbfFjXOt0299qjuTQVqF9kb9fwiSRIDDFRNr8zZSYMezWtXLF/2drs9W1YuunZOuorHqYGICx1dM/aCvNV1YlD9hFnKwFVMXd1FWF4wocimNZw0xovZGptpWl3lgKcGZbMcH2zb0OCJnrxBQGWudNRyQdVMxzJ3c1j6PgbGmJdTed24FAyNr4fx7RoiNaoWZvx3EvPkHU1wb1J9NKt9+320quuHuUNisObBNpZ1zg6pZbzpupn49n+zsasLrhRQujs2tKLo5l0tauOrB5LQwMjs/8SwACSG+SuWv3vFmDb4fnyKySm9zAk0fnlfIjZOam9p10zSMEj+i5nK9zUmtG+o/4kSc3fR/1lbEvBVesmxteL1pAfSpV2jwBp/83Z1NunmkJR6t6yD+Pp+Ft0MaxDoibb/vY97Em/PgvxIhty7alsJowam3LQaElfXrN+RJYcwjUaDIZUKMMo1GUnqEfBiz2ZV+mppsMeeWFpIs1GwFxrpObY9ZWCcrnmwDaZ0tY8aGdZysnYfp/AJ6JSuTRAR7IU3Bxnf38u9966t0G/X09UZa8clY/2EFDSr7aOaIpr1DKwklmpCavdmhmtJhAV4ontULUlu7gNVr03INAyi25mwAE+dd9vVGqx2ZN5uzmgd7o+4en6o7aN759W0lvlL4d/RE7xRu8oBw8pSZS5KtPXxjlUuSHVpZGZO+BGJ0lWYl+s0zZp0InJ7q39LLLs/ET9PbGvR610EzfYz9yTEzcUJz9wZiXHtG+KNvi1Q978lk/ck1seUrk1qnBylNAw0OMNBX0oLcyg9A1CXO/6bWRFT9/bNqPHtlAtOmiu5YYDJz503NAZdI4OxdFQink9tZvbFiLOTBvOHx5XNyFGAu4uTbMEOb3dnuyuiNsSKNEEiGUrlootcObPNuSBsHOSFrx6omdJEl4a6UmCY0JS+m/uWcndxwoIR8RXFbM01e2A0Vo5pXZEWDAC8Ba/o9DHSfuVYU+V9yeu9m8vVJVmEyVEU1opA3OKRCWjfOBCf3iMuVYQ55wv9W4Vi46R2WDGmNUYnh2N6D2WOYboYT4mjzHnQIx0bYaqRSTzm8vfU/3sMC/CEm42shjFX5UOHKdlGHu8iZgWZSXQcB+v5e+CbMa1xT7Ly+clFquvngVoSroySQnMrUwGZ4mkLVxtZElIXkYnCHtjnnpQqDGgViqa1vPFCquEl4kpIrJSHvZw5xUbtjUajwbyhsVgwIk7vhWNkiPm5D7uasZSelE+PIEbN96hUEM5UlVOZ+Hu4oGktHwR58c64OfTdPGiuQF5qSySF15xJ6u3mjEGxZbOs3x4QjYc7NMT6CSkYp+AMX3NnKGk0GoP1DiqLCPbGOwOiZSnebWt0Hf/NDeaqgT0cQcydzfRg2wYYmdIA84ZKPwvaHNakLjBFfTkCp7B85ZmLs5PuGwKVKH1O80CbcJPrAswZfHu8NDGwYkwtq4zULDrUFx8MikFEsLy/ASk5aTRoFOSFSZ0aC0ub+Vz3SHQ0kk5ICf8bHqfzBpS1Q9+WfztS7blMGVv1/S1fpVY99aIpUqPknRBWmaXHF0tznTexIFbhSCxJk2SslkT13/nguLoIC/DAXS3q6H4BSY5BdDvXo3ktLLs/yaQCcW/0bQE/DxfJZwcU/5f0r5HERerUyNCS99GViuqV3/XTaDQGL15TGgbi1V5R+HJUonSdlJCQu5c2cIbY2YIl4kpd9r7Yoxnuax2Gdo0CMa6d2BkNomehWjJz++W7mqGLwikArOWmktm+ppxItm8cVBEECvF2w4NtG8o2C0VXAO6OpiE6UxkYm3Endzo0c9T1c0dygwC8ZiMzPXtWWm0k1dLUcpUPF7X0rPhyRNZ+yp5uzphxdwySG9ZMk6KUumbOhp99t+n5z22Zi8JpeXw9XDBvaCwiTFixZ2paKFul/rNT9ai8b6686kxOrer6YXBcPcmPM5ZgIT/TBPwXEJfj84qvX7bSqGGgp1n7Jo1GY/ZvXYki69ao5+eO9wcZKfisx//1so1zTalU3n2oYFcCoGxi3OqxbZh5QkHquLImVWhV1w8bH2mHAWbm9TXG3U6Xjukyf1hsxb+rBwiN7Wh1zsrXaNC7ZR1ZDr7G9vtf3Ge8yFiP5rXRI6qWbEWObNHkzo2FFFw19d5C/5hQPN4lAhqNxqqZGFITcVHz8dBY40+qpm90KN6tVIxObfd05gy27CS4nJxjV8TMM0N0zaJtZWEB1+p5SCsHlAIUft8Bnq74aGgs7mpheoE7kdo0kDcQ++mIOLRpEIDZd9/+bdh7MM9clW/y2wq//2ZxppiYTqljRDC+H59y+w8S77vlPhTo3Y+o5CBU/RCuktiCSdQSCDGWWtBeKZVjmQwzJzXd8ATjqcukSPu1eGQ8JrRviOlGiq6X55BuEOgJDyOzeMvN7NcS49s3xEdDY2WrLSCCJddT341LQSsL05dVLx5t71RyuKih+vdu6orXB2zw/E8NHCe6SSaRI5BlKD+bXKf+j3cRUzglsFL6CXODUZU/C7Wc0Bvj4qTBjL4tqhQ5kkqLOj5ICPOHu4t5S5pEs3S2hBpmxqiFvo/CkvRGhjQK9sKjneTJiyhqNkCgFSlwXu/dXNaAb6CXuoLoLk7SnQLV8XVH2tTO2PZER/w5uQM8XJ0x++5oJIb546W7xKdTq8zYrHqR9RJM2Qt2aGzeUvy4+v6YNzQWTSqtPOjdsg4e7xKBxffGm9dBO5UicEZ5ZZYcBdubMR5Er36yxP/1jkJimD9e7RVl9Llx9XUHQWLr6Q+OPN1N2pzMpjL0XauxyK0Sp5rGityTacqLy8udHmzukBiMTAqDv5kr0fpEy5dywdJx6uykwcQOjUx+frdmxlOHSvEzru/viYfaNTQ6CWNs2wZ4q39LfDYiHm/3a4kGgZ54q1KNsEAdrw/2dsO4dg1Rx9dd6LVkqB3eRJJtxa4qDg3mdcLcm0n6hqK5vydTr2+TTUzHRlXZ3tkk2RVdhXqkOOje1zrM+o1ITBX7/UqMfc6m3sk3RGviWcnDHWrmO/58ZEKVmf3WsCbtzICYUJOet25cMv43PM7iO/nyjg/lzg69rBg3/aLrIK6eH+LqVb0RsXRUIl7tFSVLoOfu2FDU8XXHMAtvBOn7HdXz95AtQC8HDYCeKpi5rLb9pLlcnJ0q9p0dI4Ixf3ic4is+rLkYXHxvPNY8mCxdZ6xQvt+unM5n4T3xVS6MLeXspMF9rcMQLXHhSCVZkmfTUuamTlGEtW9fz+urXPDKdOg0JUg8b2gM3h/UCr1a1MH84XEGi0qX01fk01Ce9GEJ6pv93KN5LTQK8sRQGSZoOJr5w2OFp+7TRc66IEvuS8Rvj7ZHbQtTwZn6s09pGIgnukbA1cwV1yLPc/S9twntG0py3SeKq7MTujUNQYCXK6Lq+GDV2DboVqlGWM8WtdHUQB0GkRaMiJP0ekEN59FypSvqIVFueVPSj0nlzX4t0DUyuMpN/Op55I3d8LurRW2z64QZK/pdTm2rhG2F/axdIdXSF1R7f1ArVezoSbdGQV4YkxKuSCqCmLp+2HQss8rfKmZmWzk9wNPVqUZO+U4RQfjzRJbe17QM9UXOzSJ8M7q1yTPXQv08EOpneaAhyYI7wYNi62L1/osWtymHEB83nMm+adJzI4K9cOhyXsV/v3SX7pl2zWr7yHbB5efhinXjkqHRaPDN3xck3fYDyeGY++dJSbdpT6Sc+WPuRay9kPIzbNswEC1DfYWvipl6RxP8e+k6OkaUzWQakVgfp7NuoHOTYMQYmFGrBoZW3qmZh6vh3090qC9e7NnM5BlVNYel9GOqfIseRo7R5hYRtLS4mjlMWakod5ojNfNwdcY3o1vLui+Kqu2DI1fyUN/fQ9EbUkpLDAtAYlgAFmw7Y/S5Sk7G1VV7xBJ3taiNTUczqqQidXbSmBxAklurur44cPF6jb/pMyjWtIk7UmvbyLz9jdpWARvj4qTBsvuT8OOhywjTObHBvDck5fsP9fPg9YKJpLrRExHshRNXb1T5m6nHAXMPS2EBnnhnQDTe3ZSOr/eWXWf2bF4b87acMun1A1qFYnpP6Ve0dowIQseIIJNu0FNNjnnV6UBE5ql69s5ItG0UiOH/5fhLDA+o8ri5S7JtnoKBiaRw43eA3UwIOj3SsTHuTZJnVr+cyxkrG5vSoMYBwtgssE9HxGHNg20kWfpt7Gv/7qFkvHxXM4tmXDUy8U663IUly2eMmvubfqRjIxl6Yz7RQUMpVR6zM/qUFfuxtYsdS8i9bNvezRoYjTlDYlTxWxiRWB//17t5xexZdxcnvHRXFLo2Nb58XDQ1fH6WKD8mGjrm9W8ViqRq53GqYOAz9/NwQV0jN7dHJ4ebHWgn09WzcBWD3L+lWQOjMap1GOZZUBtFH60W6BRhW4XHKzP3VEGqcwtrvunXejfH74910FkofuB/AWmlCpcas2J0azyf2hQD9dQee7FHM4xr38ikbY1qXZbHuGuk/vH208Ntze6jvevVoo7Om/HmDOX/U3nRdhs9DVGUNRNvpLoBWJmIVRLdmoZgcBxXe1mKQXQ79d7AaExLbYrIEHFLl4bE18OcwTHw/O+uYfdmIRjQSswddjWovMuVO6j13kDjxQXdXZxwf5tw3JskZilvbZ+qJ7w9m5uWSkLueGCrur5wdXZSLCdnPX8P9I0O1XtQluJYHRnijbtjQzG+fc20OVJYNbYNZt8djb6tqt4YGRxnuEixiAKspjAnd7faAtSNghypYOLtD1+j0dhMIU016ixX/spqjKVNcoSLv24y3QyQ4vxq/vA4xNT1w6cj4iTokfmk/v515cGtblKnxlWKztoaUw5B1qRZs9brfZqja2SwsDGlTx1fd0zuEmFxkF+f9o0tW0EgVRBFqrz/pvwW1XL646InINYxIhirx7bB/OHyjj1Tg2qNgr1wd2xdvemVkhr4m7yt/jGhWDmmNd7spz+9mRzBPkdV+Zow2sIC9OX0rfC+479zg3sUTrGlK7WuOXSNMpGrQ9s2CsT7gwwf061Z3fxIx0YI9XXHYxKm4BmpwjTEZBiD6HaqU5NgDIo1HMBSmkajwXOpTdE63B8jZZrdDMh3gWqtTpVmOhkr7Gat6kUNX9Nx11yj0eCxzo0xpav4olKNgrz0509TOEqpZIX2xibMJH+qWySCvd10FpyqnHPe2Kf0fGozjGtXNYguVcAi2NsNHSOC4aTRVClKWPm3qOQMTd0ndMbb/2hIDOLr++GdAdbnXLY1nIlJSniss+3UCZBLvFS5Qqvt0sxJQ6Iv0BYd6ouF98Yjrr48+UzVRN+npURqjy4GZo/K4aF2DRBT1w/TUpvK1oa+z62unwfeGRBt+2PKhFNRLbQWn+ssGZkAAHjKyuKiwV5lKeo2PNLOqu3Yi/BAT9kDem/1b4k6vu4Vq/8qm9Sx7Jin7wZyuBWpFBoGeak6UK7entVk7FJzZr8WCPR0xcsWFoqv/Fmsn5BS8e/KN8/e6tcCvz3aHlEKr6ycMzhG8m2aWk+sstHJ4Va3O6F9Q8wZHGN0ZfTwhHp4tFNjfHlfosHn6RLq54F141Nwv47+mhqyqFOtmKwp2QGk5qhpMKXCT48U5eKkwcfD4vBE1wjZ2lBqBrG5RBYwU+sMze8eSsaXoxJRW+HK5GqZPWPKja5GQV74cUIK7km0fGaCkgFsz0oz3tT0U/xmdOuKf3u4OGGBjplJyQ0DsWBEPCKC1Vl8SA7tGwfiiS4ReKVXWT56c2bhW0LqWX9kWyrvi3Tth+tZUVfCVli7WxwcVxcNAz1rFNhqacbsuF4tb68a+rHSBb0tUtFhxmR1fN0xs18LxdoL8HTFwnvjVTW5JtRPuvM+ta0Is0T5bGpLzof/r3elejIaDUL9PBSpZ2SvzB1PLUN98f34FPTQsaK2dYMAbH6sPZ6+M1LnaxNNSL9pFiOdj1VxMW01XTNUF13XDz9PbIu+0WXBYWt2OZWDl5Un2Gk0yuby9/NwwZ+TO1iUE/vVXrprWAFlM9vNXRGzdFSioilNXJ2d8EByuOI3LMqZuvpeH1MnY6Y0DND72J3N1Dnp1FYwiE5C6d4FVD2Kers5Y/Nj7ZXojqQ8jRTqUrPvHkpWpJ16/h6IkqlgZDljhxmROWxNnUBiq3l2jc3ok2rZsSkqnyTOHx4n3WxQGxfi7YaRrcPg51F2wf1CalO0aRCA2XdHS95WQpi/JOmJ5KQv8BAssL6IPdH39X8yLBZ3taiNp7pJtzIqMsRbkfGmdFHC57o3xYoxrWsU2GpuxsWgu4sT0qZ2RtrUzgjxUfYmtiF3WLCSUOW7FL3ubFZL581ce2EsGOTt5oJ145LtOm9z5fPbhoE6AlUSndv1aqFMjSEybu24mtdPakpdKFXQ0B5uXJnLVq/F9Hm4QyPJCnVay5r0KpWVX8uonb6UTkDN31bDIMtXq/Q3kOaPM9Gtw0+PxDLxIKymExBT9YlWd/53S04F7OWcST2zsaQ/IbOFmb6PdGyEIXF1hRRSIcNC/Twwb2gsOspQHC3E2w1D/iti07pBgOTbt8ajnRqjb3Qd9G5ZdXbInMGt0LZhIF7qqX/WDVkvKTwAr/VujkAv6W5WLL0/0e4uesvZ4/tqHOylaOFSvR+hjX+0df0N3xRZNbZNjb+90VfaWfGTOzdGA11B42pC/Txq3KCMr6/embLG6AosLhgeh0GxdXG3Beedz+iZvUzqZayQsZI0GsDHvSxIasrvkeyD0jf21ZRSSOmuyNncguFxGJ0cjuEK58gn09heZJLIRri7OCHU1x2Xrt8y6fmVd/xK5MaS+xrc09UJbgrONDaHlMuI7Z0cJ2NjUhpIvk19ejavhYExarlpQvck1UdsPT80reWNx1cfEN2dCr1b1kYtHTNy2zYKQttGtpUv3s/D8Kmdo8wgU2tqN0dUy8f4zZGmIfLfVK08O1qqdBcJ9f1wJa9Q0v6bs8y6+u+5TYNA9G5ZGwn1/TFjw7Eaz9cVTEuNqoUZvxxFfmGJ2X0tV/nnNqqNZbltWzcIwEyJA/omkXFXER/mb9bKt8pfp5pTbzi6J++QLy2pNaof3j+7Jx5L0s7hobaGz7ubmJnG0JR0ErZ0s9dBToskU3klsb+nK8akhGPRjrN6n79iTGscuZyHzemZ2Hg0U4ku6jU4Tvc1odLDddbAaEz99qDex809dpCy1BnhIodm7k7MXmazujo7YUL7hnggOVzxHOFy2PhI+ypBjHArq39XNySuLur5uaNPtLTLWG3onE8Rtv55vN6nhepmPStFjRcwThoNYur56V1CKnWXzSm2aOve6d8S8fX98EIPywpfkTIcZ0Te1iUyGA9IUDSsMkv2FZVnzJkye86UQNH84XFYNbZNRU5rKczsZ11x61d7NUffSsu4Tcmzq6t4udL6RdeBv4Bc3qYMpSBv4/1iIM48sfXKbhIMVM3qUNPdmxSm97FX7ipbuSZnIV9TaKBBRLA3XrkrymDe60kdG6l20pNStGbOLjD3+fo0keHmsanHRmtq0HSJDEHHiCBM7NAIAPBIR/1F42v7uKFRkBd6tqhdpW5WdeX7A7l5uKgjhU2ywGvTdTrSTpF5OBOdSEYv9GiKx1YdwCMdG5n0/IfaNZS3QwqqfkIWVdsH/VqFYt6WU2Ztp/ppSvl5y7Pdm0Kr1aoyUKiU3i3rYPbmE0afZ83JnpsVQUhzvhrH/RYdl5ebfCeyX96XiDl/nsCjnfSf2Nubrk1D0NWCnNJEcnPSaPBop8a4IzIYe89fwwe/Gz9uGWPKKilLjnzmHos0Gg2kuFcXEeyFE1dvWL+h/7g4aTB3SAwKi0tNmnXvq2BBO1vUoo4vJndujPoqTZnXtJY3jmXk467mtYw/WR+FlynNHxaLK3mFqktDaO2n0Ce6Du5sFqKafNPGGMrPbK5eLWrjx0NXJNuevVpyXwIOXLyO1Cgrfq+VlP/+9fl+fArOZt+Eh6sTHvzqb/RqWQftGwda3J6Lkwaz726l8zFDuxFd14Ut/svTH+rnge8eSja6mtJeVL6Rr2RB2VGtwxCqorRTtsoxRik5lAEx6imw07ZRELY+3tHh7/CXG5PSwOwguiG2EECXqliKLpUvjE2t1G2uhkFesmxXJCkvGMhyz9wZiav5/+LepDC8uP6wpNuOquODuUNiJd2mGknxu/fg8UlVtj7eEa7OGiS/96fR5zppgFIbmv4aXdcP0XX9KoLoLer44NDlPMG9sl8pDS0PklBNpqapebpbJP731ym81FO5VUGfDIvF3nPX0MGKwJi5Eur7Y/upbItf7+LspLoAulRMDaBXPht1toFrmnJ+7rpvzD3XvWlFEF2J1KS2qkUdX7So4yvZ9p7oEoFJK/8BoPtGcB1fd9T5b5X7jic7S9auuXTd/F48MqHi39buD2zodAguzk6YNzQGhSVaydLLVVd5JXbHiCD0bxVqUQF3qolBdFKt1Kha2HAkA/e11r9krro1D7YxuGRNLn2i66ClnoMhA+iOaemoRPx46ArGKpj/W59wPb8JuVMh+bi5oHWDAJSUlKK2CTlxrWFKMGlYfD1k5BeimZ2kgLJ1df08sOS+RACQPIhOprPHQJua0/gYi5NYes4QKCANhl4mXsn6e4jrs5/AtstVHguPd4nA46sP4N4k84qI2VLQwF65OmtQVKJF+0Zl+9JhCfUwNL6uohM9/Dxc0SXSuoLgXm63wwI+bsZDBKPahMHPw8UujyFK8XB1xoCYUBQUlVQEOW1BVB3dE4QqrzBUU8FJ0Wzo/oi8dHwOjly/pk0DefedQV63r72bhHgzgC4hBtFJtf6vVxTubxNm1kxeEQF04Hb+O1syOK5exb+DvFyRdaOo4r/lTLPQKMgTp7JuIjWqtmxtqEGz2j6yzkLXR9epSHx93YVJmtaSuX8aYN6QmLJ/ynySVMfXHRevGS7i+/SdkbL2Qa06NQnCPxevIdhb3hsZSquZ6onhJEvY4kzARzo2MriqqUNj2yoGK4UQH3e8OyAa3jIev+3BSz2b4UJuAVqGSjcLUArtGwdh82Pt4W1C8NJeWRpMER18XDsuBccz8pHcMKDib5Kc8ygcW3Jz1mDNg23K/m3CzTxXZycMia9n9Hlk2HQbq2NizvF17pAYLN11DtuMrFjwcHXmpDMrVN7dVN/1BHmJv2FcTg33VeRauU2OxXHP1Ej1XJyd0FzCpU7mquXjhoy8Qkm3+XiXCHzw+wm8LDDo3ie6DrxcnTGy0mynFWNa4+TVG9h4NBM3C0tkW1YEAMvuT0LOzSLU8ql50ePspEGJhWvTuzSrhd+PZljcr/IbCV0ibfsurZpu6GtgGyl3rBHq547jmdLlsZVS+Sc/qnUYwgM8kcAq71TNgJhQjG+vXC2OyrsDa1Z6t9AzC+7pbpH4eu95oUUSy2el6iPn7DxrZ6JaY2h8Paz4+4LZr2sd7o9dZ3MxON6y4oLmrqjqV6ngptooHUD3UknO5sFxdbH3XK7Zs+Q+uycOC7efxZSuETL1zDQh3m4IkeomteCbwaImI6mJlyuDuVJJaRiIlIaByL5RiOfWHcKec7k6n/d6n+ZoVssHXZoEo0mIF6Lq+KKlnuM82a7qN0obBNrX/saavXevFrWx/VQ2ejY3PsnQy4FvtqsFvwFSHbWE3D4aEotPtp7CpmOZkm3zvtZhGBJXV2ixmWHx9WrMwPLzcEVcfX/E6ZmxLCVXZyedAXQAmDc0Bi/+cBjPdr9d0d7UmUmLRrfBiXPZSM/Mx+/pV/HVnvN6n6vrILf8gST8ezkP7RoptyxVDfHlJ+9ogvd+Oy66G5JS8nMN8nLDrEkJKMwvUK5RM7k4O6G7RMWLLPFa7+aqLcbm6JSeAefq7IQRifWRf6sY9f2lv3gallAPwxLEzoxcMaY1tp3Mxlu/ptd4bGh8PYToOf7ZOncLZxHOHRKLrBuFes8LjImu64dZA6NRx8cd9325x6JtAMBjnRpjzp8n8XxqU+NPtnGf3ROPOX+cEHqzqbLnulv2mcfV98f7g3hz2BTlN6vIuOdTm+HZdf/ifhNz4KuJWhfkBXq5IT7Mv0YQ/ZGOjTCmUtrLdwdGK901AICLkz3dOFHBxSXVYGxS2f/1bo6SUq3Bul1Pd4vEgYvX0KWJuAkTVMae9hhkg6Jqqzc3ceNgL7zVv6Xk2xUVQF8wPA6v3BUlbAmzKcUcE8MC8MOEtuhc6eDg7KTB4nvjjb7WyUmDAC9XJIUHVLkwNDUIH+jlhg6NgxwuN9s9iYbzr0o2u0qPiR0aAbD8IrqcyAuH+PAARISod18m2l0taiOmnp9JzxW9LJ/kN/WOJnjJBlOg6VXtkFHf37NKioPK6VWecdCUUtWVLy/vHBkMZyeNxQH0cp2bBCMixLoi2Pcnh2PbEx0VmUwgWmw9PywYES9pYTtbFino+K3k2ea8oVULbb9/dysFW7ct4YGeWHZ/Eu5qYXtpJyufCtvC5YxaJlg0N3PWe6CKUqTYEk8JYiAfDFLPvsvJjJWFo5PDEerrjnHt9NdKMxYrGZZQD//Xu7lJMZXqLJ3oQLrx0yShQnzca5y82sJB3xbFh/mjT3Qdxdvt+t/y8nHtLE8ZEF3Xr6LCdLdmpi33HdU6DA0CPTE4zrIl4o7unf4t8XCHhmhTqbK3HMa2bYCtj3esUkGc7EfrcNMCUu/f3Qp9WtbG2LbiC/HaO5VOVLM7K8e0xifDYlHbwI2h5Q8kIaG+aTeY7MnyB5Iw++5oDIqV7vjs4qSBr7uLRReXFduwJseQIFLVgrC20HhzATVgpDI4vh4mdWyExSMTRHdFNtVnQXaIcLy6EdYKD1BHwNda1q64NfU63Zau583tauvwADm6YZXhCfXg5+GCexKrrsZTuvCvoSPSSDMLZ+vSvlpO/rp+us+xlJit7aTRYN24ZJOeG+zthrXjkjG+fSN5O1XNlK4RiKvnZ3TSHJmH6VxIuAUj4vDH8at4+ccjortCMnhngDRL8+YNicGt4lKTZ/JP7hKByV3E5slUktQzsbs2DUFXC6p4W9IPFhMSR84Z/OEBHiav5ukQEcSLejKZLdRaaBjkhYZBhmdHNwnxxpi2DbB31QGL2oiq7YNDl/PgoYJ9qDn7kkAvN3SMkPYCV6PR4KeH26JUq0WnD7dKsk0PF3XkDFdCWIAnltyXYHFNHFue5ebipMHoFN7AJcNGJNbHO5tsP/3hh4NjAABtZv0huCe2S6PRoFvTEElTvlrrqW6RmNK1SZUbya0bBKhqBZwc6exa1PHFxWu3avy9PDXQnnM5mPD1fsnbLRfqZ/rNNRHnrvcmheHepDDF27V3tnvGQ3bDx90FvVsqP0OazCcyZYZGoxGaS57MZwNxLpLR6geT4efBJa8kvaTwAMTU9cOAGPUWiVTC2/1bYnBcXXx+n/3OoK2ub3Qd1Pf3wJ06VqW5uThJep4QHuiJB5LDMblzY8m2qWYt6viirhkBAbIt3f/7zdyrZzaopxvPsQ2xZpWLIzKlQKK9+ULPsbhfq1D4ebjItiK89n/B6epjdGRSffi4q3fOrNS/KF1xisSwAIlbIeJMdCIiIrvEmxhkr1ycNFhoQq0MW2Bs5q+3gcBWqJ+H1fUkbM3Ld0VBq9WaNKMr0MJZ1ZU92km+ALq1ueDJ/sg5V+XVXs0xNOEaYuvVTLPWp2VtxdM+kH2rcaNTrVVPJdK2USCa66kzEeDpil8mtpP8RkygpyuevjPS6Ko3EcIDPHA2pwD9Wjn2ZAeyTwyiE9k5H3fOLFErF4VmtdT154U6kT2y82tSh6CvuGPP5rXw8+EMdGSaoxqMBdDfv7sVlqSdxYs9mynUI8vU8y9LeeXvwcsxqknqM0Q3F6cqszJTo2phw5EMDE+oh6e6qSflA9m2z+6Jx/WCYrPSXIimxKmUHCsZEsP9kRpVS/LtSmH1g8m4VlBUY0Xqmgfb4O7P0gT1ikgaiqZzOXz4MMaMGYPk5GR06NABzzzzDLKysgAA+/btw9ChQ5GQkIBu3bphxYoVSnaNyO58OiIOGgALRsSL7gpVMzYlHNGhvujVQt6ljj+MT8GqsW2EpdQI9HIT0i45BgaQyV7oCpS/3qcF0qZ2ton879UFeYtN49QhIgjzh8chLMBTaD9M0a1pCJKsKFIXHqj+90iWibSy2KsxL98VhU+GxeIJB6ofZA1b3BeLEFvPz+QaNzyPk5dG8ltx5tF1/SnFcXlsSrjFr2XKMpKCYkH0goICPPTQQ0hISMCWLVvw/fffIycnB88//zxyc3Mxfvx4DBw4EGlpaZgxYwbefPNN7N8vXxEAInsXV98fO6d2RmSIvCfhZL6JHRtj8cgEWXK8JzcoW47r4+6M2r7uaCDwAjvE2/6D6Lyksl2VZwW5OrNEDMnEgYIEb/ZtgYExoRjA5duKCfJyw9ejk7BuXLLQfpTn+m0qc+DXkTjJHLR1d3FCUngAXHj8M0mvFrUREeyFsR0co0aCEmz58KiGvkeH6l7JZu8mdrT8Nzgkrq7Ov/MeGZlDsfWDFy5cQPPmzTFp0iQ4OzvDzc0Nw4cPxzPPPINffvkFAQEBGDlyJACgXbt26NevH5YuXYrY2FilukgqwaAvkfnc/rsIerxLBBoGeaJrZM2ia0R0m5ebM8ICPFBUojWal5pIKg10zMK6O7YutpzIQnx9P1nafHdAS7z601G81ru5LNsv1z2qFrqrdGm5PYsIFn/e3KquH9aNS0awA9w8J8fk6eqMb8a0RkiILzIzr4vujk7ulW6IKJUy0lQhdl4DQsSn7e6iwhtgZiwvEFH0VM6bhhHB6stNT/JQbORGRETg008/rfK3n3/+GdHR0Th27BiaNauatzAyMhIrV640ux3eRRKn/LO39DtY/kASzuXcRHxYzYI3+toCqh605P7+9W1fxLjTaJRvt8rnbqRtJftm7tjzdL19ALX1fca4dg1wLrcAMfV8odEA3u7OGNk6zOrtWvy5mDFGpFT5lE3JfYI57SjVF193F1y/VYyEMH/jbcq4H1Hi/Vq7T/72IbGzN61R/T2a+p7N2Y+TceYeFxuHeOH9u6MR4uNW8fwukcFY82Ab1PVzl+U76do0BF0igyVLR6D7mKvleHJwdf2VWSZv7fWGWrSq64vvD14GoPu92Pr7s0dqH3uB3q548o4IuDo5wdNAUerqzHk/GgPPN7SdQbGhePvX9BrPV9tnaWp/avtUvWEo93vRN/YMtino8zXW5jsDWmLh9jP4v95RkvbPlO/A0OOW9uW3R9ujoLgEAV72OSFH7fs9KZn6HoVUstFqtXj//ffx22+/4csvv8SSJUvg6Vl1Zo6Hhwdu3Lhh9raDgx1zWYuaWPodhISY/rrKz3V2cdb5dzlUbddJ59+V4u3toXi7Lma8ZxGfialjLyTEFxO6RCDA001IP6X0woAYWbZr6efi5nb7sKLkZ1s5NYeLq3L7BNf/LlJMGXtKfR5p07sj/1Yxgk2Y9ePh7ipLv1Y+3E729+vi6lylDXf32yevtv67toSp7znsZonZryH9LheWVvxb1+ep61xhoI7n2eJ3UXm/52kHx1OyLbZ+zTeuWzP4+XoiuXFgxW8nMq+o4nH+ntRLzWNvcs8WZj2/XoiPWWPNzc1F7/ONbWdoUhhW7D5X8d++vspfy+ri6Wn++eOApHB8vfdCxX8b+lykVHns+fgY/vz8/TwV/3ydnJ2Mj4MQXwxtJ01aJPdKs9lNGcv6HtdoNBZ/Vo6y9lvN+z2lKR5Ez8vLw7Rp03Dw4EF8+eWXiIqKgqenJ65fr7osqqCgAN7e5i9PvHr1OotUCKLRlP24lPgOKi+jKyku0fl3+dst1fl3peTnFyjebrEZ71nJvlky9sa1KZutrdYlmaJZ+rkUFhZbvQ1LlJTe/uKLi5TbJxQVlrVlythTeqxlFhQafU7BrSJZ+nX92k3Z329xUUmVNm7duh18cITfdfXZEqa+53oeThidHI76AR4O8TnJLTfn9oQPXZ+n6HMFOVQ+5pa7cbPQbt4fqZuS1xty69GkrI5N+W+nkY8rJndujIZBXvw9qZA9jb2XejZD2pkcdG3ob9ZYKywq1vt8Y9uZ2C4c2uISrNx3EQBw/bry17K6xNa+HXMytT/Xrt2s8t+Fhfo/FynoOu7m5Rn+/NxKSxT/fEtLShVt89atYkzv0RR7zuWibX3jqZb0Pa7ValUxFtXInvZ7xpS/V2MUDaKfOXMG48aNQ7169bBy5UoEBZVVbm7WrBm2bt1a5bnp6elo2rSp2W1otaz0LJoS30Hl7Wv1/F3udk35u5xEjPUqn7uRth3lM7FXln6OcfX88Hv6Vau2ISWl+mDK2FPD51GDTL8ZpX6Latoni2b6e9ZgUqfGZr6G9FH7cVFO1d+Pvb0/Ujd7Pecb1SYcgH2+N3thD2OvX6tQ9PuvCLRZ78XAeze2HV93VzzbvWlFEN3T1VkVn2PnJsH4cHArRIZ4W9UfEee9utp8f1ArXL5WgGa1fIRdjytpQExdDIipa1Lbhh5Xw1hUM3vY70lFsWoEubm5eOCBB5CYmIjPPvusIoAOAKmpqcjMzMTixYtRVFSE7du3Y926dRg8eLBS3SMiIgnck1gf07pHYtXYNqK7QkREREREKvJ0tyboE10HHSOCjD9ZARqNBu0aBaGWjRQ/bd84EBoAqXoKeXdoHIRBcfWU7ZQgjpCnm9RHsZnoq1evxoULF/Djjz/ip59+qvLY3r17sXDhQsyYMQMffvghgoKCMH36dLRt21ap7hERkQRcnJ0c5sSNiIiIiIhMNyyhvugu2LT3726FohIt3FwUmw+rOpEh3kjPzK9YuWOpUa3D8MWuc5jStYlEPSNHoFgQfcyYMRgzZozex2NiYrB8+XKlukNEFuEaHiIyztvd2fiTyGrcI6vfvUn1MWPDMXRuEiy6K0RERFYJ9HI1/iQHEFfPT1jbGo0Gbi7qmoJ9V4va+OnQFYxt20CR9r56IEmS7TzWuTHuaxOGIC83SbZHjkHxwqJEtialYQB2nM5By1BWJDbk69FJGL54t+hukAWcnTRVCnOS45D6W38htSky8wsREWx+YXBTjW3bAAu3n8GUrhGytUEklQExoYir74/wQE/RXSEiIrLIW/1bYu0/l/DofzVVHJ2Ls+POAtfl1V5RmNC+IcICbOtcR6PRMIBOZmMQnciIGX1aYP2hK+jZXHfeMSojZ9CM5LV0VCKmrTuEk1k3RHfF5ni4csZ1ZQNj68rexsQOjfBgSgOHXsZKtkOj0aBxsJfobhAREVmsW9MQdGsaIrobqtXEwa+DnTQamwugE1mKV6BERvh7uuKexPo17lL2a1UHABDszbuXZNuahHjjmTsjRXfDKl3+S5VQz99DkfZevqsZmtXyxtPdmENPBAbQiYiIiEg0dxcnjGvfUHQ3iEghnIlOZKFRbcIxMKYufD34Myrn7+GC3IJi0d0gB/RY58aIquOD9o2DMPePE/jn4nVZ2+sbHYq+0aGsCq8io9qE4+fDGejTsrborhA5HC0zghEROZx3B0Tj1Z+O4NVeUaK7IsykTo3hyZWpRA6D0T8iK4gMoCeFBQhrm+yP1sZLFHq4OqN/q1AAwBNdm8DF2Qn9ousI7hUpKaq2D/6Y3AEenKVOCgriajQALHJLROSIukQG49dJ7aDhrBIichAMohPZmN8f64ALuQWIrOXYudeI9AnwdMX0Hs1Ed4ME4EwgUlqItxveH9QK3hx7RETkgBhAJyJHwiA6kY3xcnNmAJ0k5+fhKroLREQ2qUPjINFdICIiIiI9XrnLcVMOkbQYRCciIkTV9hHdBSIiIiIiIiJJbJrUHiezbiCmrq/orpCdYBCdiIiqYE5pIiIiIiIismW+Hi6IrecnuhtkRxgpISIiAMD49g0BANNSmwruif34ZFgs6vm544NBrUR3hexQqJ+H6C4QEREROZwmIV4AgK6RwYJ7QkRK4kx0shkaAFrRnSCDWFjGto1r1xAjEurD14OHBqkkhQfgu3EportBdmpcpwgcu5iLOyJDRHeFiIiIyGF8eV8i8gtL4O/JulJEjoQz0clmfDwsFqG+7ph9d7TorhDZLQbQiWyHp5szXr4rCp2acBYUERERkVJcnJ0YQCdyQIyWkM1ICg/AuvGc0SkSVwIQEREREREREZGj4Ux0IiIiB8UbY0QkBXcWpCYiIiIiO8czXrJ5zMJNREREpLypdzRBdKgv7m8TJrorRERERESyYhCdbN6jnRsDAHo2ryW4J0RERESOY0RifSwemQA/D+aFJSIiIiL7xpzoZPPaNQpC2tTOortBREREREREREREdogz0YmIiIiIiIiIiIiI9GAQnYiIiIiIiIiIiIhIDwbRiUgy7w5oCV93F7x8VzPRXSEiIiIiIiIiIpIEc6ITkWTi6vtj46R2cNJoRHeFiIiIiIiIiIhIEpyJTkSSYgCdiIiIiIiIiIjsCYPoRERERERERERERER6MIhORERERERERERERKQHg+hEZLI7IkMAAHX93AX3hIiIiIiIiIiISBksLEpEJru3dRgaBnkirp6/6K4QEREREREREREpgkF0IjKZi5MGXf6bjU5EdkCrFd0DIiIiIiIiItVjOhciIiIiIiIiIiIiIj0YRCciIiIiIiIiIiIi0oNBdCIiIiIiIiIiIiIiPRhEJyIiIiIiIiIiIiLSg0F0IiIiIiIiIiIiIiI9GEQnIiIiIiIiIiIiItKDQXQiIiIiIiIiIiIiIj0YRCciIiIiIiIiIiIi0oNBdCIiIiIiIiIiIiIiPRhEJyIiIiIiIiIiIiLSg0F0IiIiIiIiIiIiIiI9GEQnIiIiIiIiIiIiItKDQXQiIiIiIiIiIiIiIj0YRCciInIwA2JCAQCj2oQL7gkRERERERGR+rmI7gAREREpa3qPZni6WyTcXXgvnYiIiIiIiMgYXj0TERE5IAbQiYiIiIiIiEzDK2giIiIiIiIiIiIiIj0YRCciIiIiIiIiIiIi0oNBdCIiIiIiIiIiIiIiPRhEJyIiIiIiIiIiIiLSg0F0IiIiIiIiIiIiIiI9GEQnIiIiIiIiIiIiItKDQXQiIiIiIiIiIiIiIj0YRCciIiIiIiIiIiIi0oNBdCIiIiIiIiIiIiIiPRhEJyIiIiIiIiIiIiLSg0F0IiIiIiIiIiIiIiI9XER3QGoajegeOK7yz57fASmNY49E4dgjUTj2SBSOPRKJ449E4dgjUTj2SBRHGnumvkeNVqvVytsVIiIiIiIiIiIiIiLbxHQuRERERERERERERER6MIhORERERERERERERKQHg+hERERERERERERERHowiE5EREREREREREREpAeD6EREREREREREREREejCITkRERERERERERESkB4PoRERERERERERERER6MIhORERERERERERERKQHg+hkUFZWFlJTU7Fjx46Kv/3+++8YOHAgEhIS0L9/f2zYsKHisdLSUsyePRudO3dGUlIShg0bhp07d1Y8npmZiaioKCQkJFT8r1u3boq+J7IN5o49rVaLBQsWoFu3bkhMTMTo0aNx9OjRisdLSkrw1ltvoX379khISMDEiRNx5coVRd8T2Qapxx73e2TM4cOHMWbMGCQnJ6NDhw545plnkJWVBQDYt28fhg4dWjFuVqxYUeW1a9asQWpqKuLj4zFo0CDs3bu34jHu98gYucYe93tkCmvGX7lFixZh1KhRVf7GfR8ZI9fY476PjLF07Gm1Wnz00UcV1xv9+vXDTz/9VPE493tkjFxjz+H2e1oiPXbt2qXt3r27tlmzZtrt27drtVqt9sCBA9ro6GjtN998oy0qKtKmpaVpExISKh5funSptnfv3tpLly5pS0pKtIsWLdLGx8drCwoKtFqtVrtp0ybtHXfcIew9kW2wZOx9/vnn2uTkZO3u3bu1RUVF2iVLlmhTUlK0V69e1Wq1Wu2cOXO0/fr10164cEF7/fp17RNPPKEdN26csPdI6iTH2ON+jwy5efOmtkOHDtoPPvhAe+vWLW1WVpZ23Lhx2gkTJmhzcnK0ycnJ2i+//FJbVFSk/euvv7QJCQnaffv2abVarXb79u3ahIQE7a5du7SFhYXaRYsWaVNSUrQ3btzQarXc75Fhco497vfIGGvGn1ar1ebn52vffPNNbbNmzbT33XdflW1z30eGyDn2uO8jQ6wZe4sWLdJ269ZNm56eri0tLdX++uuv2piYmIrHud8jQ+Qce4623+NMdNJpzZo1eOqppzBlypQqf//xxx+RmJiIoUOHwsXFBa1bt0a/fv3w1VdfAQBOnDiB0tJSlJaWQqvVQqPRwMPDo+L1//zzD1q1aqXoeyHbYunY+/777zFq1CgkJibCxcUFo0aNQmBgYMVd0hUrVmDcuHGoW7cufHx88MILL+CPP/7A2bNnFX+PpE5yjT3u98iQCxcuoHnz5pg0aRLc3NwQGBiI4cOHIy0tDb/88gsCAgIwcuRIuLi4oF27dujXrx+WLl0KoGy/1qdPHyQlJcHV1RWjR49GYGAg1q9fX/E493ukj5xjj/s9Msaa8QcAAwYMQEZGBu65554a2+a+jwyRc+xx30eGWDP2rl27hkmTJqFJkybQaDTo1q0bmjRpgj179gDgfo8Mk3PsOdp+j0F00qljx47YsGEDevfuXeXvJSUl8PLyqvI3JycnnDhxAgAwYsQIFBQUoGvXroiJicH777+PDz/8EO7u7gDKfmCXLl1C37590bZtW4wbNw7p6enKvCmyCZaOPUOPX79+HZcuXUKzZs0qHgsJCYG/vz+OHDki0zshWyPH2AO43yPDIiIi8Omnn8LZ2bnibz///DOio6Nx7NixKvstAIiMjMThw4cBAOnp6Xof536PjJFr7AHc75Fx1ow/APjiiy8wa9YsBAcHV3ke931kjFxjD+C+jwyzZuxNnjwZgwYNqnjs+PHjOHbsGKKjo7nfI6PkGnuA4+33GEQnnWrVqgUXF5caf09NTcWWLVvw888/o7i4GLt378b69etx69YtAEBRURGSk5Px448/Ys+ePXjooYcwefJkZGRkAAD8/PyQlJSEJUuWYOPGjWjUqBHGjBmD69evK/r+SL0sHXs9e/bEF198gUOHDqGoqAhfffUVTp48iVu3biE/Px8AagQ6PTw8Kh4jkmPsAdzvkem0Wi1mz56N3377DS+88ALy8/Ph6elZ5TkeHh64ceMGABh8nPs9MoeUYw/gfo/MY+74A4DQ0FCd2+K+j8wh5dgDuO8j01ky9sqdPHkS48aNQ//+/dGmTRvu98gsUo49wPH2ewyik1kSExPx9ttvY+7cuejQoQM+++wzDBo0CH5+fgCAZ555Bp07d0ZERAQ8PDwwadIk+Pr6VqQ1mDVrFp599lkEBQXBx8cH06ZNQ35+Pnbt2iXybZENMDb2xo4di4EDB2LSpEm44447cOLECXTs2BF+fn4VB4WbN29W2WZBQQG8vb0Vfy9kW6wZewD3e2SavLw8TJ48GevWrcOXX36JqKgoeHp6oqCgoMrzKu+3DD3O/R6ZSuqxB3C/R6azZPwZwn0fmUrqsQdw30emsWbsbdq0CcOHD0ePHj0wY8YMANzvkemkHnuA4+33GEQns+Tk5KBp06ZYt24dduzYgXnz5uHixYsVOZAuXLiAwsLCKq9xcXGBq6sr8vLy8NZbb+H8+fMVj5WUlKC4uLhK3nQiXYyNvcuXL2PIkCHYtGkTtmzZgmeffRaHDx9Gq1at4O/vjzp16lRZVpSRkYGcnJwaS5eIqrNm7HG/R6Y4c+YMBg8ejLy8PKxcuRJRUVEAgGbNmuHYsWNVnpueno6mTZsCAJo2bar3ce73yBRyjD3u98hUlo4/Q7jvI1PIMfa47yNTWDP2PvroI0ydOhUvvvginnvuOWg0GgDc75Fp5Bh7jrjfYxCdzHL69GkMGzYMhw8fRnFxMdavX4/ffvsN9957LwCgW7du+Pjjj3H27FkUFRXh888/R0ZGBu644w74+Pjgr7/+wltvvYXr168jPz8fr732GsLCwtC6dWvB74zUztjY++GHH/DII48gOzsb+fn5mDVrFtzc3NCtWzcAwKBBgyrGZl5eHt544w0kJyejQYMGIt8W2QBrxh73e2RMbm4uHnjgASQmJuKzzz5DUFBQxWOpqanIzMzE4sWLUVRUhO3bt2PdunUYPHgwAGDIkCFYt24dtm/fjqKiIixevBhXr15FamoqAO73yDC5xh73e2QKa8afMdz3kSFyjT3u+8gYa8beokWLsGjRIixduhT9+vWrsW3u98gQucaeI+73NFqtViu6E6RuUVFRWLJkCVJSUgAAX331FRYsWIDs7GxERETgqaeeQrt27QCU5SGcPXs2fvnlF9y8eRNRUVF45plnEBsbCwA4f/483nzzTaSlpaGoqAgpKSmYPn066tevL+z9kXqZM/aKiorwxhtv4KeffkJRURFat26N6dOnIywsrOLxDz74AGvXrkV+fj5SUlLw2muv6SwKRCTl2ON+jwxZtGgRZs6cCU9Pz4pZHeX27t2Lf/75BzNmzMDRo0cRFBSERx55pEpxn++++w4ff/wxLl++jMjISEyfPh1xcXEAuN8jw+Qce9zvkTHWjr9yc+bMwc6dO/HFF19U/I37PjJEzrHHfR8ZYunY02q1aNOmDW7evAk3N7cqr5swYQIefvhh7vfIIDnHnqPt9xhEJyIiIiIiIiIiIiLSg+lciIiIiIiIiIiIiIj0YBCdiIiIiIiIiIiIiEgPBtGJiIiIiIiIiIiIiPRgEJ2IiIiIiIiIiIiISA8G0YmIiIiIiIiIiIiI9GAQnYiIiIiIiIiIiIhIDwbRiYiIiIiIiIiIiIj0YBCdiIiIiMiBnDp1SnQXiIiIiIhsCoPoREREREQ2bs6cORg1apTR523atAkPPvigAj0iIiIiIrIfDKITERERETmInJwcaLVa0d0gIiIiIrIpDKITEREREdmYPXv2YPDgwYiPj8eIESNw7tw5AIBWq8X//vc/9OvXD61bt0abNm0wdepUFBQUYMeOHXj55Zdx4cIFJCQk4PLlyygsLMQHH3yAO++8E8nJyRg3bhxOnz4t+N0REREREakLg+hERERERDYkOzsbEyZMQM+ePZGWloann34aGzduBAD8+OOPWLJkCebMmYNdu3Zh+fLl2LJlC9atW4eUlBS8+uqrqFevHvbu3Ys6depg9uzZ2Lx5MxYvXow///wTcXFxGDt2LG7duiX4XRIRERERqQeD6ERERERENmTz5s3w9PTEuHHj4OrqiqSkJAwePBgA0LlzZ6xcuRKNGjVCVlYWsrOzERAQgMuXL9fYjlarxfLly/Hkk08iPDwc7u7umDRpEoqKirB582aF3xURERERkXq5iO4AERERERGZ7vLly6hbty40Gk3F3xo0aIBDhw5Bq9Vi9uzZ+O233xAUFIQWLVqgqKhIZx70rKws3LhxA48//jicnG7PrSkqKsL58+cVeS9ERERERLaAQXQiIiIiIhsSGhqK8+fPo7S0tCL4fenSJQDAu+++iwsXLmDTpk3w8fEBAPTr10/ndgIDA+Hu7o6FCxciPj6+4u8nTpxAnTp15H0TREREREQ2hOlciIiIiIhsSLdu3aDVajFnzhwUFhbiwIEDWLFiBQAgLy8P7u7ucHZ2xq1bt7Bw4UIcPXoURUVFAAB3d3fcvHkTxcXFcHJywpAhQzBr1ixcunQJpaWlWLNmDfr27cviokRERERElWi0utZ2EhERERGRah0+fBivvPIKDh8+jIYNGyIuLg4nT57EG2+8gWnTpuHgwYPw8vJCUlISPDw8cO3aNXzyySe4cuUKxo4di/Pnz2P58uVo1KgR5syZg/Xr1yMnJwfh4eF47LHH0L17d9FvkYiIiIhINRhEJyIiIiIiIiIiIiLSg+lciIiIiIiIiIiIiIj0YBCdiIiIiIiIiIiIiEgPBtGJiIiIiIiIiIiIiPRgEJ2IiIiIiIiIiIiISA8G0YmIiIiIiIiIiIiI9GAQnYiIiIiIiIiIiIhIDwbRiYiIiIiIiIiIiIj0YBCdiIiIiIiIiIiIiEgPBtGJiIiIiIiIiIiIiPRgEJ2IiIiIiIiIiIiISA8G0YmIiIiIiIiIiIiI9GAQnYiIiIiIiIiIiIhIDwbRiYiIiIiIiIiIiIj0YBCdiIiIiIiIiIiIiEgPBtGJiIiIiIiIiIiIiPRgEJ2IiIiIiIiIiIiISA8G0YmIiIiIiIiIiIiI9GAQnYiIiIhMNmrUKERFRVX5X/PmzZGUlIShQ4fihx9+kKSdc+fOISoqCqtXrwYA7NixA1FRUdixY4ck2y/XrVs3PPfcc5Ju01rnz5/HCy+8gC5duqBVq1Zo27YtJkyYgO3bt5u9rdWrVyMqKgrnzp2ToafmOX78OF577TX07NkTcXFxSEpKwvDhw7F06VIUFRVVeW5UVBTmzJkjqKe6VR4r1ccnEREREdk3F9EdICIiIiLb0rJlS7z88ssV/11SUoJLly5h8eLFePLJJ+Hr64vOnTtL2mZ0dDS+/vprREZGSrrduXPnwsfHR9JtWiMjIwPDhw9H7dq1MWXKFNSrVw9ZWVlYsWIFRo8ejQ8//BA9evQQ3U2zrV+/HtOmTUNERATGjBmDxo0bo6CgAL///jvefPNN/PHHH/jkk0+g0WgAAF9//TVCQ0MF91q/2rVr4+uvv0aDBg1Ed4WIiIiIFMAgOhERERGZxcfHB/Hx8TX+3qVLF7Rr1w6rVq2SPIiur01rtWzZUvJtWuObb77BtWvX8OOPP8LX17fi76mpqRg6dCg++OADmwuiHz9+HNOmTUP79u0xZ84cuLjcvgTp0qULUlJSMHnyZPzwww/o27cvAMjyXUvJzc1N9X0kIiIiIukwnQsRERERScLNzQ2urq5V/lZQUIBZs2ahR48eaNWqFRITEzFmzBgcOnSoyvN++eUX9O/fH7Gxsbj77rtx+PDhKo/rSueyceNG3HvvvUhISECrVq1w11134csvv6x4XFfqmfL/lafhqJ7O5fr163jzzTfRvXt3xMTEoG/fvli5cmWVvnTr1g0ffvgh3nrrLbRv3x6xsbF48MEHcfLkySrP27VrF+677z7ExcUhOTkZzz77LLKysgx+hpmZmdBoNCgtLa3yd2dnZ0ydOhXDhg2r8vetW7fi3nvvRVJSElJSUjB16lRcvHjRYBsrVqzAoEGDEB8fj9jYWAwYMADr16+veHz16tVo2bIlVqxYgY4dO6Jz5844duxYxWc+aNAgxMTEoEOHDnj99ddx48YNg+19+umncHJywuuvv14lgF6uZ8+eGDhwIJycbl+aVE/ncuXKFUybNg1dunRBbGwshgwZgl9//bXKdqKiojB37lwMHjwYSUlJmDdvXsV72bdvH4YPH46YmBh07doVCxYsqPLac+fO4ZlnnkHHjh0RHR2Ndu3a4ZlnnkF2drbO96QrncuFCxfw5JNPIjk5GXFxcXjggQfw77//1njNokWL0KtXLyQnJ1e83thYJiIiIiKxOBOdiIiIiMyi1WpRXFxc8d/l6Vw++ugj5OfnY8CAARWPPfPMM0hLS8PUqVPRoEEDnDp1Ch988AGmTJmCH3/8ERqNBps2bcLkyZPRp08fPPXUUzh8+DCefvppg33YvHkzJk2ahPvvvx+PPfYYCgoK8OWXX+K1115Dy5YtkZiYiJdffhl5eXkVrykuLsZzzz2HoqIinTPlCwoKcO+99yIzMxOPPfYYwsPDsXHjRrzwwgvIzMzEww8/XPHcJUuWICkpCW+++SZyc3MxY8YMPPfcc/j6668BAGlpaRgzZgzatm2L999/H7m5ufjggw9w//33Y+XKlfDw8ND5vrp27Yply5Zh2LBhGDZsGNq1a4eoqCg4OzujQ4cO6NChQ8Vzv/vuOzzzzDPo3bs3JkyYgOzsbHz44YcYPnw41qxZg+Dg4BrbX7p0KV5//XU8+uijePbZZ5GTk4MFCxbg6aefRnx8POrVq1fxnX7yySd4/fXXkZWVhcjISKxbtw5PPfUU+vXrhyeeeALnz5/H7NmzkZ6ejkWLFlWkYqnu119/Rdu2bXX2p9xbb72l97HMzEwMGTIErq6umDJlCgIDA7F69WpMmjQJb7/9Nvr371/x3I8//hiPP/44oqKiEBoaioMHD6K0tBRPPPEERo8ejSeeeAIrV67Eu+++i+bNm6NTp064efMm7r//fgQGBuLll1+Gr68vdu/ejY8++gju7u547bXX9PatXFZWFkaMGAFPT0+8+OKL8PT0xOeff46RI0di5cqVaNKkScVzZ8+ejZdeegl+fn5o1aqVSWOZiIiIiMRiEJ2IiIiIzJKWlobo6Ogqf9NoNGjWrBk++OADdOvWDQBQWFiI/Px8vPjii+jduzcAIDk5Gfn5+Zg5cyYyMjJQu3ZtfPTRR4iOjsasWbMAoCLAXf7fuqSnp2PgwIF44YUXKv6WkJCAlJQUpKWlITExsUb+9FdeeQUZGRlYunQpQkJCamxz9erVOHr0KJYtW4akpCQAQKdOnVBcXIx58+ZhxIgRCAgIAAD4+flh3rx5cHZ2BgCcOXMGc+bMQXZ2NgIDAzFr1iw0btwY8+fPr3hOXFwc+vTpg1WrVmHkyJE631eXLl3w0ksv4b333sPbb78NoCyVTbt27TBixAh07NgRAFBaWop33nkH7du3x+zZsyten5iYiN69e2PhwoU6b0ScPXsWY8eOxaRJkyr+FhYWhkGDBmHPnj0VQXQAePjhh9G1a1cAZTdO3n33XXTq1AnvvvtuxXMaNWqE0aNH4/fff694bmW5ubnIzc1Fo0aNajxW+UYMUDaGyj+ryhYtWoSsrCz8+OOPCA8Pr/icRo8ejbfffht9+/atmMUeGxuL8ePHV7z24MGD0Gq1eOSRRzB06FAAQFJSEjZs2IDNmzejU6dOOHXqFEJDQzFz5syKHOdt27bFP//8g507d9bojy6ff/45cnJy8NVXX6F+/foAysZx79698cEHH+DDDz+seG6PHj0wZMiQiv9ev3690bFMRERERGIxiE5EREREZomOjsarr74KALh8+TI++OADFBUVYfbs2VVm3Lq5ueGzzz4DUJaO4/Tp0zhx4gR+++03AEBRUREKCgpw8OBBTJ48uUobvXr1MhhEf+ihhwAAN27cwJkzZ3Dy5En8888/FdutbtmyZfjqq68wa9YstGrVSuc2d+7cifr161cE0Mv1798fK1euxL59+9ClSxcAQExMTJWAb3kRzJs3b8LDwwP79u3Dgw8+WGXWfnh4OJo0aYKtW7fqDaIDwMiRIzFo0CBs2bIF27Ztw86dO7FhwwZs2LABY8aMwXPPPYeTJ08iIyMDTz75ZJXXNmjQAAkJCVXS3lRWnrrm+vXrOHXqFE6dOoVt27bp/NyaNWtW8e8TJ07g0qVLmDBhQpXgd5s2beDj44OtW7fqDKJXT0tT7vTp0zVyu9evXx+bNm2q8dydO3ciISGhIoBern///pg2bRpOnDhRccOkcp8rS0hIqPi3m5sbgoKCKtLQtGjRAsuWLUNpaSnOnj2LU6dO4dixYzhx4kSNQL8+27ZtQ4sWLVCnTp2K1zg5OaFz585Yu3ZtledW76O5Y5mIiIiIlMcgOhERERGZxdvbGzExMQDKgskJCQkYMGAAxo4dizVr1iAoKKjiuX/++SfeeOMNnDhxAt7e3oiKioK3tzeAstnNubm50Gq1VV4DALVr1zbYh6ysLLz88svYuHEjNBoNGjZsWBH81mq1VZ67Y8cOzJgxA+PHj68oXKlLbm6uzhnq5X+7du1axd88PT2rPKd8JnRpaSmuXbuG0tJSLFiwoEbubQBwd3c3+N7Kt5+amorU1FQAZUHnF154AYsWLcKgQYNw/fr1Kn2r3t/KubgrO3PmDF566SVs374dLi4uiIiIQFRUFICan1vl9Cs5OTkAgFdffbXiBkplV65c0dleYGAgvLy8cP78+Sp/r1u3bpVc8x999BGOHj2qcxu5ubkICwur8Xdd34uuzwNAjfQ5Tk5OVd7vokWLMH/+fGRnZyMkJATR0dHw9PSs+JyNycnJwenTp2us0Ch38+ZNvX00ZywTERERkRgMohMRERGRVYKDg/HSSy/hsccew4wZMypmkJ85cwaTJk3CnXfeifnz51ekyli6dCn+/PNPAEBAQACcnJyQmZlZZZvlQVt9nnrqKRw/fhyLFi1CYmIi3NzccPPmTaxYsaLK886ePYvJkyejY8eOmDJlisFt+vv74/Tp0zX+npGRAaAsIGwKb29vaDQajB49Gn369KnxePUAfLmSkhKkpqZi4MCBNWbmN2zYEC+88AIGDhyI9PT0isB39c+tvL+6+lpaWorx48fD1dUV33zzDVq2bAkXFxekp6fXmC1dnZ+fH4CyHPfJyck1Hvf399f72jvvvBObNm1CXl4efHx8AJTNBi+/EQOgIk2OLv7+/nrfJ2D696LPunXrMHPmTEydOhVDhgypuKHz+OOPV8wIN8bX1xfJycl45plndD7u5uam97WmjmUiIiIiEsdJdAeIiIiIyPb16NEDnTp1wvfff1+RSuTAgQO4desWJkyYUBFAB1ARQNdqtXB3d0dCQgJ++eWXKrNudaX1qGz37t3o2bMn2rZtWxGg/OOPPwDcTiGSl5eHiRMnIigoCLNmzaqYLa5PmzZtcP78eezevbvK39euXQtXV1fExsaa8lHAx8cHLVu2xIkTJxATE1Pxv6ZNm2Lu3Ll6U604Ozujdu3aWLVqFbKzs2s8fvLkSQBl6UAaN26MWrVqYd26dVWec/bsWfz9998682hnZ2fj5MmTGDJkCGJjY+HiUjafpvrnpktERASCg4Nx7ty5Ku8pNDQUs2bN0jvzHQAmTJiAkpISPP/88ygsLKzxeEFBAc6ePav39W3atMHevXtrPGft2rWoVasWGjZsqPe1pti9ezd8fX0xfvz4igB6fn4+du/ebfAzqSw5ORknT55E48aNq3w+a9euxYoVK3Tmeq/cvrGxTERERERicSY6EREREUni+eefR//+/fH6669jzZo1iI6OhouLC9555x2MHTsWhYWFWL16NTZv3gwAFTmpn3zySTzwwAN49NFHMXz4cJw6dQoff/yxwbZiY2Oxbt06REdHIzQ0FHv37sX8+fOh0WgqUmc89dRTOHv2LN577z2cOHGiSkAyKCioSmAfAAYNGoRly5bh0UcfxeTJkxEeHo5NmzZh1apVePTRRytmY5viySefxPjx4zF16lT0798fJSUlWLhwIfbt24eJEyfqfd306dMxatQoDBo0CPfffz9atGiB0tJSpKWlYfHixRgxYkRF/u8nn3wS06ZNw5QpUzBw4EBkZ2dj7ty58Pf3x5gxY2psOzg4GPXr18fSpUsRGhoKPz8/bNmyBZ9//jmAqilHqnN2dsaUKVPw0ksvwdnZGXfccQeuXbuGefPm4fLly3rTmABA06ZNMWvWLDz77LMYOHAghg0bhqioKBQXF2Pv3r1YuXIlMjMzK3KDVzdmzBisXbsWY8aMwaOPPorAwEB8++232L59O9544w2jN0eMiY2NxVdffYWZM2fijjvuwJUrV/DZZ58hMzPT4Az7ykaPHo3vvvsOo0ePxtixYxEYGIj169fjm2++wbRp04y2b2wsExEREZFYDKITERERkSQiIiIwatQoLFy4EF9++SVGjx6NWbNmYe7cuZg4cSL8/f0RHx+PL774AqNGjcKuXbsQFRWF1q1bY8GCBXjvvffw6KOPIiwsDG+88QYefvhhvW3NnDkTr732Gl577TUAQKNGjfDqq69i7dq12LVrFwBUFDB95JFHarz+7rvvxsyZM6v8zdPTE1988QVmzZqFDz/8EHl5eYiIiMCMGTMwZMgQsz6Ljh074rPPPsPcuXMxefJkuLq6Ijo6GosWLUJ8fLze17Vq1Qrffvst5s+fjy+//BIZGRlwdnZGZGQknn/++Sr9GDRoELy9vTF//nxMmjQJPj4+6NSpE5588knUqlVL5/bnzZuHGTNm4LnnnoObmxsiIyPx8ccf44033sCuXbswatQovX0bOnQovL298emnn+Lrr7+Gl5cXEhMT8e6779Yo+lld9+7dsXbtWnz11VdYuXIlzp8/D61Wi/DwcPTu3RsjRoxAo0aNdL62Vq1aFUVhZ8yYgaKiIjRv3hzz5s3DnXfeabBdU9x99904d+4cVq1ahWXLlqFOnTro0qUL7r33Xrz44otIT0+vuHGhT506dbB8+XLMmjULr7zyCm7duoVGjRqZNHZMGctEREREJJZGy2o1REREREREREREREQ6MSc6EREREREREREREZEeDKITEREREREREREREenBIDoRERERERERERERkR4MohMRERERERERERER6cEgOhERERERERERERGRHgyiExERERERERERERHpwSA6EREREREREREREZEeDKITEREREREREREREenhIroDUrt69Tq0WtG9cEwaDRAc7MvvgBTHsUeicOyRKBx7JArHHonE8UeicOyRKBx7JIojjb3y92qM3QXRtVrY/ZerdvwOSBSOPRKFY49E4dgjUTj2SCSOPxKFY49E4dgjUTj2bmM6FyIiIiIiIiIiIiIiPRhEJyIiIiIiIiIiIiLSg0F0IiIiIiIiIiIiIiI9GEQnIiIiIiIiIiIiItKDQXQiIiIiIiIiIiIiIj0YRCciIiIiIiIiIiIi0oNBdCIiIiIiIiIiIiIiPRhEJyIiIiIiIiIiIiLSg0F0IiIiIiIiIiIiIiI9GEQnIiIiIiIiIiIiItKDQXQiIiIiIiIiIiIiIj0YRCciIiIiIiIiIiKyYTcKSzB88S588PsJ0V2xSwyiExEREREREREREdmovFvF6DJnK05cvYEvd50T3R27xCA6ERERERERERERkY1atpuBc7kxiE5ERERERERERERkowpLtKK7YPcYRCciIiIiIiIiIiIi0oNBdCIiIiIiIiIiIiIiPRhEJyIiIiIiIiIistK0dYcwdtlelJQytQaJlXOjCOsOXMKNwhLRXbEbLqI7QEREREREREREZOs2Hs0AABy6fB2t6voJ7g05ssmr/8Ghy3nYfTYHr/RqLro7doEz0YmIiIiIiIiIiIjsxKHLeQCAjUczBffEfjCITkRERERERERERESkB4PoRERERERERERERER6MIhORERERERERERERKQHg+hERERERERERERERHowiE5EREREREREREREpAeD6EREREREREREREREejCITkRERERERERERGSjtFrRPbB/DKITERERERERERFZQcsoJpFdYxCdiIiIiIiIiIhs3umsG1i2+xxuFZcq3vbIL/Yo3iYRKcdFdAeIiIiIiIiIiIisNWTRLgBA7s0iTOzYWLF2i0u1OJaRr1h7RKQ8zkQnIiIiIiIiIiK7se/CNUXbu1VcUuW/T2fdVLR9oiVpZ0V3we4xiE5ERERERERERCSRV346IroLRCQxBtGJiIiIiIiIiIiIbMicP07i0ZX7UVzKorZKYE50IiIiIiIiIiIiIhtSnsJl28kswT1xDJyJTkREREREREREdqVUy9m55Bg4E10ZDKITEREREREREZHd2H/hGrrN/Qtr9l8U3RUishMMohMRERERERERkd0oKtEiv7AEb2w4JrorRKpx6VoBZ61bweIgelZWFlJTU7Fjx46Kv+3btw9Dhw5FQkICunXrhhUrVlR5zZo1a5Camor4+HgMGjQIe/furXispKQEb731Ftq3b4+EhARMnDgRV65csbR7RERERERERERERA5v15kc9FuwE498s090V2yWRUH03bt3Y/jw4Thz5kzF33JzczF+/HgMHDgQaWlpmDFjBt58803s378fALBjxw689tprmDlzJtLS0tC/f39MnDgRN2/eBAB8/PHH2Lp1K1atWoU///wTHh4emD59ugRvkYiIiIiIiIiIiEgZl64V4N1N6TibfVN0VwAAq/9LbbT3/DXBPbFdZgfR16xZg6eeegpTpkyp8vdffvkFAQEBGDlyJFxcXNCuXTv069cPS5cuBQCsWLECffr0QVJSElxdXTF69GgEBgZi/fr1FY+PGzcOdevWhY+PD1544QX88ccfOHv2rARvk4iIiIiIiMixFJdqseCv0/j7XK7orhARKWbZ7nP44/hVoX14+rt/8fXeC3ho+d9C+0HScTH3BR07dkS/fv3g4uJSJZB+7NgxNGvWrMpzIyMjsXLlSgBAeno6Bg8eXOPxw4cP4/r167h06VKV14eEhMDf3x9HjhxBeHi4yf3TaMx9RySV8s+e3wEpjWOPROHYI1E49kgUjj0SiePPfN/uv4j/bTuN/207jV1PdRbdHZvFsWfblPjedLXx06HL6NWyjiTb5dgz3f4L1zB78wkAELrfO3wlDwCQdaNI9u/PWAHd6u2b0h9HGnumvkezg+i1atXS+ff8/Hx4enpW+ZuHhwdu3Lhh9PH8/HwAgJeXV43Hyx8zVXCwr1nPJ+nxOyBROPZIFI49EoVjj0Th2CORbG38FRSVIOdGEUL9PRRrc8m2U/hh/0U0CLp9jV3k6oK6/p4GXkXG2NrYozIhIfJ/bx63imv87cX1RzCqc6Qk2zdn7J3KzEegtxv8PV0ladvW3LqYV/FvJb57UwQH++Do5Tw0DPaCh6uz5Nvfdipb72MaTdnn4O5+OwRszufC/d5tZgfR9fH09MT169er/K2goADe3t4VjxcUFNR4PDAwsCK4Xp4fXdfrTXX16nVoWWhWCI2m7MfF74CUxrFHonDskSgceyQKxx6JZMn4y7lZBB93F7g4iZtKN2DBTpzPLcDXo5PQJMS861tLvfTdQQDAjpNZFX97cFEaltyXoEj7ebeKcSwjH7V83PDL4QwMja8HXw/Jwg+Ks3TfdyrrBpbsPIuxbRsgLIA3METJyLgGjczTafN0BNEBIDPzus6/m8rcsXcm+yYGfZYGZw2wY6pjrj65dv12bNHaz18qjaeVpbKOreeHhffGK9q2Vlv2OdyqNEZN+Vwc6Zyv/L0aI9lRrFmzZti6dWuVv6Wnp6Np06YAgKZNm+LYsWM1Hu/cuTP8/f1Rp04dpKenV6R0ycjIQE5OTo0UMcZotbD7L1ft+B2QKBx7JArHHonCsUeicOyRSKaOv3M5N3H3Z2mIDPHGVw8kyd8xPc7nlk0m++1YJiKClQmi6/LvJeUCIV3n/FXlv/edv4b3B7VSpnEZmTr2cm4WYc4fJ7D2wGUAwJ5zuVjzYLLMvSN9dpzOQUrDQFnb0DcutFrg6e8OIu9WMeYNjbU4mG/q2Nt1JgcAUKIF/u+nI+jdsg6SwgMsatNmVfqc1Hausv/CNSF9qt6mOX3gOd9tZhcW1Sc1NRWZmZlYvHgxioqKsH37dqxbt64iD/qQIUOwbt06bN++HUVFRVi8eDGuXr2K1NRUAMCgQYPw8ccf4+zZs8jLy8Mbb7yB5ORkNGjQQKouEhERERERkYP49WgmACA907wUoVLJuVGE345lCmlbbbaezMKfChf5u3z9Fv44fhVarRZahSNAszcfrwigA8C5nAIDzya55euZJS6VawVFeh8rLtVic/pV7Dqbi9PZN/U+Tw5rD1zGw9/sV7RNInsm2Uz0wMBALFy4EDNmzMCHH36IoKAgTJ8+HW3btgUAtGvXDi+//DJeeeUVXL58GZGRkViwYAECAgIAAJMmTUJxcTFGjhyJ/Px8pKSk4P3335eqe0RERERERESKeXD53zijcNDMmPX/XkbXyBB4uUmfk9eYJ789iDSF0ksUFpei7/92AABe7NkMn+88ixZ1fPB6nxaKtH8sQ8yNG9JNzlsoH/5+Al/sOocXe5iQRYGzee1WQVEJZm4sy77xSq/mgntTlQPUBVWMVUH0I0eOVPnvmJgYLF++XO/zBwwYgAEDBuh8zNXVFU899RSeeuopa7pEREREREREVEVxqRY5NwoR4uOuWJvVA+ilKgigvfzjEfRsniVrMPnSNbGzrotLtejwwZaK/37t56MAyr4PkUH03WdzHC+thko8t+4Q0qbWkmXbX+w6BwB4b/NxWbZvi4pLSuHiLFniC9VbsvMs5vx5suK/n+jSBAFejlnU1d45zqgmIiIiIiIihzRu+d/oNX8HDl5SpshcZn5hjb99uu20Im3vOJVt8PGfD2fI2v74r/fpfWzvuVxZ2waAM9k3ZG/DEocv54nuApHsvkg7i3bvb8H8radEd0UxlQPoAKBV2ZKDguJS0V2wGwyiExERERERkd0pKCqp+PeBi2XB8+8PXJK93ZJSLXp9sr3G30u1wMdbT6FExinpBUUleHTVP7Jt3xQXr93S+9jZHHWltyEi6fx76To+/KMsoPzp9jOCe0MkPQbRiYiIiIiIyO6ICuJ8+89FvY8t3H4GbWf/KVvbhSWccXjokv4Z3/8qtBJBlw1H5F0BQI7tan4h1h24JDQf/9aTWcLarizvVonxJxFZgEF0IiIiIiIicggr913E7rM5srYxc2O6rNu3ZXJ/9gDw2Xb9aXMeWLpX9vaPXtEdxD946TrybhXL3j6pjFaZ1B7jlv+N//v5KFb8fUGR9tSquFSL1345KrobqsQCo9ZjEJ2IiIiIiIgcxsPf7BfdBdwscsyZkuv/vSK6C/jh4GVZtz/yiz16H7tj7l+4VlAka/ukLi/8cLji3+9tPq6zXoIUzuaILeibc7MI//tLmboPulwvKMafx6/y90WyYhCdiIiIiIiI7MoRlRdxLC5RV+E5R7J09zmh7Zfn5yfHsOlYZsW/t53KxovrDxt4tu1atENsDvRJK/fjyW8PYtIKsTUhyL4xiE5ERERERER25b4v9c8GBoB953MV6ok6/Z6eafxJMnl/8wlhbavBZwrm6tdqtZyZ+59imesFmJq15ZDAvPxyul5QM1VRm1l/YMnOsyhSoFbDof9unKZnissJT/aPQXQiIiIiIiKyG3vO5Rh9zkPL98nfERV76rt/hbUt50xwrVZrNK1FfqF8qXQuX79l9Dn7L1zD6awbsvWhsvd/P4E7P9qG346JuWmSnpGPdQcuQatQXnBDZv4qb62CGw6aoqncIT2rf+b8eRLL95yXte2cm+q7UaSGMU/SYxCdiIiIiIiI7Ma+89dMet6FXHE5hB9d9Q+2nLgqrH0AOHRZ3IzY1fvkKX44Y8Mxo8+Rs7jnd/9cNOl5SgVcl+0uC16+/7uY2f/3LNmN//v5KJLf+xPncm7K3t7Fa/p/09/9cwmlDhrY3H02B3+dzBLW/g//XsaPhy7LFlhOnbdN72PDFu3ClDUHKr77vFvFyLohXV56XTdtL+QWIPm9PyVrg9SDQXQiIiIiIiKyG+sOXDLpebeK5U8xoM+/l65jypqDkm/3hhmzrEXmDn5zozyzgr/7x/h3L2dR1yIHznWv1Wrxzd7zSDuTDQA4WC1tyd2fpcneB2NFg09nyR/IV6OHv9mPx1cfEDZj+3jmDby0/gi2Cgjkn8y6gS0nsvBHetlNyzvm/oWeH29H9o1CzNx4DL+nW3cz84nVB2r8bfSyv63aJqkXg+hERERERERkF87l3DSazqOcFvYX8Oy3YKfJz70u44xsNSsq0eLUVenTqZRqtTiaoe6CtnLacy4X72w6jkdW/INjGXkYvXSv4n2Qc5WBPbimI2+5ko5cEff7yKp2A+HdTcexat9FPPWddTczS+3vMEIGMIhOREREREREdiH7hukzLbefypaxJ6RmQxfvknybc/44ib9OqndMlZRqZc3TfL5SeqR7l+gu7LvWhJUCRHJY9XfVFFJX8ozXLyCqjkF0IiIiIiIicjg/HboiugtkR77cZXrB1FyF02oUlZRi0Gc78ehKcSl8AOC1X44Kbf+CgZzpStNqtShWeBrz+VzHTGcDAEcz8nFShhUollD6eyfpMIhOREREREREDufQZcdNvUHAj4cuC2t7s5V5mI3ZcuIqNhzJqPjvjLxCXLh2CzvP5EhaVNHW6MpfLcojK/aj3/92KFqb4UkZ6jAAZfUl0jPzZdm2lIbJsALFku+v3ew/8cthZW/i5t4swlkFivvaOwbRiYiIiIiIiMihvLT+iLC2V+27KNu2S7VaTFlzEM9/f0jn4wv+Oi1b26aQM6WMLdl1NheZ+YX4+3yuYm3KNQN61b4Lxp9EVbzww2FF2+s+bxtvHEuAQXQiIiIiIiIiK2m1Wqz4W1ww6UZhibC2ST2MxahFF5T999J12bYtunCmo7qar2x6IrUoKOI+19EwiE5EREREREQOafupLMm29duxTLz9a7pk2zNHfmExuszZKqTtysyZ6bpmv7SzsS0JaNnTrOiMvFt46Ku/8bORNBG5ggPNebccO/BoR0OuwtaT8qYnkkNhifVfxG/pmRL0RIyNldI9kekYRCciIiIiIiK7kFtg3ozI+RKmtjhuQdG6mxLNZDyskmX68/48afJz39hwTNK2LSmaebNIuXzUcvvg9xPYd+EaXv5RXJoaU/ykcC7o6jh7WHrHM9VRsNMcRSXW//Zt+YbIND3pnsgwBtGJiIiIiIjILkyRqXCeXORMbSHCF7vOCWt734VrwtpWA9FpWs7nFpj0vO8PSlvQNfdmEXafzUGpiRHNp747iNFL9+LiNdP6a6+kCCIDwOXrtyTZjqXyBI97ciwMohMREREREREJIHVA0VxDF6WZHHw0hjN8zZN1o1DS7f11Mtuk58mVO3/h9jMmP/fgRWlueBSXatF93jY8/M1+fH/AtN/SjtM5OHjpOvov2ClJH2zR5zvPov37W7DrTI7V2zqbfdP6DlnB0psBxzLyJe4JOQIG0YmIiIiIiMghiZ5FKTqIfirrJradMi34aszyPecl2Y6Ssm9KG8g2x+CFaULa3a+CGfunJQq8Xqg0+/2Hf8X+lkx1QwU3m+b+l3bpjQ1Hrd5WUanpQWw50p9sPGq7ecnJ9jCITkRERERERA4pI68Qp7NsL5+vlG5JFNT7aMspSbajpKe/+1eS7Vy3oFinyAKbolNg2GIObSldzZf25s2Ph0y/gWBO8V9T3JRpZYMptFqtsGLO5JgYRCciIiIiIiKHNWTRLkm28+fxq5Jsx5GcsqAYq5SkSulgaYFYraDKhHfM/QuXBOYEX5J2VljbanAuR9oUKC+tN72Y7NYTWZK2LdJv6ba9z2UKLNvDIDoRERERERGRlQ5dzrPodVLlJLdF09cfFt0FoU4IvImw4UiGZNty5DFsia/3XhDW9rZT9hNEt/XCzBl54tJJkWUYRCciIiIiIiISZO0/l0R3gaz0u4WrEPacy5W4J6ZLk6CoZLkNh6ULyFvKlsL4JZVTqijc8VX7Lkq6vYvXxNaVEKlyTn5bVCJxah9HwCA6ERERERER2bwbAnPzWmOLBOkVRL93S9NTSJXOwNJ0KlKxNC+zVIVlLclzLVVBWQC4IDA1TLm9Am9IOLL3fz9h8nPn/3UaBy+KL2wrlXxB+91rBUX4bPtpq9MC7Tgt3T7AUTCITkRERERERDZv8MI00V0QxppigfsuWB/Uenz1AYteJ1UakDPZ0uaYVopU6Si+cPAc47Zm07FM0V0QZuxXf0u2LdEzqUVlMZq5MR2fbD2N+77YY9V2iko4E91cDKITERERERGRTSsoKkFmvrj8skUlpcLaBqzLCCHFjGRLg+Fnc6SZwfzWRstmgtuLeVtOie6C2a4XFIvugl3YJWFaHiVIGfc+lSW2MLEo5asuRM2Ed2QMohMREREREZFNs2YmthRW/C2uUKCtuyRBKpDMfMfNy2yrlu85L7oLqvDKT0esWkmx8aj4fPREjoJBdCIiIiIiIiIrWBMEO3RZmpQetqqQKQUc0v+2nRbdBVXIzC/EYyv3W/x60fUQiBwJg+hERERERERk0w5eFBuItiY1xZU8cWlo7MXFa+JmoufeLBLWtqPTWpmU2trXS+WCFeP3x0NXJOwJERnCIDoRERERERHZtNm/HxfdBZulEdz+icx8wT2wznubOfZsleg0UNayNq+8RiP6109kWxhEJyIiIiIiIpt2PNMxC8xJQXQ6iKfX/iu0fWvlcCa6zfo9/aroLlhFZDFla6Rn5CPvFgvLku1hEJ2IiIiIiIjIClk2HEi9dJ1FOckx3SouFd0Fh3TPkt0Y+OlOq7ejkmw8FrPx7jskBtGJiIiIiIiIrLDrTI7oLhCZ7apEM5nnbTll0evUkpOclJdrZSoae3DpWgFKbDylkKNhEJ2IiIiIiIiIbNIvh8UWVvzrZLZVrxdZmPTP42LTmbz/+wmh7RNZo6jEupUMk1b+gyfWHJCoN5ZgAN9cDKITERERERERCWRtMEZ0eUCR7R+5YtuFSXvN327V662ZyTpjwzGr2rbWst3nhbb/yk9HUFAktiaALdt9Nkdo+1rBQeBv/r5g9Ta2n7LuJhwpi0F0IiIiIiIiIoEuXrMuL3mhlbmdD166bvFrtVotzuYUWNW+NaxNCXI8U2wQvqjEuv4zHYR1vvvnksWvvVZgu7UQpPDwN/tFd0GYYoG/O43ou6YOjEF0IiIiIiIiIoHe2ZRu8WsvXSvA9PWHrWr/4EXLg+ins29a1ba1lu0+Z9XrP912RqKekC0qtGIViOhaCKeybght35FlSVRPwBLZNxz75o1IDKITERERERERCWTNkv41+y9K2BPzWZuKxlpWTuS2eTeZjsRhPbP2X9FdsMpz6/7FDwcvi+6GzRE5C97RMYhOREREREREZKOyBRamlMrec7nC2t54NENY21IQ3f+ZG8XmVRfJ1n97Z7JvYssJccVlfz2aiVd+OiKsfSJzMYhOREREREREZKPsYWn/x1tOCm3/jOCUNNawMiW81VbtE7cSQvR83GsFxYJ7YL0paw7iqsDUJGSeC7ni6k+QxEH0gwcPYuTIkWjdujU6duyI119/HYWFZT/Gffv2YejQoUhISEC3bt2wYsWKKq9ds2YNUlNTER8fj0GDBmHv3r1Sdo2IiIiIiIhIp3+tKKzp6PZfuGb1NkRnJ/h6z3mxHbBC3i3bD+TaKtE3MKRi6zPqHclT3x0U3QWHJlkQvbS0FBMmTEDPnj2xc+dOrFy5Elu2bMGCBQuQm5uL8ePHY+DAgUhLS8OMGTPw5ptvYv/+skq+O3bswGuvvYaZM2ciLS0N/fv3x8SJE3Hzpu3eDSYiIiIiIiLbcN2KQGR+oWMHMWdutLwoqlqU2HA09KMtp0R3QZhzOWJjRmsPXBLavqNLz8gX3QXFOeJ7VhPJgui5ubnIyMhAaWkptP8dgJycnODp6YlffvkFAQEBGDlyJFxcXNCuXTv069cPS5cuBQCsWLECffr0QVJSElxdXTF69GgEBgZi/fr1UnWPiIiIiIiISKc3N1ie1/l/f52WsCeOaZ8Es9mtseloptD2RRdntVSx4H5PWSNuVu7szcdxnqk1hCkoKsGVPKahIWW5SLWhwMBAjB49Gm+99RbefvttlJSU4M4778To0aMxc+ZMNGvWrMrzIyMjsXLlSgBAeno6Bg8eXOPxw4cPm90Pjcby90DWKf/s+R2Q0jj2SBSOPRKFY49E4dgjkeQcf+dzCyze7uHLeZL0wdL2pfk8tBZtJ1fCNBAi9yvXbxUbbF/ufV9xqRZukkVnzJOZfwu1fNwteu3209lWty/6eKLRWNaHZbulTQGkrw9KHHc1Mm/faPsWtJ1fVCK0fSk/L2GfvZGx70jnfKa+R8l206WlpfDw8MCLL76IIUOG4PTp03j00Ufx4YcfIj8/H56enlWe7+HhgRs3bgCA0cfNERzsa/mbIEnwOyBROPZIFI49EoVjj0Th2COR5Bp/ISGWbXfPuVyh7btJEH19Z9NxTOrR3OzXHTqWYXXb5Sx9/1LQaExrX66xFxzsA293MVF0vwBvhAR4Gn+iDt6XrU8tkVmsRfNQP7Nf9/Hm41a3DQBeXu5Cx145Y32Q87gbGOgt9DOwpO0iV+lS+VjSfrZ0MXzz2tdAsoq6rh5uQvd7tkiyvfSGDRvw888/46effgIANG3aFJMmTcKMGTPQr18/XL9etVBLQUEBvL29AQCenp4oKCio8XhgYKDZ/bh69brdFHewNRpN2Y+L3wEpjWOPROHYI1E49kgUjj0SSe7xl5kptriope0XSpSTPSPjGjRmTjnMzZUukCXy89dqDbcv99i7ejUPN92cpd+wCTYfuICezWtb9Npr163//g+fyUaIi/lTXd/6yfzMBbrk598S/tsH9I8/JY672dn5yBS0EgKw7Le/bOdZoe2nzv5DTPsSjoHHl/+N9vV99e73Hemcr/y9GiPZz+TixYsoLKyaj8jFxQWurq5o1qwZtm7dWuWx9PR0NG3aFEBZwP3YsWM1Hu/cubPZ/dBq7adCsq3id0CicOyRKBx7JArHHonCsUciyTX+RI9pS9uXqt+/p2ehS2SwmY1L0zZgG5+/nGPPku1eK7A+nc6bG46hR5RlQXQpvv/8W8U28d2L7oOcx12tCe3LyZK2c29KV9BZ9Pcvsv1fDmegh5GbaDznu02ywqIdO3ZERkYGPvnkE5SUlODs2bP4+OOP0a9fP6SmpiIzMxOLFy9GUVERtm/fjnXr1lXkQR8yZAjWrVuH7du3o6ioCIsXL8bVq1eRmpoqVfeIiIiIiIiI9Dpx1frUFNYoLjU/SlGq1WJz+lVJ2v/3svmzMTPzHbuwn1aiyNL7v1uWmiS/UMKcEoLYw3twRNcLpAtiWyLnpmPve6SyX3BRZ1sjWRA9MjIS8+fPx6ZNm5CSkoL7778f3bp1w5QpUxAYGIiFCxfip59+QkpKCqZPn47p06ejbdu2AIB27drh5ZdfxiuvvILk5GT88MMPWLBgAQICAqTqHhEREREREdmhHImKW0pVINRS6w5cMvs1/wgOgLz9a7rQ9kXbdTZHku2s2W/+d0+O7eAlCVPQWHAvqLCkVLLmC4vN39baA5cla5/IVJJmPWrfvj3at2+v87GYmBgsX75c72sHDBiAAQMGSNkdIiIiIiIisnOp87ZJsp3T2dLl97ao/Szz25cykGWJG0ViZxFbMntfSq/+dFRo+2S9HAnTgijptZ+PiO6CZM7nFqBxsJfobhAZJdlMdCIiIiIiIiJbtXD7GaHtn86+IbR9W/TV7nNC27dkBq3a5N1y7HQqS9KkK1CplP0XruF4JvcXjsjM2s8kMQbRiQTbfTYHl6/fEt0NIiIiIiISaMuJLKHt/yFRbnVLncsxfyb+L4czJGnb0sBUtkSphIjMcTG3QHQXiBwSg+hEAu05l4OHv9mPvv/bIborRERERERkY6Qs7peeKbaw6t2fpZn9mqwb0hQX5OROy0hUV5WIyCYwiE4k0N5zuaK7QEQOSKvVIu+WbeZ/JCIiott++PeK6C4IdSVPmiB6YYltRoMvXbP9Fc2W1AIgImkU2ei+TxQG0YlImA9/P4En1xxAKacwkAM6cPEaZm8+jvxC5YPZz607hDvm/oXDl68r3jYRERFJZ8fpbNFdsBtpZ2zvs/x46ymh7ZdIcB23VHBee0C6FQ3WEF0kl0xTqtViwbbTorshmdX7L4rugk1hEJ2IhPli1zn8eSILf5/njHxyPGOW/Y1lu8/j4y2nFG9707FMAMBXe84r3jYREZE9yRGcE/uWHRS2VIu3f00X3QWznckWO4v7uXWHhLYvlX4qSK+arYJAvjm2nhRbw0FK5tzA+PVoJv73l/0E0ck8DKITkXBcQkSOnFrk5NUbortARERE/9GaObOWtY3sxykbTCtyNd+2Aq9qZavpfER67eejorsgmY7v/4l/L5m2QpdFXR0bg+hU4VpBEeZvPYXTWQzoiPDjocuiu+BwLl0rQEFRCQDgr5NZeP77Q8gVPJvIEW0+lok75v6FuX+eFN0VciCLdpzBlDUHUCJg6WxBUQkmfL0PT6w+ULEPUtIfx6/i1Z+OCGnb0RWXajH+6314d5PtzXaUyoXcAlwr4LGW1Gv53gtmPZ8zwclRmXvDyZAv0s5Kti1LFfK3LIzo84ISLTDrt+PC2pfyt0TyYhDdwWm1Wjyx+gCe/u4gnlt3CJ9uP4Mhi3aJ7pZDemn9EdFdcChnsm+i34KdGPDpTgDA46sPYMORDAZyFXQ8Mx/f7r+It/8LJn2+U/zJs6Mp1TrmSdsfx69i3pZT2HIiC2sPXFK8/W/2XsCec7nYejILb248pnj7U789iO8PXkanD7di09EMxdt3ZDtOZ2PvuVx8bWaQzl5cuX4LAz7diTs/2oaP/jzJGZSkSkt4PkKCiA4kmuuGhDfjP/xD/DVY2pkc0V0wmdRppLQQez3w0o+OHQvZaUNjz9ExiO7gruQVYuvJLGxOv1rloMG7sGTv/vovh1vWjaonIFfybL/Cva0Y8fluzNhwDBl5YoIofx6/inuX7MaxjDwh7avBT4euYPKqA6K7obip3x6s+Pe5HOWXblcuArf+3yuKt1/Zs3aSy9RWiFj5oM+lawW4cl3ZY97BSkulF+88i6e/+1fR9svdKi7FJ1tP4eDFa0LabzPrD7SZ9QcucEk4kU2TOh957k1x6Q0tOR9ywHkYqvGuwFnTcjD3eLhoxxmZeiJGfiFXh9oKBtEdnL4ZiKtYoZccyC+HxQax6LZp6/7FxG/2oVSBs/Invz2IYxn5mLzqANLOZJtVUMaebK8U0HVES9LOYfZmZS9EONtErFNZNxz2916uoKgE/RbsRJ//7RD6WfwjIIit1WqxaMcZfLb9DEYv+1vx9it/3uWr4ZSy73wu5m89haISTpYhkoI91fT5PwvyW6/42zFXVZF487acEt0FYTQybJOTaE3HILqDe2/zCZ1/Z15oMeb8cQLFvLBRxMVrt+92v/DDYYE9oco2Hs3ErrO5OKVgbYbM/EI8suIfh8hRXFKqxXPrxMz8rO7b/RexUyUB/GW7zwvd995wsNknWq0Wvx7NwFmJZ/CZ4r4v9mDool14bNU/iretFudzb+KXw7fT+Hyz97zA3ihrw5EM9Ph4Oz7bLm4Gm8hjzUPL9+HT7WfwjgMc74jIPHvP5Zr9GpH7UrI/J67mC21faIo5rRZLdp5F2hkx10aXFV6ZaMsYRHdgxSWl+O1Yps7HLvFHpAhNtfuIS9LOYeU+rgKQW96tYizb7ThBA1skYnnoKkG/PSVngW4/nY1fj+re7yvp30vXMWPDMUxa6biBzMq6z/tLsbbUkAP/j+NX8dy6Qxi0ME3xto9cKUvftEvQaoCsShdoKwXN4Bv4aRpe++X2jMP0DLEXrUp6/vtDkueRNZeoY01la/ZfErYUvqCoBG//mo7tp7KEtG+KTObqJyJS3PDFu02qCyBXKs7zAlOs/XH8Kub8eRKPrDB+bVQi/lTeoTGI7sAM/fZ+OHhZsX4oLe9WMSat2I/v/hF/EaOLiPy8wil8IFDTTaKp3x5Em1l/YNW+CygoKhEyM5PE2nMuFy+tP4xTV+WffX9LJUv1Kv8Gz2TfVEVgV6QiBc+Gr94Qv9Js/wUxeajVYMaG24VkP9l6SlxHHFDlFWhUthReySKGe87l4J1f07Fg2xms+PsCHnPAehym4qpU27Fs9zlJt3fo8nXjTyKhSrVapGfmy5J60pZOhzNkqiNmbEb03nO5uHfJHlnaFklkAJ/MwyA6OZwlaWex80wOXv/lmPEnC3A803FmhFHZXWcAmLkxHZ0+3IpBC9MqZkqS/TqfW/VmyY+HrmDCN/sE9Qa4WSR/OpGtJ7Ow8UhGjb8PXpimN7WYkvJuOVZKFVG0Wi2WpEkbdLBUZt4tfLP3vGI5bbNuVJ3dmltQ7HA3FHTl4laquPOjXPlSg5I38CZ8vR/f/H0BS9LOVvxN34pYR/fiesdOM6hEXRyp/Hy45nmNNZhiUv0+2XoK93y+G+/JUNjzikyBaTmIKoK7Od0+jxt/n3es80FbxiA6ORw1BUqO6VhCfavYdk4cSR6i0gxQWVBNCT8dqlnMNkvgDOEzCqyAeGL1AUz7/pDOz3j5HvHplcpvaJF8Ll4rwINfibtZVN34r/fhnU3H8davyuSH/j295hh78Ku/8ddJ9aa1kNrMjTU/a7lnlJ3OuoHHV/+jyH7OkKwbhRi+eJew9tWYouSZteqo0aE2G1WQdk2kawWmB+ccfSUbKW/RjrIbgV/vlT4l2xgBxa7JfBo5KnuSzWAQ3YHxnEO8jUelnb1gq7795xJKFMwLbYgSv4vM/ELkF4q5e19dcUkpDl++jmW7zyk2GxMAsm+o72IeAHrN34EDF+WfCXBBZUv27vtCuWWROWZcHJN9eWn9YfxT7fc167fjwnJyn80p+x1uPSE2iC16Nm6Bgmmerit4nCn3zNp/8ddJ8UWMP9t2BicUSNulzwmudCQT2VKx6y2C99+iib6JoJY0gVLRKp1jlEglOPJNxyC6gyosLsU9S3YbfI69HRRJvTYezahY3nviaj4KZE4tkSNwxm/2jUL0+mQ7us75S/iJLwCM+nIvRn25F7M3n8AbG5RLcbT2gHrrLoxZ9rfseWJV8NVTNfsu5OJ0lrgAlxJuFZfiyTU18xArFcTVdfNo+Z7zRs9H7IWuVCZA2Y3kvedyZW8/71Yx3tEx636DjjRLcigUdF5pLL+qUgodOM+1oWuK67yxqjov/HBIdBdMJkeBXFH7KktIfb1+UuCNPhKL1yaObdZvyqzKtAcMojuoHaezjS5rVSJHLlG5eVtOYcuJqxi+eLdsS9ky8wux43Q25vx5Uu9z5L7IPVwp37mI2Ye3ikvx76XrFQH89Eoz0xwppYAxWfnyBdFLtVrk29AsL6nJVYjIWmsPXMaQRfKnWjh4SVzRsD7zt+PQ5Zr5p59Z+y8OCy5mlntTfMFTuX33zyW9j43/Wv40N3P/PIlv/pZ++bmpHDmI7OgMne9cluCYoGSBVEdgzuzuszKkSbp8zfQx8c9F6Y9dPx2umXLPUbCwqXhqmGRFjkcNK/ZsBYPoDsqUXbO+GVMkjYvX1JXOQWm68n7/cLDspDVdpiXHff+3A4+u/Af/Gghi7T4r/2zAcjsF5D5/Ys0BPLB0L1YIDKQAjrt/+etkFrp8uBWbVFhMTY4LYV0+/F33TawcBwiiAsCU1TVngisl18CMz1Ff7lWwJzUNXpgmtH0lHBWUtqacva+0IPN9kXZO1htYWq0WT393EDM3yrvSTa7zRjJukAz77j9OiK1RctOBJzoYOk9QG1tKO2SOH3XUTVIj3hgnR8UgOunVb8FO0V2wa/pysJ7JdoyL3Lc3Kb9kSC1518ut2ndR8TbLb16s/Ltm20rOjs42klJHroItl64V4LPtpxXJe67L46sPKJp/uLrV+/TfPJEzL3rlGgD6VjnN/UP/ChEpdHj/Tzz/vfEl6nLPiNb3/tWw+mvGL0eFFR+U88L9XM5NPLnmAPadV+4mKZEtWLr7HJ5b969sK4TSM/OxOf2q7OcXE77eL+v2RTifK7YQriPLU0ndIhFET2gw54bYh3+ckLEn4vxkI0H0R1f+I7oLREIwiE56qS3gKKcdp7NVM0Mrt6AYBUUldruUa/zyv9H3fztkz3tuy7IUKLp5MusGSnWMsd1ncxTJGX9L0OyFCV/vwydbT8uWMkjtdpzO0fvYDRl/k13n/FXlv3XdI9l+Olu2AO6GIxkoLNGalPt5hsy1AUr07Ns/+F38xeC3/1zCaz8fEd0NyT3//SH8eSILDy2XP2VKdVqtFieu5uvc3zqKnJtFmPjNPjz41d+iu6JKos/3dp3NRe/5O3BER6onaylxLZF2RuwS9GKZ3mP+LZ4nk3FS34BeuF36HPPmuGTGSm1dq5pJOXIVCnfg0yWyEQyik0PRdRF78OI1PLryH0Vy4Zqq04db8ew62ynqY6pTWTew9/w1XL5+CxfNyHfoaJaknZNlu6dMKBb08Df7kfrxNmTKmLe6qKTUYG5gOV0QNO4uXSvAEBOWPDvyzaXL12+h1yfbZSnoddiM4ND+C/KuUigq0X11oG91ktL2KJjSqrplu+XZ910y8ruX60IQABZsO43hi3frLOjpKGb8chS7zubihEoL1sk9ieLolTw8t+5fnNaTMmvjUXWk9/r+X+kLfm81odZKeka+Secn+kwTfL7c9387hLa/WIbCmo5O6mKdclqy86zoLgijb59KlmF6FiLTMIhODmPVvgvoOmdrjVzQ3x0QE8wztlxNRNFJuRkrVrPxqPFZoo5irQzjMr9agNbQkk05c8O/tdF4MOnjLadka1+EuX+eNOlkPyNPTCoNJZWUavG3gbQacw0U/rV1Vw3MtL90/RZOXBWf11dkuqHZm8XPxpfagm1lAa6VJqTvkntG8hVB+5fN6cbzG7eZ9QfO5UgfECkoKjGaSkTOSRTFJaUY+cUe/Ho0E3vP6d7vmZJmSgrGRlepDDOqP9l62uhzXlx/GEMX77J4/IvO4Wxov66Ej+zsfEkNFu2wncC0qJWd9srQik1756irdInMxSA6GbTIjmY3zNyYjptF6jnRsNdiKFLpOmer6C4I9drPR2VvY9IKMbnsTLlxZUrQxZbom31cnRKpfAzp/tFfshedvXT9FpbtPq/3cVvJBWmJuz7ZbvDxKWsOKtQTUqPFMs8oPGPgRt6RK9Kn8jDXWzLM1hd9Hrt8r9gi3pUZW+l0THBxTq7gp3Lf7le+ZhARACzfo//8VE2uFciTetORU88RmYpBdDJoHmc3yMaU5ePvbkqXJbWBLcgvLBFW4G7aun/xtUwnUWo6NzGneI9U5EwTY0x6hunvV9TXJCJnc2W5BcV4287TThSreNaWXMX91ECr1QqbCW2Km0UlwmvBiDznuphreh5aucjx2zxmxn5fDmrK2fv5TsPpkkTnZqeqHPnbUPOxQgnGVu7aM+6GTPOeTCv3Vpmwao7I0TGI7qDUdoD6dv9F3P/lHmFBUxG2mJD/9uu9F/D1XmXuiIsOHugi6gbCxqOZePe340LaVgu5RkOv+eJyh5pTOFMr8PLVkfOiA0C2gTRDlqocnO7xseHZ4CIDSUUlWqzep56Zq1Laflps8T9jOn+4FaO+3CO6G+Sg8mTMy1/Onm/S2aP3HPw81JGZU4TZ3s4Zn/yWK/JMuSbPleFcGQB+OCh9bQx7lHVDns+fbAOD6A6qSGUz8WZsOIZDl/MwT+FcuMt2n8Oa/WJyopvqvAKzw85k38Qdc7di3hb7zUVMpESQorLiUi1e//kovj9o3j5m/l/Gc8jau8vXpQ32/FgpRYyxVUCiT4zfNKFmgC06ekV8vndjRM9alsv53JtoM+sPg885miE+nYtIebeKMW3dv9gsqB6Nsbzt5Hj26MmhT/bP1BSARSWl+Pkw60nZGxErhck8xSqcfEjKYRDdQf1vm3qCNAcv3V6ytuVElqI7pepFzDYcycCBi9cUa18tPt5yCjeLSlVXSEfqQJqjMyd/3kkZChxeuiY2XcDjqw8o2t4vh6/guwOX8OpP5uW3r7xPdFT7L9jfflh0qoRtp4yvfpJDYXEptp7Mwk07my1nSwZ+mmb0OQu2ncFOGVYLPLZSTO0Nc3267Qw2Hs3E02v/FdL+/7N33/FRVekfx7+hIx2xN1SKiigdUbGwoj8LyCKW1UXBtSMq9rbqLqK4iiggFhQQBUWagoIC0ksgCaETSEgCgZCQ3nvu7w9MSJtkJrkzZ5L5vF8vds3MnTnnzpy5c+e55zzPzC2HbQ/gL9kdo94T1umjVWF6efFexXj5OZW3rZIFvJ0vFKMH4DlJhmtz1RYE0X3UcS86kR45O7j4v5Oy8vT20hBjfXn9130aOWe724p1SJJ/ZGKVM8JMSs/J18H4DLcEfPbGuDbTbelelpTZ6ZkFzgeRp2+JsiWdzpygI/ou4MTFmdELzAVTdhx1bUZXXFrNTyJSsk/OeF5laHajJB1JztKMLYc9PhO/JorGjB2+8feOi8Ym05nkF1ouff7tNHHNQT23cLe+8TdX4NEdKYLqolE2B7xz8wu9Po1PkR+2VZ4v3N3m7zhmewB//MpQSSdSA6524jvI7tO+PS5OSgk4XDvGCgDAfbieao63Taj0VgTRfZQrM8LcXYSt7IFy+X7zy9JcyUXnrPiMXL30yx6NdjGQcTgpy6Oz82+cskn3fRvkllm7rlY83xhhZuYkTrjm0w01uqCUmVugiWvCNWldhH7cdlSRiVk29s41rqboeNpgwN/u+gT3fRukqRsi9eRPO219XmdYluVyOhtJ2hebrrVh9lx4+GKjdwTRD8ZnGml3x9EUHU0299mbT5Eql5lctWBn25kGU5TsP56uOUFHtN6J+jOSZPdp1rHUbN07M9DoeYyr+2T3qBsxZ7tL2ydkcLELrjGdDzzHUO0mdwuKSjbdBZ9mMlNIbVgNy6ol9yFNjXMIovsoVz4fds9Mqg0iE7NUaPMR+qNVYVoTluDy4wIOJ+uFn90zg7DQsrTnWKqiKgiwbI40PyMoLj3X7RdxKuOOFRsbnfxB7y1mB1W/sG1+4cn3bgIFspxm94+youcLOe75nMdvL9vvcjqbIi/+slf7Yr3/ZN4Z2XkF+mWX54PJoXHpeuTHHRo2I9DjbaN6IhIydftXW7TAUIHZJ37aaSyIb2er//xuW7mUfZ708eqDCk8wc+GsunZGpxrNxWuyoHdt5a7igrXF+D/N1hD535+hRtt3lycMTLrASabT/wGoHEF0VGnbkRQdMTiLzZRbPve39UusJgHZTRHuCWjPDY7WiDnbtd9AcM1ZJq+Ifr4x0vbn/Gm7mcBIdZm8iAFzFu08pqMpNT/ulyzoWR1PzK29P+Qsy9Lev2b0fLo23MhKjH0uptCqiyJrWSDz7WUhikvP1XgbCsweOJ6uRTtdu3iz7UiKUrPNpH6qS3GDtdWYNCG5tlLUHf7xbZCxtuvS++8peW48R84zfP7nzCzz3/aYTfvozu/1NEPHYeAghU19Vib1i5xCEB1O8fRMh2M2FyCsznK/5Kw8rfCC1DLukl9o6WNmB1fK9JImZiKYtf2Ia3nU7RKVZP6i5XsrQp0qRuhupk7m7PjOu2t6gB6aHawxi3Zr3cHqBdRQc3fPrF2z8PfF2nfh44Hvtum9FbVnpqTd534mVffbO8nF1GOVMXkOk1iN4mS7j9WNlUd1hTNpHe242O7IlPURbntuZ/wUXPWkF3eeplPLo3KmU/mYtsGNK5snrTO3iqu28DPdATexO6VoXUUQHU4ZMWe7Rz9Ug6dt1Zu/7bMliJiZW6D+kzZW67F/HjBXDNDd+k1cb7oLPiXwcLL+5+Ky0+qk/0HFqpOXtjpBADtk5hVUexYj7PHo3B01fo6o5BMBQXf+0AHcwa7ga66LM1mPpXpP0XtfVtPz/aTMXN3yub/Lj1vo4qoJd7M7rWNtE3A4ucpt3Hmx3fR354erqj5n3+Vi8dy6xuRkn+8CzRaDdiffPvKgKu7MW+9MEXIQRIcLPB1Q+iMkTodtmJFZV3LqovqSMnONnujN2hqlJ+ft1DwXU7nsjPbtk3M7/bLL9eKWJr34yx7TXfAarqajsEOEzSlAjqe79v3Ze8I6/XtpiK19qC16T1hX6y8izQk6osW17JhT0viV9sxeNzWbLSHDzAXQIt6wmqgmanoRZVcdmVEeerzqlAbG0136eKAfZk3fcthY2+48zptOZQTv5+fmqeiVrbQYMTvYbe3W1WLJdiOIDiNWh8br8bk7FF/FF2BoXN3JyRXjhiKVtUVGbr5+2Fb9ApU1sTYsQTd/7q9x1VjSnmzTsurJ1VySesCLc9VXJT49Rw9+X7Mv+Xf/qF5BSrvUdBYU6XjsMXld9T4/H6wMVe8J62zujef8XsN88rWZHReRZm45rMdsWFHgqpjUbE1cE66xyw/U2pmsdq2C+iPE9ZR4myNrPvv0v3/sr/Fz1ERoXO397sZJzqQqmbklygM9cWxnHblgUZG6lN7JXdwdyKvKFxsPueV5TQexF+zwrlUxnpZfUDvPXeqS137dp3eW+eZkmtqAIDqMeHnxXm07kqJbv6h8uafpnOS7bVymF+fiTER3cnbmjB0FrkLj0nXD5E3G8q9/uSlSUvVmIvsfck9BVxPCE6p3QepIcvV+xExZH6GjKTX7AfTL7pgaBaEsy9IP244qKCq5Wo9fYrhglR1MpaSxU1pO9YprzffxH0G13a4arsT5bEOkgqtR1+CZBbuUW4OZOBRlqplnFlSdh7kq7irG7qypGyKNti+dWIGHmnF19aAJ6XW4+CSpeatm96o5b2H6s2f6Ao6p4t5FtjqRymlTNdJk1hbeMAlqQ3iiftt73LYJfbAXQXR4NdOpWFxdgl9bPOdEsSDJngDc/bO21ejxNQ3E4oR7ZwZV63GrqpkbLSvPnlkk4fHV/4GwOTJJH68+qCd+2mlLX2qjxAxOvuC6DeEJmrHlcI1mgyVn5Wn0/F3VfnyUoTQJmyOT9Nve2n8BDeYcqkE6l5pcwCkptgarH7/xd8/s0tomMMpMcfGS0qu4iDx2udkVe3CfFfurXo1Wk2ONN5vvRBC9rl5AqC2cKTxcbYZj2FHVnEDmDodNpwxDhQii+5jEzFytNDy72xUUmbLf0ZSsWnXSdd+3QdoSWXdmhMM1/5gVVGleuMpwAcYsb5jJUROvLdlrW4FFY6q51HvMoj2auiFSP9YgDdeXGyNr7WqemqzCKjlk3qtGGjH4to9Wu1aA3JGafP/NMJiiZMlu76olYPp7zNcLV/oyd6VKqQ2cCWJuq8ZKM2fZdTET7uHuo3JNi2vb6dutZlOGoWIE0X3IhvAE3fK5v177dZ/prsCgIV8HmO6Cy55eUL3ZjNuOJNc4r36Ywbz8ziync0ZtXwqWkUt6hNpoo6GlnslZebacdK48EK+ldSClT03sr0FdhpRanGZg4prwaqfD2FriwkFtK2jsLWpzLYOa2nIo2ZZUeq8uqZ3n+v81XAulrE1M4gCAUuxMd1uR/Fo+CQd1H0F0H/LOMrOFlmqrmQYrj5cUn86sfFe9vbTmY/4fs4KMFodzNn99ZQZ+vtmGnqA2+nCVPbMaXbX/eLqxwpjvLNuvKdUs5ltWVcWv3W27G2daOaM6hSGLZNbyi1/VnUWeVosvHtghOTPPeD7ZmjJdEPa/v9fu8/WavnwhhlM5lhQeb24iBQDf5c0rIQ+7eUX7vODKV0H+ssu9NY/yC1mJgMrZGkRPTk7Wyy+/rL59+6p379566qmndPz4iR/RO3bs0N13363u3btrwIABmjdvXqnHLlq0SAMHDlS3bt00dOhQBQcH29k1+LCazmL9bEOk5gQdUYLhYMqcoOovq/dVMTXICVpSoE0zwqujOoXxYJ+afO5rGkiw4wS6pstdq5NKp/eEdfrnd9tqFICtCf/IulPsqLqrcEwrKLRqvBLh7WX7lV+DnOw1tSYswVjbtZVlWRr4+WYNnra1Vq+A+mx9pNH2Vx6oXi2SumL498HaG+M9gXQA5VU31SKcM8Pf8SQ+02mm3C2git/ddtXdcmTx7qpXoeYV1O33AJWzNYg+evRoZWZmasWKFVq9erXq16+vf//730pJSdFjjz2mIUOGKCAgQOPGjdP777+vnTtPFHvbsmWLxo4dq/HjxysgIECDBw/Wk08+qays2pO3uTao6dLqkNjqL+s2aakNBcImrgnXmEXVK6BhWZbCE2o+k8VEfvgfgo4qksIteumXvba8h76kugVJK2LyNCUoKrnaj90ZXbPljjuOmr+AMivAtbQo5JG0V00Ke5pkRzoKSQqs5ufPZMExv2rmoa9IVUUFvU1ciWLsE9YcNNiTmpkVEOXzAaIFO6ou7OdONfnuBeB+P9fhdGWLdrp3prMzvtp8yGFu7uqeG9UWx9PNTlw87sQkvHlOFL9F3WVbEH337t3asWOHxo8fr5YtW6p58+YaO3asXnzxRS1fvlytW7fWAw88oAYNGqhfv34aNGiQZs+eLUmaN2+ebr/9dvXs2VMNGzbUiBEj1KZNGy1dutSu7sEGyVm1d1aRHfZV8yLCNZ9u0L0zg2zujWfMDY7W3TMDq/34urKsPTOvQI/P3Wmk7XUHE4zPOPg+8IjR9nfXMBhdEzk1CArXdCb5n14wG3HdQe+Y1R1w2Exe2s83Rlbrcb4egLNLdT9BJgNwftWt5lqBxV5WZNEVptI52aU6Rf0ycwvqTPB3/MrqpQLLzivQi7/ssbk35iRWtaLCxotmgKtMDr+6PGnCWyYZO/odkZDh2zEZX2I6BoCK2RZE37lzpzp06KCffvpJAwcO1LXXXqsPPvhAp512mkJDQ9WpU6dS23fo0EEhISGSpLCwsErvR93iasVjk8u57eDLy30GfLbJdBdsY+oi0pqwBC3dazYY8enacKPtv7R4b7Uqpdvx42LqhkgbnqV6vGGWQ00KS9rpqXm7alVg+t3l3lUcD55z1HA+8IlrDuqFn/cYz+td21UnGD5q/k498ZM9F9xr0/GupOX77UnjFZno3GqSjeHuvdBbW1cD+YJdBidYeAtvOUcDAF9iWxA9JSVF+/fvV2RkpBYtWqSff/5ZsbGxeuWVV5SRkaGmTZuW2r5JkybKzDxxglTV/a7w8+NfRf82hNc8t+d//zigQsuqtJ2q3oP//rFft7hY5PCB77bVaN/tZLJ9u8aCJ9u2kzNtubN9Z/rgrtfhnd/3G/8MmHzvJelgQoaRfY/PyK3W2LPrNbhp6ib93xf+iknN9tn3vkhuQaGR9qvzutuZD746Y6/oXz0bXg+jx51qtP/lxkh9Uc0VBOXad7Ht7UdT9NuemqeQq277fn4n6qesO5igzZE1W71h8rjnTPvuHnvV+c7Zfcy+PN79J22UpcrPuR39C4u3J7BWnbZjbLqItHh3rFPj77lqplp01or9cZXvs1tbr/oY6G6e+KxVt327jvOutl/ydhPtl/z3q43fN6627e7BX1nbiZnuT/dhctw76kPJ2zzdtqf331uPO54eA/KS/Xd0e13854wGdr3YjRo1kiS98cYbaty4sZo3b67nnntO99xzj4YOHars7NInVdnZ2WrWrJkkqWnTphXe36ZNG5f7ceqpLaq5B3VXVGKmxiyyZ2nl9rhM3dLlzEq3qew9WOJEoYaywhMy9eGaCH0w7AqXHytJjRrZNszVrp258dWocQNj7Zvcb1f6UHLszdwYYaQP7mL6PTDdfpvWzVzuQx5CnkgAAQAASURBVLPmTWxp29WxV8SOY09K1omUSJ/7H9bUB3rW+Pmq4+P1kXrv712d2jYn332zJ089tblan9Ko6g39/Gpe1bUEk2O/0JKiswt0xbmtHW5T0djbdjhJv+44pvPbNq3gEa6pzv43zrZn5U7LVqe41H5adp6+rqQYl6tc3fdV6+z93mnWrEm1x98Xmw7VqO2WrZupUYPK59qUHXv5DRvWqM2SChs11Okt7TmGV0degWX8e69Zy1PUrLHr3yO9PlpnS/uu7v/x1GxN2+y5z58nfvMlZuZV2o8mTewb8xVp5eIx0G6mPwOVtl/P1tJuLrV/6qktFOXkagl3tO8JVbXdrFljY+0nF7q/8LDpsS+dOO9t0rB+mdtaaGmI+1NmVbb/zZunGG3f3daEJXjF+y9JjRs19HhfKjvu4QTboosdOnRQYWGh8vLy1LjxiYNqYeGJJXCXXnqp5syZU2r7sLAwdezYUZLUsWNHhYaGlrv/uuuuc7kfCQlpdv52rhP2H7HvQHcsPl3x8RV/cfn5nfhwueM9mBsYpbuvOEPt257i0uMKLUvLbMwp6mjfPSErK89Y+yb325k+VDT23lmy16N9cDfT74Hp9pOTMxTfyLXL7yt22VMYyNWxV+RgrH2vWVpmrtPvwYbwRH2wMlT/ubWzLW3P2XJYz/dv79S27syRmZCQrvxM9wYsKmJ67A+eslGBL5Y/H6ps7A2dal8qrersv10FMWdvilCXts4HUlNsTrvl6r5n23TxoEhGRna1x9+RpJoFeEZ9F6j3B11a4X2Oxl6iE8W4nNXnvT8rHPeeZPqzn5CQrqxG9avesISa1PEoKzompcoLKSWts7GguOT49S85/jzBUT8KCi396GLxbVelpmYaHYe/BR1W3wsqntTmiVy9le17Xr776y6Vbb/k2Nti83h3pn1Pqqrt/UeTjbWfVMPvN2ccOZZcLoDtaQkJ6Wr81zG45NjbdLDmGQaqUtnrn5bu/rR1Jsd+QaFl/Pu/SG5uvsf7Utlxr67HWYv2tSq2XcK9+uqrdd555+n1119XRkaGEhMTNXHiRN1000264447FB8fr5kzZyovL0/+/v5asmSJ7rrrLknSsGHDtGTJEvn7+ysvL08zZ85UQkKCBg4c6HI/LIt/Zf+l59g4M7CKtqp6D2pi2PRAl/f9YLy9X7LVef3tsio0vsZjIb+a+dmr05Yzla1dsSY0waWx5w7VeR3ibKow/vHqg9V+3+1gatxXp/3CQkv7YtK0zqaTTGf2text0/0PK8LGWUrrDyYqr8Byav+fW7hbx1JzbMvNK5l9713tg90rHcevCFVadr5Xjv+K7rO7DofJ487ykDiX2oy1+XvH1H57Q/sr9lf+2jvqn51Mjj1JOnA83Ss/957qx7gVoV47/ovu9wRHffi1Gqtr7WrbXWOurFHzdjls2xN1JSvddw/sf2Vj78Wf7Z+s40z7nnr/q2p70U73Fr6urG1HBTftNH1LlLHPXZHc/EKvO+6Z/Ox58vWvrH1P17vz9P5XdtzzhX/OsC2I3rBhQ3333XeqX7++brnlFt1yyy0688wz9d5776lNmzaaPn26fv/9d/Xt21dvvvmm3nzzTV111VWSpH79+untt9/WO++8oz59+ui3337TtGnT1Lp1a7u657Ny8gvdni/Qq3n2GOf1Zrl5xkxJ1SkEWZkXf9kj/0j3FpByh6fn2xPInBN01Jbn8QWbI5M0/Ptgo31wR0HS4CPJLm3vgd8Y5dTFQ+78Hcc0YrbZ8eSsrYeSdO0n6013Q6nZ9s0QnBN0xOlt75+1zbZ2Jc/8UK9LvOHVOpqSZdtz2T2eahs78/tXh7cXx10d5v6ZyN4s3wNFVyub7Z6c5YGZ6On2XpiF81ZVMtN/2V73H5sW7bBnNWtN/HnAvvo6sM/PO82PDZhlX7JoSWeccYYmTpxY4X1du3bVjz/+6PCxd955p+688047uwNJx2wq8IPaL7+g0C2BPU/adSxNV7Vva7obLrF7NYQrFu6I1t4YewqM1SarbV5ia1mW/DxaRaZixPPMOZRkX2CuOpwdg6//uk8eniBToTu/3mrbc01cE677e55r2/O54o1f9+mDwZcZaVuq2Ywjuy9k1xbxNq3+gnnrDybo+g7tHN6fnee+GhzO2BDu/okdYfGZXnve+8XGmtVdcMbKA/Ea2Pm0Cu+zc7WfI2/8FqIv773S7e2gvFcW71XACxWn9DqS7P74Rl6hB5ZaVCEn3ze/x71BZefdXNyA+ytyAPAK939X/RlVI2YH++wP8trs/ZVh+sXGmgC+KtnFPMt252XGCb58BNpmY20TOK+ymXDeqOSszay8mgcAek+wp0Bldbl6LA2KStYjP+5wU288L60atQV2H0t1Q0+qlp1XoN9snh2aUsVM4+iUuj9RyJtXYC7b5/7ZwHGGZ4Lvs7G2DYDaY/cxx5/9wCjPnZN7ovYEXEcQHS5ZeSBOu6LNnKCjZiISqj9jY09MmrEfZiXleWDpqDfLzDU36yop03dn932yNlxztzmfTick1vdm/3tELTmPPJJs/6z1NBvTo8B9TC5YsSxLI+dsN9cBST/YnHZs+pbDLm0/cU24re2b9u1W11Pwvb8i1A09qdrENeFaE+b+YnfwHomZTBiAGd6e6gm1n6Mi3UwqhEQQHS7aEJ6oh3/Y7vLjEjJytSUyyf4O+RiTVyNdbfqxufbPBtsU4dtjaKHBHGzfBzqfl9gdTAanlu49ro9WHzTXgb8sDzluugtwwqh59hV0dRWn9mb52VzW1pX3s9A6ccHbpNku5K93RrYNs+lrs6xqpCsxlXrKxPL2P0Lq/pJ6u48ptU2uJ6qXVsKOFT2wHxfs4G6O6qt4eoW3N6QTRXkE0eERd369VU8v2OXxdv0P1a2ga5QHcsDZ5Viq/Uswa9vMA7tn77syE3+pzcuqnWl6ye4Yvbx4r/E8pXV1dtTi3WaLvJlW4MTnPzuvwHgxyGg3HPucZWdBT7hu7UF7f9jvNRwUB5yVYuDY842/aysVUPtUllLBFziaDQuYZPnAlA1HF2n/3F/3L96iagTR4REmTgJi03L06dq6tbQ3v5pFTuxILzDzr2XF+QZTqoTGZRhrW5LeW3HApe1NLq2fbuDH5X//OKDVofHqP2mjx9suaZ3Ngawi+6tI05KdV6BCy6rW7EFUbYUTJ64zqpH+ALBLQoa9aa98OY2WtzB5IcPVItl2jz+Yl51v/nyC9AXmuJrSyk61rSYIYKeAw8laX8Hvya2Hkz3fmRI4L/QOBNHrOh8+7zmc5P6q7bXFLhtmRG+MSNTuY6nq98kGfb35UIXbFFqWgqKSlV6NYljOciYtkLt+SC7aSZFOX/bcot0O70vOzFP/SRs1cs52vbR4rwd75V3cmXIqNbvyFQavLN5r5OIRIDle+lsTnixehYodSzW3AjAjt8ClFW3/94W/7X0wOXFiY4T3FtX0lO1Hzdcj8uGfksYFGQzYveLD57KSt6RS4tNn0oerwkx3oZzPN0aa7gJEEB21zE6Kmhr10aoTeaG/3FRxEP2XXTF64qedGjE72G19OOzErPr7vg1yW/vOMp3SxFRe1LosvpKLMxv++rHvy+kXLMvS/uPmiqrW5VlTJn9GvfDzHiP5jmubIV8HmO5CnbNw5zEt3BFtuhtGbTZcT+gTgys6veWYbjovty8znZ4NvssbUlGbzGIanVJ7Usj6krRs86uTQBAdtcxaw4VEDsabTSdSHVsOJemtpfttf94xi3aXm3X6x1+FD90ZwD2eVnW+4eQs8zmxTRYBjXHDzLnkLJaPoXKPz92hR360v6BwkVpWEsFWzux6sptqAaw7mKBXl+xzevtfdpk79qHueX+l8zPBvCDmUefMDTZ7EcOdq5ucZcdqTlTPxohErxgDpuxg8hgMmeZg1bkkVTO7LKrBl49/3owgOuCC2hhE/3xDpFued0N4oiITPT/beWYtyXmcmWv/lWJnv0dj3FDYcEO42WXViRl55OX0csFuXnbOu1+5lCrS3bhTQaGlhTuidTA+Q+8uDzXWj7rI2YLSfD7cM3Mw4HByrStqXpe4q8aJK3w9rQV8l+lVtTCnspW1Y5e7ViMMqGsIoqNWqW5hTVPsLqh64LjrQfw9bkwvwQ9LzzKZKsO0pxfsqjQnOU6wo4hwbcRye7OW7I7R+yvDvCKVlt0+WWO2QPlXDtKnobx9VRR/ro4FO47pf396X17Usr6tJRMMXOVMQWl389br93OCjhhr2x0rHh225cQKVLhHiBuOqagdwhPM1pZLz8mvcBb2YdKVwgsQRK/jnMkfXZvMCTrq8L6d0amavC7cq66az9tu7zLYrzZFOr1tSKzv5mauq+LSffuHhL/h3LC1QYYbVkB4i8riGHU9b2qKF6SoqsxeN3/fTFxz0OF9lnViFry7LjLONhiokqTvAqI09o/9OuDDF1Gd4eyM/epYsOOY0rLdVzC9phbvitGU9RGmuwE3cfS7ZqKnLvBVEMhaHuK5ixs7vKC4qjeqrE4P3CM7r4DCjh5y45RNGl9BOre7pvtW/Rm/v5bYWZalwMPJRled4qQGpjsA93rh5z2mu+Ax//phuySpYf16euKa9kb7UsRU4OOxH7cr+GiqLj+rhZH2fd2WQ0kOi6/CvdaGeUchMlPctTokJjVbZ7Zs4pbndlotWPnirtyFdfniiDPmBB3VmBsurvC+30OOu5Q3u7YpsKTFu2O1eHesAl64znR3KrTnWKqaNqpvrP2gqGS1PaWRW9uIy8hRiyblfzYVFFqq53fyh64JppfW+3JBbU+ITMzUJWdwPm+KV5z/VKCurj7xFhUd0b/2P+zR172gFpz3utPCncf02sCOxX97etWpN738f4TE6d9LQ0x3A38hiI5aJyEjV6c2c/xj6VCi+5Yf/bgtWjdfcrrT2/+8K8ZtfalMUW7i3cfs/WFTVWoYT37ZrDoQp/XhiXr7/zp7rlEnPT1/l5F2LctSek6BT590/WLoM+epwV9oWapXSbDGXd0YNG2rPhh0qQZ0Os09DdQRb/xm7gT3mAeX13sTT86IRHmJmbkaMWe7sfb3H0/XEz/tdHs7WXnlf7znF1rqN3G9exuu4pjuTLF1d3todrDpLrhVWo73rULwjzRbp8aXzjIX7YrRkwYnZ6Vk5alV04albtsYnqgftzlenQ338HRttIlrwnXrpaerjZsvErsiweAKiLBaWJvOLr4+SczbkM4FtY7JKsW7jqU6nYvrWGq2kg3MRPeVlB+vLNmnX/fEakO4+aJT3uKtZfs14LNNHgkooLTFu2M90o65uY7S94Fm01rUBu7K31vV996a0HiNXkDNAFPcWXvE27mjkLUr9nsoZ++kteVTZxxLcf+Fq6rOI2dsOez2PsCsoxWMM9PH+1WhngvopPp4+oKEzPJBy1/3GJow4mG+8pu2MmUnBwVFJZvpyF8K6nj6RMAZBNEBFzmbi8udM+IrYzI3sImWjySX/nGxeLdvnFhW5Pd9x013wWdtO5JiugtGeaKgKaftjr20eK/pLvisQsvSiDo+E7cynghw7Yo2nxPZ1DHeG2dBw7NeXbLPdBfK8WQKn9mV1MMy5eedxzzWVkZO+XRuKw/4xqzUY4Yv0nqj0YZWOwM4iSA6gGorm1Ui2HAgMTuvQGP/MJsb1J12HUszsrpBOhHAtCzL6DI+VM3U+xPpgYuGPpylyOv58nvjNftuqCPrDro/rcTDf9W8qciuY+YD7CbV9UmBJnPNe5PkTN+dje2NM1/fXR7qsbbmBpu7iOB9rzxMvyc5Hs5L7utMZmCAYwTRgVokKtk3c96W5egLxRMBxD0xaR6ZdevIK4ZmnKZm5+uLTYf0f1/466fgaCN9QNWed2Mx6cw8x8UtPXHxyttPIxfuqNufi0wfL24K72Sq9oy3WO3BtBowJ+S4uZRRKdmshjApr8Dc2c9jc3cYa9u0lOx8r8nBHZ6QoX9+t00r98YaHQ+SNNTJFflAXUYQHXWOtwdaaioywUyaGG+yJqziPOiHnMxXXxMjZgfr79+YO4EwmTZkuv+J3Ksfrgoz1oeqMGvNfQ7GZ2rknIrTViR6YJact07GWLYvVtP9D+v9ld77ubCDpwtqlUVuVKC8JA+sTpsTdER5Bcw+NCnaA/n3Hfm/L/yNtS2ZrQUDszZGlF/p5MlUQqYmLpX16pJ9ColN1yOzAk13xSiTKWulEyvePY3ftd6JIDpqnWVV5H321kCLXRbt8lwePm8VFucdMwNw0v7jninuVpX8wrr9Qz/X8AyU3cd8t4CiI28t3a/PN0aa7kadd9uXW0r9nZ6Tr1u/8NeGcPenE0F5f+6L9Zrjfl3mDae0E9eE68dt3peXGr7Ll1IceOOeempFbtHknZJ2ezCFV5oXrMKwdOJ8B9IqD9cCSM/1ptedYLo3IYheh/22J9Ztz/2N/yG3PXdVJq2L8Mr8eJ4yJ+ioDlcy49oXzisLKtjJ0Ng0PbNgt4HenLQlMklvLQ0x2gdT/vndNtNdkCRtikgy3QW3MlWw2Nv58neCr5qw+qDiqdFgxPajKfrXt4F6YNY2FfrCSYdB3hIs/MXL0uZsPljxikR3Scosfazx9IxIUqqU9vqvniu2SuiqvHHL6279KXiv7HzPzgRPr6CoLyARRK+z9sSk6Z3f97vt+b/YeMjpK8HuCPp4x0+Kyvm58bTrrukBCjyc7Lbn93bfVDAzYdgXmw30pLSnF+yqcqUEUBMErCq2aGfdXqEzaV2Epm0yd/HaGyVmekcA3Rc/kUt2n5yk4ak0H6bTCfk6T6TLc8W/vvVsWr0vNpY+/v7vT88VlpSkL334+F/RMXalh2ekmuQtF9KKZOcVKDDKXGpJT16/8kS6LAC1D0H0Oig5M08jZlect9ZOSU7mwN3qY8Fey7I8Mjtu2T73rTRwljsvFDiraDZQCic6Ps9UgHlTmOd+zH26LsLhfQfqfGoFx+9vpA/M0P9qs/cGUUznqXQ3by+qmp1X4NFgvok0LjO2lL94DvN85cJuRpll/Yt2enZmPqutzNl6yOwKx3UeXnVRlex8s2kTJ6w+6NH24qnH4jVyDY89oAhB9DroGx//oXEsNVu9J6zTU/N2GWm/z8frdesX/pq/I9pI+75m/nZeZ1+y7UiydkZXvArG07nyitz/9ZaqN7JJZStQPDlT0MQPemIIZlX28md4eZC5pqZucHzxyrTFu2PUf9JGXf3JBo+1GRLr+SD6HyFx5W5byHmWcb+7efXd7/uOV1jMzdsvbME+sWlmg5i7jqVpx1HfmHntDG+bGe9uOV5QVNnUS57vBfte0hI3pip2xvF0z6+ANPF587XPeHUQRK+DPFU52FuXOO0z8OOuSMnUNWvCvGvmgDtFp2RrraH9PZqSbaTdsjw5G8t0GgOT6w8en7tT//phe4Undsd9dLZIoWUpM7fAY4WHJq0N1w2TN3qssFSR7wOPeLQ9Z3jq+9Yb5Hg4F2VVPFn/YHkFAVxvMfYP38xNG5WUpfdXhpnuhttFJWdr+xFzAbyqeOKzUVEKP19mIrAVGmd2pVtIrNmi5ntizLbvTYUlfen3rWTmorG3mLE1ynQXvMqmCDOF7JMz87TygOfOQ70ltuLNCKKj2sb+ccD47ABvk+VDAZWS7vx6q178ZY/pbhjV9+P1Hmvrls/9vaJivEmmlpMu3Ws+jVJZT8/fpesnb1SMh47H3wUeUXZ+ob7+K7DhyzMW8gp8Z98LvWtCEjykqs+3qcJbyV46kcNue2PS9OjcHV6bsmqjB4IKu4+l+vT3TFmHPXwBW5L8I82mNPGmz3tatuf7Mn6lZ3PwV8bXCnp/F3ByAoevxT28YbV3TKr3BHRNTSD9zx/uq3NYEW9b/eKNCKKjRozlaeNkukKFlqVfdtXtAns4IcLgD+qyn769Bmbo3Dhlkyau8WxeREl6e5lnT2ScEfBXipffDQT4s/IK1MeDF5Dg25KdrMViN0c/nGZsOVzni9rOq+JH9KpQM2m0fCUXdxFfLqwaGJWip+btJJD+l489nBMa0rHUk8HTxQbSSHlVXnSDH8McwzmxQ+N89zhsisnfu2VNN7Aqys/PTzuOVpzGFOYQREeNhPFl4lX+CDmu6Vs8u/TKVBoX0+J8NHVIRT7408yS+jlBR420uzzEvTlgq2IqkFiRHwy9B2X5eSDHUFx6TqmiRll5BRo1f6f7Gy4hJ79QmyMTfSqNTEkDP99srMBe2RQKUUlZmrohUv8zdPzzlA9XHfSqmWBFnlmw23QXfFpMarY2R3puaXtgVEqdr73gLNNFRk0HMk0oSl9nWZbeWGT22BOZ4Nmg4pYyhVV/3ePZorolmZgZHU1qC6NmejiuURbFTFERguh1kCeCCa7wxh9fdUFqBek89sV4Nm/bvtg0n03jcjSZce2r3vgtRHOCjujB77cp1cCy3oGfb/aaizhHUzy7rLzsMuLvA0+8D55IKXHbl1t0zacbigvbzguO9ngNjreXheiZBbvVf9JGr5qJ68nTjlwvKXSVnus7KbVGzTdTqL0ymQYuJGXk5qvQshSRkOnzs6IHTdvqUxcyolO84ztXMpPOruR3ry+vigiopLi7O5W8bvLBn55N7fJ0meN/dKq5z4KJc25vrQHnK7YdSVF+QaGx79w0L6pHAO9BEL0O8jNa9q+8WQHeVwzOXTz52ud7QcKqGVu8o9jTB16UK9DT4jNy9fXmQzruY3n6yiootDRpbbjH2pu4Jlz7YtM1a6uZ49vWQ8lG2jXtlcV7JZ1M5fDp2hPvgydTShSNswwDQbw/D5zcT0/XRThguLAczK2COZzk+RzMjhRalrGVGHkFlj5dG657Zgbq842RRvoAM3Yd857l9LuPeT6FnqmVf94m09BqiJKz/02vRPA0X8vBXhFT73hiZp7XTNgomsDiafd9G8SEUJRDEB1u5S0HXo/xrusXbheZ6B0/rOdtr9s5aSsydUOEft55TK8s3qsvNx3S7V9tMdYXEznRy/pwVZhM1HjM8ZJZsZI8vwzJwPF9Z3Sqlu2L1YApmxRoaEaYr5q0LsJ0F3zeG7+FSDqxwu/mqZv1n9+9r0aDuz3yww71n7TRWPtFwcQZhpeYw5x0ZiZ6nI/9mqxUsIH8yCv3x3m8zSK3fuFvrG1Iy0NOvvc/BZu7mHY83czFlOSsPH28xnOTtCpiefgI6GPhrGohiI4aqepD/YWbZupwMgXT8grNBk+DolI0bkWosSvzRbylLsKCHb53IaUsX8nb+NbS/crILdAYg3lJ31txwEiBoYqQr9G3FBRaGjRtq5Ky8vTrHs8VEx42PUBBUckea68i+4+nG50R/H2guZWVvjYnxZvNCfKdFbYl+XoKI0k+m5f/tV/3me6CUSZXf5v+2JVMH/nhKnNFjU0Wcc/JN/e557jrnQiio0aq+lwzU8d9NoQnKqVMnjYOs57jS2mKKkOKB9/mi+d22fmFWrTTXGGtIkdTsvWPr/x102ebTXfFoyatDTeSF7XsqhNTYz/kuJlj7qGkLD3xk2cL6Zb1z++2GW3/262lz2m/3BTpsbYtnfgx/eLPezT2D3MrEHLyC8sV2fU0U+kdEjNPtDtts7kLqMFHUoy1vToswVjbpm0IP1FE9+1lvrf6p6QDhr5/TJvhJZMmfJkvFjSG9yKIjhrLyM3nKpkhvjobxhv4RyZVvRFQh4XFZ3pdIWtPOOYluRH/vTREm8MTPFpg8Uiy+RRe83cc00cGZkPdMHmTx9usyIjZwUbbH+/DNUjK+iPEsykODiVlae3BBC3efWIFgqfr0uTkF+rGKRs1aNpWj7ZbpOinhqk6OLd87q8th8yd+yVl5mqXwdWHryze6zWrD32Ryfe+yAOGL2SaOun8avMh3WEwbaZJ3lCDTfK9WgBF/Hzxh1YtQBC9DolLz9GYRbvl78ETvJ93xeiGyZvU5+P15e7L86ZcwXUUF2VhCjlBzfKGehP7j6d7XSFrT/CCl16SlJjh+dnYw2YEVni7Jwu7SuZmY4PUWSaVPO5n5hZo6oZIj7Z/KDFTeQWW8UJ/q0PNzYh+ev4uY20///MeY20XmbDmoJHjb0xqjvEJW0dTzF5EfviH7Ubb93WxaTlVb+QGn2+MVILBY66nv2cq5OenPYbrbx2MN3MBkXiadyKIXod8sDJMG8ITvSIvbm5+oa7+ZIPpbnjUnmOpXjFLD/CEZxaYy0cN6b9/HPCa2SEwI83AhSxfnQkEeJt8w3VZTMnI9d0L+LuPmS/iHng4We+v8PxKgPdWhFY4YcuTWIFqTmRCpiSVS2MKzzF9Ecsky5Lu+zbISNubOe54pQamOwD7xBmeGVJSeIJvLfdLzszTiDnbjfbhn99t035m58FDioq7+fA5lSTphyBzleqDDierb/s2xtoHfM2OoykqsCz1OLe16a7Ax/hyAKOkolQ2vmqbwZzo3uBIcpaxmiQmVn/hhPF/hmp47/NYCWWQqZn48PxvbTLIVI0geh3iTcs9vtp0yK3Pb/q3RGZugU5pVL/477tmBBjsjbTuYAIBdHhcTGq2th7mCrkphV5QStgy2AdO8szYFZ2qC9o2VcsmDY31IcNQOqlHftwhSVr99NVG2geKmE6pYsKP244WX8D3VRsjEk13wai/f2Pu99ZXm9372xaOFVrSZ+sjTHfDp+01mE6l30Szq1BMy8j1XO0jOId0LnWIN+UoXh/u3pO8bUeS3fr8VSmbFy8129RrfyKAteOob89MgRmDpm3V0r3HTXcDBsWk+t7MFF8P3j/8w3b97bPNyjVYlON4utkAYmp2vhdcwoIv+WRteKm/751pZmm5SV9tPsTSdvg0X/69F0pRW6MSM313JQbfOyiLIHodcsyHghmjyccsSTr6V/77lCzvuYACeFJWXgE5Eg3aejjZWNtZeWaCuOYumnqXucHmUhkBviYuPdd4IWcuHAFmFa2GAgCYQzqXOsIbciWu3B+n+9q1MN0Nn+JNqw8AE26YvFHUOgQ876gXFDEHfMk9MwNNdwEAAMCnMRO9jvCGGNKrS/bp8F/VswHAE3w9gJ6azSx8mJOek6/eE9aZ7gYAAKijEn2wBgQA70UQHbY6nuYbM9PcXTjVFZZlKZl0FoDP8ZP0+q/7THcDPmrLoSTd66MzY00W1AUAwNO+DzxirO1DSVlVbwS3Sc/J1wd/hpnuBuA13BJELygo0PDhw/Xqq68W37Zjxw7dfffd6t69uwYMGKB58+aVesyiRYs0cOBAdevWTUOHDlVwcLA7ugbYYk1Ygo6nmc9Bb1nSuBWhWnswwXRXAHhYwOEUbTmUbLob8FFHkrONF/g0xbKK/gfwHf/8bpvpLgAw5NMyxY3hO26cssl0FwCv4pYg+pQpUxQYeHJ2UkpKih577DENGTJEAQEBGjdunN5//33t3LlTkrRlyxaNHTtW48ePV0BAgAYPHqwnn3xSWVlcdYRjGblm84G/umSv0falE0X9ftkVY7obPuurTZE6nJSlQoIpMGBWQJTpLgAAAAAA4BNsD6Jv3rxZy5cv180331x82/Lly9W6dWs98MADatCggfr166dBgwZp9uzZkqR58+bp9ttvV8+ePdWwYUONGDFCbdq00dKlS+3uHuqQB2aZnRGzLzbdaPswb9rmw7preoDeIKUGAAAAAABAnWVrED0hIUFvvPGGJkyYoKZNmxbfHhoaqk6dOpXatkOHDgoJCZEkhYWFVXo/UJGjKWbzr+f/VdEwKdM3l7PjpJUH4k13AQAAAAAAAG7SwK4nKiws1EsvvaSRI0fqkksuKXVfRkZGqaC6JDVp0kSZmZlO3e8KPz+XH1IneMtu+/l59j0w/X77+Uk7j6Wa7QQAAPAYPz95z4kXAAAAYIOy8byi/zYdd/MEZ/fRtiD6l19+qUaNGmn48OHl7mvatKnS0tJK3Zadna1mzZoV35+dnV3u/jZt2rjcj1NPbeHyY+qCwkLvycnsyfegXTuz7/fYlWHKySs02gcAAOA5rywJ0d29zjXdDQAAAMA2p7ZtrnZtTyl/u4/GWStiWxD9l19+0fHjx9WrVy9JKg6Kr1y5Ui+//LI2btxYavuwsDB17NhRktSxY0eFhoaWu/+6665zuR8JCWnyxRp/3lLY8MFvtqrHea081l58fJoW7IhWqyYNPdZmSb9sjzbSLgAAMGN/bJre/Y1aGAAAAKg7EhPT1bSwoPhvP78TAXRfiLMW7WtVbAui//7776X+fvXVVyVJ48ePV1JSkj788EPNnDlTDzzwgIKCgrRkyRJNnTpVkjRs2DCNGjVKt956q3r27KnZs2crISFBAwcOdLkflqU6/+ZWxFv2OSO3QOsPJnqsvaikLL2/Isxj7QEAAAAAAAB1iaWKY4u+GmetiG1B9Mq0adNG06dP17hx4zRp0iS1bdtWb775pq666ipJUr9+/fT222/rnXfeUWxsrDp06KBp06apdevWnugearHkrDzTXQAAAAAAAABQh/lZVt26nhAfX/eXGVSk0LLU9+P1prvhcTPu76aRc7ab7gYAAAAAAABQK/38SG+d06pp8d9+fifqEPpCnLVoX6tSzwN9AQAAAAAAAACgViKIDgAAAAAAAAA+yk9+prvg9Qiio1ar60tKAAAAAAAAAJhFEB0AAAAAAAAAAAcIogMAAAAAAAAA4ABBdNRqheRzAQAAAAAAAOBGBNFRqz3y4w7TXQAAAAAAAABqLT/qilaJIDoAAAAAAAAAAA4QRAcAAAAAAAAAwAGC6AAAAAAAAAAAOEAQHQAAAAAAAAAABwiiAwAAAAAAAADgAEF0AAAAAAAAAPBRfqY7UAsQRK8jMnMLTHcBAAAAAAAAAOocguh1xNzgo6a7AAAAAAAAAAB1DkH0OiIjh5noAAAAAAAAAGA3gugAAAAAAAAAADhAEB0AAAAAAAAAAAcIotcRfpTRBQAAAAAAAADbEUQHAAAAAAAAAMABgugAAAAAAAAAADhAEB0AAAAAAAAAAAcIotcZJEUHAAAAAAAAALsRRAcAAAAAAAAAwAGC6AAAAAAAAADgo/z8yHBRFYLodQRjHQAAAAAAAADsRxAdAAAAAAAAAAAHCKIDAAAAAAAAAOAAQXQAAAAAAAAAABwgiF5HkBIdAAAAAAAAAOxHEB0AAAAAAAAAfBSTc6tGEB0AAAAAAAAAAAcIotcRflwyAgAAAAAAAADbEUQHAAAAAAAAAMABgugAAAAAAAAAADhAEB0AAAAAAAAAfBRpoqtGEL2OYKwDAAAAAAAAgP0IogMAAAAAAAAA4ABBdAAAAAAAAAAAHCCIXleQvAgAAAAAAAAAbEcQHQAAAAAAAAAABwiiAwAAAAAAAICPIr9F1WwNooeEhGjkyJHq06ePrrnmGr388stKTEyUJO3YsUN33323unfvrgEDBmjevHmlHrto0SINHDhQ3bp109ChQxUcHGxn1wAAAAAAAAAAcJltQfTs7Gw98sgj6t69uzZs2KBff/1VycnJev3115WSkqLHHntMQ4YMUUBAgMaNG6f3339fO3fulCRt2bJFY8eO1fjx4xUQEKDBgwfrySefVFZWll3dq/O4YgQAAAAAAAAA9rMtiB4dHa1LLrlEo0aNUqNGjdSmTRvde++9CggI0PLly9W6dWs98MADatCggfr166dBgwZp9uzZkqR58+bp9ttvV8+ePdWwYUONGDFCbdq00dKlS+3qHgAAAAAAAAAALrMtiH7RRRfp66+/Vv369Ytv++OPP9SlSxeFhoaqU6dOpbbv0KGDQkJCJElhYWGV3g8AAAAAAAAAgAkN3PGklmXpk08+0erVq/X9999r1qxZatq0aaltmjRposzMTElSRkZGpfe7ws9H85r46G4DAAAAAAAAqAE/v9Ix1aL/9oU4q7P7aHsQPT09Xa+99pr27Nmj77//Xp07d1bTpk2VlpZWarvs7Gw1a9ZMktS0aVNlZ2eXu79NmzYut3/qqS2q3/la7JRmjU13AQAAAAAAAEAt0/bU5mrXokm52301zloRW4Pohw8f1qOPPqqzzz5b8+fPV9u2bSVJnTp10saNG0ttGxYWpo4dO0qSOnbsqNDQ0HL3X3fddS73ISEhTZZVzR2oxbIyc0x3AQAAAAAAAEAtk5iYoXo5ecV/+/mdCKD7Qpy1aF+rYltO9JSUFD300EPq0aOHvvnmm+IAuiQNHDhQ8fHxmjlzpvLy8uTv768lS5borrvukiQNGzZMS5Yskb+/v/Ly8jRz5kwlJCRo4MCBLvfDsnz3HwAAAAAAAAC4wlGc0XSs05tiqrbNRF+4cKGio6O1bNky/f7776XuCw4O1vTp0zVu3DhNmjRJbdu21ZtvvqmrrrpKktSvXz+9/fbbeueddxQbG6sOHTpo2rRpat26tV3dq/N8IUcRAAAAAAAAAHian2XVrTnM8fF1f5lBRb7aFKlpmw+b7gYAAAAAAACAWmTZE1epXbNGxX/7+Unt2rXwiThr0b5WxbZ0LgAAAAAAAAAA1DUE0QEAAAAAAADAR5ElumoE0esIP4Y7AAAAAAAAANiOIDoAAAAAAAAAAA4QRAcAAAAAAAAAwAGC6HUF2VwAAAAAAAAAwHYE0QEAAAAAAAAAcIAgOgAAAAAAAAD4KD8yXFSJIDoAAAAAAAAAAA4QRK8juGAEAAAAAAAAAPYjiA4AAAAAAAAAgAME0QEAAAAAAAAAcIAgeh1BAQAAAAAAAAAAriKsWDWC6AAAAAAAAAAAOEAQHQAAAAAAAAAABwiiAwAAAAAAAADgAEH0OsKP7EUAAAAAAAAAYDuC6AAAAAAAAAAAOEAQHQAAAAAAAAB8FBkuqkYQvY7wY6wDAAAAAAAAgO0IogMAAAAAAAAA4ABBdAAAAAAAAAAAHCCIDgAAAAAAAACAAwTRAQAAAAAAAABwgCA6AAAAAAAAAPgqP9Md8H4E0QEAAAAAAAAAcIAgeh3BBSMAAAAAAAAAsB9BdAAAAAAAAAAAHCCIDgAAAAAAAACAAwTRAQAAAAAAAABwgCB6HeHnR1Z0AAAAAAAAALAbQXQAAAAAAAAAABwgiA4AAAAAAAAAgAME0QEAAAAAAAAAcIAgeh1BRnQAAAAAAAAAsB9BdAAAAAAAAAAAHCCIDgAAAAAAAACAAwTR6wg/8rkAAAAAAAAAgO0IogMAAAAAAAAA4ABB9DoiO6/QdBcAAAAAAAAAoM4hiF5H+B9KMt0FAAAAAAAAAKhzCKLXEee3aWrL89x66elqWJ8E6ybc2/1sLfpXb9PdAOBh7/xfZ40fdKnRPlx1QRuj7fuqpg05DQNMuKo9xzwAAAC4xqt+vSUkJOipp55Sr1691LdvX40bN075+fmmu1UrNGlQ87fys2Fd9d/bLtGc4T1t6BFcNezKs3Vu66Z67aYOprvicz75++Xa+nx/zR/Zy1gftj7fXy/ceLGx9hs3qKeuZ7U00vbW5/sr4IXrFPDCdfrk75d7vP25I3qqVZMGuvaith5v+64rz9LtXc7QgI7tPN52kW8f6K7Jw7oaafvft3Qy0m6R/97WWVPu6qqv77vS4203rO+ndc9cqz9H9TN+EcUXtWrSQO3b2jMBwRUP9Dy31DFv85j+Hu+DN3jmuguNtf37E1dp8l1dtfBhcxMXPrrzMqOvgWnDrjxLF7c7xXQ3AAAAXOJnWZZluhNFhg8frjPOOENjx45VfHy8nnzySQ0ZMkSPPPKI088RH58m79kjz5m26ZC+2nyo2o9f9sRVatesUfHfk9aGq2F9P03fEmVH97zK3zq1058H4k13o5Q7upyht27pJD+/k6sAHp4TrF3H0gz2yn1evamD/n7FWYpOydZbS0PK7efW5/urz8fr3dqHS05vrpDj6Vr2eF+1a964+PbM3AKtP5igN5eGuLX9kmbe301dSgSwkzPzNPDzzW5r79+3dNLYPw5IOhE8X/FUPzVtWF+StP5ggi5u10x3fr21Ws89pOuZ+nlXjCTpz1H99LfPyu/Hkkf7aMGOY5q5NUpzHuyhjqc1L3V/7wnrqtW2K5o1qq+M3ALd1+OcUhcv4jNyNWx6gDJyC9zeB0naPKa/GtQ78bkPikrWEz/t9Ei7Hwy+TFdd0Eb16/mp8V8XYdNz8vXW0hCtD0/0SB/8x/RX/Xp+WrAjWo0b1NMdXc6U5N73v56fNPvBnvrHt0F6sPe5Gn3dRcX35eQX6sVf9sg/0n3p0Sbfdbl6nNtaDev7lTreF3l+0W63vf43dDhVZ7ZsorNaNtbB+Ay9/LeO2hieoEvPbKFvt0YpPD5DwUdT3dJ2RR7oea7u73mO5m2P1p1dz1RoXIZeXrzXY+0HvHCdJKmg0NJVE937fVPk6f4X6qE+55W73bIsLdhxTB/8GeaRfkjS8ievUptTGimvoFAbwhP176Uhysn3TH2db/7RTVecfeI777G5OxR8JMUj7UrS41dfoEf6XVD8tye+b8r6/O4r1Ov81sbaf7D3uRrW7Ww1bVBfC3ZG64uN1f/9UB1vDOyoIVecpay8Av15IE59zm+j27/a4tE+AACA8lY81U+tmzYs/tvPT2rXroVPxFmL9rXK7bwliH7o0CHdfPPNWrdunc444wxJ0tKlS/Xhhx9q9erVTj+PL7y5FcnNL9Q1n25w+XFntWysxY/2dXi/iZN7O8wb0UsfrArTFWe10BPXtNfBhExd2PYUWZIa1PPzmv1a/fTVataofoXBFEnacTRFj/y4w8O9cs6GZ6/VtdUYc5ufu1YN6p9cOTFq3k5tPZxcapuAF66z5T26p9vZ+ml7dKnbTm/eSC8M6KAbO5zq8HWXpNu+9Fdcem6N++DIJ0MvV0JGrnqc20rnti4/G/K/v+/Xkj2xtrf7xT1XqOd5rZWdV6B1BxN0Vfs2atmkYbntXv91n1bsj3PpuU9v3kjv3n6pHpt7YsxW9D5ueu5aNaxf+cqZiIRM3TMz0KW2ndWwvp86ntZc0//RTfXrVfz+J2bm6pbP/W1v++oL22hTRJK6ntVC0+/vXuE2s7ZGafL6CNvblqS/X3Gm9sWka9p9V6rJXxdNKuKu4+MlpzfX5Lu6qmXTBvKTKv38/bHvuFsuZH069HJdfWFbWZblsH137X9R0LYyyVl5GjjVPRfQnGl/TtARTVwT7pb2i/rw76Uh2heTptkP9iy+gFPEnd/Nt156uv572yWKz8hVm6YNS33+g6KStTE8UQMvOU0Pfh9se9v/7HWunr3+oiq3c/e5SVVj4Mmfdigwyj0B7Vdv6qA7u55VfNGwpISMXP3fF/Yfc4uMu/0S/a3TaRUe8y3L0qyAI7r8rBZuu4g5oGM73dfjHH29+ZBeGtBB7U89OQN7Z3Sqpm0+5NaLd0UW/au3zmjRuNx3cGRCpu5203fuE9dcoOsuPlWZuQX6dG2EXr2pgzqd3rzcdt5yXg4AgC8jiF6LgugrV67UG2+8oS1bTs5E2L9/vwYPHqyAgAC1bOlcmgFfeHMd+XrzIX25qfxsknu7n625wdEVPEI6rXkjLX38KofPOW3zIX1VwXN6s7anNNQfT/ardJuKTtan/6Ob1oQlyM9P+nar+2bgP3lNe+UXFuqxq9s7tX1ceo5u+9L7ZugEvHCdsvIKlJFboHbNGmnhzmN6f0WopBOz7aasj9DEv3dR93NbadLaCPU8r5Vu6nya6pUJXG2KSNSzC3eXe+78QksfrQrTmrAEJWQ4H8x++Krz1b5tU3U5s6XOa92k3Iz2skH8ymTnFaj/pI1Ot+2MK85uqa/uvdJhALektWHxevEX12ZmdjunpbY7mE16yenN9d3wHi49nys/bIte2/CEDJ3TqqkaN6hX6vEbn71WjZxMPTVxzUHNCTrqUl9LalDPTwM7n6Zl+44X31Zy9l9VqvuD3n9Mf0UkZGpHdIrGrzw5q/SZ6y7U8N7nKSe/sFzgsKzxK0O1YMexarXviDMB1JKqs/9FFwmk8t87/S9qq/fuuLTS4H1Z/pGJGr1gd9UblvDTiF4KPppSfCwqaeYD3dXlzKpPjLZEJunpBbtcareklk0aKDX7RCq6Gzu206P9zi+32qIyhZalPcfS9PAP26vdh9svO12/7T059v97W2fdeukZTj3WHQHNeSN7qX3bk4FDRxcx4tNzdKsbvu9cGf8pWXm6qQYXMn54sKd2HUvVeyXGoLPfO8fTcmyfkTv5rssVGpehO7ueWeEF05IKCi0t3HlM/7NxRnz3c1rqq/u6Vbld0ZiwO5jqyvfOsdRsDZ5WvVVYktSovp9yC07+CPn2ge66zIljjiTtP56uf363rdptO/LVvVeq+7mtqtwuPSdfN07ZZHv7W57vX+68ryKZuQW6a3qA4l043wMAAPYiiF6Lgui//PKLJk6cqDVr1hTfdvjwYQ0cOFBr167VmWee6dTzJCTU/Te3MjO3HNaU9ZGlbvN/vr/GLT+gJbvLz2qd/WAPda5gRkhZe46l6aHZFc/OeuSq8/VQn/O0Oixeby3d71J/z2nVREdTsiVJvz3eV6c3b6TeE2q2rDrwRed+LOcXFOr1X0O0KjRe80b20oUlZgb9788w/eTgwkNVPhl6uX7bE1vhLN6F/+pdrSKwD8/Zrp3RjpfZfzr0cvU8r5Ue/D5Y13c4VY/0u0DXfOL8LPFfHumtAktasjtGM5xI4XNWy8Za8lj5FQxbDyWp61kt1bRRfWXnFTgdMBs9f5c2/zULa+6Inrq4XbNS9/f66OSP6qIA1X9v61w83p6/8SI9c8ulOnwsSac0bFDqsR+vPqjFu2PU/dxWemlAB53dqolTfSqSX1ColQfi9eZvjmfFLni4lxbsOKY5QUf162N99OueWCVl5ume7mfrruknZndteb5/8UoIV8Sl5+jWL5wPqnx2d1eNmrdLF7RtqrkP9dRVE0+MgxcHXKz7epzjUtvSiaDKi7/s0fqDibri7JYOx+FX916hHue1Lnf77mOp+m1PrB6/pn2pL2RnHE3OUlRytp6eXz6gWc9PKvzrWP/awA56f8WJoM+UYZcr+Eiqbr3sdLVve4pW7o/Tm7+FaN7IXjrPhc9eek6+bphcOqBQMjjqP+ZabTmUrMYN6+nzTYeVlpmrafddqVYl9jEoKlmPz92pR646X09c297ptvMKCrUzOlWXntFCpzQ68Rkq+Rko6ayWjfVovws0fmWoXhzQoThwN/muy9XvwurneM8vtPR9QJROa95Yby/br3NbN9GR5OwKt21Qz08vDrhY/3fp6WreuEFxMGxTRKLeXxGqd2+/RFeeU3UQpyL/+X1/hd9dRX54qIf+8e2JwNPZLRtr8V/Hpb0xaXrw+2A9e/2Furf7OU4H0YokZebKsk58F7Q5paHmba/4osb4QZfqps6nKa+gUPXr+amg0Cr+jOfkF7p00aAsy7K05VCyVu6PK06RVOT/Lj1N795+iZq0OEWXv/2HJOn3J/rqH99u09jbL9FV7dvo1z2xmrvtqCbddbnanNKooiYc+nVPrOYFR2tPTPmUYqc3b6TjZVbpvHlLR93S+XQ1/Wu8/ro7Ru/8fkBf3OP8hauKFL2Pjnw05DIdSc7W9RefqqkbIrVif5wmDOmil37Zo0LrxPHgqvaufw7+73P/4mDemS0aKyYtp9w2TRvWU1beyfQnn/y9i65q36Y4WP7x6oNadSBeSx7rU+mqi4oUWpb6uHgu9PBV5yktO18vDOigqz5er9suO12v3tSx+BjiLMuyNOirrRXuszN+fayPzmzZRPl/HaBd/c6zLEv+kUkavWC3OrRrpr4XtNZsBxdUL253ig7GZ6q+n1RgSZee0VydT2+u9qeeok6nNdOV57Sq8qJlWdl5BfrG/7DWH0xUWHxGhdtsHnNiRdVrS/bp/DZNdX/Pc7Rkd6y6ndtSI2ZvlySNueEiPdDrXJfalqTVofF6yYmL51Pv7qqXF+/VU9deqLuuPEvHUrPVskkDDZhy4gLQczdcpAd6nuPS2LMsS5sikoonNvQ+v7UCyqwUlKSOpzVTaNzJ16bbOS2VmVegEX3O0+u/njhXcvZcvCJrwuL14s+eS+0EAABOWPvM1WrW6GQ8xc9POvXUFj4RZy3a1yq385Yg+ooVK/Tmm29WOBM9MDBQLVo4N5MDUlZugS596/fivyPH3y5JOpSQoes/XCNJuqfXuXrsuovU4fTqva7pOfkVpiFp/+pvTj/HNw/10t8qmBmXnVegR74N1IYw1/OWn9Kovvb+9/9cflxZlmVp19EUDZ7i2izk9S/fqPPanqLU7DwN+GiN/nvn5bqt61k17o9U+rVd+NTVeu7H7Zr1cB+1LxNwrmj7st4edJkuP6eVDh5P13WdTtPZf6UTKSy09K9vA7S6ijQeHU9vrhXPX1+NvXCssNBSPSd+bBf89cPcmZncRSpL3eCsnPwC7Y9J09GkLPXvdJqGTt2oA7HpkqSI929z+PwH49J1arNGau1iEKukwkJLManZik3NVkpWnkbMCNDj11+kod3PVft2p6hxg/raE52i0Nh0DenueqDcFXkFhXp94S61bd5IefmW3hp0mVvbK+lwQqZmbzmkv116hvqUCRAv3XVM57RuqisrCOTXRFp2nlbvj9PfLjldzRo3qPoBbhISk6r/++REUG3J09eqa5mZhQWFlurX81NiRq4i4tPV4/w2NR7zZVmWpQtfWypJuqhdM614/nr5SU59bmti88EENWlYT93Pb6O4tBzFpGQr8FCiRlzdXn5+frr0378rK69Ak//RXYOuPNtt/cjMzdcT32/TwMvO0AN9znf7flfU/oHYdF15bqtS721mbr4a1q9XZZqk6hj2+SYFHkpS0Js36c99xxWXnqNRNzpX/NqO46504vh3JClLL87foQl3X6nFO6L16cpQrX35Bp3Vqmmp7eLSc3RGS9culDrbhwenb9Xwfhco5Fia/tHnPJ3uhnbKCjqUpJCYVN3b6zw1qF9PyZm5Gv1DsHLzCzXtoV4KiEjUY98F6Y/n+lf7fK4yx9Oy1aRhfV3xznJJ0nt/76rTWjTWKwt2avmY6/THnhit2R+nKfd319Jdx3RGiya6uoP9RZLzCgo1NyBKHU9vrnu/8lfXc1pp/F1d1eXsk8fBlKw8tWzSwPbj3oyNEWrZpKHu6ll1QNyyLN352UbtO5aq/WNvrdEx4ou1BzV+WYjOa9tUUYlZkqT/3XWF1h6I01uDLnM4zlfvP65G9evpmhq8D0U/DYtey4JCS7/ujFZSRq5u7XqWzmjZRL/vPqYnvt+mN2+/VI/0P5mqKD49R21PaVTj42NEfIZ2RCXrubnbJZ34LePKbwwAAOC6otghHPOaIHpkZKRuueUWbdy4Ue3anTjxW7p0qT744AOtXbvW6efxhSskzig5a7HkbJCUrDw1ql+veLaYnfz8pG+DojVpVdXLgJ2ZoZKV63oqjQUP99IFJZaM11Radr62HErSq0v2ObV9TWbeVKVodtKj/c7X49e0r3L7sLgM3fdtULnbNzx7TZWzI9Oy8zVve7Smbois8P6n+1+oEX3LF0czxZeukMK7+NrYy8wtUHpOvk5v0bjqjT0kPiNXYXHp6nuB/RcOvJmvjT14D8ae++UXWtoSmaSuZ7eoMg2PKa6sOLQT4w+mMPZgCmMPpvjS2Kt1M9El6f7779eZZ56p//73v0pKStKTTz6pW265RaNHj3b6OXwhV48zgqKS9Z/f92v6/d3Vrln1Z8C64sSga65tocd1Xuumxbmotz7f/8QS92rOkisotLQzOrW4WKEjr/ytg4Z1c98sxKryY1/QpqnmP9zbbe1XR1ZegXLyCrXuYIL6XdhGpzV3LfD1yuK9WhVafkXA5jH9XV6i7U6+lKsL3oWxB1MYezCFsQeTGH8whbEHUxh7MMWXxl6ty4kuSfHx8frvf/+rLVu2qF69ehoyZIhefPFF1a/v/CwHX3hzvZW7P2CbIxP1zF9F5v5za2dl5hbo9BaNVVBo6fKzWrgcIK6J3PzCUjl24/5avupKipHaJje/UMlZeTq1mfftpy8d3OFdGHswhbEHUxh7MInxB1MYezCFsQdTfGnsORtEN5fgtQLt2rXTpEmTTHcDXqpf+7ba8Oy1alDPz3gQt2yROk8G8E1p1KCeV6VwAAAAAAAAADzBq4LoQFUaN7C/cBoAAAAAAAAAOEJEEgAAAAAAAAAABwiiAwAAAAAAAADgAEF0AAAAAAAAAAAcIIgOAAAAAAAAAIADBNEBAAAAAAAAAHCAIDoAAAAAAAAAAA4QRAcAAAAAAAAAwAGC6AAAAAAAAAAAOEAQHQAAAAAAAAAABwiiAwAAAAAAAADgAEF0AAAAAAAAAAAcaGC6A3bz8zPdA99V9NrzHsDTGHswhbEHUxh7MIWxB5MYfzCFsQdTGHswxZfGnrP76GdZluXergAAAAAAAAAAUDuRzgUAAAAAAAAAAAcIogMAAAAAAAAA4ABBdAAAAAAAAAAAHCCIDgAAAAAAAACAAwTRAQAAAAAAAABwgCA6AAAAAAAAAAAOEEQHAAAAAAAAAMABgugAAAAAAAAAADhAEB2VSkxM1MCBA7Vly5bi29auXashQ4aoe/fuGjx4sFasWFF8X2FhoSZOnKjrrrtOPXv21D333KOtW7cW3x8fH6/OnTure/fuxf8GDBjg0X1C7eDq2LMsS9OmTdOAAQPUo0cPjRgxQgcOHCi+v6CgQB988IGuvvpqde/eXU8++aSOHz/u0X1C7WD32OO4h6qEhIRo5MiR6tOnj6655hq9/PLLSkxMlCTt2LFDd999d/G4mTdvXqnHLlq0SAMHDlS3bt00dOhQBQcHF9/HcQ9VcdfY47gHZ9Rk/BWZMWOGhg8fXuo2jn2oirvGHsc+VKW6Y8+yLH322WfFvzcGDRqk33//vfh+jnuoirvGns8d9yzAgcDAQOumm26yOnXqZPn7+1uWZVm7d++2unTpYv30009WXl6eFRAQYHXv3r34/tmzZ1u33XabFRMTYxUUFFgzZsywunXrZmVnZ1uWZVmrVq2ybrzxRmP7hNqhOmPv22+/tfr06WMFBQVZeXl51qxZs6y+fftaCQkJlmVZ1uTJk61BgwZZ0dHRVlpamvXcc89Zjz76qLF9hHdyx9jjuIfKZGVlWddcc4316aefWjk5OVZiYqL16KOPWo8//riVnJxs9enTx/r++++tvLw8a9OmTVb37t2tHTt2WJZlWf7+/lb37t2twMBAKzc315oxY4bVt29fKzMz07IsjnuonDvHHsc9VKUm48+yLCsjI8N6//33rU6dOln//Oc/Sz03xz5Uxp1jj2MfKlOTsTdjxgxrwIABVlhYmFVYWGj9+eefVteuXYvv57iHyrhz7PnacY+Z6KjQokWL9OKLL2rMmDGlbl+2bJl69Oihu+++Ww0aNFCvXr00aNAg/fDDD5Kk8PBwFRYWqrCwUJZlyc/PT02aNCl+/K5du3T55Zd7dF9Qu1R37P36668aPny4evTooQYNGmj48OFq06ZN8VXSefPm6dFHH9VZZ52l5s2b64033tC6desUFRXl8X2Ed3LX2OO4h8pER0frkksu0ahRo9SoUSO1adNG9957rwICArR8+XK1bt1aDzzwgBo0aKB+/fpp0KBBmj17tqQTx7Xbb79dPXv2VMOGDTVixAi1adNGS5cuLb6f4x4ccefY47iHqtRk/EnSnXfeqbi4OP3jH/8o99wc+1AZd449jn2oTE3GXmpqqkaNGqWLL75Yfn5+GjBggC6++GJt27ZNEsc9VM6dY8/XjnsE0VGha6+9VitWrNBtt91W6vaCggKdcsoppW6rV6+ewsPDJUn33XefsrOzdcMNN6hr16765JNPNGnSJDVu3FjSiQ9YTEyM7rjjDl111VV69NFHFRYW5pmdQq1Q3bFX2f1paWmKiYlRp06diu9r166dWrVqpf3797tpT1DbuGPsSRz3ULmLLrpIX3/9terXr1982x9//KEuXbooNDS01HFLkjp06KCQkBBJUlhYmMP7Oe6hKu4aexLHPVStJuNPkr777jtNmDBBp556aqntOPahKu4aexLHPlSuJmPvmWee0dChQ4vvO3jwoEJDQ9WlSxeOe6iSu8ae5HvHPYLoqNBpp52mBg0alLt94MCB2rBhg/744w/l5+crKChIS5cuVU5OjiQpLy9Pffr00bJly7Rt2zY98sgjeuaZZxQXFydJatmypXr27KlZs2Zp5cqVat++vUaOHKm0tDSP7h+8V3XH3i233KLvvvtO+/btU15enn744QdFREQoJydHGRkZklQu0NmkSZPi+wB3jD2J4x6cZ1mWJk6cqNWrV+uNN95QRkaGmjZtWmqbJk2aKDMzU5IqvZ/jHlxh59iTOO7BNa6OP0k688wzK3wujn1whZ1jT+LYB+dVZ+wViYiI0KOPPqrBgwerd+/eHPfgEjvHnuR7xz2C6HBJjx499L///U9TpkzRNddco2+++UZDhw5Vy5YtJUkvv/yyrrvuOl100UVq0qSJRo0apRYtWhSnNZgwYYJeeeUVtW3bVs2bN9drr72mjIwMBQYGmtwt1AJVjb2HH35YQ4YM0ahRo3TjjTcqPDxc1157rVq2bFn8pZCVlVXqObOzs9WsWTOP7wtql5qMPYnjHpyTnp6uZ555RkuWLNH333+vzp07q2nTpsrOzi61XcnjVmX3c9yDs+weexLHPTivOuOvMhz74Cy7x57EsQ/OqcnYW7Vqle69917dfPPNGjdunCSOe3Ce3WNP8r3jHkF0uCQ5OVkdO3bUkiVLtGXLFk2dOlXHjh0rzoEUHR2t3NzcUo9p0KCBGjZsqPT0dH3wwQc6evRo8X0FBQXKz88vlTcdqEhVYy82NlbDhg3TqlWrtGHDBr3yyisKCQnR5ZdfrlatWumMM84otawoLi5OycnJ5ZYuAWXVZOxx3IMzDh8+rLvuukvp6emaP3++OnfuLEnq1KmTQkNDS20bFhamjh07SpI6duzo8H6Oe3CGO8Yexz04q7rjrzIc++AMd4w9jn1wRk3G3meffaYXXnhB//73v/Xqq6/Kz89PEsc9OMcdY88Xj3sE0eGSQ4cO6Z577lFISIjy8/O1dOlSrV69Wvfff78kacCAAfr8888VFRWlvLw8ffvtt4qLi9ONN96o5s2ba9OmTfrggw+UlpamjIwMjR07Vueee6569epleM/g7aoae7/99pueeuopJSUlKSMjQxMmTFCjRo00YMAASdLQoUOLx2Z6erree+899enTR+eff77J3UItUJOxx3EPVUlJSdFDDz2kHj166JtvvlHbtm2L7xs4cKDi4+M1c+ZM5eXlyd/fX0uWLNFdd90lSRo2bJiWLFkif39/5eXlaebMmUpISNDAgQMlcdxD5dw19jjuwRk1GX9V4diHyrhr7HHsQ1VqMvZmzJihGTNmaPbs2Ro0aFC55+a4h8q4a+z54nHPz7Isy3Qn4N06d+6sWbNmqW/fvpKkH374QdOmTVNSUpIuuugivfjii+rXr5+kE3kIJ06cqOXLlysrK0udO3fWyy+/rCuuuEKSdPToUb3//vsKCAhQXl6e+vbtqzfffFPnnHOOsf2D93Jl7OXl5em9997T77//rry8PPXq1Utvvvmmzj333OL7P/30Uy1evFgZGRnq27evxo4dW2FRIMDOscdxD5WZMWOGxo8fr6ZNmxbP6igSHBysXbt2ady4cTpw4IDatm2rp556qlRxn19++UWff/65YmNj1aFDB7355pu68sorJXHcQ+XcOfY47qEqNR1/RSZPnqytW7fqu+++K76NYx8q486xx7EPlanu2LMsS71791ZWVpYaNWpU6nGPP/64nnjiCY57qJQ7x56vHfcIogMAAAAAAAAA4ADpXAAAAAAAAAAAcIAgOgAAAAAAAAAADhBEBwAAAAAAAADAAYLoAAAAAAAAAAA4QBAdAAAAAAAAAAAHCKIDAAAAAAAAAOAAQXQAAAAAAAAAABwgiA4AAAD4kMjISNNdAAAAAGoVgugAAABALTd58mQNHz68yu1WrVqlf/3rXx7oEQAAAFB3EEQHAAAAfERycrIsyzLdDQAAAKBWIYgOAAAA1DLbtm3TXXfdpW7duum+++7TkSNHJEmWZemrr77SoEGD1KtXL/Xu3VsvvPCCsrOztWXLFr399tuKjo5W9+7dFRsbq9zcXH366af629/+pj59+ujRRx/VoUOHDO8dAAAA4F0IogMAAAC1SFJSkh5//HHdcsstCggI0EsvvaSVK1dKkpYtW6ZZs2Zp8uTJCgwM1I8//qgNGzZoyZIl6tu3r/7zn//o7LPPVnBwsM444wxNnDhRa9as0cyZM7V+/XpdeeWVevjhh5WTk2N4LwEAAADvQRAdAAAAqEXWrFmjpk2b6tFHH1XDhg3Vs2dP3XXXXZKk6667TvPnz1f79u2VmJiopKQktW7dWrGxseWex7Is/fjjj3r++ed13nnnqXHjxho1apTy8vK0Zs0aD+8VAAAA4L0amO4AAAAAAOfFxsbqrLPOkp+fX/Ft559/vvbt2yfLsjRx4kStXr1abdu21aWXXqq8vLwK86AnJiYqMzNTzz77rOrVOzm3Ji8vT0ePHvXIvgAAAAC1AUF0AAAAoBY588wzdfToURUWFhYHv2NiYiRJH330kaKjo7Vq1So1b95ckjRo0KAKn6dNmzZq3Lixpk+frm7duhXfHh4erjPOOMO9OwEAAADUIqRzAQAAAGqRAQMGyLIsTZ48Wbm5udq9e7fmzZsnSUpPT1fjxo1Vv3595eTkaPr06Tpw4IDy8vIkSY0bN1ZWVpby8/NVr149DRs2TBMmTFBMTIwKCwu1aNEi3XHHHRQXBQAAAErwsypa2wkAAADAa4WEhOidd95RSEiILrjgAl155ZWKiIjQe++9p9dee0179uzRKaecop49e6pJkyZKTU3VF198oePHj+vhhx/W0aNH9eOPP6p9+/aaPHmyli5dquTkZJ133nkaPXq0brrpJtO7CAAAAHgNgugAAAAAAAAAADhAOhcAAAAAAAAAABwgiA4AAAAAAAAAgAME0QEAAAAAAAAAcIAgOgAAAAAAAAAADhBEBwAAAAAAAADAAYLoAAAAAAAAAAA4QBAdAAAAAAAAAAAHCKIDAAAAAAAAAOAAQXQAAAAAAAAAABwgiA4AAAAAAAAAgAME0QEAAAAAAAAAcIAgOgAAAAAAAAAADhBEBwAAAAAAAADAAYLoAAAAAAAAAAA4QBAdAAAAAAAAAAAHCKIDAAAAAAAAAOAAQXQAAAAAAAAAABwgiA4AAACnDR8+XJ07dy7175JLLlHPnj11991367fffrOlnSNHjqhz585auHChJGnLli3q3LmztmzZYsvzFxkwYIBeffVVW5+zpo4ePao33nhD119/vS6//HJdddVVevzxx+Xv7+/ycy1cuFCdO3fWkSNH3NBT1xw8eFBjx47VLbfcoiuvvFI9e/bUvffeq9mzZysvL6/Utp07d9bkyZMN9bRiJcdK2fEJAACAuq2B6Q4AAACgdrnsssv09ttvF/9dUFCgmJgYzZw5U88//7xatGih6667ztY2u3Tporlz56pDhw62Pu+UKVPUvHlzW5+zJuLi4nTvvffq9NNP15gxY3T22WcrMTFR8+bN04gRIzRp0iTdfPPNprvpsqVLl+q1117TRRddpJEjR+rCCy9Udna21q5dq/fff1/r1q3TF198IT8/P0nS3LlzdeaZZxrutWOnn3665s6dq/PPP990VwAAAOABBNEBAADgkubNm6tbt27lbr/++uvVr18/LViwwPYguqM2a+qyyy6z/Tlr4qefflJqaqqWLVumFi1aFN8+cOBA3X333fr0009rXRD94MGDeu2113T11Vdr8uTJatDg5E+Q66+/Xn379tUzzzyj3377TXfccYckueW9tlOjRo28vo8AAACwD+lcAAAAYItGjRqpYcOGpW7Lzs7WhAkTdPPNN+vyyy9Xjx49NHLkSO3bt6/UdsuXL9fgwYN1xRVX6O9//7tCQkJK3V9ROpeVK1fq/vvvV/fu3XX55Zfr//7v//T9998X319R6pmif0VpOMqmc0lLS9P777+vm266SV27dtUdd9yh+fPnl+rLgAEDNGnSJH3wwQe6+uqrdcUVV+hf//qXIiIiSm0XGBiof/7zn7ryyivVp08fvfLKK0pMTKz0NYyPj5efn58KCwtL3V6/fn298MILuueee0rdvnHjRt1///3q2bOn+vbtqxdeeEHHjh2rtI158+Zp6NCh6tatm6644grdeeedWrp0afH9Cxcu1GWXXaZ58+bp2muv1XXXXafQ0NDi13zo0KHq2rWrrrnmGr377rvKzMystL2vv/5a9erV07vvvlsqgF7klltu0ZAhQ1Sv3smfJmXTuRw/flyvvfaarr/+el1xxRUaNmyY/vzzz1LP07lzZ02ZMkV33XWXevbsqalTpxbvy44dO3Tvvfeqa9euuuGGGzRt2rRSjz1y5IhefvllXXvtterSpYv69eunl19+WUlJSRXuU0XpXKKjo/X888+rT58+uvLKK/XQQw9p79695R4zY8YM3XrrrerTp0/x46saywAAADCLmegAAABwiWVZys/PL/67KJ3LZ599poyMDN15553F97388ssKCAjQCy+8oPPPP1+RkZH69NNPNWbMGC1btkx+fn5atWqVnnnmGd1+++168cUXFRISopdeeqnSPqxZs0ajRo3Sgw8+qNGjRys7O1vff/+9xo4dq8suu0w9evTQ22+/rfT09OLH5Ofn69VXX1VeXl6FM+Wzs7N1//33Kz4+XqNHj9Z5552nlStX6o033lB8fLyeeOKJ4m1nzZqlnj176v3331dKSorGjRunV199VXPnzpUkBQQEaOTIkbrqqqv0ySefKCUlRZ9++qkefPBBzZ8/X02aNKlwv2644QbNmTNH99xzj+655x7169dPnTt3Vv369XXNNdfommuuKd72l19+0csvv6zbbrtNjz/+uJKSkjRp0iTde++9WrRokU499dRyzz979my9++67evrpp/XKK68oOTlZ06ZN00svvaRu3brp7LPPLn5Pv/jiC7377rtKTExUhw4dtGTJEr344osaNGiQnnvuOR09elQTJ05UWFiYZsyYUZyKpaw///xTV111VYX9KfLBBx84vC8+Pl7Dhg1Tw4YNNWbMGLVp00YLFy7UqFGj9L///U+DBw8u3vbzzz/Xs88+q86dO+vMM8/Unj17VFhYqOeee04jRozQc889p/nz5+ujjz7SJZdcov79+ysrK0sPPvig2rRpo7ffflstWrRQUFCQPvvsMzVu3Fhjx4512LciiYmJuu+++9S0aVP9+9//VtOmTfXtt9/qgQce0Pz583XxxRcXbztx4kS99dZbatmypS6//HKnxjIAAADMIogOAAAAlwQEBKhLly6lbvPz81OnTp306aefasCAAZKk3NxcZWRk6N///rduu+02SVKfPn2UkZGh8ePHKy4uTqeffro+++wzdenSRRMmTJCk4gB30d8VCQsL05AhQ/TGG28U39a9e3f17dtXAQEB6tGjR7n86e+8847i4uI0e/ZstWvXrtxzLly4UAcOHNCcOXPUs2dPSVL//v2Vn5+vqVOn6r777lPr1q0lSS1bttTUqVNVv359SdLhw4c1efJkJSUlqU2bNpowYYIuvPBCffnll8XbXHnllbr99tu1YMECPfDAAxXu1/XXX6+33npLH3/8sf73v/9JOpHKpl+/frrvvvt07bXXSpIKCwv14Ycf6uqrr9bEiROLH9+jRw/ddtttmj59eoUXIqKiovTwww9r1KhRxbede+65Gjp0qLZt21YcRJekJ554QjfccIOkExdOPvroI/Xv318fffRR8Tbt27fXiBEjtHbt2uJtS0pJSVFKSorat29f7r6SF2KkE2Oo6LUqacaMGUpMTNSyZct03nnnFb9OI0aM0P/+9z/dcccdxbPYr7jiCj322GPFj92zZ48sy9JTTz2lu+++W5LUs2dPrVixQmvWrFH//v0VGRmpM888U+PHjy/OcX7VVVdp165d2rp1a7n+VOTbb79VcnKyfvjhB51zzjmSTozj2267TZ9++qkmTZpUvO3NN9+sYcOGFf+9dOnSKscyAAAAzCKIDgAAAJd06dJF//nPfyRJsbGx+vTTT5WXl6eJEyeWmnHbqFEjffPNN5JOpOM4dOiQwsPDtXr1aklSXl6esrOztWfPHj3zzDOl2rj11lsrDaI/8sgjkqTMzEwdPnxYERER2rVrV/HzljVnzhz98MMPmjBhgi6//PIKn3Pr1q0655xzigPoRQYPHqz58+drx44duv766yVJXbt2LRXwLSqCmZWVpSZNmmjHjh3617/+VWrW/nnnnaeLL75YGzdudBhEl6QHHnhAQ4cO1YYNG7R582Zt3bpVK1as0IoVKzRy5Ei9+uqrioiIUFxcnJ5//vlSjz3//PPVvXv3UmlvSipKXZOWlqbIyEhFRkZq8+bNFb5unTp1Kv7v8PBwxcTE6PHHHy8V/O7du7eaN2+ujRs3VhhEL5uWpsihQ4fK5XY/55xztGrVqnLbbt26Vd27dy8OoBcZPHiwXnvtNYWHhxdfMCnZ55K6d+9e/N+NGjVS27Zti9PQXHrppZozZ44KCwsVFRWlyMhIhYaGKjw8vFyg35HNmzfr0ksv1RlnnFH8mHr16um6667T4sWLS21bto+ujmUAAAB4HkF0AAAAuKRZs2bq2rWrpBPB5O7du+vOO+/Uww8/rEWLFqlt27bF265fv17vvfeewsPD1axZM3Xu3FnNmjWTdGJ2c0pKiizLKvUYSTr99NMr7UNiYqLefvttrVy5Un5+frrggguKg9+WZZXadsuWLRo3bpwee+yx4sKVFUlJSalwhnrRbampqcW3NW3atNQ2RTOhCwsLlZqaqsLCQk2bNq1c7m1Jaty4caX7VvT8AwcO1MCBAyWdCDq/8cYbmjFjhoYOHaq0tLRSfSvb35K5uEs6fPiw3nrrLfn7+6tBgwa66KKL1LlzZ0nlX7eS6VeSk5MlSf/5z3+KL6CUdPz48Qrba9OmjU455RQdPXq01O1nnXVWqVzzn332mQ4cOFDhc6SkpOjcc88td3tF70tFr4ekculz6tWrV2p/Z8yYoS+//FJJSUlq166dunTpoqZNmxa/zlVJTk7WoUOHyq3QKJKVleWwj66MZQAAAJhBEB0AAAA1cuqpp+qtt97S6NGjNW7cuOIZ5IcPH9aoUaP0t7/9TV9++WVxqozZs2dr/fr1kqTWrVurXr16io+PL/WcRUFbR1588UUdPHhQM2bMUI8ePdSoUSNlZWVp3rx5pbaLiorSM888o2uvvVZjxoyp9DlbtWqlQ4cOlbs9Li5O0omAsDOaNWsmPz8/jRgxQrfffnu5+8sG4IsUFBRo4MCBGjJkSLmZ+RdccIHeeOMNDRkyRGFhYcWB77KvW1F/K+prYWGhHnvsMTVs2FA//fSTLrvsMjVo0EBhYWHlZkuX1bJlS0knctz36dOn3P2tWrVy+Ni//e1vWrVqldLT09W8eXNJJ2aDF12IkVScJqcirVq1crifkvPviyNLlizR+PHj9cILL2jYsGHFF3SeffbZ4hnhVWnRooX69Omjl19+ucL7GzVq5PCxzo5lAAAAmFPPdAcAAABQ+918883q37+/fv311+JUIrt371ZOTo4ef/zx4gC6pOIAumVZaty4sbp3767ly5eXmnVbUVqPkoKCgnTLLbfoqquuKg5Qrlu3TtLJFCLp6el68skn1bZtW02YMKF4trgjvXv31tGjRxUUFFTq9sWLF6thw4a64oornHkp1Lx5c1122WUKDw9X165di/917NhRU6ZMcZhqpX79+jr99NO1YMECJSUllbs/IiJC0ol0IBdeeKFOO+00LVmypNQ2UVFR2r59e4V5tJOSkhQREaFhw4bpiiuuUIMGJ+bTlH3dKnLRRRfp1FNP1ZEjR0rt05lnnqkJEyY4nPkuSY8//rgKCgr0+uuvKzc3t9z92dnZioqKcvj43r17Kzg4uNw2ixcv1mmnnaYLLrjA4WOdERQUpBYtWuixxx4rDqBnZGQoKCio0tekpD59+igiIkIXXnhhqddn8eLFmjdvXoW53ku2X9VYBgAAgFnMRAcAAIAtXn/9dQ0ePFjvvvuuFi1apC5duqhBgwb68MMP9fDDDys3N1cLFy7UmjVrJKk4J/Xzzz+vhx56SE8//bTuvfdeRUZG6vPPP6+0rSuuuEJLlixRly5ddOaZZyo4OFhffvml/Pz8ilNnvPjii4qKitLHH3+s8PDwUgHJtm3blgrsS9LQoUM1Z84cPf3003rmmWd03nnnadWqVVqwYIGefvrp4tnYznj++ef12GOP6YUXXtDgwYNVUFCg6dOna8eOHXryyScdPu7NN9/U8OHDNXToUD344IO69NJLVVhYqICAAM2cOVP33Xdfcf7v559/Xq+99prGjBmjIUOGKCkpSVOmTFGrVq00cuTIcs996qmn6pxzztHs2bN15plnqmXLltqwYYO+/fZbSaVTjpRVv359jRkzRm+99Zbq16+vG2+8UampqZo6dapiY2MdpjGRpI4dO2rChAl65ZVXNGTIEN1zzz3q3Lmz8vPzFRwcrPnz5ys+Pr44N3hZI0eO1OLFizVy5Eg9/fTTatOmjX7++Wf5+/vrvffeq/LiSFWuuOIK/fDDDxo/frxuvPFGHT9+XN98843i4+MrnWFf0ogRI/TLL79oxIgRevjhh9WmTRstXbpUP/30k1577bUq269qLAMAAMAsgugAAACwxUUXXaThw4dr+vTp+v777zVixAhNmDBBU6ZM0ZNPPqlWrVqpW7du+u677zR8+HAFBgaqc+fO6tWrl6ZNm6aPP/5YTz/9tM4991y99957euKJJxy2NX78eI0dO1Zjx46VJLVv317/+c9/tHjxYgUGBkpScQHTp556qtzj//73v2v8+PGlbmvatKm+++47TZgwQZMmTVJ6erouuugijRs3TsOGDXPptbj22mv1zTffaMqUKXrmmWfUsGFDdenSRTNmzFC3bt0cPu7yyy/Xzz//rC+//FLff/+94uLiVL9+fXXo0EGvv/56qX4MHTpUzZo105dffqlRo0apefPm6t+/v55//nmddtppFT7/1KlTNW7cOL366qtq1KiROnTooM8//1zvvfeeAgMDNXz4cId9u/vuu9WsWTN9/fXXmjt3rk455RT16NFDH330Ubmin2XddNNNWrx4sX744QfNnz9fR48elWVZOu+883TbbbfpvvvuU/v27St87GmnnVZcFHbcuHHKy8vTJZdcoqlTp+pvf/tbpe064+9//7uOHDmiBQsWaM6cOTrjjDN0/fXX6/7779e///1vhYWFFV+4cOSMM87Qjz/+qAkTJuidd95RTk6O2rdv79TYcWYsAwAAwCw/i2o1AAAAAAAAAABUiJzoAAAAAAAAAAA4QBAdAAAAAAAAAAAHCKIDAAAAAAAAAOAAQXQAAAAAAAAAABwgiA4AAAAAAAAAgAME0QEAAAAAAAAAcIAgOgAAAAAAAAAADhBEBwAAAAAAAADAgQamO2C3hIQ0WZbpXvgmPz/p1FNb8B7A4xh7MIWxB1MYezCFsQeTGH8whbEHUxh7MMWXxl7RvlalzgXRLUt1/s31drwHMIWxB1MYezCFsQdTGHswifEHUxh7MIWxB1MYeyeRzgUAAAAAAAAAAAcIogMAAAAAAAAA4ABBdAAAAAAAAAAAHCCIDgAAAAAAAACAAwTRAQAAAAAAAABwgCA6AAAAAAAAAAAOEEQHAAAAAAAAAMABgugAAAAAAAAAADjgkSB6QUGBhg8frldffdXhNmvXrtWgQYPUrVs33XrrrVq9erUnugYAAAAAAAAAgEMeCaJPmTJFgYGBDu+PjIzU6NGj9eyzzyowMFCjR4/Wc889p9jYWE90DwAAAAAAAACACrk9iL5582YtX75cN998s8NtFi1apF69eummm25SgwYNdNttt6l3796aO3euu7sHAAAAAAAAAIBDDdz55AkJCXrjjTc0depUzZw50+F2YWFh6tSpU6nbOnTooJCQEJfb9PNz+SGwSdFrz3sAT2PswRTGHkxh7MEUxh5MYvzBFMYeTGHswVkpWXm6f1aQYtNyNbzXuXr2hotq9Hy+NPac3Ue3BdELCwv10ksvaeTIkbrkkksq3TYjI0NNmzYtdVuTJk2UmZnpcrunntrC5cfAXrwHMIWxB1MYezCFsQdTGHswifEHUxh7MIWxh6p8u3y/YtNyJUnfBR7R2GFX2vK8jL2T3BZE//LLL9WoUSMNHz68ym2bNm2q7OzsUrdlZ2erWbNmLrebkJAmy3L5YbCBn9+JDxfvATyNsQdTGHswhbEHUxh7MInxB1MYezCFsQdnpaXnlPo7Pj6tRs/nS2OvaF+r4rYg+i+//KLjx4+rV69eklQcJF+5cmW5IqOdOnXSnj17St0WFhamyy+/3OV2LUt1/s31drwHMIWxB1MYezCFsQdTGHswifEHUxh7MIWxh6qUHR52jRfG3kluKyz6+++/a9u2bQoMDFRgYKDuuOMO3XHHHeUC6JI0ePBgbd26VUuXLlV+fr6WLl2qrVu36s4773RX9wAAAAAAAAAAqJLbguhV6d69uxYvXixJuvjii/XZZ5/pyy+/VO/evTV16lRNnjxZF154oanuAQAAAAAAAADgvnQuZY0fP77U38HBwaX+7t+/v/r37++p7gAAAAAAAAAAUCVjM9EBAAAAAACAumLZvljNCTpiuhuAXlm8Vw9+v03xZQqOovoIogMAAAAAAAA19NbS/Zq4JlyHEjNNdwU+blVovPbFpuuN30JMd6XOIIgOAAAAAAAA2CQtJ990FwBJ0p6YNNNdqDMIogMAAAAAAAAA4ABBdAAAAAAAAAAAHCCIDgAAAAAAAACAAwTRAQAAAAAAAABwgCA6AAAAAAAAar3M3ALtPpYqy7I83vbO6FSPtwkUMTDkfQ5BdAAAAAAAANR6j/y4XSPnbNeSPbEebTe/0NK/ftju0TYBeBZBdAAAAAAAANR6oXEZkqSlez0bRM/JL/BoewA8jyA6AAAAAAAAAAAOEEQHAAAAAAAAAMABgugAAAAAAAAAADhAEB0AAAAAAAAAAAcIogMAAAAAAKBOsSzLWNt+xlqGr3FlnJv8TNQFBNEBAAAAAABQZ+yLSddtX27R0r2xRtrfFJlkpF34lrF/7Nf9s7YpN79QswKiKt32WGq2Bk3bqllbK98OjhFEBwAAAAAAQJ2RmVeg+Ixcvb1sv5H2v9p0yEi78C2Ld8cqLD5DmyISq9z2s/URik3L0eT1ER7oWd1EEB0AAAAAAAAAaiFnkrQUksmlxgiiAwAAAAAAAADgAEF0AAAAAAAAAAAcIIgOAAAAAAAAAIADBNEBAAAAAACAarLINw3UeQ1MdwAAAAAAALsVFFqauiFS3c5pqf4Xn2qsHxvCE7QtKkWj+l+o+vX8PNKmf2Si/vP7Ad3e5QwdjM9QVFKWpgzrqjNbNvFI+5sjE7UlMln/d+lp+t+fB3VGi8Z69aYOatW0oUfaNy0tO19fbopU17Naakd0qv7Z61yd3cozrz3KsyxLfn6e+eyVFBSVrJ7ntdbCnceUlVugB3qd6/Y2LcvSFxsjdV6bpgqJTdfNl5yuK85u6fZ2vYllWfp682Fd0Lapbr7kdGP9iEnN1qyAI7r10tO1YOcxRSdnafR1F6mrG96Plxfvtf05UR5BdAAAAABAnbNif5xmBURpVoAU8MJ1xvoxZtEeSdJF7U7RHV3O9EiboxfsliR9uzWq+LaXF+/VrH/28Ej7z/zV/uygI5KkXcekBvX9NPa2SzzSvmmfrg3XL7tjNDc4WpIUeDhZP43sZbhXviv4aIp6nNva4+0+8dNO+Y/pr/dXhEqSbup8ms5o0ditbW4IT9T0LSc/93ODo40e/0zYfjRVX20+JElGg+gv/LxHB+IyNG97dPFtD/+w3efej7qEdC4AAAAAgDonNi3HdBdKMd2ffbHpRts/GJ9htH1PCk8ova8RiZmGegJJSs7MM9Z2ySwvWbkFbm8vPiPX7W14u6RM73gNDsT5zjHPVxBEBwAAAAAAAADAAbcG0Tdv3qy7775bPXr00DXXXKOxY8cqOzu7wm0feeQRde3aVd27dy/+t27dOnd2DwAAAAAAAACASrktiJ6YmKjHH39c//jHPxQYGKhFixZp69at+uqrryrcfvfu3frmm28UHBxc/O+668gTBAAAAAAAAAAwx22FRdu2batNmzapefPmsixLycnJysnJUdu2bcttGxUVpZSUFF122WXu6g4AAAAAAAAA+Ay/Mv+P6nNbEF2SmjdvLkm6/vrrFRsbq169emno0KHlttu1a5eaNWumMWPGaNeuXWrXrp1GjBihYcOGubN7AAAAAIA6KrFEcbmXftmjUxrVV5umjXRfj7N1Zssmbmu3oNDSuOUHlJCZq7Ts/OLbv9h4SF9sPKRPh16uqy8sP7nMLnti0hze13vCOs0f2UsXtD3Fbe3nFRRWeHtoXIYKLUv1/NwbyrEsS1PWR2pWQFS5+96/41IN6NTOrX1IycrTrmPl34PgIylq1qi+Op3e3G1to2LxGe4rLJqVV6C9MWnqeFqzCu9Pz8mv8HZ39SPRUFFNy7K0MzpVGyMStXJ/nD4YfJk6nmZmrB9KyvJoe5m5BZoddETXXNhWzRrVd+vxtTqy8ys+JsN1bg2iF1m+fLlSUlL04osv6plnntHXX39d6v7c3Fx169ZNY8aMUceOHbVlyxaNHj1azZo106233upSW27+PkYlil573gN4GmMPpjD2YApjD6Yw9mCSq+NvTtDR4v9eE5ZQ/N+zg44o8EX3pQ59/dd9WhUa7/D+Zxfu1uYx16phffuzq8Zn5GrE7OBKtxk2I9Ct+3/bl1sc3vddwBGN6Hue29qWpPnbj1UYQJek137dp+dvvEj39zzXped0ZezdNHVzhbc/NneHJOnXx/q49SIOyvtwVZju7XG2W577hZ/3KOBwsob3qnhMlfw8+vm5/v3p7Ngr6kdlz+FOGyOS9NzC3cV/3z9rm1uPM47kFRRq6obI4r89se/XT94oSfpq0yFJ0sbnrlXjBo6P7ybOofz8VGoqujN98KVzPmf30SNB9CZNmqhJkyZ66aWXdPfddyslJUWtWrUqvn/IkCEaMmRI8d/XXnuthgwZomXLlrkcRD/11BZ2dRvVxHsAUxh7MIWxB1MYezCFsQeT7Bh/7dq5bwxXFkAvckrLU9SqaUPb245IT3RqO3fuf3KW41m/326N0ou3uzeN69zt0ZXevywkXs/ccmm1ntuOsRefZ+lyN77+qJi7xnxR4PrnXTEV3n80Jbv4v1u3aaZ27ao3O7uqsecogC659/NeJLBE4NqT7ZaVkln6+GOiD02aN9GpzRs7vN9En9q1a6HGjRuW+ttZnPOd5LYg+rZt2/T6669r8eLFatSokaQTM84bNmyopk2bltp2/vz55Wad5+bmqnFjx4POkYSENFlWzfqO6vHzO/Hh4j2ApzH2YApjD6Yw9mAKYw8m2Tn+4uMdpzzxhMSEdOU1sf/neEpyplPbmdr/Qstye9sFDtLJFN+fX+ByH+wce6mpWcbHny9y92te6MTASE7KUHw91waQHWPPE+Mtu4KLZybGeWp26X6Y6ENiYrqsbMdpdUz0KT4+TTk5eaX+roovnfMV7WtV3BZE79y5s7KzszVhwgS98MILiouL0wcffKBhw4YVB9WLpKen6+OPP9YFF1ygSy65ROvWrdOvv/6qb775xuV2LUt1/s31drwHMIWxB1MYezCFsQdTGHswyY7xZ3r8uusz5Oxzmtx/4699Dfpg19gz/Rr4Im94zWvy3tf0se5WURMmXvOybZrqQ2XtGntdrDJ/u/BYb/j8eAO3BdGbNWumr7/+Wu+9956uueYatWjRQoMGDdKoUaMkSd27d9d//vMfDR48WA899JAyMzP19NNPKyEhQeedd54++OAD9erVy13dAwAAAAAAAACgSm7Nid6hQwdNnz69wvuCg0sWV/DTU089paeeesqd3QEAAAAAAAA8jsm8QO1mfzlwAAAAAAAMsSxLVhVrz6u6390sw+E0k/vvTO7omj2/W5++Us68rp7uniff65JtFf71ObQsq/i/TTLdvmTuc+/MMdHd7bq7fUf7WNHtnuiTN4w32I8gOgAAAACgTsgvtHTn11vV5+P1lW7X5+P1ys4r8FCvyvvbZ5v1U3C07c/76NwdTm3X5+P12nIoyfb2q5KRW6C+H69X7wnr3PL8i3fF6GhKdqXbhMZlaOqGCNvb3hSRqH6fbKhyu+cW7vZYgG3xrhjd/Lm/9sS4v5BhVl6Bhk4P0Lt/HFDvCevU9+P16vPXv6L//in4qFv7cDgpy+F9fT5e79YLOBm5VR9P7p0ZpOAjKW7rgyPDZgTqXz9sd+v+F1Rw9aro/X/plz0aNG2rUiooPmqHV5fsVZ+P12vAZ5s0c0tUhX04knxibLz0yx498N02xafn6I6vtmjyuvAatR0UlVzutpUH4qv8DkLtRBAdAAAfM397tIZ/t02JmY6rxgMAUBvti0nTsdQcp7ZddzDBzb2p3Ierwoy2//T8XUbbd4exyw84td2MMoE2Ozy7cHeFgcSK5HtouvzY5QeUnJWnN37d5/a2Vu6P05HkbP2yO8bhNh+uOujWPjw8J7jS+yMTM93avjPGLNrt8TYPJ2Vp17E0RVVykaGmdh9zfKFmTViCYtNyNH+H/RcOJenPA/GSpPScAn0XeKTCbR6aHVzcl9C4DL3+6z4dT8/VrICKt3fWswvLv5//+9PssR3uQxAdAAAf88GfYQo5nq4vNx4y3RUAAAC4mSdC9t6QvKKqPvjJzyP98FZ+fr67/2Un4XvDeEXtQxAdAAAflZ1vbhk7AAAAAMAzfPgaim0IogMAAAAAAAAA4ABBdAAAAAAAAAAAHCCIDgCAj8jNL9T9s4JMdwMAAABAHUKqEPgCgugAAPiIjRGJCo3LMN0NAADcZmNEotPbvvFbiFKy8mxrO7/QUu8J62x7PldN22S+YPjhpCynt91zLNXWtteExru0vcn36rc9sbY/Z3pOvsYs2q27ZwSo94R1pfYvOiW7+LaCQveUVNwckeTUdh+tCpNVtspjDWw/kqLxK0OVnpOv1Oz8Sre9Z2agdhxN0fsrQm397FfH4t0x+nJjpEfb3G3zZ67I5xsjvf43RlpOvvpNXG/rc1qWpZz8QpcfN275AZeOlXZYHnJcf4TEFf+9dK/9xyBfQBAdMCwxM1f5Ba4feAHAVVShBwDUdd/4H3Zp+4lrw21r+7c9MS4/Zv/xdFvaDo1L11ebXQ+ih8bZ036Ru6YHOL3tiDnbbW37pcV7XX5Mdp6ZIuvjVoTa/pxfbIzUhvBERSZWHpxbsOOY7W1L0soDcVVvJGlucLT8DzkXcHfGo3N3aMGOY5q6IdKp7R/5cYcW7jymj9cctK0P1TH2jwP62v+w9sWm1fi5jqflOLXd28v217itsvYfT9d0F4+7dkrPqfzCSUn5JS4gZefVPAZT3XH8864YPfnTjhq374o3fgsp9bc7xoIvIIgOGBSZmKlbPvfXA99tM90VIwotS3lcQAAAAIAhhxIzbXuu4+m5Lj/GlQBQZaqageu4fTNBZG/hpknZRkQlOzezNTol2809qVpSpv2zwKNcnNl7qIqLDZ5S3c9uSVmGLgZJUpoN/a+J6sYTCmxYDVGTcVyd7wuYRxAdpViWpZ93HrN9aR0q9udfV+vDE+w7ea9N/vXDdg2cutnYDBAAAAAAAACgKgTRUcrmyCSNWxFq+9I6oCK7j6UpI7dAO6I9f9Emr6BQL/y8Rz9uO+rxtgEAAAAAAFB7EET3cd9ujdLnGyOLC3tE2ricEfBmy/Yd17qDCZqw2mwuPAAAAACAb7Cxpmqt40377k19Qe1BEN2H5RcUasr6CE33P6whX2+1tUI24M2y8wr0McFzrxKRkKkn5+1U8JEU013xKUv3HteS3a4XQQMAAAAAwJcQRPdhJUPm0ak5yiQvNXzE9C2HlZHLePcmj/64XYGHk/XYXM9WKfe05Kw8fRcQpbj0HNNdKfbfPw6Y7gLgMZZl6WB8BkWtvcDRlCzdOzNQi3dxIQ/2qc6koN3H0pSYaU+Bt8MuFjaUpA/+DFOhwclMX28+ZMvzWJalF3/eU63HmZSTb89vguoUiL3q43WKt/GccFNEklPbzQ46oreXhRh97WPT7D8X3nrYuf0vkpFrpiCmO+IuB+IynN52S2SS0nPy5R+ZqHwbKuu6cvz0j0yyvR7a9C1R1XpcWLzzr5m3yS8olH9korEx7MsIogPwOaEunGTAM1IMV3X31I+Ify8N0aR1EXp6/i7tjUnTpLXhnPwAHrRkT6zu+zZIz1cj0FMX5Ru8mPDRqoMKT8jU2OVcyPNFBYWWWy5mLQ+Jq9bj7py21Zb2f9933OXHRCRkatle1x9XVnVfz62Hk/XzzmM1bn/e9mitPZjg8uMW2tC2JOXkV2//xy0PtaX9G6dscvkxBZZ065dbbGl/9zHXakwt3Xtcn6wNt6VtSdpx1LXVpFM3RNrSbsmLF67GgyMTXb/oZZfVofG2Pt/rv+5zetunF+zS0/N3afSC3fp26+Eat/3GbyFOb7sjOlXv2vi9/+eBOKM1zmr6G7Y6F98kaZr/YY1esFtjFtXsfPZIsrnPQG1FEN2HLd0ba7oLgBFHk7NNdwFeJDuvQPfODNL4lfb8iKqMf+SJGTLhCZl6aHawvgs8oi822jMDDEDVin5oFX0WfdnUDRHq98kG7Y1Jc3tbqw7EaeScYB1NOfljLbuaAa/a5mhKlj5dG67jbph1WRvsjUnTmEW7FZFQuu7SPTMD9X9f+NseSK9OEFcyPx7tCKhl5VV/H+bYEIT6oZrPMTvwSI3blqo/q7i6Y8bbVCcl4pwg+4KP2wylZEzMzDPSbk1V54Kbnfb89d3/2x7Px4T+qObFzor8aqD/JdX0uz2pmuO3aBVfTVOhHoynJqKrCKL7qNC4dL1r01V3oLapaNlmek6+dkanGl9S6kuW7o3VCz/vMT4Te1VovCISM7Vghz0zoVwVXouXEtYFYfEZGj1/l+Iz7FnK76zkzDz9FBytlCwzP/4sy9KR5CwVWpbty2q9WXV/rNjlaEqWR4LWzpjx1/Lnyevsm4noyCtL9mn3sbRSMz4DDye7vV1v8ORPO/V94BG9+Itvrn54aHawNoQn6un5O0vdfjgpS6nZ+TpUjfQnAAAAJhBE91HHUn1zNoy3KRmvXRtWN2ZBVIfpoIYkjZgdrH/9sF3LDM8K8BU5+YV6e9l+rTuYoOn+NV9GWBMlZ8FFp9TtVQqmLhL5Ryaq94R1OuhFFwySMnN1PC1H//g2SP6HknTrF/4ebf/5n/fow1Vh+vdS55fA2unH4Gj9/ZsA9f14vfpP2qiNEYkea3vdwQRtDE+UZVn6LiBKH60Kq/ZyVld5+mJJWUO+DtBDs4N1JDlLmbkFenbhLlvSKNQW6Tn5+i4gSmtsXsZelfyCQgUfSdE9MwK1K9q1lAc1VXTOvS82vdTt+2PTNW97tNFc2J50PD1XswOPKK+gUPO3R5vuTp3kGyMJAABzCKKjmGWpVIAj10eW2Zr05aaTaRx8dYaSJGNBpJKKZkLZtaS0Mntj0vTO7/uNz8A2afHuk4XkZgW4/zWvTMn4hR3FdbzZq0ucz5dop9ELdkuSnl24u/i2+duj5R/pucBtSe+vCNXNn/vr9q/syUNaHbv+yl26OTJJb/62zy0FthzJLyjUx6sPlrrtAw+kM5JOBFFf+HmPnlu0W0v3HtekdRGaGxytt7zge8CTDsZn6sdtR7UpIknjVvjOysB9sematC5CLy3e67E2k7PydOOUTXps7g5FJGbq4R+2S5LWhMar94R1xUvaPeHzDRHa/tfS639+v03/+zNMf4T4zsX7T9aGa3bgEX3wZ5jprgCA96jbPz/qNB+5Do4SCKKj2N+/CdDi3SdzSmXm+s7ybm+RZri4oi+oKvemK5XNq+uh2cH6bU+sHvlhh9vb8lYmjy+WZZWa9brVC1IKvLZkr55ZsMvYTPGth5I88p6kZp9YdbLnWKo++DOsOLjuaXYVMXOVZVmKSc0u9z7/ERKnd37f75E+FBRa6vfJBo+0VVZ6Tr6+3nxy5cmuEkXQ1oebuaDiSXHpJy+UpGTleWz2va9btu94uXzX244kFwfyR8wO9lhfpm+J0qNzd5QqABd63HtW6HjC3jIz8gEAAGoLgugolmwoL6uvOpZaPm3Ev37c7vmO+JBxyw/o6k82KLpMOqN9sWby04bFZ9heUKu60nPy9cmacIUYei1K2uTmtBLPLdqtG6dsUnhChh6aHawV+08Wt4kyUKE8r9DSygPx2hyZpKOG0smMmr9LL/zs/oB2UdGz2HSzKTVMmbD6oAZN26pR83eVu++IB/ICp2bn6ZbPN7u9nYpYlqUbp2zS7KCTK08yfOxi/f2zthX/99jlBwz2xLdU9Nl6fO7OCrb0nJLfO8FHPVeMLyEjV1sPJcmyLMWn5+jA8boX0PaW8yo4L6+AqZzwPSWPVYU1nIpeG9OC1cY+AxJBdFRimwdP6j0pISNXd369VV9vPlT1xm5UUaAwIoHqyO70866YCm9/8HvPzUIr693lBxRw+MQP2uTMPIXGufcHbUhsmt5ZFqLkMnnoP1kbrtlBRzTcA69FoWVp9zHHOWmfXbjbrcUWN0UkSZLunRlUrsDf7wZy4pesqm7yfDIwyjPH/Ph0363JMTf4RB7gAEOrH77adEgpDlY8ubtWSkUzzU183kyZsPqgV0xWOJKcVefTVpX1k5fn3/ZknaI7vz5xEe+Jn3bq1i+36IHvtulQYt0595wTdERrDNYYiqlggoyz1h40WxvJ5G+QmLQc3TB5Y42f573l5lJjecNvuG+3Rpnugst6T1hnugvGVseWPC96ZsFuravmMaCg0FLfj9fb1S2PuXnqZk0ok1oQqA0IosOh0Do4O0WSZmw5rOiU7FL5yL2JrwSYkjJ9cyZqWUv3HtdT83apz8frNfDzzbp/1jbtd+Nnb/j3wfpt73GNmFM6WO7Jgo+T1kZU+SM3zlDxvwIfCy6ZsCfGzHfL1kNJiqxDwaLqKArim+ANAYbvy9S8sCxLo+fv0tvL3J+P/cdtR8vd5sk8+JK0OjRef/8mQGMW7lZ2nm+tAvBmhW7+3rEsSweOpyszt0A5f6W12Vbi4q07c8JX9J3qzotJE9eEu+25nTF5XYTR9mszO1YmmbwQ8cla88FARxfJUbnVHi507cgLP1evPtphD6xkdIeU7PwKz40Ab0cQHT7H22Nk3xousugJiZm5uvlz/3K3Z+YW6IiBdBreJigq2e1tmEobIqlUOgdPqyrneMkl9nCPT8v80Hzw+21uH/NhcRkaNX+X7p4R6NZ24J0KLUs/BUfr07WlA2wH4zPlfyhJS/eamRG/3IPHm5jUbL38Vw5w/0NJ6j/p5KzPHArJ12n+h5L0wHfb9I9ZQR5vO6yCOjMlV18BAADUJgTRAUMcxfLC3JzOwxs8Na/iXKSDp23R378JUJgHZ0VXhHyadZfJiwc44Xh6rj5YeXLJ9b7YdD3x0063FlbeejjJbc8N7/ft1ih9uCqs3O0mgoqmjP3DcQ72XcfcWwtjrcH0GpBWhJy4WBNt4PsvNL7un9MCAMwhtTo8za1B9M2bN+vuu+9Wjx49dM0112js2LHKzq74BG7t2rUaNGiQunXrpltvvVWrV692Z9cA40IrmJ0jSTn55r4JAg4nub2oY2Ripg7GV7ysv2gZ4mY396Eq3pC31h0qm4XNCQg8JSe/UImZ5T9jH/zpvlymCYbSA8E7/BBkbrlwXHqOV6R4iDNYzNcT6XIcqWr1EdxrnzPpu3iL6gw/0x2AT+I479usWv4lYr735ntQ27gtiJ6YmKjHH39c//jHPxQYGKhFixZp69at+uqrr8ptGxkZqdGjR+vZZ59VYGCgRo8ereeee06xsbHu6p7P47vmBJP5cbPzvSsfaV5BoZ6at0vPLtyt1Gz3BJGPJGc5TKeQX2L2dzZLy93C0cULyb05Ub3Jop0VF5d1N8uytCvacTFVlM7RC9QVryzeq1kBta/YW11hOtetr9d/8XTef19nOojt52e6BwBcxee2Zky9fLxt5rgtiN62bVtt2rRJQ4cOlZ+fn5KTk5WTk6O2bduW23bRokXq1auXbrrpJjVo0EC33Xabevfurblz57qre4Ak6e4Zgbpz2hYjBbbWH6x8tnVMarbWhiV47Op6XsHJdtJz3PN67K5kyXh6iYJCKXV0JrhpOQ7S1LgzjUZZJmf5RyVlGQtmrTwQr4d/2G6k7doiLj1Xe2LStDbMOwo8AXZwd6oUVO7XPWYn5EzyglUIVfkjxH01AUwWegQAALBbA3c+efPmzSVJ119/vWJjY9WrVy8NHTq03HZhYWHq1KlTqds6dOigkBDXl39yRcY5zrxOfn6uvZ5F29a29yA6NUf9J23Uo/3O12NXX6CgqBRd3O4UtTmlkVvbTcupOHC561iqth1J1uNzT+QNHz/oUt3U+TS39kUq/b6lZufpnNZN3NpGWZPWlS74ZnLsuTr2XeHsBRt3tF/2KYvaeG7Rbre3XWT/cecCSn5u6IezebHdMfZWOllA0J1jz9n2TRoxO1iS9NOInrqoXTO3tPHakr2V3Gu5bUaOMxdETX/nmn7/fXnsf7Y+Qk9fd6Hbnj+iipV3dXbsOfm87mo/qYLUVWVZbmxfUpWvwaaIJOOfPdPjr+xzV1dNiwVvOZSoq9qXn3DmjLyCwuLiwdVlyVK9/2fvvsOjqvI/jn8CoYQmTRHXTrMgEqoFXBvrWkBsq7uKwi42UBR727X9bKvIKoJrARTBsoAoIEgRpCiEFlogQIAQQkggvff7+wMTCWSSKffOmcm8X8/D85CZO/ecO/fMmbnfe873+PAmJGQU+FR+VmGJWkY08Oq1B33M+b8sLlWXd2pb4zY1tb1f9/q29spPOw/7dL1X7sOgq6nr9mtI79O8fr0kLd+dpgkr4716rTvvfU18/dy+vSRO1553kurX825HpTaupeXqWGpqe5uTfJ/J6ct7uHKPb2lY31y8Sxef2cqnNmAHb9+DqesSfSr3/xbu0P2XnKlep7f0aT9eq+U7OFhjfN5w9xgdDaJXWLhwobKysvTEE09o1KhR+vTTT6s8n5eXp4iIiCqPNW7cWPn5nqfaaNOmuU91DRUtDtX+3kY0aaS2bT1/PwP9HES4+HH2yaoEdT+rrUb+b7OaNw7Xlpeu8XPNfjdi+pbK/289nKc7Lj3b8TLzjgrqT153QJOG9ra9jObNXaezmLP199FiERENjba91q2bqW0L+28iSNKynbVfYDVt6t1nrzYtC6oG8CvK2HxMmhEnyq7w0DvL3dquNDzc9nq8ufj4hQWr07p1M9Xz8Id0bW2vUSP3vm5btWqqtg4Fj93h5Ln3RFZ5mK11iTjqpujina5Hupc3aqh2hj779evX0zdbUnRi80b6Sy/3L2bt/M518vxb4bVPfnSqfHc+z6bb/vI96Xrp5m7GynfyO7fcjdiOU+9/o4bu9b1Old+wYf1at6lXz97+7liNG9UelDTZ/lu2ahIw1xum+4GHZmxV/JvXe/XaN+Zt97n8NQdzdUO3U7x67X4bUmROWJWgd//S3avX9nLz96UrT3y/ze333om298yc7Yr34Xrvx63epyt8b9lejb72PK9fL0mP+fD+e/LeVyfb8i26l1dcpl8Ss3Vzj1O9ev27i1wv3O2p2vqg6tre/y30re3Xr1/Pp77vUR8/ezM3HdTMTQe9bgMN3fyer40370G6DWsuRSdm64H/bfb4+O1a66ZF8wi3jj3QY3z+5JcgeuPGjdW4cWM9+eSTuu2225SVlaUTTjih8vmIiIjjFhwtLCxU06aeBxLS0nLI9+2G7OzaRwoU5BcpNdX9achhYUc+XIF+Dqas2ufyuR82HrmTmFNY6tGx263sqCvOwoISv9Ql/6h0KqnZhY6UmZPj3iiRgoJio20vPT1X9YudSTuSnVX7RUZenmefPXdlZlYt21UZJtt+hbsmRmndE5cZKfvPY5fpiyE93BqR4m7bK3Ix8+RY6Rl5aiZzawIEwrmXjnxH2VmXAjfzEj87fZP+faNvF5KuRO+uOU3NgcwCvb1ghyTpyjNb1ro/J75znTz/h9wYoehU+eVuRHFNt/09qXlG6xB/IEPN3LzZ52nbK3BjBpZTx15U7F7f61T5xcW1H3t5ueXouc8tqL3/M9n2MjPylRrufhDMyesN0/2AL3XYedD30agJKTlel3/gcJ7P5e/2oXw71Fa209e6vhx7fLJv59902/el/IwM32/g7EvJ9roOu2wYCV7BVR2cbHtlZeXGz7/kfRsodvN73onyD9m47oepc5CdU/M1V7DE+OxQcay1cSyIvmHDBj333HOaPXu2GjY8MgKsuLhYDRo0OG7UeefOnRUTE1Plsbi4OHXt2tXjci2LRTPd4U7OaW/fS09fF5+er0mrE/T3vqfrzDZNPC/QA4dz3e/oAqUdWfJPXY4tw4kyPdmnP9qe0/updt8e1MHpso8c5/EFBUzbN1SPnYfzlJBe4FF/FAxtz51UQoF07k3UZcmuVOOffcnzvtKuOjv5nruTzsZk+wuEtm/ys5+eV6KmHo7mCoq25+Z+TZ7/0vJyzd6SrF6nt1R7B2bCzN9We85z0589k7/5jt2nad7WwfRvEFveO8PX8e6W7dRvlGA49kAs33jb9734KvWo7fm61vYCpQ7efg+ZLN+egt0rmzjr7xxbWLRLly4qLCzUmDFjVFxcrAMHDuitt97SrbfeWhlUrzBo0CCtWbNG8+bNU2lpqebNm6c1a9boxhtvdKp6Ie+TGkZjV/BX3qPbJq/T/O2HdNtn6xSXmqd/zYvVfh9z6rmS78aIIH8wsZBpTQpLyjTumJzkJv2y17fcasFu56Fcv5Tzfwt3qs+7K/xSFsybt925xePqklJ3ck/UUb7kVA12/lrE24T/LDP3/b7QwUUr64rcojK9smCnBn2yxtbPYFZBib4wtJg2AABAXeRYEL1p06b69NNPtWvXLl166aUaMmSILrnkEj333HOSpMjISM2ePVuS1KFDB40fP14fffSRevfurQkTJmjcuHE66yznFlgKdVkF9kx7sds/vtyo+dsPHbfQoR0sy1K6Gws8OWnlnjT1HrNcb/7kXm5mf5mydr9mbDpouhqVEjN9Wxwo2P3gxqgxb8Qdrhqc/35L9fkTS8rKletm+hFP1OUglV2cfI/K3AgOx6aYn87pBE/e1k/duMlcV93wcZRe+XGH6WoYsXx33b15u8jHxQ598fwPscbKDkbJ2fZNDX/5xx16f/le2/bnFDsWxQMAAPAHR3Oid+zYUZMmTar2uejo6Cp/9+/fX/3793eyOvDQ6vgM3XfJmX4tM/+3Edq+ru5enbeX7Nb0jUm279cTo2cdSVv0Q0xKLVv6x85DuRq3Yq+2JdfNwJm36mqs9/8W7nJru0v+s1KStGTkJWre2L6vibE/B85sB38rKnUvz/mKPek6o7Wzaa1q8uL8HfpmaC9b9+lO+rBj2X0zIduDm0LfbUnWA5eeaWv5weJwbrHmxKToX3/uYts+dx7K1b9/ilOuGzkrM/NL1LJJ7YsgOmF7So7+2LGNkbIBJ/wan2G6Cm5ZsSddN1/o3WKWAAAA/uTYSHQEvy0HnQ2s7k3L9+s0U9MB9EAzbvke3fnFBq2Oz1B2oX9mJvgrTQnsEZOcbev+vtpwwNb9BRN3UxSZ/ow4kcbr/xbu9Pg1dqeecTXrAs57eOYWbUrK1u7U2hf+umXyWkfq4K/0dIHKX9/xCF5vLHLvJrsT8gIk1aJ05Gaat0rKzC0Kbpf3fUjt+NGv8T6XfzDb7EzUYJ4xOdPHGcXBmsouI79YCwymDdudmqefdpqb7WWHhIwCxQTxgLpf95q7YZxvKEWvu4Oz3PG/6KSg7vtMIIgeokx94I/2l8/WBdw008IS534AB1LnVFpuacraRJfPO1XVL9a5LvNYT3wXoxd+2O5MRWqxPjFTY5buDrjc9fBeWl6x6SqErFQv3vtfQ3xdBCc88u0WI+V6kkbNqWBvAH39hpTsQrMp9OC+bzcfVKnNQeCfd6W6tV10Ypae/D4mIH5z3T01uvaNXLhlkjM3Af2pqLRcUfs8D0gdzC7Uz3FpPpd/KNfsb7WPfzWbzs3bz2Becal2Hc7zqeyPfbgJYsdaZnGp3tX/js/X65NVCT6X7607Pl+vkrLg/5ExdFq0Mr2YOWrauoRMo+XfNnmdkXLfXbrbtn2tScis0ykNnUAQHTjKEjd/8HtjnkN5rr0xMwhG5S/bnaYFsYeNXFT9a94Ofb3hgKawIFedMfjTNR5tX1JuZkTZ/Dq4+CcBTPOKS8uNjtQxaWHsIWUE4YVhXeDOOgwVDuXYlwv8aGEGpyHsTs3TgSz70xM6ZZXN6V+enL3N7W1/jkvzatZSIDloYz57kzYkep6jPiE9eNp5TSavMfu7v9jLYKwdN6B9mbG9J823AL4kbUnybvar6fXO6hJvBr2YZvf3VrCYtdnetezWJoTm++gtguiAn8zc5N2PEycCUOv2Z9b4fJ4buWtDwX4HFjh193wG0syFuqDQw2lvf5uywaMAUF1yMLvQ1mMP5imidkrIqD2dCezHwpbB4fqPo7Ryj+8jWY+1fLf9+3RHVkGJ7vh8veKDKLg4e6vZtFcLYoM7JQIAAKj7CKIDAW6ZAxeAtQXR96TlKz+AclTWJTlujha58dM1yvVgMUTYb30tn5PaWJalf3y1Uf+L9iwX/BovplLbZXdqvgZ9skbPG0qlVMHOXH+Boq6MUoRzxq/YG7I37yRpmgcp39xh8gZechB+3oNxKj9+Z3LWBQAAoYIgOmr0wg/bvc5RBnukOzC1Kreo9gD5bs67I9wNDh7MLrJ9qhY84+tNjCW7UrU5KVtvL/Esb930jUlu32xxR0JGgcYt3+vR8fy007nUVqEou7BEq0N0yinc99ma/Zq3LcVI2R+s2Ku3FptbXNJuc7Yma9g09/NbW5al1NzgC3zbaeMBexcTh38RQgcAwHkE0VGjBbGH9Y8vN9q+XwLzgc+X3HhwbX9m8Ezthm8Oe7lA1s9xabpy/K+21eOWSWs1Ze1+TVgZb9s+4Zk3FsWZrgKCxIEs+9OIuWPJrlTN2HRQSTaWn1lgbjbVKwt2ypMx/a8s2KlrP4rSTzvrTkqRUJ7VAAAA4ASC6KhVvgMLO/718/W27xP2qosLHJq2fHeaPjO8aBEQapxcMNpdm5M8X6jNDuWWpbcW79LcGLO5jj2xPcVMCo4dh3KVyQJlysi3b/bbyz/usG1fTpsbc2QGwCer9hmth+VR6N+15GwzN2NMCvW1ZIrL6l4atFBj1+cfoaOUm6WA3xFEBwAX7MwLn1tUqse/i/HoNYkOLGzqibqYlxqh558e5nevS6M3V+xO04xNB/XG4uAZCX/3VPdTcNhp5Z50DfhwlZGyA8lri+xL6cKiwuZ4m99868HgTenS590VtuznBcNrgniT0mlPWp5W7km3pfw9XswWtvOzvmiH57NB5m83kwarwocr99qyn8vH2TcL0VPupPqsy95fbs859Ke84lJdPNaefs9bdl4renNDYMpaBqfB/wiiA4ALy21c1NWb/NqJhlO/2LXIW2pukR6asdmWfQFOyywo0eytwTNyuyZZBtNpIDjtOky6PTsE66hg+owjqSxNenG+5zM4PB2kUZOf4zz/7fvhL/G2lf/cXM9vYvxrntlZL5OiCOTB/1butufGmS/snGm5P4OUpwgOBNEBF+yeFloWIIMbdxzKNV0FBIlEm3LjvrN0t6L2ZdqyL8BT3nS9ry7YaWsdDnmZHx9AcPr7VxtNV8GoQgdSQQKOC/GUQAhxNH/ALQTRARfmbLV3amB2YWDkWr3riw2mq4Ag4e3CmEebuHqfftppPic1zCgPgAvSEkN3MKMTs3Tv1xu9unGZlkfQPVTZubCnRJ5o+F9uUan6v/+L6WoAIcN0N2+6fADwJ4LogAuvLrR3JGKo/8DwNigUFhZmc03gL0Wl5frvL2YXaYNZoZwa4r5vNmnjgWyvblx6kxMXxwvG0bB2LuqdX1xmW55of1i3P0sJhqdzm7rpVpdsSDSzkDLgM645AAQBu7sq4i2eIYgOwC/sDAx4w+SI2HLLUq6Ni5QGi2IWJg15zHyBSR/9avYm3v+ik4yWH4xrUfz9S98Xlk3O9n40v+kgPgAAAAJXuOkKAE6zLEsv/BBruhowLNrgyKhHv92qVfEZHr+O8XDwVSCkUwFM2ZacY7T8j36NN1r+loNmj98bWYW+L2xp+uZdXAjPwAEAAKjLGImOOm/LwRwt3HHYq9eSS9QeiZkFem/ZHqN1KDQ4KtqbADpghz1p+aar4LWCIEzFUVewALU9gjGdTF1gRyDeFym5RUbLh+/yPZw9+JrNKSA9lZhp71oKoaqs3NKk1Qmmq+GxTUn2DBSKOZjt8WuSswv15OxtPpf9+qJdijf8m7X3mOVBde0fGwC/1T5ZZd/nJSHDs/O/LiHTtrIl6Z/zYpWR71762dJyy/Z+32Tb+3rDAWNlByOC6AhY/5oXa0tnUlLmffB0WVyaz+VXOGDzYmHB5F/zmAkAz+01/GM6eH5G1yCIDyKIrmPqHLt+TIfiiFzLsvTqgh16b9keFZNfGwhKj38f49H2321Jdqgm8LcPf4n3aHu7f6um5Hh+E+5f83bYUvbQLzd6/Jonv/c9gF7h/v9tsm1f3tqc5PmNBDtl5pe4ve3UdYkO1sQ9ds70fsLDtvTgdHtT1v24/ZDGLN3t1rbztqXY3u+v259p6/485U3fE6oIooeQwpIy/RCT4vYdNtPmbz9kPDelHXfWQaccCF7+0Z4f2P70hIcXsXZbsSfdaPmAzwyuE1Rabhkf2RJjIJ3L/sxCzd6aEhAXtzBjkZezHyX7bh56OwvJCuY7rzYyPSIWwcPuWXPBtp7Q3nT7PivpHgSQnZJbZHYGWUl5cJ3/uuZgtnsxC09udrgrx3DbC7a+xySC6CFk7M979NKPO2y/a+eksgAYivjJKrMLkwW7JTsP61CuuRs3BSVl+nJ9og4E4VTXsnJ72v/u1DzNjUmxZV/+dMjwzZeVu+2bieKNYM9nHpviWwDz30vibKoJTJi5MUnfbzU7OrPIwAVBaR24AM4tMpsOJdj9EADfty/O9+7GuelRmAAAAIGMIHoI+WnnkZExu1MZXeGJj381G0S3JJX6kJLGtKfnbDda/vgVezX25z16OwgDchtsmiIXqnl5S8stvTg/VrM2HzRdFa9sDcJFAY/2v+gkn14fCIEoU0wuhGyXTYaDcXnFBIK9ZdcNXASfyVH7TVcBAAAgYBFEB4LA6Flm0lokZwff6O1j2RWIDmbvL99rugpGLN5xWPO2HdLri3aZropXCGSFLlIJ+e7ycb+argIQkoJ8EhUAhCTSeQHuIYiOgEYM6YjV+zKMlPvKAntXnfaGwZS+dYYvNxL2G16XwBc5pCQIekk+LMgcczBb/4tmtXkAAAAAdQPxEbMIosMtphYa8GVxJvhubUImU+JDXLCmQkHdcOOna7x+7dAvN+rtJbttrA0AIBSUGh7FE2Vo8EwFE+tJeMv0rL2cQnuvkxKzgmvwSjC1FbsUlpRpyc7Djlwjl5SF9gjCTQdqH/hlWZaW7Kx7MaIlOw9rWVyaEjPN9AGZBeYX9g0WBNHhln0ZZvKob2WBI+OYlgsEL1+mZu46nGtjTYDQkFsUmmtQoO4wNXAmkJgOJjw0Y4vR8sf+bPYGtCeB2TcX25+yL+ag+9efD82091yNmrnVo+3tvuGzL52102rzfwt36uk52/XCD7G27/vuqRts36dT4g7n2b7P4V9vUkZ+cY3bLN+d7tiaa5589u22IPawnvg+RjdNXFvrtk7ca/n7Vxvt32kdRRAdAW1NQqZScopMVwMGHfAhnYNlWdrlwBc8EAr+NiV4fsijbnHiwsxfVu31PZ/9r3vTlcWIIBjC2AmYXti7oMT9m5HfbUm2vfxtKcEziKC0zN6bXvHpwTUS3oQFsUdGQa90YP2aLJtnNjgpLtWZ32qpeTUH0TckZjpSruRMcBp1D0F0BLzn5vp2pzGMpFFBLb2Wu9E18bXtILT5+kO2PACmcezPDP7FgeF/dnxt+nID9K9T1ttQg+D1yLdbfUplBAAAPMfimgBq42gQPTY2VsOGDVOfPn106aWX6qmnnlJ6evV37IYPH64LLrhAkZGRlf+WL1/uZPUQJEgpYB/TeQP9zZcFNWFeYZBPKd96MMd0FfT07G2mq+Azy4ubEd68pi4yeQ95W7L59u+Ne6ZFq9CDUZDHsuvGfV6xubQw6fmMggcAAKgOgzRDm2NB9MLCQg0fPlyRkZFauXKl5s6dq8zMTD333HPVbr9161ZNnDhR0dHRlf8uu+wyp6oXknwJKayON7vAjWm9xyzX2z/Fma6Gz6atSzRdBcAjgTCa21slNk+xDVVfrPW839pbB3J6ciPAjG3JOZpjOJWBaY9951lOXgAAACAUOBZET0pK0jnnnKORI0eqYcOGatWqlW6//XatXXt8ovz9+/crKytL5513nlPVgY/eX77XkRWo/cGuOMT/NiZ5/Vq7F33x1sxN3h8DQpPptuvLjf5gHyQQ9PW36QA+X7vf49fUhYXx/rNsj+kqeM2OWU87DOakDfUbYImkgYJPAuM3LwAAgN0cC6KfffbZ+vTTT1W/fv3KxxYsWKDzzz//uG23bNmipk2bavTo0brooot0ww03aMaMGU5VDV4qMDS1uKDEt4vZn+PSbKqJd+6csl4Xj11htA6+2HGIdDqh7KsNB7x+7cFs3wMxvuRVZqodgtmX673/7PnK11QiniwK58rutOBdXBTw1m6HFmqr60wO9GHWEFB3hPLHOZSPHfCEXxYWtSxLY8eO1dKlS/X8888f93xxcbG6d++u0aNHa8WKFXrmmWf02muvaf78+R6XFRbGP1f/sn1cJM+dMjzZzl/n9XBukU/H7Ws9dh6254LIjjaQlO35e/HA/zb7VKav6nlQznGP+168Le97MJfvbR2i9mXozi82+Fz2TRPXqrS83MhxSz60vRA+93a+/9KR7y4T5cen5xs/fl/ani/1KCgpC+q2Z/KzZ6dAfg/c3SbYjtt0+U98v83n8lfHV7/+lLu2HMzy7fj9cO6P3nbZ7lRdPu5Xn47Zl7r0edeZgTLu/vbpPcb+NcQKS93/3fXKjztsL39uTLLfPu/V2XIw2+2+zwmefN6SbBiwcrQxS+P81t9Vp8yy3C771snHZzjw1bNztxtpc0eLTcmpte3tcyBt4aiZWzw69x+u3Gt7HSQ3ynakVA/K90MbMFW+u/1eXf7njnDnTsERubm5evbZZxUTE6OpU6eqS5cux20zePBgDR48uPLvfv36afDgwZo/f76uvfZaj8pr06a5r1WGC61bN1PbFo1r3c6Jc9C2rff7bNTIvmbuSz0o2zsnnNDE7fKPbXtpNiyOVlCvvk5r3cTn/XjL5HvvSx1++HGnbeXXb9JIbZvX3vccq1kzz19zLG/bniQ1bOhb33NCS/fbvlN8Kb9x4wbG6tGyyPd0HLdNXqc9r1+nevU8/7W6aJs9ObXdOe6avnObNcv0qtwGDcN9+94t9L3vbd68sbH237Sp92U3adLItnoE+ve+q7b30/YUfevDLKZg7vdMl19aVq6H3/EtqPrg/7Yo/s3rvX59ixTvB4+0adNMYW5exVa0vyd8PF5XTLeDjLIwndcusPsASY6sIfHesr0afa25NK/ztx3Sh3f3dvm80/EGT9reO8vsDWQezC4y2vZLwsN1spvXXfvSC2wvv6i03Phn/9M1ifr8732qfa6i7T09N9b2ctPySzw6dm8G57mjZcumNdYjIqKhI+VWcOc9aNrUvt963tbB3+USZ/2do0H0hIQE3XvvvTrllFM0Y8YMtW7dutrtZsyYoaZNm1YJmBcXF6tRI88bZ1paDlNRHJKenqt6xa4vjMPCjny4ajsHqV6MDE9NzfH4NRWKi+yb4ulLPUyXPWbJbmNl+yIzK1+pqTV/Wbrb9rzx3592avQVHezdqQdMvve+1KHIxs9denqe6hV5HpTLzfV9dE5tx+6q7RWVlmuBjxeWWZn5Sk21LxDtDV/aX6ENgVRv6pFZUKL3FtuzEPSXv+zRn889yePX3TtlnS3l13Tc7vR73n4GSopLfTr3uTZ8/nNyCo31f3l53pedn2/fRWWg/uaore3943Pf2r/p771gLr/IpvUgfKlDdo73ga1/TFqjf99Yc/DUyd98RzPdDjIz85Ta0A9DHl0wffyBWH4gtr0iL34f21m+3TIy8hRRbiaFbAXTba+632DHtr1ih1JYmT526UgbSG3guu/LLyh2tHx33oO8PGduIHhSB3+V669+LxBUHGttHAuiZ2Vl6Z577tFFF12k1157TfXquc4ck5ubq3fffVdnnHGGzjnnHC1fvlxz587VxIkTPS7Xssjn5BR339vatvvzf6O8Ktt79v0ANdm2fC3bl9zWpo/b3fKd+PxbMn/8ppmug8l+3du2t8yGtRgC4fvM2/LXJmRo9lb7Rqd5Uo8X5+3QL3t9S2dQ4UBmYcB//mtqJ96fv0yVlFkK92IUviTF2rAoqC/tf2Nilk9lF5aUe122ne0lmNue02U7KZjLt6vuvuyntMz7Fy/ZlWr0N9+x+zfJ9G+AQDj+QC0/kNpeXeuDTbf7ijoYLb+GOlS8P05V0fSxV9TBdBs0LRCve02fl0DiWE70b7/9VklJSZo/f7569uypyMjIyn+SFBkZqdmzZ0uS7rnnHt1111166KGHFBkZqXfeeUdvvfWWevXq5VT1gKBTaMNCbQD8I5QXGtuYmKUR07cYK9/XfMCQSsstvf2T96P57RoN6621+zN9en2+Dwur+iNXZl1308Q1pqsAL338a7yembPdp338vCvVptoAAADYy7GR6MOGDdOwYcNcPh8dHV35/7CwMI0YMUIjRoxwqjpA0CsqLVfjBvVNV8PvHvjfZo267CwN6X2akfL/F52k0ZebS+diWZbb+UFRVZnZOF7IemGe/Xka4Z08H4LB324+qD+fe5IiTz3Bxhr5x8e/7vPp9aF7CywwJGbau1Ae/GNbco4+WZXg836enL1NE267QL1Pb2VDrQAAAOzj2Eh04FgxB7P1pwmrTFcDQej95c6s/u2O0nJL21PM5Ydb5+OIylA2NybZdBV8km1jXnlveTOiPiXH2TyBcE9qbpHGLPV+LQxJ+tqHNGDBrC5MJEnMtH/BtVCxxPBI6FU+zKbZb/C8H7Kx77cjJRQAAIDdCKLDfT6Ohh365UZlFNi/+Ent6sDVMIxKy/N+AZNyH6MxBCS9t92Gi3CTgaiFsYeMlV3h1/gM01WAlyasjPd5H94GE19ZsNPnsutCINtXvqSFem/ZHhtr4r5Ygzed7fL07G1Gyx81c6vXr432cT0ABA5f1jIKFXvT8o2WX+LQlMfeY5a7ve13W+wfMBJ3OM/2fbrrxk9J52XSh7/Em64CDCJ9sHsIooeI6z9abboKPlm047DpKhhXRkTBmGIfFsn6tw95hXFEscH8ytuSzQWEAuEjv+1g8AfEgtkT38V4/VqTecl9ufEY7Nbvty+IudSHBYrLDfQfpeWWhkyNrn1DALWaG1P74tyZRgYnBY6/fLbOaPmv2nDD2JXk7NrTWqXmOjPQ5r5vNjmyX7hnd6q5mxiTVvuekisUZOTXzb73U86/Wwiih4Bdh3N1KNfsBa2vd7Wem+vbIkV1wbebDpquQsh6evY2vTjfuzzPM308byU+BPBNsjONu8mRddmF5lKqLOTmYchbvtv7IGqwKza4qEF+sfef+w029lfuBFECSUZ+6N48AUwoNXG3DJUOZDnXR7szgMeXQT41yQmAdIKhrNDw4uyoXUkd7XudujFX1xBEDwF5ReanZdz5xQbTVQh6u1O9n7K4kem9Ppu3zUxqjf8yrU4v/bjDWNnBPJMgK8RHqIWyQzlFQX8T5vVFu5Tvw8Kovpix6aAmrvZtcVLABLvuX+/PIKc+AJhg4zikoFRbeDoQZuoitBFEh9tKfRgVlmD0x3iofxVJB3PMjGabtZnR875Kr6PTxTy1J83M1MZg/p1mIgVUWR0bmWHnjAp/um2y2SnudtmUZO4G8H9/IYiO0HXzpLWmqwAAABBwCKLDbXbm+fSnYA2CBLvM/BK9vmiX6WqgjgjWtDahJiCC6HT6yg/hhYECog0i6NGOPEfXCwAA6jqC6Agaa/ZlmK5CUCoqLdcsH/Nyl3sxojWUgzh1jS+zUOCbXMN5KUvKOfcIHuWWpdsNLzQXCMrKLW1OyjZdDSMsm2bgrPbiN2duUalWxafbUv4j326xZT/+RRQdAADUbQTRETTivFypOtTzZn26ap+iD/h2MX3HZ+sJpBoUl5qnIoOLzLyx2PMZBUkOLrYUSmZtPqhn52w3lt/8q/UHjJQbKGjHwSWnsFT7yOWsj1ftU2aIromwO8379WOO5s2irvd/s0mjZm61pfxf92aogMEIRrmzwJo3g0zsdCjHuUXgNh2ofQayk4vQFRteXDE1r/aFkp28WRmfbk9f5iSn+qhCN/ab4mDbN82da771+zMdK9+dBYt3Hc51rPxg4PQt479+vl5v/xRX7XfM9pQch0tHbQiiw22mp2l+sTbRbAWCVJQNI/j3pudr60E6bFP++vl6jZi+2Vj5s7emePya7Smh/ePKLu8v36vFOw/rQ0MLzBYavog17bstyUbLD/F7wB4j6Cg9P3e7Jq1OMF0NY8psSv315mLPF5XeedjetTu8ic8GQ+AtWFz7UVSt2/y43dlF52tb4PWeadGOlT386021buPOe+StJ76PcWzf7rjriw01Pu/04KLHv6v9+E1/3p1K23nTxNrXZLjhY+faXsxBszO53PntXVDiXPt7feHOWrf525SaPx/BLDMA1iOLS83T/zYm6ftqrkPunupcv7+FeI9bCKLDbTmFZtMKuDMioDqFpVxUI/h5M9ql95jl6j1muQO1gb85OdoMgc2u9BShYNS39owCDmYLdxw2XQUY9E10kukq2OL95XtNV8EtGxxeLyoxK3Rn1qyKN5vGM62W6053Rus6zfTMK6duInl7zW+X2EOhPRBoTozng6fqkowAmsm3co89KeLclcBsTrcQRIfb3lm629Fpe07xd+cDAHWJ6bzsoc5kKifTPF3cca9NqTy8tdqmfNgVQvn+SaimowEAd7EKAWCG6QwNMIsgOjwStS/TdBVClreddQAMlABggF2/756ds92mPQGeecOhqeJO+Wlnqukq1BkDJqwyXQUAAACgCoLoQJA47OUsgB02TUnzdNqiRTZfhLCwOjREYbUH6yo49alfspMUFaHoUK7ZKd2hzPSifgAAIATVcjFBhAGmEUQHgsTGA2YXOfn3T54tshXK09ABu63Yk17tCu2h4uk521Xo5qKRnqYAQWAL5XZv0t3TNpCPHx6pQ/eOAQAAqkUQHYBb9hpeAb62BX6OtXx3mkM1CU0EJs3beMD9BczqYuAxVHODf7v5oOkqGHXP1GhjZbt746Yu2p2ar8VBmJ7GzllwGxIzbduXN0zP6FvlYY7/mZvqxqKmR+NGEgATSstC8zcvEAwIogMICp+t2e/R9o9/F+NQTULTnK3JpqtgTKqHN3AkaW6M/e9XaZl7F/O9xyxX33dX6G9TNtheB/jf2J/3mK6CUbE2pSTzxqOzthor2xtvLrY3h/waD1I5OSG70Oziovd/s9lo+aaNmulZ+/91r//by8e/xju6/4dnbnF0//BeXGqe6SoYtzD2kLGyPR3cZKcShwPM7yzZ7ej+3XHxf1a6vImXZXjh7cTMAkf3P72WG7JfbzjgaPnu/Pb4cr2zdUBgI4iOOi05u9B0FWxl+oLSpK83HCBHq0Hx6c7+YApko7y4iDYRTJCq/rD1JvgP35kcubh+f6Z6j1lurPy6Zv1+92d/OMGTllRuWZq5qW7NWpi4OsF0FeCmX/Z4NmrdHdGJtX/+PlnlbBuJ2pdZ8wYOp7AhQ45r/7b5pmEw2nIwx1jZP8SkGCs7MdPZ63tP1wFzSrGLwTOr4s3e4J612dmBVd9vMTtwa7Xh9xeBjyB6CMgK4cBrblHdmood6kGx7wx/qXrqoM03cXKLSm3dX11lWZZWezgNvSa7DgfPaKe84rrV5wWCmGTPLlInR3k2a8ZOD/wvtEfO1jWmU0kkZJi9eVpYwo3zYPHKgh2273O/4fYHAAg9rO+B2hBEDwGfe5gGoyam8zMieOxOtT+HerDdELpp4lpb9xcsoww9DTrabemuVD3s4TR0wJWh06L16Lfut6cPf4l3rjI1SM8P7ZusgcDuC6+0PLPfeRvcGAkMSKybAgAAQgNB9BBg51Qv0+vrBMr0KtTuie/JSW73RWWwLBY5dJq5hQAl89McQ5npkbNO+WWv/akK7JZTyEwV08JsTr4Qe8jsDclgU1RariEGF6K121aDqRo8lUX/AwAAQgBB9DrO9MITdtubZjatwkZGZQWFuhrIA0JZKH+q6dNCk+mc7MHGiUUmn5mzzdgsjwXbzS0aCAAAgOMRRK/jMm0OopseaZJtuPxDuUVGyw916W7mhF/pwAJXCG1vBcACViEfRw3h41+bkGm6CkCt4lLNDnSodRFIL/y0M1Vjluy2fb/uCOEuDwAAICARRIdHDnsRRE6zcTHML9cfsG1f8FxJmdlFvjYnZbu1nVMLsJo+fpNCfT2EGR7ko9/j0IyZd5bGObJfBL58FowNeDsO5erbzcGxboVTRtXRtShSchhAgeNtS87R9w4veG86jeX6/ZkunzuQ5fzCr6U1/O7e5OY1gS9qWtz2r1PWO15+IEt0+Pxn17AOVnGp89dj/iijNq7SeP5zXqyfaxJaPlmVUOPzj82qm7914D6C6HDckl2ptu3L0yBmXQv8mR6JGiwjvO1sc0e7/bN1juwX9jKdO/6QQwGX+HTnL1gBeOfB/202XQUYNG75Htv3uaGGAGa12yd6tn2gS84prPH5xEyz34n3+GH9lx9izKb0eaCGfu35uc4H8ubXkNLIH/cXalrfKTGz5vZZ183a7OwNpPu/cd32ZmxKcrRsSXplwQ7Hy6jNUoeuZ1G7mlIirwiSeAicQxAdQSXUFww0fUvAdHDycK57I8xXO9RO9hv+wWz6JkqwmL01xWj5T83eZrR8wKS84tBcYDCnKDSPO5DsOJRrrOwpaxNt32dStmc3ZGsKOgWj2kYDBsJIUaflBnC/cjDb+d/EpvtVfxwjqre/hptk/kgvGwgzkHKLAnMWYpi9a6gHpDIuulEDgujwCP2JZ0wHneuajDq2UK6nPJlZUdMUXHgnoYZpvRWSswtVUFL3L+wD1fztZm+gmBQWIFc1dS2Qh+BQV39vmU7nAQAAgN85GkSPjY3VsGHD1KdPH1166aV66qmnlJ5e/fSHZcuWaeDAgerevbuuvfZaLV261MmqwUuB8FM+M99cINXTa7SFsYedqYibRtfBnF27DS9c5o5FOw4bzVcXn5Zf4xRcb2xLzrF1f8Ho8e9q/zz9hZQ/jiksrXlETmlZuf41z/z0W1MCI4RudjQwQldZHQ02z93qbMoEAAAAuM+xIHphYaGGDx+uyMhIrVy5UnPnzlVmZqaee+6547aNj4/Xww8/rEceeUTr1q3Tww8/rEcffVQpKaE7oixQbU7KrnGRFX8oLQ+eUZ52B3xTPJzaGyw5zD2xITHLdBVq9dzc7fqxhjyOTrvNgUDu3rR82/cZbJKyap/WG+qj0J1MuTVvW82fqU9W7XOsbAAw4bBDC6XbKYab7AAAIEQ4FkRPSkrSOeeco5EjR6phw4Zq1aqVbr/9dq1du/a4bWfNmqVevXrp6quvVnh4uK677jr17t1b33zzjVPVg5e2Jefo5knHn0P4x3sOLFzlKauOTplGYAuEUYbFZebrEOjcXbfAG8W1LCx9wI2bHE67xaHvR1oeQlFRLbNP/IXPX80CIXcwAACAPzgWRD/77LP16aefqn79+pWPLViwQOeff/5x28bFxalz585VHuvYsaNiY82lQ4B9AmWKuR2iD5gdBV1aSxDJaXtS83X9x1H61g+roruyLC50Vyo3GUc2HUR4bu52wzUAaudO3nwA7ikKgYUj7VBuWdpk+PepCTsP+ye9X2GJuZs5q/c5N7vLV+l+SK+5JSnb8TJqYnp2YXq+uZkok1bXvLCv02rq/w/nOn/jLtTHjKXWMAsqFGYnT1gRX23fb/L7QAqMQWXw08KilmVp7NixWrp0qZ5//vnjns/Ly1NERESVxxo3bqz8fM8/oGFh/Dv2nxNqKsvpOnhy7P+LtjfYO3PTQaPvvyWz5/7jVft0OLdYbyyOM9LuJClqX2atbc9Jpj5zkrRhf/XH7o/yLctsn3Mgq9Bo+RVMtj1X5R/9z6l0V6a/cyQprJZ6bDzg7MW20WOvoTynyzf5nedJHaIcCjaZbvfp+cUB+d5X95w/yw+Evj8Q+r2wMOnrDQc0/OtNzpTvznvvSMk1ly9JL/zgn8FW7/682+/t7Wim2nwFS5axshfvTJUMli+57vv84ZoPVxs7/x/+Eq/kbNe/vf3BVdlbD/ohhZThz90RlrG2d+1/Xbe95bvTHC/fdL/3/dZkTVgZf1zZ/d//xT8VOMrR5X+35aBfy6vpN19d/eeOcOfe/iNyc3P17LPPKiYmRlOnTlWXLl2O2yYiIkKFhVWnYRcWFqpp06Yel9emTXOv61oXrT3ozAJfbdu6fp+PPQeNIxraWnbr1s3UtkXjWrdLSMvXd1vsX5Dps/VJeuKa49txddbsz7K17Hr16tX43h/tV4dHbLtbD3+W7Y/Pv8njLlWYsfLDwtw7difT/dw1NVo/PnqZY/t3h8m2Jx3p/+rVc/0NP/Sd5Y6U6267a9askSPlS1KTJg1rrEdesbOjQ0x+9ps3j6i17eWFOTMuwuRxe1KH7x1aVNb08Y//NUHv/zWy1u3KHRqd5MnvPbst3pmqxs0j1KxR7ZcrxQ6OWm/QoL6xdpBZXF5r2bNjnFtDyp3jbpHs3GLCpj9/kvTTzlSN/VtPY+Wbfg9at26m8Pp+GXdXrbZtmyvMv5HL48o/lj/jDSbPf2F9c32fZPbYGxrs9ys0bdrouDqEStsz/d5L0vI96XrjL92N1qFhw/Aq78WWQ87PwDJ9rRsMHA2iJyQk6N5779Upp5yiGTNmqHXr1tVu17lzZ8XExFR5LC4uTl27dvW4zLS0nJCffnO0B6dtcGS/qanH3wEOCzvy4Tr2HBzKsHfKT3p6ruoV1z6FMCbBmVFpHyyN09Cep7i1bYzN0xDLysqrfe+r87dPo2wt+1ju1sMfZbtqe/4o259KSsqMlW9Z7h37y/OdCWRJUmxyjtH3XzLb9qQj33EmLibdfd9zHZxim59fXGM9nF6vwWTby8kpqLXtZWQ6k0om+VC2wmu4cXO0NQ6NBnfnvS8uLjVWtpPScwrdqkO5Q+3fk997Tuj64gKte6L2m6clDqa7M/ndm51fVGvZZQ4e+0+bEnXhH06ocZv4ZOdmAdXU/vzF3d8/TjHdB6Wm5br9HeBI+almfvccXX6Fo/s+E+X7W1ZmvlJTGxgrP1SvuSrk5v3e/4da2zP93ktSebn7cRenFBeXVqlDcZEzv3WPZvpa1yR3f184dls5KytL99xzj3r06KGJEye6DKBL0qBBg7RmzRrNmzdPpaWlmjdvntasWaMbb7zR43Iti39H/3NKTeU5XQdLYQF7/P4o3/Sxu1sPf5d99OP+Ltv0sfuj/JyiUrfKnuPgiDgpMN//isfX7890tnAX5QdSn+dkILu8lno4PRI9EL9zjn3OCZe9t1Lv/bzHreMfMX2LI3UoL7dqf+8dOv5A+M41WQd3214g9D9OMla24eMeMX1LreW/uTjOsfJNHLO79TBZtj/rYPocBFr5FY+ZKt+f7wFtz3D/E6Btz2TZ/u7/TX/3mKiDq/fc3d9iwf7PHY4F0b/99lslJSVp/vz56tmzpyIjIyv/SVJkZKRmz54tSerQoYPGjx+vjz76SL1799aECRM0btw4nXXWWU5VD0FseQgvLBnodh7KVe8xy/V/C3eargrgV3GH83T/N5tNV8O4t5fsdm7npn69hrjiMktfrEusdbt1CZmO1cHu9U08kZxdWPtGDqLZmxfK54DFXQEAAH7nWDqXYcOGadiwYS6fj46OrvJ3//791b9/f6eqgzpk4uoE3Xxh9elULMsyOuXvaDmF9k+3CZBDc2nc8r2SpO8dyEWPwBfKN09iDzmXEzZYLIw95Oj+QziOFfDHvjD2kJ53cJG/d5bu1i3dTzGSUmDgJ2u09nFzazFYAX/2AQAAgNBgbpUQwGaToxL05/+u1oEsZ/LCeirGwRyRtdmXbm8eeneVljNiKZSF8s2T9Q6Owj1aQUngfsaSspwdsRvKo0ED3XqbF9GuTlktC2cu253meB1M+HVvhukqGPfhyr1Gy68t3/yP2529gVib1Lxio+U76VCOc+tsBIvMgurXgcr1Q25cVK/UoYWcPZHCZ8NRrrp9f37u8kucTVMYyHKLSlVdisiCEH9PnFz/Be4jiA7H+Wvc2ISV8UrPL9EHy+P9VKL/uRNEKiwp062T1zlfGYM2JjofsAlEMck5XDQFKKdzwVdIdGjxSDt8F8I3UZzmzsWyP3Lyw4yh06K1Oj7ddDWMmRS1v8bno+IztC/Dub4xJrnmhcX+Oc+5WRjuhOpyi+puUGHCL/Gmq6Acw7+7BkxYdVwg/Yu1+3XFB7/6pwLVXHzcNHGNf8qWtOWg2YX9qvvd1f+9lX4rf2/a8QOjPvl1n274OMrxsk3fKgi0gOmmA1n++9zpSGzj4DEp5eZv88/1hivbavk+tMsVH/x63HobhSVluuz9X/xSvhRYg3diknN0xQe/1tkBI8GGIDocN8vvgZUA6vFs5s6RuRqxUpes9dOo30BU12+QIHgdcHgkeiirbRS25OzifjArJjlHD8/caroaASk2JUcPzdyiv36+3nRVHOHkYs3BoJRRd5KkJTsPV/n7/eVmZ2ckZvrv+/65udv9VlZ1qhskUVLmv8/lf6u5kfTxqn1+K9+kXYfzjJVdXQrVz9bUfEPXCQuOmen0ygKzqTPHr/Bf3/Pt5oNV/t5TzQ2lUDF1rf/bHlwjiA7H2T3FP684sO5KA/6UVsu07VCf+rycO/SOyA/wfpdAS2BMLwf8bechc0EWAAAAhBaC6Ag6BNERqGZvSdbfppgdDfeq4REKpj3+XYzpKtRJ90zbYLoKNc7EKfbjqLBQFSjrjSDwrI5P15Ykc+vAAAAAAP4QbroCgDdKyy2F1/NXtnXvbEvONV0FRwXDOfC3VxeaD2BvNbigLequ+PQCbT2Yra7tW1T7vD9SDoRyVoNASOmQnleiP5wQYax8V+9BXnEpN88MOpxbFNKpZljky1kMnAEAAIGEkehwzJPfx6j3mOWmq2HMhw4shpSUVajyAAimSNLgT9eQQiEA1eUFxmB2xYdhX250+Zx/UioERt+HwPLNhiSt3x+ai00HgsO5NacYqytc3cS55D/+W2CwOnNj6vaCziv3hO6CugAAIPAQRIdXHpqxucaFzlJzi/RznJncxHU9zLL5QGCMNE7JKdK+jMCb3r8njfyoqMMCtIMrKXf+hlqA3D90acehuj37KFDR54e2Yj/dzN+Xbub3Tm393ss/mp8Bh7otwL966zyT778Vwmc/UH5zBkg1KgVafZwUSscKzxBEh1ei9mVqTUKGy+czC0r9WJuqAuVLzyn+CFYFPBdZZErLynX7Z2Zzkpv0hcMrdx+7QjyA3z08Y4tj+w4LI3XW3vT8ah8PhHQPk1YnmK5CSCotK9dbP8X5pazyai6nk7IKHS830H/SpuebmYkwKzrRr+UVl1b97R1z0L8DWjYfzPFreUe75D8rjaYtSskpOm4myOBP1/it/EmrE4we/6YD5mZajV2657jHSsvK/TbT/B9fbTzusVXx/pmdsikpW73HLFdWQYlfyqtJYmaBHp6xRb/uTlWJH9cAyi06Pp6zNiHTb+UfK+6wfwdNHPv9VlrDAFKEFoLodVhcqrMdTWmAL+Q2Z2uK6So44vM1zgZKg1lhaWjfYHh/+V5H9//CvFhH9++rNftc39hD8PtqwwHTVahRhsELrcIS84Fkp32/JTDTVliW5Uj6Nk85tbBnUS3fqwUG294hw6lkuKA2dwNp9Deb/Fred8f0P0NrSG/mhB9ifr+mMZFKcW6M2WuqTcfMwj3ghxtYR5u/zdwgkvR8c78tYquZYfft5oMGavK7UX5eg+P/AmC9q+d/iNWq+Az97ZMov5Y7Yvpmv5ZXG3+vPXbsDYsft5vsB/03mOZgtn/712BEEL2OSsws0F8/r8Mjct0Ybj6/jo6ajdqXaboKLuX4MR/3gAmr1HvM8mrvksM5axMyAjIX/pfrEzXSwZHAMI+AlWv3fu18QIl3v3qB8r4kZjpz0XPfN5uOG4V7tCU7Ux0pF0cE+uzKUOmX84oD57emiXfc9G/twlKzN4pzA+j8m5ZVGFrvRSCs+3E4t8hIuSk5ZsoNVKGy7pg/ZzsEK4LoddS2ZHPT/uD8FN9dhwMz964/cwJn/jbqc962ujnjIFCNmL5F7zk84r0m0zcmVfu4v6YXfrnev1PIPZFd6Pxopfi06lNqhIJAzr1d3Wgxu7laWNFfAj2YWFdtS86pcfRXqJyWmm4k1HU1BZADcW0cAAAApxBEr6OWGVrUs0IoL0QiSTkO36X/25QNju4/mBw9CMofI6JGzdyisT/vdrycQPa1wbQa//ZT/ltXxv58fH5If6qpby0ocT7IM3JG9VM7QyHAaXK9hR8MT6WXpDLDJ9lV7mV/VMv0DQTTfqxhZl+oZOufsDLedBWMqan5rzOYHxcAAMDfCKLXUQt3HHa8jEC9pAzUetVFgbbWnT9mYKyKz9CX6wM7NzPqLtP9m6scxKbzVce7WHSyrohLzdOrC3YYrUNJqdnW97OLwQH+uGl//zebAjqQ/tWGA3rpR7Pto65bFX/8mhv+aBOLdx42nkrDtFA/fgAAEDgIosNrNV077PLz6slHC+QLXQBwym6HF5OuyfdbzQbRZ7hI81OXzA7gxbJz6niQK/pAdkDnfn53aWjOjkrNM5+r1h+u+OBXZRpcXPB/0UlGf1v/tNP5gUEAUBtTY8cIbQCBhSA6HPHifLMjogpK6v7CD4Gcn9dprn7EBNjAeMB2NaX1qG6kJOAPoXDzmu+XwJJTWKp/fLXRaB2K/JgnfX1i5nGP+Wv2wYe/xGvqOnPrgQRC91J41Lk23d+tNvBdP87gWjiS+Vl4FSzL0gNf+D+129FrYdWUXssJX65PVGLm72sf+HttnF/2plf+3/Rnb8We9No3qkPS80uqvOf+WHvpWMt3H5mFaOrcf7/loErLjvT//lh/qDr5xWVazM3kgEIQvQ4qC+DRUnb5OrrmUYcDP45ytPyjf0yY8kuIfZEHukAepQhnxR3y30LO39TQ9xHkg5NCfa0TBJZASOE0Ze1+o+X7c62EhbHmLuCzHV5nyB2TVidU/n/JrlSDNZEe+y7G72Vakg7nFkmSUnKK/F6+aRWDsz5bs18/xvh/5t3Ra2H9c16sX8se+/Me3TRxbeXf/kgZe7RHv91a+X9Xad2cFMqD1iQpat/vN+2en+vftidJj38Xo7Jyy1gq1f9buEtf/bYWmKn1id5e4t/1wLierB1B9DooEBYgc9p7y2pe3C/L4R/cNY10n70lWQ9M3+Ro+ZKUWWD+ogK/mx4C6SQCmcmL7KvfXW6s7KMF2hoFqFuKywIriJ6cXajbP1unX/cyA8OkUO539vh5RObR/J0n3NQIPEkat8LsKOhjbUs2916YlPZb+qS0EEmjdLSKhdsX+TmAjKpiU/w3aKVCxbkPVUen6F29z8zvLcuyjN68XLc/01jZkrTMwM0j1Iwgeh205WC2X8p54nv/j4Rwh4m71BUyC0r06sKdyi0yl06mLBDmvTosEI8wlHLSBmLMZHOSf/o94GiWZan3mOXqPcbcjZSkrEK/lPPhyni/lOOugZ+sMRrEDBQJGWZmxm0/mK2sgpIaZ8fYqWI6NY4IgZ96AAAAASfcdAUQ3BIzC3RqywjT1QgYydn+CWa4kpJTpMGfrq19Q5uEGQqnrthd/Y2S/BDIhS8dSdlUv14ghrIBM0yNhjV5w7TCoE/W+KWcOIML18K1g366iXK0bck5untqtF/L/HZzsv4SeYpfywQAAACOxkh0+CSrwP8LTKDC8cOQphlc+MmftqccP5V26Y5Denr2dgO18b9V8eTDx+8W7Tis1xftVGmApdvwJ1M39FAhBN7/AM1b8sisrbVvZLOJR+WH9pfUvMDLw7zHjzeWGHkOAKHHsgJzBjYQygiiwyclIRq0+XqDmcUtjhYIF1SZAXQTZdhk/43ANy2Ug6WS+XycxaWBlVbgubnbNWtzsr7dfNAv5e1Jy9OMjUmVi+ma7gdKysr1/Vb/L/SF38X6cXFdVGViMXkT+TlXBuBi6v78Kg7tb30EApNt0PQ1j+nygVAXyp9Bi18AAYcgeh3kz8FSi3cev8DKwthD/quAIbO3ml+8NRC60/u+cX4B1dqUh/K3qiHVveOWH8/Dn/+72kjgqMLj38focK65UZGuFpQr9dN7cvtn6/XWT3GatfmgDmQVaMCEVX4p15Wv1pu/qRnqEjPNpjJD3Xf04maSmYkBawwtqoaq9hpaC2FtQobfvmerk11Yovh0c+tA7EnN1/6MAm096P+bpomZhUrPL5ZlWdpn4D1IyMhXen6x0nLNDeIwPYBEkgoNp83cbKDtSUfStSZmmll/5FBukdFrHpNlV9idlq+sQnMDdjILSo31/YmZBX5PHRmgEy8DCjnR6yB/TmuvbiT6c3Nj/VZ+KCN2fMQPMSm6s9eppqvhV0/O3qa1j19W5bEiw6Oj7/xig1/LKykrV/169f1aZoXV8Rl6af4Ojb+tm5HyC0rK1KyR+a/vmOQcNfBzbv6KdTgyC0rUMqKBJCn20PHpnQB/+CwqQV+ESBq1QHMox/83MkfO2HLcdy/8o6LvX7IrVU/P3makDiOmbzFSboWrxpu9Yf3SjzuMlf32kji9vSTOWPk/x6XpZwMzcI725/+u1n9u7mqs/NJyS/3f/8VI2VHxGXp90U4lZZsZwDLQT2vPVGfmJv/MMnVl/Mp4De17utLzzd3EucvP15jH2paco4vHrjBS9h5DN41RM0ai10H+mtIPs0rLAyelxKGcIkXFmxmhtfNwaC52d+wifzM3JRmqyRHHjhJ02jNztmvprlS/lnk0ftQc4e9e6JFvt+q/v8RrwIRVmmMghYvp1DUIHPszCjR+ZbyyC6ufGeKk6MQsrU0I7VHRT88xswZKal6xvli7XxkGAwqB4LFZW9V7zHK/lXfTxLUqLSs3FkAHAsHHv+4zVnauge+6ChOjEowF0HHEkp3mrrmAQEMQHbCRP2cBfBOdpOTsqlPoTQxOzy8u0/UfR+mhmWZH6PibP9OXVCfvmJQeobbI7y970/WUwYvpVIPTanccyjXe/irsqGaRXyclZBRULmr475/8PyptwIRVWn3Uwr4s8utfvccsD5i2n1tsJqBQWlau+77ZpBHTt2jrwWwjdQhlj83aqveX79Uzfg7iB0q7r7DCQI76wgBbjwQAAIQegujwybebD2pDYqbpaoSs6RvNzzrIN5wfz5Ttfg4eBqrMghLdMil0FnUNBKNnxWjRjuPXozAhEHIl+vu9+HTVkSD+6vh0Pf+Df9OXxRzM1q9700M6eF9QYiaQ9sXa/UbKPdbReTmHfbnRb+XGpuQYzQcdKCq++zckZhmuCQAAAPzNL0H09PR0DRgwQFFRUS63GT58uC644AJFRkZW/lu+3H/TBOsKEyNV7v9ms9/LBEzbkxZYaWQO+Xmxoy/XH8kD/NX6RCVkmFlsx7QbPo5SaZmZgN6YpbuNlFtFAIyMNLnI1cYD/h8FPPTLjXrk260aNXOrCkvKlBEAC42Figkr401XwaghU6N1/UerTVcDAAAAMMbxIPr69et1++23KyEhocbttm7dqokTJyo6Orry32WXsXiPp1YZykuNI/w9KjsQRoHe/80m01VQvIH81G8tNrfA0bESMws0NybFr2WO/XmPJCmUZ1en5BQZW1QwPd98+h7zvY9CemRsUWm5ZhteCwH+9f6yPUbLN93vTN+YpJKycmUXmu//AAAAEHocDaLPmjVLTzzxhEaPHl3jdvv371dWVpbOO+88J6sTEpheatZ9fg4oT1tvJoB3tEAYhXzr5HV+LzOQcnN+viYw0gyEIn8vqAogMJiYiGHqpl2g+PdPcbp10lpdNX6V6aqErOkbkzR/u39v2gM4ItDWRgCAUBTu5M779eungQMHKjw8vMZA+pYtW9S0aVONHj1aW7ZsUdu2bTV06FDdeuutHpcZ5r91HQNSfrGZqe1hYf5/702f66PL/ywqQd9vSTZaj398tVGbDKQXCGUm2+CnqxOUX1ymm7qdrF/2msmPbOJzX10dTFoYay43ueljD4Q6vODnnOTSkRH4Gw9k6bOommfYOc3Ee2/6fEvSa4t26qU/dzFS9tHHb+q9OHjMguL+ZroNJGUXma2AKb9933694YCaNayvDm2b+r0KydmFRhZ0BnCEyfWYBnxo7uZlNIMEjeo9hhTLoeTY6/uK/5v+/ecP7h6jo0H0E0880a3tiouL1b17d40ePVqdOnVSVFSUHn74YTVt2lTXXnutR2W2adPcm6rWCSVl5Zq+0czU7rZt/f++t2nTTGEGP80Vx7whIUMfrIg3Wo8lsSkE0A0w0e4rrP4tddPmJHPnvW3b5oqIaGis/Io6hKoTWjVVg/rm1gdv3KiBGjUwV369emFGbiCFh9fTvV+bT2PVunUzKcG/n/85O1J198Vnqn49c9+9C2MPq2FDR3++unR0f9Oy0Myghb98tt5IuRVCuc81qVmzxippEK53lhxZD+MPLSP8Xof6EY38XubRWrdpZrR8AADqutatmqltmybHPR7KcdZjmbkKOcbgwYM1ePDgyr/79eunwYMHa/78+R4H0dPScgJhrTMjFsQeMlZ2amqOwsL8++Ea8cU6vXrdOX4r71gb4w7p1JYR2pOUaawO0pH3fk8Sd+hNSE3NMV0Fo1JTc1RYYHZhw1A+BwuiE3XRma2Mlf9t9AHd1O1kY+WbmtZcYnAx06NNWbFb7y71b47sl+ds06QVezT9770VbjCQvnl/ppFyj+5vMjP9vxZHIAjlPteknJxC7T/4+2+9A5n+T6WXmWk2fVl6mrlRuAAAhIL0jFw1sX6/1qmI8YVCnNXdeKa5IWRHmTFjhubPn1/lseLiYjVq5PmIB8sK3X8fLN9r1ynx2PgVe/3+oZq/7VCV4/e3x7+LOVKu4c7EsqTETLPTu0OVyfYXCALhuEP5/S+3LOPHbrL8ghIz6xLEp5tfB0KS3wPoFfZnFioxo6Dys1da5v9GYGotjl7vLNefJqwK6X7nxXn+T6EEKTm7yPTPTeNt3nT5AADUddXFGV09Xhf/uSMggui5ubl69dVXtW3bNpWXl+vnn3/W3Llzdfvtt5uuGtw0OSr0FjbcnRo4o9Ay8ktMVwEAQoJlPJQVWFbuMbMmgynpv33fhmor+GGbuVmPoeyDFeYGygQK+l4AAJwVCrnPfWUsnUtkZKRefvllDRo0SPfcc4/y8/P10EMPKS0tTaeddpreeust9erVy1T1AAC1yCoo0c7DZqdXz9marNQ8syllQlko/tBiNGRVRaWBkd7GnzLy6XMQekx3fX/6cLXhGgAAgFDntyD6jh07qvwdHR1d+f+wsDCNGDFCI0aM8Fd16iTTsYySMjNT699ZEqf2LRobKVsioILQdfWEVaaroFcW7DRdhZAWZvybx//yikMvaHysxMxCndH6yKJDoTgTylQqIYS2aesSTVfBqLJyfnADAACzAiKdC+yRUWD2QvaqD1ap0M8Lrh3MLtQ30Un6zzIzuWEBwJRACF9HJ7KocSh6dNZWRSdm6UBWgd5Zutt0dYCQMHtritHySwliAwCAEGcsnQvsZ3pkVH5JmbYe8G9AJY00DkcEQjQNgN9tTso2Wv7e9MBZGwL+tSD2kE5tGWG6GgD8JCmLRewBAEBoI4heR1gBklPE39O61yVk+rW8Y/Ues9xo+ZKUmldMDB0IUf/4aqPpKiBEzdx00HQVjLFkkcsNIee5udtNVwEAAMAoguh1RKDMsEzO9u8olZScIr+WF4gGfhzFFFtDikvL9cW6/ep7RivTVUEI+nzNftNVAEIS8XMAAADUNaG43pWnCKIDQY4AujmXvrdSkvTfX/YZrglC0br95CMHTJm2/oDpKgAAAADwIxYWBQAAADywaMdh01UAAAAA4EcE0WGrr6ISTFcBAADAMXvTWFAXAAAACDUE0euIQEnose1gtl/LKyMxKQAA8KPHvosxXQUAAAAAfkYQHUFt1uZk01UAAAAAAAAAUIcRRAcAAAAAAACAEBUWZroGgY8gOgAAAAAAAAAALhBEryvIDQ4AAAAAAAAAtiOIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAgBAVZroCQYAgeh3BsqIAAAAAAAAAYD+C6AAAAAAAAAAAuEAQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkH0OsIiKToAAAAAAAAA2I4gOgAAAAAAAAAALhBEBwAAAAAAAADABYLoAAAAAAAAAAC4QBC9jiAlOgAAAAAAAADYjyA6AAAAAAAAAAAu+CWInp6ergEDBigqKsrlNsuWLdPAgQPVvXt3XXvttVq6dKk/qgYAAAAAAAAAgEuOB9HXr1+v22+/XQkJCS63iY+P18MPP6xHHnlE69at08MPP6xHH31UKSkpTlevzigrJ6ELAAAAAAAAAM+EhYWZrkLAczSIPmvWLD3xxBMaPXp0rdv16tVLV199tcLDw3Xdddepd+/e+uabb5ysXp3yTfQB01UAAAAAAAAAgDrH0SB6v379tGjRIl133XU1bhcXF6fOnTtXeaxjx46KjY11snp1SlpesekqAAAAAAAAAECdE+7kzk888US3tsvLy1NERESVxxo3bqz8/HyPywzV2QehetwAAAAAAAAAvBcWVjW2WPH/UIg3unuMjgbR3RUREaHCwsIqjxUWFqpp06Ye76tNm+Z2VSuoNG7c0HQVAAAAAAAAAASZ1q2bqu0JEcc9Hqpx1uoERBC9c+fOiomJqfJYXFycunbt6vG+0tJyZIXgGpuFhaRzAQAAAAAAAOCZ9PQ8NSgprfw7LOxIAD0U4qwVx1obR3Oiu2vQoEFas2aN5s2bp9LSUs2bN09r1qzRjTfe6PG+LCt0/wEAAAAAAACAR1zEGU3HOgMppmosiB4ZGanZs2dLkjp06KDx48fro48+Uu/evTVhwgSNGzdOZ511lqnqAQAAAAAAAADgv3QuO3bsqPJ3dHR0lb/79++v/v37+6s6AAAAAAAAAADUKiDSuQAAAAAAAAAAEIgIogMAAAAAAAAA4AJB9DqChUUBAAAAAAAAwH4E0QEAAAAAAAAgRIWFma5B4COIDgAAAAAAAACACwTRAQAAAAAAAABwgSB6HUFKdAAAAAAAAACwH0F0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAIESFma5AECCIXkdYFlnRAQAAAAAAAMBuBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAAAAAuEAQvY5gWVEAAAAAAAAAHgsLM12DgEcQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAhKgw0xUIAgTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEESvIyzLdA0AAAAAAAAAoO4hiA4AAAAAAAAAgAsE0QEAAAAAAAAAcMHRIHpaWppGjBihXr16qW/fvnrttddUWlpa7bbDhw/XBRdcoMjIyMp/y5cvd7J6AAAAAAAAABDSwsJM1yDwhTu580cffVTt2rXTihUrlJqaqgcffFCfffaZhg8ffty2W7du1cSJE9WnTx8nq1RnWSIpOgAAAAAAAADYzbGR6Pv27dOaNWv05JNPKiIiQqeddppGjBihadOmHbft/v37lZWVpfPOO8+p6gAAAAAAAAAA4DHHRqLv2rVLLVu2VLt27Sof69Chg5KSkpSdna0WLVpUPr5lyxY1bdpUo0eP1pYtW9S2bVsNHTpUt956q8flMv0AAAAAAAAAANwTpqox1Yr/h0Kc1d1jdCyInpeXp4iIiCqPVfydn59fJYheXFys7t27a/To0erUqZOioqL08MMPq2nTprr22ms9KrdNm+a+Vz4INW7c0HQVAAAAAAAAAASZ1m2aqW2zRsc9Hqpx1uo4FkRv0qSJCgoKqjxW8XfTpk2rPD548GANHjy48u9+/fpp8ODBmj9/vsdB9LS0HFkhmB68sLDYdBUAAAAAAAAABJn0tFzpqNhiWNiRAHooxFkrjrU2jgXRO3XqpMzMTKWmpqpt27aSpN27d+vkk09W8+ZVKzZjxozjRp0XFxerUaPj74DUxrJU509udULxmAEAAAAAAAD4rrrYYqjGWavj2MKiZ555pnr27KnXX39dubm52r9/vyZMmFBtnvPc3Fy9+uqr2rZtm8rLy/Xzzz9r7ty5uv32252qHgAAAAAAAAAAtXJsJLokvf/++3rllVd01VVXqV69eho8eLBGjBghSYqMjNTLL7+sQYMG6Z577lF+fr4eeughpaWl6bTTTtNbb72lXr16OVk9AAAAAAAAAABqFGZZdWtQfmpq3c/VU53XFu7Ud1uSTVcDAAAAAAAAQBBZ+OBFatWkYeXfYWFS27bNQyLOWnGstXEsnQv8q463ZwAAAAAAAAAwgiA6AAAAAAAAAAAuEEQHAAAAAAAAgBAVpjDTVQh4BNEBAAAAAAAAAHCBIHpdQVJ0AAAAAAAAALAdQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOgAAAAAAAACEqjDTFQh8BNHrCIuVRQEAAAAAAADAdgTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFguh1hEVKdAAAAAAAAACwHUF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIHodQUp0AAAAAAAAALAfQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOgAAAAAAAAAALhBEryNYWBQ1ufCUFsc99v3wPgZqAgAAAAAAAAQXguhwzI8PXKRZ/+ittY9fZroqIW3UZWfp0792r/z7/kvO0NrHL9MpJzTWcwM6VT5+QfvmBmoHAAAAAAAABLZw0xWAPQ7lFJmuwnHaNG143GN39PiDHr+ig3an5ik9v1jd/3CCDuUWqV5YmB74ZpOSsv17HD/c11cNw+tpwIRVfi3XnxrWr3qvrH69sMr/39Stvbqd0kJntm6i+vXC9OvedD3y7VZJUkSDeiooKfdrXQEAAAAAAIBAQxC9jkjOLjRdhSrqh1X9e2S/MzV+Zbzuv+QMSVKHtk3VQU0lSX84IUKS9P29fSu3f2/ZHk1dl6jep7fU2oRMR+vaMqJBldHyi3cc1rNztztapj/dfGF7SdKIfmdqyc5U3db9lCrPd2jbtPL/l5zV2uXMgdyiUl3xwa/OVRQAAABea92kgdLzS0xXAwAAoE4iiF5HdG3fQvszqw+k9zm9pcosS1sP5qio9MjI4pl/761bJq11rD539jqtyt9D+56uoX1Pd/v1j/zxbD1w6ZlqFF5PlmUpJadIafklGjotWpK0ZOQlat44XDsP5Wpbco4+/CXetouGq7ucqKu7nCjLshQW9vvdgNyiUq1LyFSP007QVeOPjFzvceoJeuW6c3TDx1HV7uure3rqr5+vlySd3ipCQ3qdqj5ntNLKPWlq1ihcL87fYUudXZk+tJca/DYSfVjf0zXMg3NwrGaNPO8u7r/kDH306z6vywTscnabJtqTlm+6Gn7VpEF95ZeUma5GyHniig66snNbXfdR9d8L/tC2aUOl5hUbKz+UhcnsOjVNG9ZXXrGZz/1fup+ihMwCrY7PMFL+KSc01md/664/fbjaSPkrRl2qxg3qq/eY5UbKl6QFD16svu8uV7mBRvjjAxdp9tZkTVgZ7//CAQAA/CDMsizHfmalpaXpn//8p9asWaP69etr0KBBevrppxUefnwwbtmyZXrnnXe0f/9+tW/fXk899ZSuuOIKj8tMTc2Rc0cUuD78JV6TVidUeez1G87V5R3bVAZR84vLNDkqQVd3PlFd2jVTabkly7J0yX9W2l6fXx7pp4bh/ku5v3RXqp6avc3j1/1wX1+d1LyRx6/LLChRSVm5Tmx25LXVXTD95+auuvSs1np2znYt3nlY/7ymswZ1PbnKNhsSM3X/N5s9Lr82Q/ucppH9z7J9v+5eGDZvFK4lD11y3Gteua6L/jXP2RsHkvT5nZH6+Nd9euSPZ+ulH3foojNaqu+ZrdTj1JZKySlS04b1decXG5SU5dwMjrWPXybrt5tX557cXMnZhWrforEk6aKxKyQdmR3gxMXmrRe2V2pesV657hxFNKhf5YZQZn6JUvOL1bFtU5WWW7r4t7r4Q9OG9TX/gYuUnl+spg3C9XNcql5btMv2ctY+fpnKLUv1wsIUnZil5o3D1bFtU1mWpaLScv33l32avz3FkdF6r11/jpbFpWlk/7N0UrOGWhWfoR+2pejNgefpzcW71PnEprr+/JM1c1OSftqZqs1J2baWP/+Bi/TLnjT1PK2lTm15ZJZPYmaB7v9mk0b2P0vXndeuymfS6VGL15xzohbEHtYP9/XVwE+iVG5JU4f00Jp9GTqQVaidh3K15WCOLWWF1wtT6TGRo9ZNGui5AZ11fvvm+vdPcbq8Yxtdd147fbBirz5fs9+Wciuc1rKxvv3H7ws2bzqQpeFfb6r8e869ffTwzC2KTy+wtdyjXX9+O/2xQxtd0amtCkvKtC+9QF3aNat83skZRVGP9VdqbrEyCkqUmV+iVxbs0B09/qAhvX+/qf7l+kSN/XmPI+VL0pS7InVuu+bKKy5Vo/D6qhcmFZaUa21CprYezNY1555UeWPbbld0aqs3bjhX9euFacXuND32XYykqqnRpt7VQ3dN3eBI+ZL0UP+zdE+fI+/3+v2ZqhcWpm6ntFBxWbnu+3qTrj3vJEfe/9sjT9HZbZro5guPzHSLSc7R0GnRuv78djqUU6S1CZlaPupSlZSVVw5CsNvq0f2rpKsrLi1XuWWpUXg9rdufqc1J2UrIKNC8bYdsL3v2vX0qv98lqaSsXBNXJ2jGxiSNu/UCtW7SUCc1a6ii0nIt2ZWq77cka0Nilq116NC2id6/+YIqv2kty9I30Uk67+TmuqB9c4WFhdke4B/UtZ3+eU0Xl89/t/mgXlu0S71Pb6kep56gj37dp38POs+r3+wAAMBZi0ZcrJYRDSr/DguT2rZtHhJx1opjrXU7J4PoQ4YMUbt27fTqq68qNTVVDz74oAYPHqzhw4dX2S4+Pl6DBg3Su+++q8svv1wLFy7Us88+q4ULF6pdu3YelRkKJ7c66fnFuua3kTe3R56iIb1PUzs3g8NpecWqHxamRg3q6f5vNml7Sq5PdZk6JFJdTvLvIpXllqV/zYvVgtjDlY/9+MBFOqFxuN5bvldfbzig+y85Q8P6nq7colJd/VsOdG+D6MeKS82rcmH+/i1ddfGZrSVJZeWWEjMLdEbrJrUeQ15RmZo3Dlf5b8G+y97/pfL5UZedpfeX75Uk9Tq9pdYdlebmzNYRyiwoVZ/TW2rYRaer41EpWuzk7sXX0SlhcotKtS05Rz1Pa1nlArfCjI1JeuunuMrXVZRx/snNdXKLRvppZ6pbZd7e6zTdFdle7Zo3qjKDwFM5haXKKizRDzEp+vSYG1PHatO0odJ+G+15cvNGeuFPnfW/jUm6/5Iz1PmkZi5fZ1mWLEn1fqtnaVm5wn+72fX9loN6d+kej0cQt27SQE9e2VFXdW7r1fHbGVzrfXpLXXhKC93d5zQN/DhKLRqHa8pdPVzOZthxKFfJ2UU6v31zLdl5WG8v2S1JuuH8dpobk1JreRee0kL/+nMX3TJprf75p84adMHJtb6mOvnFZZq2LlE7DuVq2e40t1+35/XrtGt/ulo3OX4dCHeUW5a+XH9AV3Zqq/YtGqmwtFxT1uyvtf1JR0Y9X9axjYZ8sUF/7fkH/eOiM9wq89iZNhVtcm9avho3qKf1CVl6deFOt/Y19qbzlVVQqjZNG+iiM1srt6hUry/apT91OVGXd2rr1j7S84uVnl+if3y5Ubdc2F5frEt063UVLuvQRmMGn1/5d1m5pXphqvGzUPEeJGcXaltyjqIPZCv/t+Dr9I1Jbpe96tF+ql8vzGVZ//0lXq2bNNBfIv+gVxfs0OytR9r00f3k8t1pevy7GHVt31xbvbypcGwQsSZpecVHvpuyCtT5xGa664sNOuDFTcVlD1+qHYdydd7JzdXIzRvnj83aqm0puZr1j96KaFBfZeWWnv9hu84/ublu636KdqfmaeiXGz2uS+SpJ+jj2y90a9uKc59bVKp/zYvVqMvO1hmtI1RuHUkn99WGA27tZ9GDF6t+vTA1b1zzTK2DR91ElY60T0lKzSvWt5sP6oeYFKV4ubbNRWe20n9u6ur2uT9axU3+n0Ze7HVw+7Xrz9GfzjnJo9es2J2mP7RsrLS8YnVt30KNf2s7fd717qbujGG9av2NVZ1PV+3TpWe3VucTm+mHbSl6dYF7fd7RXr3uHP35XM+OXzrSBvdlFOjUExorvH493TJprQpLynQo17MZJPXCpJWP9KscMOOp4tJyfb3hgMat2Ovxa6cO6aEuNfzWqUlmfolKysuVkV+iO79w7sYSAABwH0F0g0H0ffv26U9/+pOWL19eGQifN2+e3n77bS1durTKtmPHjtWWLVs0adKkyseGDx+ubt26adSoUR6VGwon15VjgyJ27zu7sFRNG4Xr4rErdELjcM0Y1luztybruvPbqW3ThiosKdNJJzVXTma+sXNwdJD36ABFcWl55cj4wpIy9f8tOL14xMU64ahOwhfp+cUqL7fUtpnvQfkKO1JylZJbpMs6tJEkJWQU6HBukXqe1tLR8+1KTUH0ExqH69Xrz9EZrZrolBMau9zuWKXllr5an6hep7fUue2O77RKy8p119QN2p16JBXHPy46XQ9ceqb+77eL3ef+1En164U52rmn5hbpnaW7dVv3U9TztJb2F1CLim46LCxM5Zal5XFpij6QVTnS+OZu7b0KoNQmMbNA25Jz1KZpQ722cKdevf5cnX9y1XOUkFGgcsvSbZPXSZLu6nWqHvnj2T6VW1JWXhkQ2J2ap71p+bq6y4nKLixRSk6RGoXXV6uIBrUGruySW1SqRTsO65c96ZJUGWC/5cL2eubqjjrxxBaOf/dsTMzS4p2H9U3078HdyX/rrq7tW0hyvv//fkuylu1O0xUd2+rP555U2Z8efQPICeWWpb6/Bdbqh0lz7uurRTsOa+zPe3R6qwhNH9ZLuw7lqUPbJrbXI7eoVE0a1le93z535eWWlu9O06akbJ3QuIFuvrB9lR+Z7u7ztsnr9MSVHXRV5xOrPJdTWKrmjcOVkV+s+dsP6dpzT1KrJg1VWlau0nJLDcPrqdySxiyJ07XntVOXk5rq1PYtNXddglo0Dq+2//RU6W83H9LzipVdVKpmDcO1PjFTp7eM0PntW2hDYqaSs4t0brvmOrN1hFdtzrIslVuqtc+yLEvv/rxHX/8W0L498hRFnnpC5cjq2JRcpeeX6Lbupyg5u9DnG6iuJGUVqnWTBmoYXk9frj+gPqe31OmtItS4QX3by5KO9H9vL4nTZR3aaPSsGJ3RKkKntYrQyt/6n/B6YbrozFZ69bpzvEqzVpOyckubkrJ0XrvmatygvjLyi/W3KRvUsH5Y5cLvV3Zqqyeu7KDzzmrraL9nWZau/ShKd0SeokvPbq17v96knqe1VNS+DF3Vua2evbqTY+fgaCVl5Xpz8S51/8MJKi4r1wXtW6hd80a2/XZ0pdyylF9cpu+3JOvjX/dV3life19fndisYeVNeCfK3XggS6eeEKEXf9yhrIIS3dXrVL04f4fGDD5fl3Vo43i/XyG3qFSxKbl6cPqRGZv/uamrHp211fFyAQAIVQTRDQbRFy9erOeff15RUb/nBN2xY4cGDRqktWvXqkWLFpWPjxw5UqeddpqeeeaZysfefPNNJSQkaMKECR6Vm5ZW909uoAoLk9q0aW70HFiWpT5jVujP552kV687x+V23205qLJyS7dceIrLbXC83KJSXT7u+NHK15xzov7v+nMcC+IVlpQpMbNQHU+sfoR9ILS9UFdYUqa9afk692T/zkIxzUTbS8srVusmDfx+E82UlJwi7TyUq35nt648ZhM3EQNNKPR7hSVlmr01Rf3Obu3Rzdm64ugbqIEgM79ELZs0CIm2F2gq0tP448ZBIOv1jrl88wAA1HWLRx4fRA+V33wVx1obx4bx5eXlKSIiospjFX/n5+dXCaJXt23jxo2Vn+/5InDuHDScZfoc7H3z+lq3GX4F7cQbbSXFv3l9lQBWUWmZGoU7f1F3avvatzHd9kLdqe1bmq6CMf5se23dy5BSZ7Rt21znnxViB+2But7vjQjhfiXQHPsprOttD4HniT911jtuphoDAACeOfOUltXONuM33+8cC6I3adJEBQVVF8+q+Ltp06qjSSMiIlRYWDUXZ2Fh4XHbuSMU7pAEqlC6S4Wq7FkW0Hu0PZhC24MptD2YQtuDKXd0O1mXn9VSBWH1lZWVLwVZ+7MkBca8ksAQdO9HmHTCCU2Csu3BjGPbuNdt3se2FyiftUCpR6hzdR7OPbm5MjPyqjwWSr/5jI9E79SpkzIzM5Wamqq2vw2b2717t04++WQ1b161Yp07d1ZMTEyVx+Li4tS1a1ePy7Us1fmTG+g4BzCFtgdTaHswhbYHU2h7MOHk5o1/y8/agPYHv/o9NzBtD/5F24O/uGpf/Ob7nWOrwpx55pnq2bOnXn/9deXm5mr//v2aMGGCbr311uO2HTRokNasWaN58+aptLRU8+bN05o1a3TjjTc6VT0AAAAAAAAAAGrl6NLq77//vkpLS3XVVVfpL3/5i/r3768RI0ZIkiIjIzV79mxJUocOHTR+/Hh99NFH6t27tyZMmKBx48bprLPOcrJ6AAAAAAAAAADUyLF0LpLUtm1bvf/++9U+Fx0dXeXv/v37q3///k5WBwAAAAAAAAAAjzg6Eh0AAAAAAAAAgGBGEB0AAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMCFcNMVsFtYmOkahK6K955zAH+j7cEU2h5Moe3BFNoeTKL9wRTaHkyh7cGUUGp77h5jmGVZlrNVAQAAAAAAAAAgOJHOBQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAAAAAuEAQHTVKT0/XgAEDFBUVVfnYsmXLNHjwYEVGRmrQoEFatGhR5XPl5eUaO3asLrvsMvXs2VN/+ctftGbNmsrnU1NT1aVLF0VGRlb+u/LKK/16TAgOnrY9y7L0ySef6Morr1SPHj00dOhQ7dy5s/L5srIyvfXWW7rkkksUGRmpBx98UIcOHfLrMSE42N326PdQm9jYWA0bNkx9+vTRpZdeqqeeekrp6emSpE2bNum2226rbDfTp0+v8tpZs2ZpwIAB6t69u26++WZFR0dXPke/h9o41fbo9+AOX9pfhcmTJ2vIkCFVHqPvQ22canv0faiNt23PsiyNHz++8npj4MCB+vHHHyufp99DbZxqeyHX71mAC+vWrbOuvvpqq3Pnztbq1asty7KsrVu3Wueff771v//9zyopKbHWrl1rRUZGVj4/bdo067rrrrOSk5OtsrIya/LkyVb37t2twsJCy7Isa8mSJdYVV1xh7JgQHLxpe59//rnVp08fa/369VZJSYk1ZcoUq2/fvlZaWpplWZY1btw4a+DAgVZSUpKVk5NjPfroo9a9995r7BgRmJxoe/R7qElBQYF16aWXWu+9955VVFRkpaenW/fee691//33W5mZmVafPn2sqVOnWiUlJdavv/5qRUZGWps2bbIsy7JWr15tRUZGWuvWrbOKi4utyZMnW3379rXy8/Mty6LfQ82cbHv0e6iNL+3PsiwrLy/PeuONN6zOnTtbd911V5V90/ehJk62Pfo+1MSXtjd58mTryiuvtOLi4qzy8nLrp59+si644ILK5+n3UBMn216o9XuMREe1Zs2apSeeeEKjR4+u8vj8+fPVo0cP3XbbbQoPD1evXr00cOBAffXVV5KkPXv2qLy8XOXl5bIsS2FhYWrcuHHl67ds2aKuXbv69VgQXLxte3PnztWQIUPUo0cPhYeHa8iQIWrVqlXlXdLp06fr3nvvVfv27dWsWTM9//zzWr58ufbv3+/3Y0Rgcqrt0e+hJklJSTrnnHM0cuRINWzYUK1atdLtt9+utWvXauHChWrZsqXuvPNOhYeH6+KLL9bAgQM1bdo0SUf6teuvv149e/ZUgwYNNHToULVq1Urz5s2rfJ5+D6442fbo91AbX9qfJN144406fPiw/vrXvx63b/o+1MTJtkffh5r40vays7M1cuRIdejQQWFhYbryyivVoUMHbdiwQRL9HmrmZNsLtX6PIDqq1a9fPy1atEjXXXddlcfLysrUpEmTKo/Vq1dPe/bskSTdcccdKiws1OWXX64LLrhA//nPf/T++++rUaNGko58wJKTk3XDDTfooosu0r333qu4uDj/HBSCgrdtr6bnc3JylJycrM6dO1c+17ZtW51wwgnasWOHQ0eCYONE25Po91Czs88+W59++qnq169f+diCBQt0/vnna9euXVX6LUnq2LGjYmNjJUlxcXEun6ffQ22cansS/R5q50v7k6QvvvhCY8aMUZs2bapsR9+H2jjV9iT6PtTMl7Y3atQo3XzzzZXP7d69W7t27dL5559Pv4daOdX2pNDr9wiio1onnniiwsPDj3t8wIABWrlypRYsWKDS0lKtX79e8+bNU1FRkSSppKREffr00fz587VhwwYNHz5co0aN0uHDhyVJLVq0UM+ePTVlyhQtXrxYZ555poYNG6acnBy/Hh8Cl7dt75prrtEXX3yh7du3q6SkRF999ZX27t2roqIi5eXlSdJxgc7GjRtXPgc40fYk+j24z7IsjR07VkuXLtXzzz+vvLw8RUREVNmmcePGys/Pl6Qan6ffgyfsbHsS/R4842n7k6STTz652n3R98ETdrY9ib4P7vOm7VXYu3ev7r33Xg0aNEi9e/em34NH7Gx7Uuj1ewTR4ZEePXro3//+tz744ANdeumlmjhxom6++Wa1aNFCkvTUU0/psssu09lnn63GjRtr5MiRat68eWVagzFjxujpp59W69at1axZMz377LPKy8vTunXrTB4WgkBtbe/vf/+7Bg8erJEjR+qKK67Qnj171K9fP7Vo0aLyS6GgoKDKPgsLC9W0aVO/HwuCiy9tT6Lfg3tyc3M1atQozZkzR1OnTlWXLl0UERGhwsLCKtsd3W/V9Dz9Htxld9uT6PfgPm/aX03o++Auu9ueRN8H9/jS9pYsWaLbb79df/rTn/Taa69Jot+D++xue1Lo9XsE0eGRzMxMderUSXPmzFFUVJQmTJiggwcPVuZASkpKUnFxcZXXhIeHq0GDBsrNzdVbb72lAwcOVD5XVlam0tLSKnnTgerU1vZSUlJ06623asmSJVq5cqWefvppxcbGqmvXrjrhhBPUrl27KtOKDh8+rMzMzOOmLgHH8qXt0e/BHQkJCbrllluUm5urGTNmqEuXLpKkzp07a9euXVW2jYuLU6dOnSRJnTp1cvk8/R7c4UTbo9+Du7xtfzWh74M7nGh79H1why9tb/z48Xr88cf1z3/+U88884zCwsIk0e/BPU60vVDs9wiiwyP79u3TX/7yF8XGxqq0tFTz5s3T0qVL9be//U2SdOWVV+rDDz/U/v37VVJSos8//1yHDx/WFVdcoWbNmunXX3/VW2+9pZycHOXl5enVV1/Vqaeeql69ehk+MgS62treDz/8oBEjRigjI0N5eXkaM2aMGjZsqCuvvFKSdPPNN1e2zdzcXL3++uvq06ePTj/9dJOHhSDgS9uj30NtsrKydM8996hHjx6aOHGiWrduXfncgAEDlJqaqs8++0wlJSVavXq15syZo1tuuUWSdOutt2rOnDlavXq1SkpK9NlnnyktLU0DBgyQRL+HmjnV9uj34A5f2l9t6PtQE6faHn0fauNL25s8ebImT56sadOmaeDAgcftm34PNXGq7YVivxdmWZZluhIIbF26dNGUKVPUt29fSdJXX32lTz75RBkZGTr77LP1xBNP6OKLL5Z0JA/h2LFjtXDhQhUUFKhLly566qmn1K1bN0nSgQMH9MYbb2jt2rUqKSlR37599cILL+gPf/iDseND4PKk7ZWUlOj111/Xjz/+qJKSEvXq1UsvvPCCTj311Mrn33vvPc2ePVt5eXnq27evXn311WoXBQLsbHv0e6jJ5MmT9eabbyoiIqJyVEeF6OhobdmyRa+99pp27typ1q1ba8SIEVUW9/n+++/14YcfKiUlRR07dtQLL7ygCy+8UBL9HmrmZNuj30NtfG1/FcaNG6c1a9boiy++qHyMvg81cbLt0fehJt62Pcuy1Lt3bxUUFKhhw4ZVXnf//ffrgQceoN9DjZxse6HW7xFEBwAAAAAAAADABdK5AAAAAAAAAADgAkF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAAAAAuEAQHQAAAAgh8fHxpqsAAAAABBWC6AAAAECQGzdunIYMGVLrdkuWLNE//vEPP9QIAAAAqDsIogMAAAAhIjMzU5Zlma4GAAAAEFQIogMAAABBZsOGDbrlllvUvXt33XHHHUpMTJQkWZaljz/+WAMHDlSvXr3Uu3dvPf744yosLFRUVJRefPFFJSUlKTIyUikpKSouLtZ7772nq666Sn369NG9996rffv2GT46AAAAILAQRAcAAACCSEZGhu6//35dc801Wrt2rZ588kktXrxYkjR//nxNmTJF48aN07p16/T1119r5cqVmjNnjvr27auXX35Zp5xyiqKjo9WuXTuNHTtWP//8sz777DOtWLFCF154of7+97+rqKjI8FECAAAAgYMgOgAAABBEfv75Z0VEROjee+9VgwYN1LNnT91yyy2SpMsuu0wzZszQmWeeqfT0dGVkZKhly5ZKSUk5bj+WZenrr7/WY489ptNOO02NGjXSyJEjVVJSop9//tnPRwUAAAAErnDTFQAAAADgvpSUFLVv315hYWGVj51++unavn27LMvS2LFjtXTpUrVu3VrnnnuuSkpKqs2Dnp6ervz8fD3yyCOqV+/3sTUlJSU6cOCAX44FAAAACAYE0QEAAIAgcvLJJ+vAgQMqLy+vDH4nJydLkt555x0lJSVpyZIlatasmSRp4MCB1e6nVatWatSokSZNmqTu3btXPr5nzx61a9fO2YMAAAAAggjpXAAAAIAgcuWVV8qyLI0bN07FxcXaunWrpk+fLknKzc1Vo0aNVL9+fRUVFWnSpEnauXOnSkpKJEmNGjVSQUGBSktLVa9ePd16660aM2aMkpOTVV5erlmzZumGG25gcVEAAADgKGFWdXM7AQAAAASs2NhYvfTSS4qNjdUZZ5yhCy+8UHv37tXrr7+uZ599VjExMWrSpIl69uypxo0bKzs7W//973916NAh/f3vf9eBAwf09ddf68wzz9S4ceM0b948ZWZm6rTTTtPDDz+sq6++2vQhAgAAAAGDIDoAAAAAAAAAAC6QzgUAAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAACwgWVZpqsAAAAAwAEE0QEAAGDEkCFD1KVLlyr/unbtqssvv1wvv/yysrKy/FKPZ555RldeeaVPr/npp5/09NNP2101r+rmjm+//VZdunRRYmJirdtu3rxZzz77rK666ip169ZNffr00d13363Zs2dXuXGQmJioLl266Ntvv7W9vr7o0qWLxo0bJ0mKiopSly5dFBUVZbhWAAAACCZhFkNmAAAAYMCQIUOUm5urF198sfKxkpISxcTE6N1339V5552nr776SmFhYY7WIyEhQbm5uTrvvPO8fs2QIUMkSV988YXxurkjPT1dCQkJOu+889SwYUOX23322Wf697//rV69eummm27SqaeeqqysLC1cuFCzZ8/WHXfcoZdeekmSVFxcrG3btun0009X69atba2vL7p06aKHHnpIDz/8sHJzcxUXF6eOHTuqWbNmpqsGAACAIBFuugIAAAAIXc2aNVP37t2rPNa7d2/l5eXp/fff16ZNm4573m6nn366X17jDafKad26da2B7qioKL355pv661//WuVGhyRdffXVOuecc/TWW29p0KBB6tGjhxo2bOj4ufJVde0NAAAAqA3pXAAAABBwunbtKklKSkqSdGSk9xNPPKFRo0apR48euu+++yRJRUVF+ve//60//vGP6tq1qwYOHKh58+ZV2ZdlWZo2bZquv/56devWTQMGDNAnn3xSmYrk2JQpV155pcaOHas33nhDffr0UZ8+ffTkk08qIyOjcpujXzNkyBCtWbNGa9asqZIqJDY2Vg899JAuuuginX/++erfv7/+7//+T4WFhZKkcePGHZfOpuLfM888U23dysrKNG3aNA0cOFDdunXT5ZdfrnfeeUdFRUVV6jZ06FDNnDlT11xzjbp27apBgwZp2bJlldu4k85l/PjxOvnkk12mqbn77rt11VVXVR5Pdelc4uPjNWrUKF166aXq3r27hgwZovXr11c+X/GayZMn69prr1WfPn307bffaty4cRowYIB+/vlnDRw4UF27dtU111yjWbNmValDbe/xsapL57Jz507df//96tGjh3r06KGRI0dq//79x73m66+/1hVXXKFLLrlEK1eulCStW7dOd911ly688EL16dNHTz/9tNLT012+pwAAAAhOjEQHAABAwNm7d68k6bTTTqt8bP78+frzn/+s8ePHq6ysTJZlaeTIkdqwYYNGjRqlDh06aNGiRRo9erSKi4s1ePBgSdK7776riRMnaujQobr00ksVExOjsWPHqri4WCNHjqy2/C+//FJnnHGGXn/9daWnp2vMmDHas2ePpk+frnr1qo5DefHFF/Xkk09W/r9jx446dOiQ7rzzTnXv3l1vvvmmGjZsqJ9//lmff/652rZtqwceeEC33Xab+vfvX2VfH3/8sZYtW6abbrqp2nr961//0nfffafhw4erT58+2rZtm8aPH6/t27fr008/rUx9s3XrVh06dEijRo1Ss2bN9N5772nUqFFavny5TjjhhFrf/+zsbK1du1Z33nmnGjduXO024eHhmjBhgst9xMXF6S9/+YvOOOMMvfDCC2rQoIGmTJmie+65R5MmTVKfPn0qtx07dqz+9a9/qUWLFuratatmzpypw4cP65VXXtGDDz6oP/zhD5o4caKeeeYZdevWTR06dHDrPa7N3r17dccdd+jss8/Wm2++qbKyMn344Yf661//qu+//15t2rSpUseXX35ZRUVF6t69u9auXathw4bpoosu0n/+8x9lZWXpvffe0913360ZM2a4fN8AAAAQfAiiAwAAwBjLslRaWlr5d1ZWltasWaMPP/xQ3bt3rxyRLkn16tXTq6++qiZNmkiSfvnlF61YsUJjx47VddddJ0nq37+/CgoK9M477+iGG25Qfn6+Jk+erCFDhuipp56SJF166aVKT0+vMiL6WGFhYZo8ebKaN28u6Uj6k5EjR2r58uW6/PLLq2x7dH7tilQhGzdu1Lnnnqv33nuv8rlLLrlEq1at0tq1a/XAAw/o5JNP1sknn1y5n3nz5umnn37Siy++qL59+x5Xp7i4OM2YMUOPPvqoHnzwwcpjOemkk/TUU09p+fLl+uMf/yhJysnJ0bfffluZDqZJkya66667tHr1al1zzTU1nRJJR0aIl5eX66yzzqryuGVZKisrO+69ql+//nH7+OCDDyoD5xXv4+WXX64bbrhBb7/9tqZPn1657Z/+9CfdeuutVV5fUFCg1157TRdffLEk6cwzz9QVV1yhZcuWqUOHDtq5c2et73FtPvjgAzVu3FifffZZ5T4uvvhiXX311fr000+rjMK/44479Oc//7ny7zFjxuiss87SRx99VHn8F154oa6//nrNnDlTd955Z63lAwAAIDgQRAcAAIAxa9eu1fnnn1/lsXr16uniiy/Wq6++WmVR0VNPPbUygC5Jq1atUlhYmP74xz9WCcRfeeWVmj17tnbt2qXDhw+rpKREAwYMqFJGRboUV6644orKwG/FPhs0aKB169YdF0SvTr9+/dSvXz+VlJRo7969io+P144dO5Senq6WLVset31MTIyeffZZ3X777frb3/5W7T7XrFkjSRo4cGCVx6+//no9++yzioqKqgyit27duko+9YpgfUFBQa11l6Ty8vJqH1+1apWGDRtW5bE+ffpUu6DqmjVrjnsfw8PDdf3112v8+PHKy8urfLxz587Vlnd0/vKKY8jPz5fk+XtcndWrV6tv375q3LhxZRv14kstAACQDUlEQVRq1qyZevXqpV9//bXKtl26dKn8f0FBgTZt2qR//OMfVW4EnXbaaerQoYN++eUXgugAAAB1CEF0AAAAGHP++efr5ZdflnRkRHOjRo3Uvn37ylHBR2vbtm2VvzMzM2VZlnr06FHtvg8dOqSsrCxJqnURzWOddNJJVf6uV6+eWrZsqezsbLdeX15ernfffVfTpk1Tfn6+2rdvr27duqlRo0bHbXv48GGNGDFCXbt21T//+U+X+6w4lhNPPLHK4+Hh4WrVqpVycnIqH4uIiKiyTcXNCFfB8WOdcsopknRczvRu3bppxowZlX8fu+DosfU99pxJR86jZVnKzc2t8lh1jj6OijQ6FbnsPXmPXcnMzNS8efOOy6MvHd9mjk7tkp2drfLycn3yySf65JNPjnutJ3UAAABA4COIDgAAAGOaNm2qCy64wKvXNm/eXE2aNNGUKVOqff6MM87Qhg0bJEnp6ek6++yzK587ePCg9u3bp549e1b72szMzCp/l5WVKSMjw+1g/Mcff6zPPvtML730kq655prK0djHpiwpLi7WQw89pHr16mncuHFq0KCBy31W5DI/fPiwTj311MrHS0pKlJGRoVatWrlVN3e0bt1aPXr00OLFi/XEE09Upitp1qxZlfPVtGnTGuubmpp63OOHDx+WJLVq1UqHDh3yuo7uvsc1ad68uS655JLjRtdLR25OuNK0aVOFhYVp6NChuv766497/tibGAAAAAhu9WrfBAAAAAg8ffr0UX5+vizL0gUXXFD5b9euXRo/frxKS0vVrVs3NWjQQD/99FOV137++ed65JFHqqSLOdqKFStUXFxc+fdPP/2k0tLSyvzcxzp2sdH169erY8eOuvXWWyuDuykpKdq5c2eV0eD//Oc/tWPHDk2YMKHWAH3FQpxz5syp8vgPP/ygsrIylzcEvDVq1CglJibqzTffrHYEe1ZWVo1B8N69e2vp0qVVRsiXlZXphx9+0AUXXKCGDRv6VD933+Oa9OnTR3FxcTr33HMr20/Xrl312WefadGiRS5f16xZM5133nnas2dPlbbXqVMnffDBB4qKivLp2AAAABBYGIkOAACAoPTHP/5RvXv31ogRIzRixAh16NBBmzdv1rhx49SvX7/KoPTdd9+tzz//XA0bNtRFF12kLVu2aOrUqXrsscdcjjZOTk7Wgw8+qLvvvlsHDx7Uu+++q379+lW74KcktWjRQtHR0Vq1apXOO+88devWTRMmTNDHH3+s7t27a9++ffroo49UXFxcmZd88uTJ+u677/TYY4+prKxMGzdurNxfw4YNdd5551Upo2PHjrrpppv0wQcfqLCwUH379tX27dv1wQcfqG/fvurfv78N7+rvLr74Yv3zn//U66+/ro0bN+qWW27RWWedpYKCAkVFRWnmzJkqKirS3XffXe3rH3roIS1fvlx333237rvvPjVs2FBTp07V/v379emnn/pcP3fe49qMGDFCd9xxh+6//3799a9/VaNGjfTNN99o8eLFev/992t87WOPPab77rtPjz/+uAYNGqSysjJNmjRJmzZtqlz4FQAAAHUDQXQAAAAEpXr16unjjz/We++9p48++khpaWlq166dhg4dqpEjR1Zu9+STT6pt27b66quvNGnSJJ166ql67rnnXC7gKR1ZrLNFixZ69NFH1aRJE910000aPXq0y+3vvPNObd26Vffee6/eeOMN3X///crIyNCUKVM0fvx4tW/fXjfeeKPCwsL00UcfKSsrS0uWLJEkvfvuu3r33Xer7O8Pf/hD5fNHe+2113TGGWdo5syZmjhxok466SQNGTJEI0eOPG40vB3+9re/qXfv3vrqq680efJkJScnq379+jrrrLN011136fbbb1e7du2qfW2nTp305Zdf6t1339Vzzz2nsLAwdevWTVOmTFGvXr18rps773FFChxXzjnnHE2bNk1jx47VU089Jcuy1LlzZ40fP15XXXVVja/t16+fJk6cqA8++ECjRo1SgwYNdP7552vy5MlVFkQFAABA8AuzKlbmAQAAAKArr7xSffr00Ztvvmm6KgAAAAACADnRAQAAAAAAAABwgSA6AAAAAAAAAAAukM4FAAAAAAAAAAAXGIkOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAAAAAuBBuugJ2S0vLkWWZrkVoCguT2rRpzjmA39H2YAptD6bQ9mAKbQ8m0f5gCm0PptD2YEootb2KY61NnQuiW5bq/MkNdJwDmELbgym0PZhC24MptD2YRPuDKbQ9mELbgym0vd+RzgUAAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAu2BpEj42N1bBhw9SnTx9deumleuqpp5Seni5J2rRpk2677TZFRkbqyiuv1PTp06u8dtasWRowYIC6d++um2++WdHR0XZWDQAAAAAAAAAAj9kWRC8sLNTw4cMVGRmplStXau7cucrMzNRzzz2nrKws3XfffRo8eLDWrl2r1157TW+88YY2b94sSYqKitKrr76qN998U2vXrtWgQYP04IMPqqCgwK7qAQAAAAAAAADgMduC6ElJSTrnnHM0cuRINWzYUK1atdLtt9+utWvXauHChWrZsqXuvPNOhYeH6+KLL9bAgQM1bdo0SdL06dN1/fXXq2fPnmrQoIGGDh2qVq1aad68eXZVDwAAAAAAAAAAj9kWRD/77LP16aefqn79+pWPLViwQOeff7527dqlzp07V9m+Y8eOio2NlSTFxcXV+DwAAAAAAAAAACaEO7FTy7L0n//8R0uXLtXUqVM1ZcoURUREVNmmcePGys/PlyTl5eXV+LwnwsK8rzd8U/Hecw7gb7Q9mELbgym0PZhC24NJtD+YQtuDKbQ9mBJKbc/dY7Q9iJ6bm6tnn31WMTExmjp1qrp06aKIiAjl5ORU2a6wsFBNmzaVJEVERKiwsPC451u1auVx+W3aNPe+8rAF5wCm0PbgL2Xllu74eJVOaRmh9+6IpO3BGNoeTKHtwSTaH0yh7cEU2h5Moe39ztYgekJCgu69916dcsopmjFjhlq3bi1J6ty5s3755Zcq28bFxalTp06SpE6dOmnXrl3HPX/ZZZd5XIe0tBxZlpcHAJ+EhR35cHEO4G+0PfhbzMEcrY3PkJSh9+6IpO3B7+j3YAptDybR/mAKbQ+m0PZgSii1vYpjrY1tQfSsrCzdc889uuiii/Taa6+pXr3f060PGDBAb7/9tj777DPdeeedWr9+vebMmaMJEyZIkm699VaNHDlS1157rXr27Klp06YpLS1NAwYM8LgelqU6f3IDHecAptD24C/WMQ2NtgdTaHswhbYHk2h/MIW2B1NoezCFtvc724Lo3377rZKSkjR//nz9+OOPVZ6Ljo7WpEmT9Nprr+n9999X69at9cILL+iiiy6SJF188cV68cUX9dJLLyklJUUdO3bUJ598opYtW9pVPQAAAAAAAAAAPGZbEH3YsGEaNmyYy+cvuOACff311y6fv/HGG3XjjTfaVR0AAAAAAAAAAHxWr/ZNAAAAAAAAAAAITQTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AACeCgszXQMAAAAAAOAnBNEBAAAAAAAAAHCBIDoAAAAAAAAAAC4QREdAScgoUHJ2YeXf+4/5GwAAAAAAAAD8Kdx0BYAK2YUlumXSWknS2scvU25RqW4+6m8AAAAAAAAA8DdGoiNgHMwuqvJ3ck6Riy0BAAAAAAAAwD8IogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AlJqXrFSsllYFAAAAAAAAIBZ4aYrAFTn2v+uNl0FAAAAAAAAAGAkOgAAAAAAAAAArhBEBwDAQ2GmKwAAAAAAAPyGIDoAAAAAAAAAAC4QRAcAAAAAAAAAwAWC6AAAAAAAAAAAuBDuxE7T09N1++236//+7//Ut29f/etf/9KcOXOqbFNYWKhLLrlEEydOlCRde+21SkpKUr16v8f1Z8yYoQ4dOjhRRQQZy7IUFkYWYgAAAAAAAAD+ZXsQff369XrmmWeUkJBQ+dgrr7yiV155pfLvlStX6vHHH9czzzwjScrNzdXevXv1008/6Q9/+IPdVUKQIEQOAAAAAAAAINDYms5l1qxZeuKJJzR69GiX26Snp+uJJ57Q888/r06dOkmStm7dqpYtWxJADyG/7k3Xh7/Eq9yyTFcFAAAAAAAAAFyyNYjer18/LVq0SNddd53Lbd555x117dpVgwYNqnxsy5YtioiI0F133aW+ffvq5ptv1tKlS+2sGgLMI99u1aTVCVoUe9h0VQAAAAAAAADAJVvTuZx44ok1Pr9//37Nnj1b06dPr/J4WFiYLrjgAj322GM65ZRT9OOPP+rhhx/W1KlT1b17d4/qQNpscyree0/OQXJOkVuvCwvj3MI1b9oe4Itj2xptD/5GvwdTaHswifYHU2h7MIW2B1NCqe25e4yOLCzqysyZMxUZGalzzz23yuPDhw+v8vegQYM0d+5cLViwwOMgeps2zX2tJnzkyTlo2rSR2rY9sv2hYtepXdq2bc7CoqgVn3/4S8vCsip/0/ZgCm0PptD2YBLtD6bQ9mAKbQ+m0PZ+59cg+sKFC/X3v//9uMcnTpyo8847TxdffHHlY8XFxWrUqJHHZaSl5Yg022aEhR35cHlyDvLyipSamiNJyszMc7ldamoOQXS45E3bA3yRmZlf5W/aHvyNfg+m0PZgEu0PptD2YAptD6aEUturONba+C2InpGRod27d6t3797HPXfw4EFNnz5dn3zyidq3b6/vvvtO0dHRevnllz0ux7JU509uoPP0HFRsW9NrOKdwB59/+Mux7Yy2B1NoezCFtgeTaH8whbYHU2h7MIW29zu/BdETExMlSe3atTvuuaeeekr16tXT3/72N+Xk5Khjx476+OOPdcYZZ/iregAAAAAAAAAAHMexIPqOHTuq/H3BBRcc91iFhg0b6rnnntNzzz3nVHUAAAAAAAAAAPBYPdMVAAAg2LBEAwAAAAAAoYMgOgAAAAAAAAAALhBER1BgDQMAAAAAAAAAJhBER8AgPQIAAAAAAACAQEMQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0GEUGFwAAAAAAAACBjCA6AAAAAAAAAAAuEEQHAAAAAAAAAMAFgugAAAAAAAAAALhAEB0AAAAAAAAAABcIogMAAAAAAAAA4AJBdAAAAAAAAAAAXCCIDgCAh8JMVwAAAAAAAPgNQXQEBcsyXQMAAAAAAAAAoYggOgAAAAAAAAAALhBER8AII0ECAAAAAAAAgABDEB1GhRE3BwAAAAAAABDACKIDAAAAAAAAAOACQXQAAAAAAAAAAFwgiA4AAAAAAAAAgAsE0QEAAAAAAAAAcIEgOgAAAAAAAAAALhBEBwAAAAAAAADABYLoAAAAAAAAAAC4QBAdAAAAAAAAAAAXCKIDAOChMIWZrgIAAAAAAPATR4Lo6enpGjBggKKioiofe/HFF9W1a1dFRkZW/vvmm28qn581a5YGDBig7t276+abb1Z0dLQTVUOQskxXAAAAAAAAAEBICrd7h+vXr9czzzyjhISEKo9v2bJFr776qm666abjXhMVFaVXX31Vn3zyibp166Zp06bpwQcf1NKlSxUREWF3FRGoGNgJAAAAAAAAIMDYOhJ91qxZeuKJJzR69OgqjxcXF2vnzp3q2rVrta+bPn26rr/+evXs2VMNGjTQ0KFD1apVK82bN8/O6gEAAAAAAAAA4BFbg+j9+vXTokWLdN1111V5PDY2VqWlpXr//fd1ySWX6JprrtHHH3+s8vJySVJcXJw6d+5c5TUdO3ZUbGysndUDAAAAAAAAAMAjtqZzOfHEE6t9PCcnR3369NGQIUP07rvvavv27Ro5cqTq1aun4cOHKy8v77i0LY0bN1Z+fr7HdQgjJYgxFe+9J+cgLOyo17m5HXAsb9oe4JNj2hptD/5GvwdTaHswifYHU2h7MIW2B1NCqe25e4y250SvzqWXXqpLL7208u9u3brpnnvu0bx58zR8+HBFRESosLCwymsKCwvVqlUrj8tq06a5z/WFbzw5B02bNlLbtke2Tyt1vV3bNs0UXt+RdXBRh/D5h7+0LCqv8jdtD6bQ9mAKbQ8m0f5gCm0PptD2YApt73d+CaIvXrxYqampuuOOOyofKy4uVuPGjSVJnTp10q5du6q8Ji4uTpdddpnHZaWl5ciyfKsvvBMWduTD5ck5yMsrUmpqjiQpIyPP5XapabkKrxcCt7/gFW/aHuCLzMyqM6Voe/A3+j2YQtuDSbQ/mELbgym0PZgSSm2v4lhr45cgumVZeuONN3TGGWfooosu0saNGzVlyhQ9++yzkqRbb71VI0eO1LXXXquePXtq2rRpSktL04ABA7woS3X+5AY6T87B0dvW9BLOK9xBO4HfHNPOaHswhbYHU2h7MIn2B1NoezCFtgdTaHu/80sQfcCAAXr22Wf10ksvKSUlRW3bttXDDz+sG2+8UZJ08cUX68UXX6x8vmPHjvrkk0/UsmVLf1QPAAAAAAAAAIBqORZE37FjR5W/77jjjirpXI514403VgbVAQAAAAAAAAAIBKzUCAAAAAAAAACACwTRAQAAAAAAAABwgSA6ggOrGAAIJGGmKwAAAAAAAPyFIDoAAAAAAAAAAC4QRIdRYWG/D+dkYCcAAAAAAACAQEMQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0AAAAAAAAAABcIIgOAAAAAAAAAIALBNEBAAAAAAAAAHCBIDoqlVuW3lq8S99vOWi6KgAAAAAAAAAQEMJNVwCBY1V8hmZsOhJAv/GC9oZrAwDBwbIs01UAAAAAAAAOYiQ6KuUUlpquAgAAAAAAAAAEFILoAAAAAAAAAAC4QBAdAAAAAAAAAAAXCKIjKJBxGAAAAAAAAIAJBNFhVNjR/w9zuRkABBS6KwAAAAAAQgdBdAAAAAAAAAAAXCCIDgAAAAAAAACACwTRAQAAAAAAAABwgSA6AAAAAAAAAAAuEERHJRbKAwAAAAAAAICqCKIDAAAAAAAAAOACQXQAAHxgWaZrAAAAAAAAnEQQHQAAAAAAAAAAFwiiAwAAAAAAAADgAkF0AAAAAAAAAABccCSInp6ergEDBigqKqrysQULFujGG29Ujx49dOWVV+qDDz5QeXl55fPXXnutLrzwQkVGRlb+2717txPVQwAJC3NvO3IOA//f3p3HSVGd+x//ds/OjuDNvvwSl9ysohFjNN5owvXeJGjczWKiuRoTiSZxNzHRxGtMbqIo7iKCuCu4oQiIgOzDAAMMy7APywzMvs/09Fa/P3q6p7unq7t675n5vF8vk6G7uvp01alTp5469RwAAAAAAABkQ36qV7hhwwbdfvvtOnjwYOC1rVu36tZbb9WDDz6o//iP/9D+/ft1zTXXaNiwYfrFL36hjo4O7d+/Xx988IE+8YlPpLpIAAAAAAAAAAAkJKUj0d944w3dfPPN+v3vfx/yenV1tS6//HKdffbZstvt+vznP69JkyaprKxMki/IPmbMGALoQ5xNFoelA0CWWX2KBgAAAAAADHwpHYl+5plnavLkycrPzw8JpJ977rk699xzA/92OBxatmyZJk+eLEmqqKhQSUmJfvrTn2r37t36xCc+oeuvv15nn3123GUgsJE4W9AtlUS2o/8z8X7WyudsNvYtzCVa94BEhdc16h4yjXYP2ULdQzZR/5At1D1kC3UP2TKU6p7V35jSIPqxxx4bc5mOjg799re/VXFxsa688kpJks1m01e+8hXdeOON+vjHP64FCxbo+uuv1/PPP6+TTjoprjKMGzcygZJDkkaObA/8PX584tsxnn0wfHhR4LtavObLjRs/QkX5eQmXCUMDxz8ypd4VOlEDdQ/ZQt1DtlD3kE3UP2QLdQ/ZQt1DtlD3+qQ8J3o0+/bt0w033KBx48Zp9uzZGjFihCTp6quvDlnuvPPO0zvvvKOFCxfGHURvbGxnEsoEtbd3B/5uaGiPsmRkNpvv4IpnH3R29gS+q7m5y3S5xoYOFeanZR5cDAKJ1D0gGS0tnSH/pu4h02j3kC3UPWQT9Q/ZQt1DtlD3kC1Dqe75f2ssGQuif/jhh7rxxht16aWX6qabblJ+ft9Xz5gxQ1/84hd1+umnB15zOp0qKiqK+3sMQ4N+56ZN0HZLZhvGuw/8y0b7DPsVVlBPkCnh9Yy6h2yh7iFbqHvIJuofsoW6h2yh7iFbqHt9MjK0d9OmTZoyZYruuOMO3XbbbSEBdEk6cuSI/vKXv+jQoUNyu92aM2eOysvLdcEFF2SieAAAAAAAAAAARJSRkehPPPGE3G637r33Xt17772B10855RQ9/fTTuvXWW2W32/XjH/9Y7e3tOu644/TUU0/pM5/5TCaKBwAAAAAAAABARGkLou/cuTPw9xNPPBF12cLCQv3hD3/QH/7wh3QVBwCAtODJNgAAAAAABjdmagQAAAAAAAAAwARBdAAAAAAAAAAATBBEBwAAAAAAAADABEF0DAjkHAYAAAAAAACQDQTRkTNs2S4AAAAAAAAAAIQhiA4AQJxs3PYDAAAAAGDIIIgOAAAAAAAAAIAJgugAAAAAAAAAAJggiA4AAAAAAAAAgAmC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoAAAAAAAAAACYIIiOAJvNlu0iAMCAYxhGtosAAAAAAADSiCA6AAAAAAAAAAAmCKIjqxj9DgAAAAAAACCXEUTHgEC6BAAAAAAAAADZQBAduYNB6QAAAAAAAAByDEF0AAAAAAAAAABMEEQHAAAAAAAAAMAEQXQAAOJF+ikAAAAAAIYMgugAAAAAAAAAAJggiI4ABlYCAAAAAAAAQCiC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoAAAAAAAAAACYIIgOAEASjGwXAAAAAAAApBVBdGQVk5kCAAAAAAAAyGVpCaI3NTVp0qRJKi0tDby2efNmXXLJJZowYYLOOeccvfbaayGfeeONNzRp0iSddNJJuvDCC1VeXp6OogEAAAAAAAAAYFnKg+gbNmzQZZddpoMHDwZea21t1S9/+Uv98Ic/VFlZme69917dd9992rJliySptLRU99xzj/7+97+rrKxM5513nn7961+ru7s71cUDAAAAAAwRrd0uGQbJ1wAAQHJSGkR/4403dPPNN+v3v/99yOuLFi3SmDFj9JOf/ET5+fk6/fTTNXnyZL3wwguSpNdee03f//73dcopp6igoEBXXnmlxo4dq/nz56eyeMhxpHYBAAAAkCor9zXqu4+t0T8+2JPtogAAgAEuP5UrO/PMMzV58mTl5+eHBNJ3796tE044IWTZ4447TnPmzJEk7dmzRxdddFG/9ysrK+Mug41IbMKCt10i29H/mXg+a7NZ+1zwckC4ROoekIzwqkbdQ6bR7iFbqHvIpnjr3+MrqyRJczcf0R2Tjk9PoTAk0PYhW6h7yJahVPes/saUBtGPPfbYiK93dnaqpKQk5LXi4mJ1dXVZej8e48aNjPsz8Bl1pCPw9/jxiW/HePbB8OFFge9qM8xr7bhxI1VSmJdwmTA0cPwjUxrdof+m7iFbqHvIFuoesslq/cvL77t+SOb6BvCj7UO2UPeQLdS9PikNopspKSlRe3t7yGsOh0PDhw8PvO9wOPq9P3bs2Li/q7GxXaS8S0xbW18O+oaG9ihLRmaz+Q6uePZBZ2dP4Luam81vmjQ2tqu4gCA6Ikuk7gHJaGnpDPk3dQ+ZRruHbKHuIZvirX8etyfwdyLXN4AfbR+yhbqHbBlKdc//W2PJSBD9hBNO0KpVq0Je27Nnj44/3vdI3fHHH6/du3f3e/+ss86K+7sMQ4N+52ZCMtswnn0QvGy0z7BfYQX1BJkSXs+oe8gW6h6yhbqHbLJa/4IXob4iFWj7kC3UPWQLda9PSicWNTNp0iQ1NDRo1qxZcrlcWrt2rebNmxfIg37xxRdr3rx5Wrt2rVwul2bNmqXGxkZNmjQpE8UDAAAAAAAAACCijIxEHzt2rJ555hnde++9mjZtmo455hjdeeed+sY3viFJOv3003XXXXfp7rvvVm1trY477jhNnz5dY8aMyUTxAAAAAAAAAACIKG1B9J07d4b8+ytf+Ypefvll0+XPP/98nX/++ekqDgAAAAAAAAAAcctIOhfAjC3bBQCAJJEfDgCA3MS1BgAASBWC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoCMjlxx3JlgAAAAAAAAAgGwiiI2fYbLkcxgcAAAAAAAAwFBFEBwAAAAAAAADABEF0AAAAAAAAAABMEEQHAAAAAAw6pIsEAACpQhAdAIA4cU0OAAAAAMDQQRAdAAAAAAAAAAATBNEBAAAAAAAAADBBEB0AAAAAAAAAABME0dEnC0l+ySsMAAAAAAAAIJcRRAcAIAmGjGwXAQAAAAAApBFBdAAAAADAoMNDrwAAIFUIomNAMBjoCQAAAAAAACALCKIDAAAAAAAAAGCCIDpyBo9bAgAAAAAAAMg1BNEBAAAAAAAAADBBEB0AAAAAAAAAABME0QEAAAAAg46NfJEAACBFCKIjgD4mAAAAAAAAAIQiiA4AQJxs3HYEAAAAAGDIIIgOAAAAAAAAAIAJgujIMkZzAgAAAAAAAMhdBNEBAAAAAAAAADCRn6kvevvtt3XXXXeFvOZyuSRJW7du1V133aW5c+eqoKAg8P7tt9+uyy67LFNFBAAgboaR7RIAAAAAAIB0ylgQ/bzzztN5550X+Hdtba0uuugi3XLLLZKkiooK3XPPPbrgggsyVSQAAAAAAAAAAKLKSjoXwzB0yy236Nvf/rbOP/98OZ1O7dq1S1/+8pezURwMAIYY6gkAAAAAAAAg87ISRH/rrbe0Z88e3X777ZKkyspKud1uTZs2Td/85jd17rnn6qmnnpLX681G8ZAlNuYYBQAAAAAAAJBjMpbOxc/r9erxxx/Xr371K40YMUKS1N7erokTJ+qKK67QAw88oB07dmjKlCmy2+26+uqr41o/gdjE2YO2XSLb0f+ZeD5rs1n7XPByQLhE6h6QjPC6Rt1DptHuIVuoe8imeOtf8GLUWSSDtg/ZQt1Dtgylumf1N2Y8iF5aWqq6ujpdfPHFgdfOOOMMnXHGGYF/f/WrX9XPf/5zzZ8/P+4g+rhxI1NW1qFmZG1n4O/x4xPfjvHsgxEjigLf1WkzfzBi3LiRGlGU8eqKAYbjH5nSEvagFHUP2ULdQ7ZQ95BNVutffkFe4O9krm8AP9o+ZAt1D9lC3euT8ajkwoULNWnSJA0bNizw2uLFi9XQ0KDLL7888JrT6VRxcXHc629sbJdB+uyEtLd1B/5uaGiP+/M2m+/gimcfdHT0BL6ruaXbdLnGxnY5CgmiI7JE6h6QjObmrpB/U/eQabR7yBbqHrIp3vrndnkCfydyfQP40fYhW6h7yJahVPf8vzWWjEclN2zYoJ/97GchrxmGofvuu0+f+cxn9I1vfEObNm3S7Nmzdccdd8S9fsPQoN+56RK83ZLZhvHsg+Blo32G/QorqCfIlPB6Rt1DtlD3kC3UPWST1foXvAj1FalA24dsoe4hW6h7fTIeRD98+LD+7d/+LeS1SZMm6Y477tDdd9+t2tpajR8/Xtdff73OP//8TBcPAAAAADAI2IZCIlcAAJARGQ+il5eXR3z98ssvD0nnAgBAruKSHAAAAACAocN8JkcgAxgcAgAAAAAAACCXEUQHAAAAAAAAAMAEQXQAAAAAAAAAAExkPCc6EM4wDLV2uzV/e222iwIAAAAAAAAAIQiiIyBb+cmvfWWzyqvboi5jGBkqDAAAAAAAAAAEIZ0Lsi5WAB0AAAAA4pWlMUIAAGAQIogOAAAAAAAAAIAJgugAAAAAAAAAAJggiA4AAAAAAAAAgAmC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoMGUYhl4tr9H2o+3ZLgoAAAAAxMVmy3YJAADAYJGf7QIgd72/s17/XLJHklR201lp+Q76tQAGJBovAAAAAACGDEaiI0hoVGhvY1eWygEAAAAAAAAAuYEgOgAAAAAAAAAAJgiiAwCQBMPIdgkAAAAAAEA6EUSHOSJDAAAAAAAAAIY4gugAAAAAAAAAAJggiA4AAAAAGHRs2S4Ass4wDLV0ubJdDADAIEAQHQAAAAAADDoPfrhPkx5fo0WVddkuCgBggCOIDlPhGdHvWbhTV75QLrfHm5XyAAAAAABg1YsbqiVJD324L8slAQAMdATRYdnbW2u17Wi71h9qyXZRAAAAAAAAACAjCKIjwGYxaaA3fIg6AAAAAAAAAAxSBNGRVVYD9wBC7W/sUlVTV7aLAQAAhoC1VU0qrWrOdjEAAACyhiA64sZAdCC7HC6PLp21XpfMXC/XEJ6joKGjR5urW7NdDAAABrVOp1vXz92q38ytkMPlyXZxgITYGL0FAEgSQXSYMoiWAzmpzeEO/N3jHrpB9P9+slRXv7xZmw4TSAcAIF26nX2Bc+eAu3lP4BQAAKQGQXQAwIC2MQtBdC7JAQAAAAAYOjIaRJ8/f76++MUvasKECYH/brnlFknS5s2bdckll2jChAk655xz9Nprr2WyaAAAAAAAAAAA9JOfyS+rqKjQ+eefr/vuuy/k9dbWVv3yl7/UDTfcoMsuu0xlZWWaMmWKTjzxRH31q1/NZBFhBWlegKziEMwtRgJ75LmyQ5qz+Yieuuxr+sjIojSUCgCA1KDfgcGApwgBAMnK6Ej0iooKffnLX+73+qJFizRmzBj95Cc/UX5+vk4//XRNnjxZL7zwQiaLhzC51GEmPzuAwWTa8v2qaXXo8VVV2S4KAACW2QhFAgCAISpjQXSv16tt27Zp2bJlOvvss3XWWWfpT3/6k1pbW7V7926dcMIJIcsfd9xxqqyszFTxkEG76jqyXQQAg4htAF/Pe7zcIQQAAAAAINdlLJ1LU1OTvvjFL+rcc8/VtGnT1NzcrNtuu0233HKLjj32WJWUlIQsX1xcrK6urri/ZyAHU7LNHrTtbLbQR95Ctqst8nb2vxZrH9z69va4y2Yz+U5Asl73Bo++wCvHhk+mt0H49yX6/bYkPouhbei1e8gV1L2hLdv9jnjrn80W+W8MPcnWXdo+ZAt1D9kylOqe1d+YsSD6+PHjQ9KzlJSU6JZbbtGll16qCy+8UA6HI2R5h8Oh4cOHx/0948aNTLqsQ9Wo+r6bFuPHj1TJsMKQfweWG1Uc8u9wsfZBl8sT+HvEiGJLZTtm3AiNLimwtCyGrqFy/Dvz+5ru8eNHakRRRqe3yDnDhxdFbZPSoc0IPcsmWvcKi/IzXnYMLkOl3UPuoe4NHe6Cvj74uPEjNKo4dp98b32Hfv38Bk05+zidf9InUl4mq/WvoCAv8Dfn26HNbrenpA7Q9iFbqHvIFupen4xFXiorK/XOO+/opptukq03xO90OmW32/XVr35Vzz77bMjye/bs0fHHHx/39zQ2tpM/O0Ftbd2Bvxsa2tXV5Qz5d2C51u6Qf/vZbL6DK9Y+8Aa92dHhMF8wSFNjh1zFQztQKElHWh2au/mILp3wcf0bkxEGWK17g0VTW99x09jYLkfh0D42urp6IrZJ6dTcHPqkVKJ1r6fHlfGyY3AYau0ecgd1b+hpau/p+7uxQ04LN+9//9Im7art0G9f3qQzPjkqZWWJt/65ggbvcL4d2rxeb1J1gLYP2ULdQ7YMpbrn/62xZCzyMmbMGL3wwgsaPXq0rrrqKtXV1emf//ynLrjgAp177rm6//77NWvWLP3kJz/Rhg0bNG/ePD322GNxf49hMAllooK3W/h2DPlb0bdxzH2QwP5hv/r8+rUtOtzi0NqqZj13xcnZLk7OGSr1JNqxOhRlYxuEf1+iZWD/IVnUIWQLdW/oSKTf0R0UvE5HPUmk/lFfkYo6QNuHbKHuIVuoe30yNrHoRz/6UT355JP64IMPNHHiRF100UX6yle+oj//+c8aO3asnnnmGS1YsECnnXaa7rzzTt155536xje+kaniIQ7JHjy2oGRDQyC1UkodbvGNQK5kclYAAABkANfNGAy47gQAn5Yul5bsqpfb4812UQacjOYAmDhxol5++eWI733lK18xfQ8AEJmNSwIAAJBjGLEGAEBu+sVL5TrU4tAvT/+MrvnmZ7JdnAElYyPRMRDR+wWQ+7iNAAAAgFRp7HTqaJu1ubsAYKA51JvhYPGu+iyXZOAZ2rPRISsIeAGADyP1AABIH647kIj/emKtJGnpb76pERYm0gUADA2MREfciPkA2cUxKNW0Znd0UPDcDgAADGZGAnd8DXoryDUJ9N2OtvekoSAAkBs4U8ePIDoADGDpjuVW1LTpf17apG1H2tL7RXG6YW5FtosAAMCQwz1kAAAwVBFER0B4pzhdaQYS6XwzmgXIjl+8tElbatp09cubs12UEAeauwN/Z3tUOClZAAAABiH6eACAIATRETcCRkB2ZeMYdHs58NOBrQoAGIy4XgAAIMdxro4bQXQAGMB4qhoAAGSKjZ4HBihqLgAgWQTRAQADGhdFAAAASDVSigIAghFEB5BVXsPQzW9u0wNL92a7KEDG8bg7AADpM9AmQnV7DV31YrnufHdHtosCABjkuFEYP4LoMGV+OHGgIXW2H23Xh3sb9dLG6mwXZcDgZAcAADIlkV4HPZXEbDvSpq1H2rWwsj7bRRl0BtoNFQBA7iGIjuyiNzPkuT1cZgEAAAwEdN3Ti3nccwtPDAIAghFER8bZ6H1nnWEY+u3rFfrT/Mq0rN/tNfT0mgPaXN2alvUDwQZ2k8LVGQAA8OFpQwAAchdBdGAIOtjcrdX7m7VgR528aRhi8XbFET25+oCufnlzzGUHdgAUAAAA/RALBgAgp/G0TfwIoiPAptBoptkBxYE28KV7Hx5o7k7vFwxxHIPWGIYhl8eb7WIAADCg0e/AYJDIuB2qPgAgGEF0ZBwDj3MLF0YDG+mRzF03p0JnP7JaHT3ubBcFAICseHHDYf3ylc3qdnlSsj56HelFvxwAgNxFEB0YirgCwhCw/mCLetxerdrXlPJ1p+oQ4loZAJBOU5ftU/nhVs3ZVJPR782V3N50eQEA8frnB3t0x7ztMgb5nc3B/evSgyA64saBNriwPwEAkeyq69BzZYdIiwQMAg5X4sdxrgTEgYyj6gND0qubarR4V4P2NXZluyjIMQTRYSpdHeZEsk8M8huAAAYwmidk27aj7frh0+u0dHdDStf7k+c2atry/Xp5Y3VK1wsAQKaRAhFAvDxervQQiiA6MASluwsZPklt1GWjdGgH++NTSI1YF0W5fM1EFUcq3PTmNlW3OnTr29vTsv6ddR1pWS+ADMrhcyEAYGBxe7yaumyvVu1PfdpMIJcRRAeGuhyN4j2xqkqTp69TY6cz20UBgJxgdmPRkaIJA82/N62rBzAI0W4khu2WW0hlBET2ZsVRvbihWr97fWu2i5JWuTwYC9lBEB1xS7YrQTuUfbn0OKNZSWasPaja9h7NLjuU0fIMBFxgAUPP3xfv1gUzytTpdGe7KAAGoGR6fvQ7AKTDxsMt+sFTpVq+tzHbRUGcjrb3ZLsIQFYQRAeGuHRcF6UyRk8aMgxmVG9YNXfzEVW3OvTe9rpsFwVZUNPq0LPrDqmjh5soGFzq2nt03WtbtCzFczoE5NDAkaHkubJDunfRrqRSM2463Kq7F+xUcxdPpQ5W171Wodr2Ht305rZsFwVxGio3V+NJUzsQkT43fvnZLgBySBbah8HdJCEVaNgRC+0IhpJILWK6m0la4ez72fMb1epwa09Dp+753heyXRwgJqvtxj+X7FHZwRbffzedldYyDQSDJX3ItOX7JUk/+NJH9LVPjE5oHde8slmS5HR79bcf/HvKyhaPwbE3cheTNiIXEX9ANIxEB4ag9E8sGseyRECRZrmUvghIFv36oanV4RuBvv5gS8xlm7ucWrijTk63N82lwkCSq6fC1m5XtouANHK4km+HDrd0p6AkAFIr9R3Sxk6nfvnyJs3fXpvydQOpQhAd8eMKflBhdw487DIAwdI9cjEXzhN3vrtD//PSpiE/as3Kr7/65c26c36lnlhVle7iAMCAkaP3kQD0emTFfpVXt+mu93Zmuyh9BnnDMbR71YkhiA5TuXDRjPTI1dFIQCJi1edcru48Loj4Dc06s7CyXltq2rSjtj3uz/YMsRHZB5t9ozaXWMgxPZDaoIFU1lwUb17Xlm6XLn6mTE+vOZCmEvWiUxpi0FXzFOzebD5ROOj2B5Ai6Tg2cmXeFw57REMQHRjisj2xaKxF6bwCQLblTkMc7zlh/cEWnfnQSj21uiot5cm0VAaSV+1r0qTH1mjF3saUrTNdHlmxX5Onr2OCwQx6ruywDjR368nVaQ6iA3Hq6HFr+poDqmrsynZRAKRQLl73c5sX4TIaRK+srNRVV12liRMn6owzztCtt96qpqYmSdJdd92lL3/5y5owYULgv1deeSWTxYNFybZt5CcGksNoPGDoinT4D6UmId6f+n9L9kiSpq85mPrCpIlhGJpZelDLLIwkjyZWd+t3b2xVq8OtG9/cltT3ZMKz6w6ptr1HL26oznZRhozg1EnpbGO4KgiVK815t8uTkv5mKvZv+Doe+nCfnlp9QJfMWp+CtQNAqCHVrx5CvzVVMhZEdzgcuvrqqzVhwgStXLlS77zzjlpaWvSHP/xBklRRUaF77rlH5eXlgf8uu+yyTBUPQErFMxQ9+rK060gW9+2A5ERqh9cdaNYDS/dmfPLKuIM6A/Aksqm6TY+trNItb2/PdlEyLtb+HYC7M2fEey5M9tyZKzf8M9EFcHsNXfViuf48vzJt35HJ7VnT6tBZ01bpt69vzdh3xmPrkfjTekmJ1encqMVA7knHsZGLxxvXkQiXsSB6TU2NvvCFL2jKlCkqLCzU2LFjddlll6msrExOp1O7du3Sl7/85UwVBwNMLjaog0WuXOQAA0lwh4pjCJkUqbZlowZOmVOhlzZW66WNjAxOtYbO1KQsGWjXfX9fvFsXzChTl9NjusxA+02IbTAEKDZXt2rrkXa9t6MuLetfd6BZ33l0jd7fWZ+W9Yd7Z9tRSdKaquak15WK/TsY6giAgYMrO0STn6kv+tznPqenn3465LWFCxfqS1/6kiorK+V2uzVt2jRt2LBBI0eO1EUXXaSrr75adnt8cX5OsokL3nTh2zHWv4Nfi2eSP6v7y2Zj34ZLZnvYgz6bjm1rs0X+O+KyJp/rY8Reh8W6N1iEb99M/e5c3b6xtkG663ikfyezLiAaf302a/cSrU+GYURNt9bmcOmXr2zWf/37v+mq0z4deL2mzZHZOhzn8WwEXQoNlGMt2nnRMOKcdySOflbo9xiqrO3Q/xs3TMUFeRGXTfX2nLv5iCRpQWWtLvrax03LOVD2Y66Jd9uZ9eUS2QeJ1sNoyyRSD9JVd9LVzvjX9Zs5FTIk/eGdHfrPLxybui+IowyJ2tfYpZM/NUb59uRWFK0+JroeS8urf52jDUodm/oClmxXc7le91JVrlzps4W0Mcrd7Z4qsa6jYy0zWFj9jRkLogczDEMPPvigli5dqueff14NDQ2aOHGirrjiCj3wwAPasWOHpkyZIrvdrquvvjqudY8bNzJNpR78RjV2B/4eP36kiksKQv7tN3JkSci/w8XaB3l5fTdGRowotlS2cceM0NjhhZaWHSqi7YNYuu19F8Tjxo1USWFelKXjN2xY376KVc6xjr4RZ5GWLS4utPxbh8rx32r0tfDjxo3oF+BIl2TqXDoNH14ctWyjYrRZiei0hd7gTbTuFRTm5+x2RW4aNqwopM6E171E6tOvn9+gPXUdeveGb6kwv//ghcLCfM3dVqe9DV16dEWVbvn+lwLvFRUVZLQOjxk9LK7vC+5zDJRjbdSojsDf4WW2222Wf0d+fp7lZcOXe7XskG6du0WnfGas5v76mxE/k65z7rAobfqwYdb7BIlq7nQOyj5neNsRc/mSvm0wZuzwwN/jx4+01O+weuwVFuRbWi6c1fpXEFTWdNWd0S09KfuO0c2O/usKijRmoh0bPryofxkS9K8le7W7qVsPXT6h33uGYeim1zbr2BFFuuN7/266joKC0LYsPz+xfZqXZ4/794we0/+cM1SuNzIiw3V7oMululdiEitKRlFhYueDVHN5+lIVHnPM8EFdN+151vqVuVT3si3jQfSOjg7dcccd2rZtm55//nmdeOKJOvHEE3XGGWcElvnqV7+qn//855o/f37cQfTGxnaS4yeova0viN7Q0C5Htyvk34Hl2rtD/u1ns/kOrlj7wBPUKHV0OMwXDNLY1CFPd0HsBYeQSPvAqqaWvn3d2Nie8iBsd1ffo+ixytnS0hV12e5uZ8x1WK17g0Vzc982a2zsUFGEoFc6JFPn0qmrsydq2drbHSkve3PQMSQlfu5xOt05u12Rmzp763twuxcskfr03lbfo/vvbz6s0z4ztt/71U1d2lbdGvE7HI7YbXQqtbR0qaHBen/AHdTnGCjHWnt7aH8smMdrWP4dHo/X8rL+5QzDUI/bq+dW75ckbTjQ3G8d6T7ndnaYt9ldXemtb29VHNU9C3fpmtM/rWvP+Gzavicburuinyv7Ld/d15drbu4M/N3QYK3faPXYc7nclpbzi7f+uVx9gzXSVXdaWqP3ZePR2tr/+A8erZuJdqwrjn68FW9tqtGfvntcv9f31Hfq9d6UYNdM/KTp590uT0g5PO7E9qnXY7399Gtp6VRDia++D7XrjUzIdN0eqHKx7qW6nZCknp74zgfpEnz+am7uUkPGkmBnXqx2MRfrXrr4f2ssGQ2iHzx4UNdcc40+/vGPa86cOTrmmGMkSYsXL1ZDQ4Muv/zywLJOp1PFxdZGKQczDGaYTVTwdjOM0FxQ/d6Lso1jvR/ymITFfTUQ9uvS3Q063NKtK079VEa+L7nt0bcTvGnetrHWHV63+r1vYR3Bn8/1epKoNodLZQdb9K3PjYvreEylXN22sepIPHXI8nca/f+d0HcM4jqL9PAaRoQ2wAj5d6IMb+TPb6lpC10uS21QQt8X4xyT6yKeFyO85nB5VJRv75eSJ57zpyTd+MY2rdjXpHFBI7GD11Fa1azKunb95j+/kLZ9H61fYlP69uOO2nbds3CXJGn6moP65Tc/m54vypJk9leyx3zU5YPqbDzrTXk5khCrLxvfuqK355lux1L1fZHWsygox3v077GZvm/WHr5RcVTf+twx+uSYksDrTV3OuH/PugMtWra7Udee8VkV5NkC3zkQzye5jm0aWy7VPbNYUa6tMxEh351D2zwdjLDrCvPlBvd2iEfG7qm0trbq5z//uU4++WTNmDEjEECXfDvuvvvu05o1a2QYhsrLyzV79mxddtllmSoeImCyvPjc+vZ2TVu+X9uOtMVeGAFDIb9WKvxmToVun7dDj6zYn+2iAECAWU+hzeHSSxur1dg7SWZLl0szSw/qaJu1J9Di/b5ULZ8Lop0WI/XN6jt69K1pq3T93Iqkv3vFviZJCuy3cL+ZW6FHVlTpC39aEDJSK5VSNbFqvG5/e3tWvjd30UGzKt3tzGDdE1tr0nPNNH3NQT2wdK8umFEW8nqrw23yCXOPrazSrHWH9HbvE1tmupwetXS5oi6D/gZr3cbAlst9x/9dtEv/WrIn28UY0jI2Ev31119XTU2N3nvvPS1YsCDkvfLyct1xxx26++67VVtbq/Hjx+v666/X+eefn6niIQ653KjkgsYB0IHK1cB1rInthrIdtb4cuQsr63ThVz+W5dIMLLlco2hPkUuMFNbIu97bqZX7mjRv61G9+LNT9Of3KrWmqllvVhzVW1dPTNn3QFpY6RvNWXqgJeR1f9u3pqpJa6uadf23/p/y81I3fqah06mPjIz/qdFYnll7UJd87WMaP6Ko/5tp7CM4PYO7RU6mf5XIwBqrH0n3OXqgdStjbbY1VU065ZNjIs5fkSqZ2mSJTjgbqy6XH26N+n4ialqj3wD+j4dXSZKWTPmmRhZnZdo5AIPc0TaH3qrw3dC7/qzPZSylK0JlrIW/6qqrdNVVV5m+f/nll4ekc0F21bb3qDlNweAB1peN20D7fel44CCeC5ZYi/JABGIZaMcckGqpaiYTWo/hCy58bFRRSGBjZe+I5t31vlzK6w40S4odiIj9dUPgpBBn1C9WgPOGuVslSZ8YXaJLJ3w87uLUtfdoZ12HzvzcMSGvp/P8vKWmTeeccGz6viCCgRZsTTe2RxzSPhTdFjjgbpi7VRd/7WO67bvHp/lL028gDZyxWtK9DZ066ZOj01oWYLDKlev+kHLkUDPlCrrZ7+/7TV99QJ8YU6zvffEjCa0zRzb5gMKtC0T0g6dKQ/LUIfc4giZKAmAuh/o+wKDz1tajOv/pdXpkRVX0BbMULBnKqenCN/mRBFPpTJ5eqhvf3BYY8e6XjS3b2p37T/ulm8Pl0f7GrtgLhon3CKzv6An8/WZF9FQWyRgI5+iOHre8UdqSdN/cC99GczYfSe/3ZWinWP2a8OVifS7R8nc5PXJ7vOroiT/ti9/QPeMkaADdSBmsGjqdun/pXlXFeV4Zwt2rnGCz2bTtSJueWnNAd723M9vFGVIIoiNuQ/mC1IpM9QW+NW2Vpi7bm9BnQ+d2Tf3+THQTRCrJkBh1GAebzcYWGURoTxGvdE40l8x6ZpcdMn2vO4U3fc3K2NLtSjhILPlyuJ83vVSLKusSXkeq5FpIwdu7zUt7nybICJPO1Nw0Bg9zbbub+clzG3XprPVp3x/zt/cdC8+vPxz35wfL2a2qsUtnP7Jav3t9qzqdiQdXg3X0uDWr9KCqW7v7vZcL3YLw1FDpEnyYp7I/lMix3NHj1n88vEoXzCjT0baefu9bvb7jugUDzZ/mV+rljdX66fMbQ153uDyqrG3P6LVKrhw/OToQvd/WaelOzTkJ8SGIDqSYLYNN7YsbqjP2XemSye0FADCXrkuXfY1daW/pJz22RudNX6emrtBJKa3+pu89WaojbT3647uVEd/vdLrTNpFmPCLebDb5keHn12Svg8P34XnT1+nU+5en5QLb/11H2hx6aePA7+uk0sFmX+B14Y7s3/BJhVwfiPr6Ft+NmzVVzfr2w6u1r7Gz3zLxHgH/98EePbqySj99bmPshZX5bZSOnOKR2C3+sPDFqprifxIjloojvklOj7b3RAzk5Xg1HbDYrtm342i7JKnHHdrHueblzbri+XItqoycnSA3wt2pd7C5W9PXHMh2MSIK7m9x7GQPQXRkXo72lr2GEfLoKnJDLozIySW5efRkV7oe6wVyUeQndnJfpo7DPfX9A1xWhF88BmtzuPTth1fr4pnrEy1WXOLdVFb3f7pGeNX0PgFwtM2R8lRzVzy3UQ8sTeypu8Eu3r3JuTAx4dt57qbkn4bYcKhFktTRM3BSMzpcHt357g69n6Z0n/HUZ0eU9lpKrK4HX2/Ec+2xu75DT62uSuizQC6rrOuQJL2zrTZj35kLx8+Pnl2vZ9f1PV2Zq3M32Gyp6dflwjYfaJg6GgE52j5kzG1vb9eyPY2aesGXdObnxiW+ogG2HdPScCZYmQxDA277ZdpQP04HG/otyClpqpDparYMw9BfFuzUp8cOi7JM8t/jH5VZneSkqKkQ1+9J8YY3O/8YhnS4pVsXzCiTJJXddFby39X7/62OzD2qnKsXymZy/vxhsbLm+hOJVp60SGVfOtKqIuUEd3u8ks2mfHtmtt9LG6u1sLJeCyvrNenE1Ez6G5JeMuwa4JEV+/stt2R3g2avM08dFmm9Vhkmf/uZxe1/PNva0wSILFKz29Tl1Mq9TZr0hWNVUpCX+UIhxFqT1GGDNSWl05O7vys8zcwg3QU5j5HoGBgy0EAs29MoKbG8j0hCbl875aRcyRc3cKS3kg3mvWEYhm58Y6tuenPboO0sDzTp3A/paltsttQdhcE/f0tNm97dXqfHV1X1vZ+i7zH7Tr+69h69tLE6qQnozAQHFWasPRAYtSpJ7RG+z6xO7G/sijoZYtzlirIXN1e3pex7pOzcMI71lW9sOaLHV+6PsVQot8ebvmOWNtmSVFelVNTNZPecIekH09fp/OmlKTnGrdTRpq7UT+ob7cbVsxGC5be9vV3belNPpFyMTTC77JCW721Mz3cjxK9e2aJ7Fu3S/TyFlBG5dP84+DB8dt0h3fzmNrm9nOsCjKj/TMjR9p6UP0U42BFER8blUDsdUbLly/XfJ6V/tFVqJxZFsIFQvzItlzp/g01zt0sr9jVp+d7GjI4IRZxyPJhmU+rOOztq+wIoER/pt3iB4fEaumFuhaUJuoPX4fZ4dai5W1e/vEkPLN2rf3ywJ3ah49a3rZ5YdUC/enWL5fKFm7H2YN9yyVaTjLa15l+WrRt6f3t/t54pPaTtFoN4LV0unfPoatM8+wNVXYcz9kJDTLw1MmoVjvBepPazsdOpug6nOpNMCVPb3qMfPFWqp2PkAI50RFa3did1IzFkJHrUBc3bgwU76vSvJXtCbyYke74xKcwd83bE/mhun45zTqQ9tb835/2y3Q2ZLcwQFc/TQKm8MR/LIyv268O9jVmvB1a2jtcwVH64NWWTT1txsKVbf12wMyXruuzZDSlZz1BBEB1IMQJ68WFzId04JhPH4I+hJV3XRg8vj2/0bjTTgtYV6dDuN5re5EdtPNyiNVXNliboDl7D9a9v1YXPlOlIm28OlQU76nL6KY2nVufm5FhWLDG5cE7XaFCr54p2izcU391eq26XNydySKfSHfO2p3aFOX6ODj+8U3FDMNK+W7G3Uf9askdub3wTGCf7BNFTq6tU1+HUkzHaivCfXd3arR8+XabvPro64e82TxFl/Tf9aX6lXimvCTxRLEWvUjtq2yPOgRW8HZPZpoPpadF9jZ2asfaAurM0SnXwbMncFnwcvhJlIu9ul0cXPL1Od6cocBtRhJ3ucOf+KOk5m47ol69s1q9eCR30cLilW64UTkofvHl+/eqWlA1wqsmBdIUDCUF0ZFVOBrdyslBDGD0oIHuYBX5ASEcz2eZI3aP76w62pGxdwSKdrq1uC1eUnJeLKutUdjAoB2jQcbA+wm9J5U0CKX3dkIE0EP1QS7dueztysDZdk5xZ/X25EiSL995Nqp4G2dtgbfLe3NhKyQv/HRG3osUf2+l068UNh9XY2X80/41vbtMr5TV6s+JofOVLckMnmv5346HWwOe3H23XB7vq9f0n12pLTfTUTrXtPbpgxjo9v/5waJ00goPYoazU3JYua09I/Oz5cn3vydKQ1zp63BH3SaLerjiqJbvSc/Msky6btUFPrDqgJ4JSpqXaQJuLYqB6anWVfvnKZjkjPMHXFhSI/dfSvYF5YMIt2dWgmrYevdt7Ds7U+IFsz5thpYq+u923TfyTsUrS6v1NumBGma59JfrThPEI7n+kI8UWrCGIjrgl22Dm+rlySKRzCfo7HSfAhLdBDo/myxU2m43NFKb0QEu2izBohUxgMxAatyEgnce/f9U9bq++8+ialK47HdXHyoWV2eYKfj38UeE/vlup616riLkOv+fC5lLxeA29Wl6t3fUdJp9IrQO9j77HkuyIebM2YG1V5EnHrNhR264VEUaWH20zHxXV6czuqDSrWzHdbWaqmwKXx6uHl++PeKMoWKrnXAvfTHsaOnXb29stB+vTzdLEohb3xr+W7NXUZfuiLlPb3n+UdLSqFP7Ny3Y36Jcvb9KRKMdQ6Aqil93syYvgT/38hXLdPm+H6jqcuvGNrVHX98SqKh1uceihD/eZpnNJqKkKOuDiPfbOfmS1/nfR7ohlCfkKC+s62tajexbt0m0WUr/kiiNtDn24p9G0rm89kqY89DGkor/jNQzN3VyjnXWZOR/nqulrDqr8cKsW7ayLuezR9uyNSo7Ulmb7+iNSmxwuUhHf6r0hWnEktXPGIPsIogNhkg+iE2mKR6wTY66M+MoV1K7+Yj3an+g2W763Ua9vrknw04NDSIpRal/OSlVg3TCkbUfaAiNqcl3EkehWt0XQcreYjHj2izet0VsVR/TPJXv149kb4/ugfAG7u96zlkN72e4GLaqsU01b7Au8VDBrA5LJC/+z58t145vbtK8xNGAabT+mLX2OxSv1gXojO9avm7P5iGaXHdKvX0vdqLlEXPvKZi3Z3RBzLoBsSSags+5A7BtOceccDlv8lre3q7y6TX9fvDvy8tE/3s+Fz5RJinD8m3ww2lM+kkImCbSbpXMJ+7eVbR68iNOd3EFqtguslCPS5M+57rzp63TzW9tCUuIEy1abl4prwEWV9fr74j366XPxn4/NVNa2q7I2OzcWkhU8Et3p9qou4k27yBU928HsdOlxe9UV5ea8lYECwdvGf+MxHdtroPY/BhuC6ECYwXqCCBby9GQagtSZ2oa5nIcWA99Nb27TfYv3aE8aR8PlehVmJHruSXeVufLFTbrvfWvBFzORRrJm7LwQ/m+TDWb13Pf21qP6wzvxjSjcUZv4iLctNW3qsDBRoNvj1S1vb9cf361UyyB4pPdQc3fIv1/dZH4DM9JNjYPN3REfU49HeBV1e7wR+xnWR6InX+lbu833bar7QNUt3bEXikNw8XrcXtP9E76Z/KkFWqL89rgkuR+ibeVul0cr9jaqqinytlu1r0n/WLw7rpy4wdttw6EWGYYR9SeYtWWt3W7Vd/RoymtbtDTKxHyxqpF/P4SXwex7Y90EsJn8K+RjCdTtwy19o2eTHflpPhJ9cHeEbp+33SQ9WXY6q6lo4naleAS6w+XRFc+X64rny9WT5DknG4I36Y9nb9D3nyrtt4z11GapF2mfp7P/aBiGvvPoav3Hw6tM9+esdYdCbv5FElzEcx5draYuZ1pai1jb/EBTl/bU58ZTXIMZQXTEbSDl1ExE0h2kXP+BOSxS3TLrQB1q7tZ/PbFWs9cdSmuZco3NNnjyjGZKsp2vxo7U5ckcaLhRNTCkbi+lZk2LI+SC7XZl6GLT4k+wUrW//+Ra3bNwV7qKEKKjx621VU1yWNxOwYM9O5zWRj5mMh1fQ0ePtsURyIqnbBsPt+rP8/tG65dWNeuiZ8p05YvlenHD4YQvIMOL8F9PrNUvX9msdodbT62uMv2cx2sELrC3HWnTjt4Risl2B1/ZWK3vPrZGz4elC0pUNm+EfufR1frPx9fIk8Rs1U63V39dsFMfZDnX9NzNRwJ//3l+pW58c5se+rAvRcvLQRPz/e6NrZqz+Yhe670pZOXGSvAW+tWrW/StaauiLl9n0kex2XzpY9YdbNGtUZ62sXxTKOjvaKM2DUXvOwRvAqt10spis8vSfz3gL6/XMPTsukPacKgl6vLRtkNHj1tVFlNxZYrX8G3H8FRk6ewJprtZSnW71xFU97M14apVbo+33w284Cb4QHPkm39m2yxb55B03rzyGAoEz6NNrtkUY86E8CdQyg60KNNBIcMwdPHM9frR7A3qGIBPxAwkBNERMNhjv/UdPfrH4t2xcywOsBj6eztqUzdaJ4qXN1br1XLzGbsTleiJ8aEP96mpy6WHV6R2QrdcN9iPUytCJvzLAFIK+TASPTek88bGQLln4t8GkScWDf0RwRNmBY8ksvJTzYJTMSWwHafMqdD1c7fqWYuBoETmNnl1U01S9Sc4eBjuqTUHQv7930+W6soXN2ln0Kh8wzBMR3rFW6r3dvTldZ23zZd3dHd9p6Yu26cfzd4Q8/ORgh/hF9CtDrc2Vbfp/5bs0fQ1ByMWtqbVoW9MXaHTp65Qu8OtK1/cpJ89Xy63xxuyj55Ze1AzS4PWYcG/lu6VpJAAbbBUH6/2NDbyPW6vOp0edUa44WO1Hzhnc43mbavVbW9nNtd0+HYOrsOR0l/cv3SvNh5uCXnNn1PXyi8NP0Z73N6o2yh8Tgc/m2xqtTBBtJU2YVFlaB7l/3h4lTZVJzbaO/iXBKdzCRmIntCaUyjGNlm8s16PrNgfM+VQtLX84KlSXTJzfcIjpStr23XRM2V6dMX+lAfMfjx7o/61pC9NV9bSuaTke623aw4rQfGgQuVyt9gwDJ3/9Dr99xNrQ/s+SWzT8HYouO1o7Xbpu4+u1s+e35jUzdJIn0zrdg76DW9vNZ/UOerTQIbR72kkI8ZnEhZl0wYPrmhIYKLkuFOJDWEE0TFk/Hl+peZsPqKfxMiJlosnxLr2Hj2zNvLF15/n79SUoPyVTrfXdBIgv3gvvtscLt2/dK/+uWRv1NEnfetPbCtGKotZ8TwZbugPt3RHvUOdLQMx92IydtZ2hEz4lwnprGkE6BGvJK5NMsad6pkHTVg513QFXRR7U3QhGUsix/X2o77Ry2UxJnX0M8sl/M4284tAKYkbAzGYnR+DJzG7891KnfnQSlW39h/9lszuqGmNLyf8kt0NOmvaKstB7S01ocHC4P1781vbAn8HD9JodbhDLqAfX1Wlx1ZWpTTYtWhnvWmfzB1H+hC/VF/wx/N0oek6gj7QMICeCjsaNk+B/waFlW0cbzoDsz1ts8W+ptl4uEULK/tG9p96//KIuZ7/+G6llu4JDda/sy3y3BmGEaMFNPkx/n3tNYx+28CZoXNKoCwmr/uLftBkBG+/9UQptn+C5DUJTsx881vbdbC5W7PWHYp5bZuIV8r7UmqldSR6AqmKYmlzuPTihsNq6OgxPVeGK61q1remrdL/Ltyly59dr3sX7dIvXizv97TBQElz2OP2qq7DqVaHW7UhE4XG3qaRnpg51NytrUFPl/3zgz0ha5pZekitDrd21HborQrzG+6xRDp3pTWdS9Df0Z76imdyZ99rRprSuUTZf0ne4Hlq9YHYC0ESQXRkQSpyRCZiZ53v4iaZu6NWpOPnXT+3Qo+vqjJ9f1fQo8uTp5fqnEdXp3R0evAkQTVtuRdITjeHy6MLZpTp/KfXJXRhmlJhFeyCp9dlqSDZsSOBiXySfQxwKN+YD7lYyMlbjEPP1iRzvUaTbFWfsfaATr1/ud6KMponFfzljFQjox2voRfTmRnRf9d7lWqzMBo0bkHnguBf8pcF0dPPZDpF0+yyvovSRTt9wbo5myJcYCdRrmj5jz1eQwebu0N+9z0Ld0qSHltZZWn94UGY4KLuNkkd88SqKkWqoanug4Zf9D5Xdkg/fW6jTn9wpekI5WyKOMowyqnlwaBR+Jm+gbjhUIvuWbhT9R3xT9wbPqLPFvb/0cT7M82OaZsUdeNWt3br2lf6j6S+4vnyiMsH5xyPWp4Y7weXKPya8KWN1Zr02BrtDntqOPxGVrY9scpasMnKvky0ZxV8Ay3dg3yyldov0a/964Jdmrpsn657rcLydfk/e0fev7X1qPY2dOnNiqOqONLe72mD4DINlH5xcJmtbNNIv+rCZ8pCbqy8uqkm5Ok0h7uvPlYcSXzS1fIEn3CJpbq1W5sOt/Z73XIdi1KRzPqiicSEXB6vjrY5VN/Roxvf2Kp3TW5WRhJ6gyf+L59hMmAT/RFER9yC74C9vuWIpg+Qu1aW8+4lnc4l9SfUfY3Wc+Y19U4wFrXDaXLxbWFxXfVC5M516AcsrNTismYTeWSyP9caNLLfkeVJZGxSyE7LdHmOtDl029vbU3ZBs7ehU796dbPKI3RsIknn4+ZmhnQQPfhiYWBcKyAJyVZ1q4GFZPnrZeR0Lj676zu0en9T6JvB5760jkTvM397neVgrVXL9zbq2lc2931fHD8mF5qzSKO90lGupbsb9I2pK3TRM2V6KShPdbz7PryamX08+PUdtR0R66eVHMq76zssT0QZnFO5sdOpacv3a2dveohbouTBjiTe/qvHa+iZtQf7pS6JKs5t/+KGoP2W4dr7q1e36O2ttVqxr6nfe4ZhRJ1wOLyOBeqClZzocVZQs5sLsUaih0/mmyouT/+R5MFsJn//a+lePbB0r9ocbv1tUf+bgZkM5Jp9VUePR90xnsgNCV5ZKHOifavB8iRjOuZLWdl77t/f1JXySTIzMRLdaxhad6A5qSeXzIKo8V73JyLVNXP53v5ps+L1w6fLdM0rm/vl+3daPNdafaIhWb94cZMmT1+n7z1ZqhX7mnT3gp1qCLqRG61JCX4vU+UdqgiiIyn3vb9bT605oP1xBHkTkYqOgtW2ZKDcVY4llY1n8KrSGbSNtJcX7KiL8GpmO4/2+PrDg9brW47ovOnrtGR3g/7npU0pWedNb27ThkOt+mVQQCiqROp10p3BzIxYzUXBv31wtIwDX7ae5sol0Q4bw/CN5Pnx7I367etbTZdzpXFYa/ia/fmQU+WmN7clfCPTrM1JJH+mVW6voX2N0eejSUdbGDyZ4pNJ3OAJP+bMyrq2qi/YalPkNvO2edHzeb9VcVQ/nr1RN76xLepyfqv2N+nV3tGBsYIBsdqOeJuWBTvq9PiqqoijmaXIQc9Y59NIKXZe2Zj6+XiS1dTl0vs7zSc4NaSwJ0JtQf8b3SGLI779vCZt2abqtqjXAuk8l+yqN8/zbTax6FsVfU8wRfpF05bvj/m9mw63av52ayM3d9Z1+FLPRKyn5v79zwssrT/WevwS3Q+Z7D+Gf1drt0s3v7lNS5N82iXmeSHB9YZs0RTX8+D6kq5D6MnVBzRlToXOfmS15m6uif2BCIKP/eC2yso2dXq8+tv78U2qbg8ZpBD/niutajYddR2ccspMrFS2fv7UeX6XzVpv6XOGITV3Re4nvRThHOU1jEDKpsjrM1Td2t1vW1VGmCOhJei3Rduy5DTPHILoSImuCBMFpcvaqqaIueg2Hm7R4RbzURVWOylJj0TPkfiG5ZsBVh7rSuOPSnTN8cQ/HC6P1h9sMR3V7ufxGhHv+geXMRsnqOCTdjbr133v7075OuMN3CR6c6jT6U74MfpY+UkHc59lMP+2gcprGJpZejDiY6nJsnrhk+5Hx3vc3ugpFKKW03zyytOnrtCp9y/XhkMtau5KbYoVwzB0x7wd+sfi3f22Y7qb7XiOU7Nz2O1xjlqOxx/f2aHLZkWf7LMugZQZ8bDZ+nKtBm+Dq1/alMB5PfLywan19jZ2JnS+9j8uv/aA9TzJ/jQEkb4ueKR6LPEW9+4FOwN/N3Q6LbUfsU7DkZ7a8E+wGvzZv79XaWmU5rPrDmm9xXkG4hGrP7FgR50mPbYm8G9/XUi0Dxc1J3rUUd/xpSBIlQNNUa7Hgr7Z7Poi0vaNlq/Y75pXNuuu93bGXE6SfvrcRi2srDfJ3Z+azk+iqTNSte5UCf+qx1dV6cO9jSE3KhMRMbVXCoTcqLH4GavngWTTHFbWtuuhD/f1a7/KDjZr/vZaGYYRMg/a3xfvCV9FaHl6yx2+vuCSBberVur2Kxtr9MaW+NLyBX+fx2uoqrErruPoN3MrQs4p8Zi++oDOeXS16cC7YOFNi9V5Ym5+a5v+8/G1qugdwNDpdOvtrUd1sLlbU5f1n/zb65VWRniKKVDmNQf0w6fLLOUhNwxDd79XqTe2WD9eYp1rjg7B9LypRBAdKZGpkXHbjrTp+rlbddEzZSGv767v0LWvbNEFM8pMPjkER1FGG32SulWlZPmEWDwvO1wefWvaKv36tS16ek30E9X/vLRJZz+yWkfCTizB9TsbMcVfBI36tsn3yPZgEX/dir923btol7798Gpd9aKFVEQRZHKfuzzeqDcDB7KDzd2WUxQg1OtBHeeV+5r02MoqXf2yxac3onhxw2EtDhqhtDjKyMpg11p9ciRBl84s0/eeLNUBkwCg/5iM1PewkocyPMdpKmyqbtPiXfWas/mI2sJGRNlsNlXWtuvKF8r1u9e36tT7l6c0T3oq2qjNacw5vMTCaMVIF6Gp1On06PQHV+qdbUdDgk+ba9oC6U/MhA/cMIsLBFc7l8fQjqP915sXo24mc6M+0vHwjw+iB2BCP2/9ux5ZEToq+L+fWKuJD6yIOVgh0ruW0y0EbZsnPtyrhy2MTA4vZ6rE2kvhEwTHkxM9kmh9nxc2HO43utIv0qhGv3Smx4t4Q8f/1LKFAGemAsRvbT2a8u9yBt3ETSR1htUBH7Ge6thT36klu6yd02N+V9hGCr4OWVNlHiiMJdbAGKtBWIfLI0fQJOLBddt6+xL/cokcQlc8X67n1x/u1zZd91qF7npvpyY+sKLfZ3796uaIgxdeLa/Rfz2xVne+u0NnP7La8lMYsSQyD0TwtlhYWa9LZq3Xc2Wxb3ylwlO91/dWBnsZ8g1OK61q1u+iPK0YbmtvnvdXyqsD33XPwl2a8lrk/mSsJ/enr/HdKHl67UG9vfVo1MEpH+xq0Lvb6/S393dHbVTiucEzefrQmlMt1QiiI27+k0dwJyHhkRVxdie310buDAZfAG0/2h5xhJ7lnOgmrzvdXt357o6UnaDSLaXpXDJ0ByK+vK7Wlp0X9GjYjLUHo04Muq33IiQ8kBQ66jjzYfTwyZz++G70x8EHkngv4qIt3trt0tLdDdpd3xHySHh97yiDHSbtRyyZ3OW/etV3M7BfLucsSdVvX7mvURc9U5b24OtglY6nQPbUd2rqsn26Iyivr9X5N46mOD1JuJo23/pvetOX0mLah6EB1kBOdJPPW+lbpPq8FpySKnz0kU3SDXO3atvRdq3qPbZTmSfd7bV+c2qoP13ylwW7+vUezNJhmDFbOrzdjhRcijXoJFpJnl5zQO9sMx8dGGnNnqA+T6wq74gjN/Gz6w5FfP36Ob6AgsvjjTzCzzBiBtqtmrv5SF9gNsyehs6kR8lGE29f0N8nT3TQUXuMUfc/N5mvKDSlTKh09u0jrfuvC33pIcxyogfzZKihMozUJ+wLDo5aqSfBdeLNLUf0rWkrtc7CkyixVv2j2Rt027wdKXlqrV+bGfTCDXOtByLDJdMe+nm8hr79yGp9a9oqralq6ndDKfgr3B6vSqua1e3qn2bDek701KQ53FUXPZVNsPWHWvW/C/unV/nnkj1q6nIF0p38b4S5BMJZObTyUhREeHjFfl0/pyKpGy3x8BqGWrpcuuWtbRFTrEi+Y/LSWRv0m7kVgf5YPNZW+Y7NRb3b3Kw/7H9CLNL3h6eFuWfhLv3wafOgdntIOhfzHRi8b6tbGbiUTgTRYUmkHIUPLNsb+NueoXHeZp2R4EDcz18o1zWvbO43yst6OpfIy72+5YgWVtbHfEwwd9K5RHkvOChsoduQykBnMssGs9q/doR1lMxOqsHCr++Ci+h/y+n26oNd9VEvUIK5PF4tqqyLaxS5YRj9Juyy2WwhE51G0trtCpmEJFGputCNJt79H235a1/drFvf3q4fz96Y4on8Mpc72Z/n+M2K+B6jTJdU/XJ/rtOKI5FHy+WSbNwoy4bWCCOhcy2f4oHmbvW4vXou7DH+/U1d2l0feeJGQ9ZuImfyVG2z9Q9mJTNhWLiOnugT3QXLxB62cgyVVllPV5Jq4eVL9FQXns/XE7aeSIGIaMGJO+ZtN51jaOW+Rj25+oD+ssA8SBLpeCivtv6EwaubEsu9G2z9IV/ALjgdQbA5m4/o9Kkr9HpQnl8r/XNf7ur+r19iks/2ly9vjpqved2BZpUdTLwOxltnthxp19Yj6XvaIxHpDaL3X7nD7en3vWbXF5HSdqaD11DEC4pUPOllVXBahXvf3y2Xx9DtMeZOkKy35Te/tU0HmroSTmkY8btT1FeIVQVdHkPXz6nQqfcvjxiLkHw30/y/7Ya5W/XzF8pDUroF31R/ZEWVfjO3QrfP267DLd0hT35G+03BQfd4fvrRNodpHm1Dho62OXT3e5Uxn4aSrKU8s7KLrT0dEX/jYHYsrz3QnNSNlng43F5NenyNlu1p1ANL90ZcxjCi31yMpdXhltPtTbgvdee7lfrPx9f2L5ekOywc99Es29N3zlu8s0HffHBl3LntYQ1B9CFq/vZavRmWVynayK1IAam5m/s+H1fQ1Pqi/USbgT5ca7d5brBozJaz+uj1thwJEg32yeesnrzCT+pWJmMLDyQFb0t/HXxydZVun7dDv+5NC+A1DLV0u0wDzzNLD+qP71bqZ89vtFhy6fdvbDOdsCua7z62Rv/9ZKk6g+YqcLq9cXd656TggjoWq9XUP/lTtHZqb0NyExxXNXVp9rpD/W68JHut8OCyfXp0xf6YNyX+vrhvtPHS3Q2W6mpHj3tABH0HSns0ddleXTCjzPIERbmuvbezH0mkXZKB+2Yp8dPnNurHszeqM0LweE+99dFdmWKz2VL6dFgyMnGjpNFCvvnttentK0VrF/uPqox/JLrb442Z5z1SUCFaNVi8yzzo+/sYE40ebXPoe0+WRl3m/qV7M3a+MBvhN6M3uH5fjDy/4QyZ76dtEYLT0UZudzk9mjKnQte9VtHvfG9VrPSA4dYfbNFVL25KaSAzWYmkx7O+7v76niBKIGF1uqRhJHqwLpdHb1ccNQ2kStKLG6r11wU79eugtBDtPe6Yc49YPZZbHW5dPHO9/jy/0lqhI35X2L8TXlMoK11D//wQ4bEIwzD08xfKTUf89n1J35/+STpX72/WBTPKdMGMskDAPdrm7Ohxx+zDH27p1qzSg4Eb5G0OlyZPXxcxYCr5+lu3z9uhd7fX6afPxb42rGrq1sEYTwt6vIaeXnNA5VGePrBSb2KlHYtkgHTzU9LPvX5uRcKfXRQlbeJik/RLhsnf4YIHevrTQMab2x7WEEQfglwer+56b6fufX+3mqKc1ONh1nBWNXUllFfLTHAHOvguc6SR8Paw2p38hKHWVmBl9vhMsJwDzsq6UnRidLq9qm5NzegSq53H8LJb+Zh/mZpWhxbuqAs7e/n+4Z+8ZE+DL2Bz05vbNOmxNTp96oqIIww/3NMoyTeByYZDLTHL4HR7I16EdkWZ6dtXvL7C1rQ6dP/SvTr1/uU646GVmvjACtMcw5HECuJaGVV/pM2hxTvrTS9+rVzEeQ1D//PSJl0/tyKt11uXzFyvh1fs15Nhk7w8sboq4XUebunWCxsOa9a6Q7r4GfM5G6TQG5OSL0d/tHpeWduusx9ZrT8lcWEUS6oCLrkSQIzlxQ3Vqm51BC60BrKWbpfOeXS1zjd5RDTSeTNTI9HjGYUcre40RujDPLXmgKXzdSYv+Oy27MynEcnrm4+kfT9bCUymogzRHlWO9tRZ+EW0YUhvb43jQtMw1GPhMelIo87TVe/+J2julGhiBf79FlqYoC2aeILFVjbJb+du1ZzNkSdVu/LFTfpwT6NOvX95oK8VjX9EtNQ/hY1hGHplY7VeiDGJZXCqwHg4U/R4fSqqUTqbwHURRvl7DUM1rY6QOT6y3TXwGum9efz3xXt0z6Jd+s2cCq070Gx67pu3rbbfBLjnP70uahsXb7GjBe9iCb/VEK39dnu8emTFfkspaZLJy9/e4zadCyBY8DVZpDb5zIdW6oNd5tcpkvS9J0t1+lRfrvJ6k4kof/TsBj26siqQcrMqyuS6km+OgG0Wyh/szrdij+h+cvWBkPRyiTjUkrlJJx0uj6V2e97WoyHnFYfLoxc3HE5gHqnYN0Ni2ZiCFEmJSqTr1O5wa/HO+oRvGqM/guiDnNPt1dqqJv3ylc2BR+OCOwvvJtAJdHm8/WZIn7e1Vte9tkUtXc5A0KWx06lLZq6POTImHsENx5kPrQx0ciOdg8NPzJZHopssmBf0Rv+RqrlyedwnWsck3i5LvKNVIi2/s7ZDZzy0Uj98uiwkP1/wsvFsxURHolvJs+jvSJ3/9DrdOb9S84JykO6q71Sbw9Uv12dwDlx/YLPsYLM+2FWvrUfatCtodKSVSe3MOnMNEQLXW4+0adX+Jv3u9a0hgff9jV16OSyQcE9QTr1YF7mxAp//9cRa08CD/wbdedPX6Y53dugdk7bGSnC1ptWhiiPtKj3QolkmeVitHoPPrjukuxfsjLr85urQztHehsQfgw2+QK+ONKooxmqjjUz0t8P+XIjpkLLRRlm/VI5PpvKxppO/Hoe3GYZhaN2BZjVHeJw13tzQiVqxz/yCKTznc7SL5KQmYUz4k4l9V64MQH1pY3Ugl2e6XDIzcoqNYHGkcTcVbdLMaEHQ8Pb8mlc2h5wbY/EYoX1CM5GWSNdkjhHzj0ewv6nL0lNOdyZ5czbV6eDWxgjI3fzWtpD/jyb4BmJ4W79kd4P+tXSvHgybhyFVwicdTlQqtm46byRGGv24r7Gr303ddE5u6rcgyg0hryHTiQFTwZ9SaFd9p6bMqdBv5lbElcor0tNWfuGnv2RSVMTSbyR6lAr4+pYjenbdIU2ZE3u0brx7/19Bo86t9stf3NB3HWRW3aykz5F8/adIAep2hzswkeTq/c063NKtFXujB4a7EghoHk3BQLR0dW8TPZbvW7zbUrv914W79I2pKwJPaDy+qkpTl+2LOUApXKxq8+PZ1m40Z1KyE9Hf+OZW3fHODksTuKdy8OtgRhB9ELv7vUqd8dBKXT93q8oPt+qOeb4JdoKDVonMmvxKeY0eCutcvrSxWusOtOikv74fyHt1oDnyiNdk+kvhF8z+Tm6khru0qjkkUJZsOoHgj/u/1zAMrdrXpNqwSSXcntDUGW6vofd21IbkvUu3kIlUvIbWVDWlNAerZG20md+Nb/bdPX/XZHLW/zO5IPYahlbsbdRls9ZrZ+/kkMFVIdpkoeFB2nhGovsFP13w29e36pm1kQO5wRbsqNN1r1Xo9nk7dNWLm2J/aZh4OiNXvbgpEEAPfuQ70ognf16/x1fu1zemrtDv39hqmu7BShn+GWGfzSo9qHMfX6tT718eeM3KiBQzweXwj/wPZ3U09iMr9uvdbbVaH+VpgPC8tpKvDro93sCTANuPWpukNNlg7PsRRg4dbulWR4875sQ/Hq+R/A2+FHW281LQ29jf2KXWNF4kBktFgC8V3B6v6YRxZgzDkNcwTEc4Ld3doClzKiJOupeJeRAk87bFMIx+OZ+j5aY1ezInVU88pUqupTPaXZ/YJMtWWalH7hRcyb8f5WaA1aByIv7wzg5tTTB1X2eMp8kyIdLN+FTrMelXRJLpUX3BT6oG55CVpN1pTgdltl2szNcTS0u3K+qNxfDzZy60S5koQrT+YcWRNm22cFMpleK5FovUh/RPTBjezk56bE3gejQ4nWO4hk6n7n6vUhVx/O7QB3L7z08w5bUt2lnXob+9v0trgkbbx0qNF14HY90Yf6W8Ri3dLh1o6tLPno+vbyRFv/lppftjtsxfF4bOl3bBjLKIg34iTWgaD1ekC5Q4pauXF8+TzsHmb4/vqSf/jbjNvfN9xLtJYtWx7jgm2M6U4MFSiey/Tb3bar5J/CVYKge/DmYE0QeZHbXtOvX+5Xp23SG9G9Yo+TvNwaeP5ig5nM3E6mD6T55WRunEK1K7d+UL5REn27j3/d16bVPkRz+jMetUBl/0L9/bKLfHq1nrDul3b2zV5OmhIytOf9CXOsPv9c01+vP8nTpvuvnMy6kQHAx9f2e9Tr1/ucoONmtm6UHdMHdr4AZH8KhQs0msYpn24T59a9qqqHnXpL4OQ/DEZx6voQeX7dNfFoR2OsxGK5/2wArd+OY27Wvs0k+f36hddR0hJ5F3IpwUOp1u/XXBzsAs2n5WRi7GWqYjrHMaPnLZisMt3Xqu7FDEIFBHj1tPr40v32YkkSYg89fjZ0p9nbuV+5r6jVbvWzb2dzjc3n53yB+NMIeCWTNjJVBvpRzxjsaONrrH6zX6tYser6HLnt2g/3h4lTp63PrDO32jVrYETf5a196jP82vDEwgFqkuhY+0jSa8HT3U3K0LZpTpv59YG3XbPb/+sL4xdYUmPrAi4o0Oq4JLvz/BDrKU+MX64ZZuVTV2aVddhy6dtV7ffWyN5c8ahqGqxq6ERivnykj0pXsao47ENgxD/xs2gnZTdZuufmmzZpZGvtln9jSHlLkgemOnUz9/obzf03DhKY1i+eeSyBNHWU1ZkSmRRhF19HgydlMoXC5U71Tkhu5yeXRtko+tJ+rXFkavWmn2DMOIa8LxVEgk3208znxoZeQnr0xEy1+eiItijEwMPnf+ffEeNXc51dobgM5GzvJ2h9t0Erx4THpsjZZFmUz1jaA0Kt0uT0omoEf84qlikfovD364zzTP9g+eKtXO2g59++HVpuv8+/u79e72Ov2iNwXUE6uqYhektxhlB5v1nUfX9HsyZN3BFv30uY16Y8vRkCdzz3l0ddRUWY2doXXwjS2x+wANHU5dPHO9jrbHX3+j9e2s3FyM9ASfJC2LkY5kV12HDjV366xpq2J+RzROt1dVvZPE3hMWuLcqXU/Pr9gXeR6MaKykNzVj5fqxtr1Ht7y1LeR7YqVFzXXVcaev6RNr8BWsy6kgemNjo6677jp9/etf12mnnaZ7771XbvfgmNwrE+5fujdwV/aRFf3zcjd1ubR8b6OcYbfsutPUmAQfqFe9WB64855M2x2pM7HtaLvp4yn/XLJHu+s7tHBHXcho8eVRHrEya16C2x2P19DpD66MOOFqsBm9gdANh3xBVn/pvYahut7yvLejVlOXJT/Zk2EYIRcO/mDEda9VBAIVFUfa+n1PrNQiZgGo53oflX54ed+231nXoZZuV8iF438/sVZewwh5bM1jGHpxw2G9s602occPf/LcxpDfMW9rrS5+fHXIXfBZpYc0b1ttv5O6/2Nvbz2qU+9fHjJa2s+r6PnA36oI7RBGGylp5oIZZZq2fL+mLut/4fTgsn2mAbBkRepzPByhvZCsj4b/zqNrAkFjM2YXpsFf4fJ49Wp5Tb/RDOk46UfrSHsMQ29XhHbkvYYCKbE2hd00ebO8L3/27fO2a8GOOl314iZ19Lj7XSz9ePaGkJsbsaa0Cp+3wp8Gw+H2Rr1RGfy00KsxJoitauzS6qA0QLvrOwKdzODyHW1L/II7kV3oNQxdMKNMl8xar98EPRZc39Gj6+dU6LUYv+v59Yd1yaz1IRO2WjVj7UH96NkN+uXLmyI+DZApD0ZoH4Kt3tuoN8PaozaHWxURjkd/m7mj1nwUcpOFCSFTYdHOem0/2q67w26kvlKe/GhMqzIZKis90NLvtVX7m/Tdx9ZkJUelWSAgk97cciRiXzVe2cxNGkusnLiSb8DHfz2xNpD2IRPsNltK56gJF88o9HTwn6sjmb7mQL9+Z/nhVn33sTX63etbM3YjMVgiaR3MLIlSj4J/2w+eKtVtFlNYpFMm0rnkmnieEgzvO1e3doekJ4nkrgXRn8w8HHTc76nvDEz2G7UchhF4wjbem17+VFk76zr6PZUaPuBvsYX+1o+SSLfREWUAjRX//UTkmxex+rj1nU7NScFcO9Ut3br4mfX68ewNentr9FHFZiOqDfkGf+2M0hdMl5YuV+CmsdvjtZTe1Gw9kfq54f72/i4t29MY8j0HopwfBoI/vpt4qjX/9XS8E2Ojv5wKov/ud7/TsGHDtGLFCs2ZM0dr1qzRrFmzsl2sAcNsNGmwm97cpv98PHQk3/smMwEnY+7mmpBO6tYjvgnw/rpgZ1KNVyJd2x/P3tgvt+NNb/pSXqypatLKsNysZv254I6e1UDDE6t8jVR4EPCvC3bq+0+V6tVy3wj1FzdUhzz+log3Ko6a3pXPD/r+iQ+sUJvFDtC6A8067YEVejxslMLPnu+bRdy/7u1H2/XT5zbqe0+GdjA6nZ5+o4I83r7QXKIjsPyPJkm+R7rWH2jWXe/t1K66Dv15fqVpELzV4VJHj7tf/tPgxyuN3iB/JpRGSHMS70Qz8YgWQAtnjyPyedWLm7Sosk77GiM/qbJkd4OmRzhpB49Qfnljtf65ZI8uDsunm46LrGijzbyGoT0NoYH84OWPhAWT5248rPqOHrm9hiqCHvE/+5HV/XJMx/uo+MbDraqoaZPXMFRa1Rxyw/CteCbCk69er9zXqEtmloXUsUtmrddvX9+qbUfb9frmGv149kad8+hqVdS0haZNirLNDMPQU6urTEfBBe/nV8trogY5JN/okfODntwJDvr94KlSrT3Q3C/9U/g+9U8Qm+jM9HsaOlVe3Rby1IEVW2raNOW1LdprknooFsMw9FzZIZ16//KYKSl+8nT/xy7dEXLRzCw9qP96Ym3CTx6l0576Tk1dtlct3a6kL3DjkQujsaX+7UkmmD31lUmtDreejfJUxFDhvykfKb1SuuTZbbr21c364dNlOvX+5VkZfZ0tT60+oAtmhPZJ/cGoNVXN/eZ8yoRUbv9oT+VVBQ1QSFVu9mQNhkm84+UxDO21eC7ucHr0/s56dTk9anO49MOnY+d/3tsQfd3BAzBaLeZaPtjcnfQk9j99bqOmzKkI3LyLNC9bNm5iJeNw7xM3sQb75NttcqcgFYvfPgv157JnI89N0tjp1NUvb9ZPg67lM8HjNTTp8TX6ryfWyuHy6IoE0vH4TXrc2lOpkSaBHcqjsf3X0/7rIyQuP9sF8Dtw4IDWrVun5cuXq6SkRJ/61Kd03XXX6Z///KeuvvrqbBdvUAkfIXLf+7vV4/bq/x1TkrLv+PviyOkDEp3N3i88NUcyKmvbA+lN7v3+FwKvBzetHT1urT/YoiW7GxIO/s/fXhsykrHd4Q7cef9n0AQpwXkyDcPQ+zvr9ckxJfriR0da+p773jcfbRle9liPuva4vSo/3KLre7dP+A2a4ECs/2//o1KR8rUdDpvlO7gO3hEWoKqoadNXPj4qavnMbD3Srp88F71TsKO2Q2c/EvqY4+Mr9wfSm0i+i4sPokzomEr+7eX2Glpb1SSbbCpI87PWv3+j/+zud8zbrstP/oTe2Var68/6f/J4jbhHD8e6O/7U6gP65v87Rl8KqtPNQSOtg3PPP1d2SBd97eP6j4eTe/TRzO76Th1sPqBLTvq4RhXnhzx67nR7Q248SdKkx/rqTKTc/f/9ROQccv7HZc3sb+zS4yv3a/V+87ZtzuYalR8ebvrEgOQblTF9zQGNKs7XT77+yX7vv77lSEgbceUL5Sq76Sz99vW+Ed7TVx8ITEzr8Rr6xUub9PHRxYH3qxq7NLP0oMoOtui27xynB5bt1RVf/5Q+PbZE+5u6NH2NbzRT6Y3fCrnxcbC5WwuDJvbyt3ulN35LNvnqfkFv0vTDLd2qbnFo0c4605uCka6xFu+s118W7NQ93/uCvn38eElSQZ5NwfcLDcNQp9Ojuo4efXJ0iQrz+8YRON3eqE+f/O/CXWp1uPTvHxmpc//9WEnSJ0ZHPmf+T+8+v35uheZf+w11OT1q6HTq02OtnWM3Hm4NORbiFWmCLP9TUw9+mHzKgFTzjyqLNbou1WaWxh59lwnL9jRo65HCjH/vmxEemw8fVID06XF7E3pCJxX2NXaF5HS/d9Eu/encE7JTmBwQPCF7NmQqcLiwsl6/OuOz+kTQeT3bBljMNCU8XkNbLKaB/NGzqU1NVtfeo/ygSWoyddMo+MnBPfWd2tvQ1e9JNMk3QCqRFJnZsnR3g3bWdsTOVW5k/gZBpACypJAnTzMpOPaws67DdI6rVIo0B0m605mZWXegWad+ekx2vrxXS7dLZzy4IvaCiMlmpCsxUpwWL16sP/7xjyot7QtE7Ny5U+edd57Kyso0apS1oFpjY3vOjC7KpJpWR9rzbWdTQZ4vi3d4KhqkRmHYGSXe7VyYZ2PfwDJ/faPOYCDLs/Wf0ChWW5hnt0XtwHNMABgq6AsAAJBbVv/uzJCBRjabNG7cyCERZ/X/1lhyZiR6Z2enSkpCR2n5/93V1WU5iG7lRw9GjbnxVF7apGI2aphL9gKGCyDEg/qCwSBSNY5Vtz1eQwN7SiMASA36AgAA5JZx40eoKD+v/+tDNM4aSc4E0YcNG6bu7tCUE/5/Dx8+3PJ6hsIdkkjG5UvLrv+m6juc6nS6lW+3a0RRnnbVdeqjo4pUUpAXyLnne8Tdl07D6fGqIM+uArtNwwrz5PYaMoy+fFE9bq9KCuzqcnrU4/aqMN8uw5CK8u1q73FrWGGe1Lu8y+tV8fBitbV1aUxxQeAzHsNQYZ5dwwrz5OxdR0u3S2NKCgIpE7pdXhXk2WS32QKPO9ltfbmbgh957ejxyGP4JmXJs9vkNaSSgjw1dzk1oijfVxaPV26PIZtNKi7Ik9tjqDDfrnaHW4X5Ng0ryJPX8P0+r2FoWKHv34ZhqCjfHsjZnW+3yeUx5PH6Pu/s3W4FeTa5vIbsNpu6nG7l2W0aUZivxi6n8mw22Wy+wP+YkoLAunrcXg0vzFNBnk0t3S4NK8yX2+OV1/Dd9TIMqTDfHhiZ4/Yaaul2qTg/T0X59sCjv3abrXd9HjncXo0sytfwQl9D19TlUnG+Xd7efeRwezSyKF9ur9GbnsOmjh63CvLsvWX0akxJQcQ65fIYKsizqdvlqwNOjxHYPm6vEbixUVLQd6fS7TUC+9TtNeT2GCou8JWnqcupfLtNxfl5yrPbZLf5HrNyew15DUPF+b5tYxhScYFdDrdXzV0ujSrOl91mk7f3uxs6nfr0mBK19bgDOeaKC+0aOWqYGps65PH69k++3Raoz90uT+/nfd/d2u3SyOJ8uTxelfTWBY/XUEmBPfAbvL2P3nm8hgrzbOpwetTucGtEUZ6GF+YHJlAdXVygHrdXHT1uGb11Na+33uTZbTIMQ17DV5eGFeapzeHu/a48jS7JD2yvLqdHxQV5gXrtL7ur9xjtcXt7cx3b1O3yBL7H6C1nYZ5dTo9XPW6PPjaqWM1drkDeebvN98isTdL4EYXqdnnk8RqB/ej2emWTTWOHFcgmaVhhXmD/u72G77cZvrzWwwp9x9rokgLfvAeGb66CUcX5Kinw/b6RRXlq6nL56oDXqxGF+epx++pacUHoVBwer6FWh7v3aRObHG6PSgryAuk9upxuNXa6NHZYgbpdHrV0u2S32TSyKD/QjjncHuXZbL3tgnTMsALVdTjl9hr61JhiOT2+STjz7Dbf/vJ4VZxvV32Hr82w23y/2c9rSAV2W6COuTy+OmCz2eRweTS8KF9NXU6NKSmQ1zBUMrxEzS2dyrPb5OndXl5DGje8QG6Pb/8bMjSsIE89bq+cHq/y7Xbl2X3btDDPrk6nW6OLfb/Rt699dW94YZ7sdptGF/uO4+YuV+C1I60OFeTZNaakQEX5dnU6Pb51yqbCfLu8vcfWsMI8dfR4Am2rx2to3PCCQACjsdOp0cX5ys/ztX3B+VlLCnzrtdtsgTaly+nRMcMKe1+XCvLsKimwy+Hy9qZmsanT6dExwwoCbYGjt4339KZu8XgN2e2+ye0MGRpZlC+nx1Cbw1dvRhXly+U11OX0aERRnrpdXnm9hkYU5aso3y6Xx6v8PF976WtDfMeKvy1s6fatp6QgL/Carw31HW+G+kaN+//fn1pG6muTHS6PRhXny+Ux1OJwaVRRvgry7IE2zFf/vHK6vRpV3Nel6nR6Qr7X1XsOCn/qJ5xh+D6bb7cpP8+m6laHRhbla2SRr81p6XZp/PDCQFvziY+M1v6aZhXm2QNlD26H2x1ujSouUH6er+0fXVygkgK7OpweFeXZ5TV87cCo4ny1OdwqLshTj9sjj9eXW93h8uqYYQXqdnnV2OXUMcMKeve9W90urwrzfMeHvw042tbjqycuX30bO6zAVy7DN9eAv2rl5/nOBR6vodElvu2Wb7cF+g223vOoTb7zot3mO28Gzs+9x9To4gJ1Ot3q6PGoo8et8SMKlWezyenxqr3Ho3y7NKakUC6PV8UFdnm8vvo+fkRh4JyYb/f1iYIn0c232+RweVXc23fyn/ckX5o3f5202aQif1vl8mhMSYFq23vk9Hj1byOKZBi+3zq6OF+tDrfsvfXK3Xts5/V+j7/t6Hb59n1xga/u2G2+ulyQZ1dhnl2G/OfVPLX2zhPQ3uPWsSOKVNfRo2EFeRpRlK8up1utDrdGFuWruMAeaB+L8u3Kt/vOFQV2X5tW0LsP/efylm63etwefWRkkRo7XYE22907GZ7D7Ws/P//JsapraNeiynqdc/x47azr0Id7GnXcscP1rc+Nk8vj6/+NLPKd57pcHrk9vuO+pCBPhXm+327rPT95etsrQ1Jnj1v23v6C2+trv7tcHtnkO1ceM7xQhXl22W2+/mNhvu9c2OpwaXRxgQxJwwvz1O3y9J67FDiGRhUXyG7z9SX9/WGvYYS0xcMK8lSYb5fbYyi/95ht7vL1GxwuT++63BpemCdH7/HiMYze84zvmC8uyAvU6bG9bWFTl0vHDi+UzdYXQPaf452953hfP6AvtaDT4w1M8O7t7W/7y+nbBjYNL8xTl8ujNoevTHabTZ1O3+ia4YX5vb9P8nh9dcrfVnX1tu35vX0m/+8cUZQfOA90OH19Rq/Xt+/97Vpwv8PX5/L9XdJbN0cW56vd4ZbNJo0qLgj0n+02X5vpPz/4dTk9cnkNuTxejS72tRv+Njk/zxbYTr7zq6HRo4dLTqfae3N7+/fz+OGFgWO12+WRw+X/XptGFOXJ6fH3433XM/6+lF9Hj68ddHm8gQlYvYZvPwwv9H1+WEGe8vPs6nK6NbzQt60cvWng3L19Sf81hq8/5Q0cg7566Ws7/e9LCrRHPW5voM5JvlRjNput9zt8+8vjNXTMMF89b3O4ZbfZAsevv5/S5fJoRGG+8vNs6nZ6VJBnD/THg68zbFJgPcMK8wLb0ddO+fqGeXab2nt89a0wz6b8PLuau5waXpgvm01yuLyB/oG//zyqOD9ojgvfeWZ0cYG6XJ5A33t473Vnj9sro/ccUVKQp1aHSyOL8nu3oae3TfYd7+7eayqXpy8tZHF+nry9bU2rw6W83jY9395XL339ILeKeq9jjd46M6IoL7DfJakwz+5bpnfdDZ3OwPrz7b7rr09+ZJSO1LWpu/d3ew2pON8ul9d37TmqOD9wkz3PJrX3bge7TYF23+XxpUzscHo0qvc6zV8+d29dKCmwB7Z9SUFe7zWnRw63R8X5eYHzenG+b5sNL8xXcb5dhfm+63bfcWBoWGG+2hy+60n/7+10elTYey3o+/0eub2+3+N0G0HlUOA86L8m8J8TO3o8IdeAeXZf329E7371970Levsa+XZfX6ukwC6Xx/fvnqDr9aLeka/+6+jGTpeGFeapy+m7hhvde03d6XRrbEmBGjqdIdeHvr9914CFeXY19l53jinxxSTy7LbANbJ/Mt9up0cjivI1oshX5q7eY8V/ze1vL/ypNnvcvnbI4fZodHFBb3tsC/Sf/PvQaxi+PoIUOA9LvmtrT28FLO695ux2eTS80Hdusfdeq/ivKz2G77iRfH2Jj//bKNU1tKuztw/nb6NHFOaruTe24vJ4ZUi9+9Krbpfvt/uv9/3HuO/6xAjEFdp73Cqw2wKxHl87aVNzt0sjCvPl9HgD/QBfTMfQyOJ89fTWR8l3DvbvZ//1pP/6225TyLWa1zAC+6Ugz+47v7t814Auj1ddTo/y82yB87DLY2hEUZ5KCvICMQbfZ/uuowt7t0l7j1ujS3zXtP467m+fg4+jEUW+WIBNvX2k3naypdvd22f1LW+3SWNKCtTmcAfaN7vN9z3+8tlkC5zDe/zbvbeP5T+nFQS1vf7+gb898PcrO53ukPOr3WbTMcMKAtdYhXm2QEyqzeHW8KK8wHbNt9t7z+tSSW977t+Pbk9vjCsoUOryGHK4PIFY1LDCPH10ZJHaW7oUPDsbI9EjLJcr6Vyqqqp07rnnatWqVRo/3pfPdP78+frHP/6hDz/80PJ6GhoG/87NVTabNH78SPYBMo66h2yh7iFbqHvIFuoeson6h2yh7iFbqHvIlqFU9/y/NRZ7zCUy5LOf/axOOeUU/e1vf1NHR4cOHTqkxx57TBdffHG2iwYAAAAAAAAAGKJyJoguSdOmTZPb7dZ3vvMdXXrppfrWt76l6667LtvFAgAAAAAAAAAMUTmTE12Sxo8fr2nTpmW7GAAAAAAAAAAASMqxkegAAAAAAAAAAOQSgugAAAAAAAAAAJggiA4AAAAAAAAAgAmC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoAAAAAAAAAACYIIgOAAAAAAAAAIAJgugAAAAAAAAAAJjIz3YBUs1my3YJhi7/tmcfINOoe8gW6h6yhbqHbKHuIZuof8gW6h6yhbqHbBlKdc/qb7QZhmGktygAAAAAAAAAAAxMpHMBAAAAAAAAAMAEQXQAAAAAAAAAAEwQRAcAAAAAAAAAwARBdAAAAAAAAAAATBBEBwAAAAAAAADABEF0AAAAAAAAAABMEEQHAAAAAAAAAMAEQXQAAAAAAAAAAEwQREdUTU1NmjRpkkpLSwOvffjhh/rhD3+oCRMm6LzzztP7778feM/r9Wrq1Kk666yzdMopp+jSSy/VunXrAu83NDToxBNP1IQJEwL/nXPOORn9TRgY4q17hmFo+vTpOuecc3TyySfryiuv1K5duwLvezwe/eMf/9A3v/lNTZgwQb/+9a9VV1eX0d+EgSHVdY92D7FUVlbqqquu0sSJE3XGGWfo1ltvVVNTkyRp8+bNuuSSSwL15rXXXgv57BtvvKFJkybppJNO0oUXXqjy8vLAe7R7iCVddY92D1YkU//8Zs6cqSuuuCLkNdo+xJKuukfbh1gSrXuGYejRRx8NXG9MnjxZCxYsCLxPu4dY0lX3hly7ZwAm1q9fb3z3u981TjjhBGPt2rWGYRjG1q1bjS996UvGq6++arhcLqOsrMyYMGFC4P0XXnjB+N73vmccPXrU8Hg8xsyZM42TTjrJcDgchmEYxpIlS4yzzz47a78JA0Mide/ZZ581Jk6caGzYsMFwuVzG7NmzjdNOO81obGw0DMMwHn74YWPy5MlGTU2N0d7ebvzud78zrrnmmqz9RuSmdNQ92j1E093dbZxxxhnGQw89ZPT09BhNTU3GNddcY1x77bVGS0uLMXHiROP55583XC6XsXr1amPChAnG5s2bDcMwjLVr1xoTJkww1q9fbzidTmPmzJnGaaedZnR1dRmGQbuH6NJZ92j3EEsy9c8wDKOzs9O47777jBNOOMH46U9/GrJu2j5Ek866R9uHaJKpezNnzjTOOeccY8+ePYbX6zU++OAD4ytf+Urgfdo9RJPOujfU2j1GoiOiN954QzfffLN+//vfh7z+3nvv6eSTT9Yll1yi/Px8ff3rX9fkyZP10ksvSZL27dsnr9crr9crwzBks9lUXFwc+HxFRYW+/OUvZ/S3YGBJtO698847uuKKK3TyyScrPz9fV1xxhcaOHRu4S/raa6/pmmuu0cc+9jGNGDFCf/zjH7V8+XIdOnQo478RuSlddY92D9HU1NToC1/4gqZMmaLCwkKNHTtWl112mcrKyrRo0SKNGTNGP/nJT5Sfn6/TTz9dkydP1gsvvCDJ1659//vf1ymnnKKCggJdeeWVGjt2rObPnx94n3YPZtJZ92j3EEsy9U+Szj//fNXX1+tHP/pRv3XT9iGadNY92j5Ek0zda2tr05QpU/T5z39eNptN55xzjj7/+c9r48aNkmj3EF06695Qa/cIoiOiM888U++//76+973vhbzu8Xg0bNiwkNfsdrv27dsnSbr88svlcDj07W9/W1/5ylf04IMPatq0aSoqKpLkO8COHj2qH/zgB/rGN76ha665Rnv27MnMj8KAkGjdi/Z+e3u7jh49qhNOOCHw3vjx4zV69Gjt3LkzTb8EA0066p5Eu4foPve5z+npp59WXl5e4LWFCxfqS1/6knbv3h3SbknScccdp8rKSknSnj17TN+n3UMs6ap7Eu0eYkum/knSc889p/vvv1/jxo0LWY62D7Gkq+5JtH2ILpm6d8MNN+jCCy8MvLd3717t3r1bX/rSl2j3EFO66p409No9guiI6Nhjj1V+fn6/1ydNmqSVK1dq4cKFcrvd2rBhg+bPn6+enh5Jksvl0sSJE/Xee+9p48aNuvrqq3XDDTeovr5ekjRq1Cidcsopmj17thYvXqzPfvazuuqqq9Te3p7R34fclWjdO/fcc/Xcc89px44dcrlceumll7R//3719PSos7NTkvoFOouLiwPvAemoexLtHqwzDENTp07V0qVL9cc//lGdnZ0qKSkJWaa4uFhdXV2SFPV92j3EI5V1T6LdQ3zirX+S9NGPfjTiumj7EI9U1j2Jtg/WJVL3/Pbv369rrrlG5513nk499VTaPcQllXVPGnrtHkF0xOXkk0/W//3f/+mRRx7RGWecoRkzZujCCy/UqFGjJEm33nqrzjrrLH3uc59TcXGxpkyZopEjRwbSGtx///267bbbdMwxx2jEiBG644471NnZqfXr12fzZ2EAiFX3fvGLX+iHP/yhpkyZorPPPlv79u3TmWeeqVGjRgVOCt3d3SHrdDgcGj58eMZ/CwaWZOqeRLsHazo6OnTDDTdo3rx5ev7553XiiSeqpKREDocjZLngdiva+7R7sCrVdU+i3YN1idS/aGj7YFWq655E2wdrkql7S5Ys0WWXXab//M//1L333iuJdg/WpbruSUOv3SOIjri0tLTo+OOP17x581RaWqrHHntMR44cCeRAqqmpkdPpDPlMfn6+CgoK1NHRoX/84x+qrq4OvOfxeOR2u0PypgORxKp7tbW1uvjii7VkyRKtXLlSt912myorK/XlL39Zo0eP1kc+8pGQx4rq6+vV0tLS79ElIFwydY92D1YcPHhQF110kTo6OjRnzhydeOKJkqQTTjhBu3fvDll2z549Ov744yVJxx9/vOn7tHuwIh11j3YPViVa/6Kh7YMV6ah7tH2wIpm69+ijj+qmm27Sn/70J91+++2y2WySaPdgTTrq3lBs9wiiIy4HDhzQpZdeqsrKSrndbs2fP19Lly7Vj3/8Y0nSOeeco8cff1yHDh2Sy+XSs88+q/r6ep199tkaMWKEVq9erX/84x9qb29XZ2en7rnnHn3yk5/U17/+9Sz/MuS6WHXv3Xff1XXXXafm5mZ1dnbq/vvvV2Fhoc455xxJ0oUXXhiomx0dHfrb3/6miRMn6tOf/nQ2fxYGgGTqHu0eYmltbdXPf/5znXzyyZoxY4aOOeaYwHuTJk1SQ0ODZs2aJZfLpbVr12revHm66KKLJEkXX3yx5s2bp7Vr18rlcmnWrFlqbGzUpEmTJNHuIbp01T3aPViRTP2LhbYP0aSr7tH2IZZk6t7MmTM1c+ZMvfDCC5o8eXK/ddPuIZp01b2h2O7ZDMMwsl0I5LYTTzxRs2fP1mmnnSZJeumllzR9+nQ1Nzfrc5/7nG6++Wadfvrpknx5CKdOnapFixapu7tbJ554om699VZ99atflSRVV1frvvvuU1lZmVwul0477TTdeeed+sQnPpG134fcFU/dc7lc+tvf/qYFCxbI5XLp61//uu6880598pOfDLz/0EMP6e2331ZnZ6dOO+003XPPPREnBQJSWfdo9xDNzJkz9fe//10lJSWBUR1+5eXlqqio0L333qtdu3bpmGOO0XXXXRcyuc9bb72lxx9/XLW1tTruuON055136mtf+5ok2j1El866R7uHWJKtf34PP/yw1q1bp+eeey7wGm0fokln3aPtQzSJ1j3DMHTqqaequ7tbhYWFIZ+79tpr9atf/Yp2D1Gls+4NtXaPIDoAAAAAAAAAACZI5wIAAAAAAAAAgAmC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoAAAAAAAAAACYIIgOAAAAAAAAAIAJgugAAAAAAAAAAJggiA4AAAAAAAAAgAmC6AAAAMAQUlVVle0iAAAAAAMKQXQAAABggHv44Yd1xRVXxFxuyZIl+p//+Z8MlAgAAAAYPAiiAwAAAENES0uLDMPIdjEAAACAAYUgOgAAADDAbNy4URdddJFOOukkXX755Tp8+LAkyTAMPfXUU5o8ebK+/vWv69RTT9VNN90kh8Oh0tJS3XXXXaqpqdGECRNUW1srp9Ophx56SN/5znc0ceJEXXPNNTpw4ECWfx0AAACQWwiiAwAAAANIc3Ozrr32Wp177rkqKyvTLbfcosWLF0uS3nvvPc2ePVsPP/yw1q9fr5dfflkrV67UvHnzdNppp+kvf/mLPv7xj6u8vFwf+chHNHXqVC1btkyzZs3SihUr9LWvfU2/+MUv1NPTk+VfCQAAAOQOgugAAADAALJs2TKVlJTommuuUUFBgU455RRddNFFkqSzzjpLc+bM0Wc/+1k1NTWpublZY8aMUW1tbb/1GIahl19+WTfeeKM+9alPqaioSFOmTJHL5dKyZcsy/KsAAACA3JWf7QIAAAAAsK62tlYf+9jHZLPZAq99+tOf1o4dO2QYhqZOnaqlS5fqmGOO0b//+7/L5XJFzIPe1NSkrq4u/fa3v5Xd3je2xuVyqbq6OiO/BQAAABgICKIDAAAAA8hHP/pRVVdXy+v1BoLfR48elST961//Uk1NjZYsWaIRI0ZIkiZPnhxxPWPHjlVRUZGeeeYZnXTSSYHX9+3bp4985CPp/REAAADAAEI6FwAAAGAAOeecc2QYhh5++GE5nU5t3bpVr732miSpo6NDRUVFysvLU09Pj5555hnt2rVLLpdLklRUVKTu7m653W7Z7XZdfPHFuv/++3X06FF5vV698cYb+sEPfsDkogAAAEAQmxHp2U4AAAAAOauyslJ33323Kisr9ZnPfEZf+9rXtH//fv3tb3/THXfcoW3btmnYsGE65ZRTVFxcrLa2Nj3xxBOqq6vTL37xC1VXV+vll1/WZz/7WT388MOaP3++Wlpa9KlPfUrXX3+9vvvd72b7JwIAAAA5gyA6AAAAAAAAAAAmSOcCAAAAAAAAAIAJgugAAAAAAAAAAJggiA4AAAAAAAAAgAmC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoAAAAAAAAAACYIIgOAAAAAAAAAIAJgugAAAAAAAAAAJggiA4AAAAAAAAAgAmC6AAAAAAAAAAAmCCIDgAAAAAAAACACYLoAAAAAAAAAACY+P8wJ0V5RiN41gAAAABJRU5ErkJggg=="
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 22
},
{
"cell_type": "markdown",
"metadata": {},
"source": "## 3. Simulazione dei Dati di Produzione Annuale"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-23T06:10:51.081621Z",
"start_time": "2024-10-23T06:10:51.044080Z"
}
},
"cell_type": "code",
"source": [
"\n",
"# Esempio di utilizzo\n",
"olive_varieties = pd.read_csv('./data/variety_olive_oil_production.csv')\n",
"\n",
"\n",
"def add_olive_water_consumption_correlation(dataset):\n",
" # Dati simulati per il fabbisogno d'acqua e la correlazione con la temperatura\n",
" fabbisogno_acqua = {\n",
" \"Nocellara dell'Etna\": {\"Primavera\": 1200, \"Estate\": 2000, \"Autunno\": 1000, \"Inverno\": 500, \"Temperatura Ottimale\": 18, \"Resistenza\": \"Media\"},\n",
" \"Leccino\": {\"Primavera\": 1000, \"Estate\": 1800, \"Autunno\": 800, \"Inverno\": 400, \"Temperatura Ottimale\": 20, \"Resistenza\": \"Alta\"},\n",
" \"Frantoio\": {\"Primavera\": 1100, \"Estate\": 1900, \"Autunno\": 900, \"Inverno\": 450, \"Temperatura Ottimale\": 19, \"Resistenza\": \"Alta\"},\n",
" \"Coratina\": {\"Primavera\": 1300, \"Estate\": 2200, \"Autunno\": 1100, \"Inverno\": 550, \"Temperatura Ottimale\": 17, \"Resistenza\": \"Media\"},\n",
" \"Moraiolo\": {\"Primavera\": 1150, \"Estate\": 2100, \"Autunno\": 900, \"Inverno\": 480, \"Temperatura Ottimale\": 18, \"Resistenza\": \"Media\"},\n",
" \"Pendolino\": {\"Primavera\": 1050, \"Estate\": 1850, \"Autunno\": 850, \"Inverno\": 430, \"Temperatura Ottimale\": 20, \"Resistenza\": \"Alta\"},\n",
" \"Taggiasca\": {\"Primavera\": 1000, \"Estate\": 1750, \"Autunno\": 800, \"Inverno\": 400, \"Temperatura Ottimale\": 19, \"Resistenza\": \"Alta\"},\n",
" \"Canino\": {\"Primavera\": 1100, \"Estate\": 1900, \"Autunno\": 900, \"Inverno\": 450, \"Temperatura Ottimale\": 18, \"Resistenza\": \"Media\"},\n",
" \"Itrana\": {\"Primavera\": 1200, \"Estate\": 2000, \"Autunno\": 1000, \"Inverno\": 500, \"Temperatura Ottimale\": 17, \"Resistenza\": \"Media\"},\n",
" \"Ogliarola\": {\"Primavera\": 1150, \"Estate\": 1950, \"Autunno\": 900, \"Inverno\": 480, \"Temperatura Ottimale\": 18, \"Resistenza\": \"Media\"},\n",
" \"Biancolilla\": {\"Primavera\": 1050, \"Estate\": 1800, \"Autunno\": 850, \"Inverno\": 430, \"Temperatura Ottimale\": 19, \"Resistenza\": \"Alta\"}\n",
" }\n",
"\n",
" # Calcola il fabbisogno idrico annuale per ogni varietà\n",
" for varieta in fabbisogno_acqua:\n",
" fabbisogno_acqua[varieta][\"Annuale\"] = sum([fabbisogno_acqua[varieta][stagione] for stagione in [\"Primavera\", \"Estate\", \"Autunno\", \"Inverno\"]])\n",
"\n",
" # Aggiungiamo le nuove colonne al dataset\n",
" dataset[\"Fabbisogno Acqua Primavera (m³/ettaro)\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Primavera\"])\n",
" dataset[\"Fabbisogno Acqua Estate (m³/ettaro)\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Estate\"])\n",
" dataset[\"Fabbisogno Acqua Autunno (m³/ettaro)\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Autunno\"])\n",
" dataset[\"Fabbisogno Acqua Inverno (m³/ettaro)\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Inverno\"])\n",
" dataset[\"Fabbisogno Idrico Annuale (m³/ettaro)\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Annuale\"])\n",
" dataset[\"Temperatura Ottimale\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Temperatura Ottimale\"])\n",
" dataset[\"Resistenza alla Siccità\"] = dataset[\"Varietà di Olive\"].apply(lambda x: fabbisogno_acqua[x][\"Resistenza\"])\n",
"\n",
" return dataset\n",
"\n",
"\n",
"olive_varieties = add_olive_water_consumption_correlation(olive_varieties)\n",
"\n",
"olive_varieties.to_parquet(\"./data/olive_varieties.parquet\")"
],
"outputs": [],
"execution_count": 23
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T10:59:32.356335Z",
"start_time": "2024-10-24T10:59:32.229812Z"
}
},
"source": [
"def preprocess_weather_data(weather_df):\n",
" # Calcola statistiche mensili per ogni anno\n",
" monthly_weather = weather_df.groupby(['year', 'month']).agg({\n",
" 'temp': ['mean', 'min', 'max'],\n",
" 'humidity': 'mean',\n",
" 'precip': 'sum',\n",
" 'windspeed': 'mean',\n",
" 'cloudcover': 'mean',\n",
" 'solarradiation': 'sum',\n",
" 'solarenergy': 'sum',\n",
" 'uvindex': 'max'\n",
" }).reset_index()\n",
"\n",
" monthly_weather.columns = ['year', 'month'] + [f'{col[0]}_{col[1]}' for col in monthly_weather.columns[2:]]\n",
" return monthly_weather\n",
"\n",
"\n",
"def get_growth_phase(month):\n",
" if month in [12, 1, 2]:\n",
" return 'dormancy'\n",
" elif month in [3, 4, 5]:\n",
" return 'flowering'\n",
" elif month in [6, 7, 8]:\n",
" return 'fruit_set'\n",
" else:\n",
" return 'ripening'\n",
"\n",
"\n",
"def calculate_weather_effect(row, optimal_temp):\n",
" # Effetti base\n",
" temp_effect = -0.1 * (row['temp_mean'] - optimal_temp) ** 2\n",
" rain_effect = -0.05 * (row['precip_sum'] - 600) ** 2 / 10000\n",
" sun_effect = 0.1 * row['solarenergy_sum'] / 1000\n",
"\n",
" # Fattori di scala basati sulla fase di crescita\n",
" if row['growth_phase'] == 'dormancy':\n",
" temp_scale = 0.5\n",
" rain_scale = 0.2\n",
" sun_scale = 0.1\n",
" elif row['growth_phase'] == 'flowering':\n",
" temp_scale = 2.0\n",
" rain_scale = 1.5\n",
" sun_scale = 1.0\n",
" elif row['growth_phase'] == 'fruit_set':\n",
" temp_scale = 1.5\n",
" rain_scale = 1.0\n",
" sun_scale = 0.8\n",
" else: # ripening\n",
" temp_scale = 1.0\n",
" rain_scale = 0.5\n",
" sun_scale = 1.2\n",
"\n",
" # Calcolo dell'effetto combinato\n",
" combined_effect = (\n",
" temp_scale * temp_effect +\n",
" rain_scale * rain_effect +\n",
" sun_scale * sun_effect\n",
" )\n",
"\n",
" # Aggiustamenti specifici per fase\n",
" if row['growth_phase'] == 'flowering':\n",
" combined_effect -= 0.5 * max(0, row['precip_sum'] - 50) # Penalità per pioggia eccessiva durante la fioritura\n",
" elif row['growth_phase'] == 'fruit_set':\n",
" combined_effect += 0.3 * max(0, row['temp_mean'] - (optimal_temp + 5)) # Bonus per temperature più alte durante la formazione dei frutti\n",
"\n",
" return combined_effect\n",
"\n",
"\n",
"def calculate_water_need(weather_data, base_need, optimal_temp):\n",
" # Calcola il fabbisogno idrico basato su temperatura e precipitazioni\n",
" temp_factor = 1 + 0.05 * (weather_data['temp_mean'] - optimal_temp) # Aumenta del 5% per ogni grado sopra l'ottimale\n",
" rain_factor = 1 - 0.001 * weather_data['precip_sum'] # Diminuisce leggermente con l'aumentare delle precipitazioni\n",
" return base_need * temp_factor * rain_factor\n",
"\n",
"\n",
"def clean_column_name(name):\n",
" # Rimuove caratteri speciali e spazi, converte in snake_case e abbrevia\n",
" name = re.sub(r'[^a-zA-Z0-9\\s]', '', name) # Rimuove caratteri speciali\n",
" name = name.lower().replace(' ', '_') # Converte in snake_case\n",
"\n",
" # Abbreviazioni comuni\n",
" abbreviations = {\n",
" 'production': 'prod',\n",
" 'percentage': 'pct',\n",
" 'hectare': 'ha',\n",
" 'tonnes': 't',\n",
" 'litres': 'l',\n",
" 'minimum': 'min',\n",
" 'maximum': 'max',\n",
" 'average': 'avg'\n",
" }\n",
"\n",
" for full, abbr in abbreviations.items():\n",
" name = name.replace(full, abbr)\n",
"\n",
" return name\n",
"\n",
"\n",
"def create_technique_mapping(olive_varieties, mapping_path='models/technique_mapping.joblib'):\n",
" # Estrai tutte le tecniche uniche dal dataset e convertile in lowercase\n",
" all_techniques = olive_varieties['Tecnica di Coltivazione'].str.lower().unique()\n",
"\n",
" # Crea il mapping partendo da 1\n",
" technique_mapping = {tech: i + 1 for i, tech in enumerate(sorted(all_techniques))}\n",
"\n",
" # Salva il mapping\n",
" os.makedirs(os.path.dirname(mapping_path), exist_ok=True)\n",
" joblib.dump(technique_mapping, mapping_path)\n",
"\n",
" return technique_mapping\n",
"\n",
"\n",
"def encode_techniques(df, mapping_path='models/technique_mapping.joblib'):\n",
" if not os.path.exists(mapping_path):\n",
" raise FileNotFoundError(f\"Mapping not found at {mapping_path}. Run create_technique_mapping first.\")\n",
"\n",
" technique_mapping = joblib.load(mapping_path)\n",
"\n",
" # Trova tutte le colonne delle tecniche\n",
" tech_columns = [col for col in df.columns if col.endswith('_tech')]\n",
"\n",
" # Applica il mapping a tutte le colonne delle tecniche\n",
" for col in tech_columns:\n",
" df[col] = df[col].str.lower().map(technique_mapping).fillna(0).astype(int)\n",
"\n",
" return df\n",
"\n",
"\n",
"def decode_techniques(df, mapping_path='models/technique_mapping.joblib'):\n",
" if not os.path.exists(mapping_path):\n",
" raise FileNotFoundError(f\"Mapping not found at {mapping_path}\")\n",
"\n",
" technique_mapping = joblib.load(mapping_path)\n",
" reverse_mapping = {v: k for k, v in technique_mapping.items()}\n",
" reverse_mapping[0] = '' # Aggiungi un mapping per 0 a stringa vuota\n",
"\n",
" # Trova tutte le colonne delle tecniche\n",
" tech_columns = [col for col in df.columns if col.endswith('_tech')]\n",
"\n",
" # Applica il reverse mapping a tutte le colonne delle tecniche\n",
" for col in tech_columns:\n",
" df[col] = df[col].map(reverse_mapping)\n",
"\n",
" return df\n",
"\n",
"\n",
"def decode_single_technique(technique_value, mapping_path='models/technique_mapping.joblib'):\n",
" if not os.path.exists(mapping_path):\n",
" raise FileNotFoundError(f\"Mapping not found at {mapping_path}\")\n",
"\n",
" technique_mapping = joblib.load(mapping_path)\n",
" reverse_mapping = {v: k for k, v in technique_mapping.items()}\n",
" reverse_mapping[0] = ''\n",
"\n",
" return reverse_mapping.get(technique_value, '')\n",
"\n",
"\n",
"def simulate_olive_production(weather_data, olive_varieties, num_simulations=5, random_seed=None):\n",
" \"\"\"\n",
" Simula la produzione di olive per diverse zone e varietà, considerando variazioni meteo specifiche per zona.\n",
" \n",
" Args:\n",
" weather_data: DataFrame con dati meteorologici storici\n",
" olive_varieties: DataFrame con informazioni sulle varietà di olive\n",
" num_simulations: Numero di simulazioni/zone da generare\n",
" random_seed: Seme per la riproducibilità dei risultati\n",
" \n",
" Returns:\n",
" DataFrame con i risultati delle simulazioni per tutte le zone\n",
" \"\"\"\n",
" if random_seed is not None:\n",
" np.random.seed(random_seed)\n",
"\n",
" create_technique_mapping(olive_varieties)\n",
" monthly_weather = preprocess_weather_data(weather_data)\n",
" all_results = []\n",
"\n",
" # Preparazione dati varietà\n",
" all_varieties = olive_varieties['Varietà di Olive'].unique()\n",
" variety_techniques = {\n",
" variety: olive_varieties[olive_varieties['Varietà di Olive'] == variety]['Tecnica di Coltivazione'].unique()\n",
" for variety in all_varieties\n",
" }\n",
"\n",
" # Per ogni simulazione (anno)\n",
" for sim in range(num_simulations):\n",
" # Seleziona anno di base per questa simulazione\n",
" selected_year = np.random.choice(monthly_weather['year'].unique())\n",
" base_weather = monthly_weather[monthly_weather['year'] == selected_year].copy()\n",
" base_weather.loc[:, 'growth_phase'] = base_weather['month'].apply(get_growth_phase)\n",
"\n",
" # Per ogni zona nella simulazione\n",
" for zone in range(num_simulations):\n",
" # Crea una copia dei dati meteo per questa zona specifica\n",
" zone_weather = base_weather.copy()\n",
"\n",
" # Genera variazioni meteorologiche specifiche per questa zona\n",
" zone_weather['temp_mean'] *= np.random.uniform(0.95, 1.05, len(zone_weather))\n",
" zone_weather['precip_sum'] *= np.random.uniform(0.9, 1.1, len(zone_weather))\n",
" zone_weather['solarenergy_sum'] *= np.random.uniform(0.95, 1.05, len(zone_weather))\n",
"\n",
" # Genera caratteristiche specifiche della zona\n",
" num_varieties = np.random.randint(1, 4) # 1-3 varietà per zona\n",
" selected_varieties = np.random.choice(all_varieties, size=num_varieties, replace=False)\n",
" hectares = np.random.uniform(1, 10) # Dimensione del terreno\n",
" percentages = np.random.dirichlet(np.ones(num_varieties)) # Distribuzione delle varietà\n",
"\n",
" # Inizializzazione contatori annuali\n",
" annual_production = 0\n",
" annual_min_oil = 0\n",
" annual_max_oil = 0\n",
" annual_avg_oil = 0\n",
" annual_water_need = 0\n",
"\n",
" # Inizializzazione dizionario dati varietà\n",
" variety_data = {clean_column_name(variety): {\n",
" 'tech': '',\n",
" 'pct': 0,\n",
" 'prod_t_ha': 0,\n",
" 'oil_prod_t_ha': 0,\n",
" 'oil_prod_l_ha': 0,\n",
" 'min_yield_pct': 0,\n",
" 'max_yield_pct': 0,\n",
" 'min_oil_prod_l_ha': 0,\n",
" 'max_oil_prod_l_ha': 0,\n",
" 'avg_oil_prod_l_ha': 0,\n",
" 'l_per_t': 0,\n",
" 'min_l_per_t': 0,\n",
" 'max_l_per_t': 0,\n",
" 'avg_l_per_t': 0,\n",
" 'olive_prod': 0,\n",
" 'min_oil_prod': 0,\n",
" 'max_oil_prod': 0,\n",
" 'avg_oil_prod': 0,\n",
" 'water_need': 0\n",
" } for variety in all_varieties}\n",
"\n",
" # Simula produzione per ogni varietà selezionata\n",
" for i, variety in enumerate(selected_varieties):\n",
" # Seleziona tecnica di coltivazione casuale per questa varietà\n",
" technique = np.random.choice(variety_techniques[variety])\n",
" percentage = percentages[i]\n",
"\n",
" # Ottieni informazioni specifiche della varietà\n",
" variety_info = olive_varieties[\n",
" (olive_varieties['Varietà di Olive'] == variety) &\n",
" (olive_varieties['Tecnica di Coltivazione'] == technique)\n",
" ].iloc[0]\n",
"\n",
" # Calcola produzione base con variabilità\n",
" base_production = variety_info['Produzione (tonnellate/ettaro)'] * 1000 * percentage * hectares / 12\n",
" base_production *= np.random.uniform(0.9, 1.1) # Aggiungi variabilità alla produzione base\n",
"\n",
" # Calcola effetti meteo sulla produzione\n",
" weather_effect = zone_weather.apply(\n",
" lambda row: calculate_weather_effect(row, variety_info['Temperatura Ottimale']),\n",
" axis=1\n",
" )\n",
" monthly_production = base_production * (1 + weather_effect / 10000)\n",
" monthly_production *= np.random.uniform(0.95, 1.05, len(zone_weather))\n",
"\n",
" # Calcola produzione annuale per questa varietà\n",
" annual_variety_production = monthly_production.sum()\n",
"\n",
" # Calcola rese di olio con variabilità\n",
" min_yield_factor = np.random.uniform(0.95, 1.05)\n",
" max_yield_factor = np.random.uniform(0.95, 1.05)\n",
" avg_yield_factor = (min_yield_factor + max_yield_factor) / 2\n",
"\n",
" min_oil_production = annual_variety_production * variety_info['Min Litri per Tonnellata'] / 1000 * min_yield_factor\n",
" max_oil_production = annual_variety_production * variety_info['Max Litri per Tonnellata'] / 1000 * max_yield_factor\n",
" avg_oil_production = annual_variety_production * variety_info['Media Litri per Tonnellata'] / 1000 * avg_yield_factor\n",
"\n",
" # Calcola fabbisogno idrico\n",
" base_water_need = (\n",
" variety_info['Fabbisogno Acqua Primavera (m³/ettaro)'] +\n",
" variety_info['Fabbisogno Acqua Estate (m³/ettaro)'] +\n",
" variety_info['Fabbisogno Acqua Autunno (m³/ettaro)'] +\n",
" variety_info['Fabbisogno Acqua Inverno (m³/ettaro)']\n",
" ) / 4 # Media stagionale\n",
"\n",
" monthly_water_need = zone_weather.apply(\n",
" lambda row: calculate_water_need(row, base_water_need, variety_info['Temperatura Ottimale']),\n",
" axis=1\n",
" )\n",
" monthly_water_need *= np.random.uniform(0.95, 1.05, len(monthly_water_need))\n",
" annual_variety_water_need = monthly_water_need.sum() * percentage * hectares\n",
"\n",
" # Aggiorna totali annuali\n",
" annual_production += annual_variety_production\n",
" annual_min_oil += min_oil_production\n",
" annual_max_oil += max_oil_production\n",
" annual_avg_oil += avg_oil_production\n",
" annual_water_need += annual_variety_water_need\n",
"\n",
" # Aggiorna dati varietà\n",
" clean_variety = clean_column_name(variety)\n",
" variety_data[clean_variety].update({\n",
" 'tech': clean_column_name(technique),\n",
" 'pct': percentage,\n",
" 'prod_t_ha': variety_info['Produzione (tonnellate/ettaro)'] * np.random.uniform(0.95, 1.05),\n",
" 'oil_prod_t_ha': variety_info['Produzione Olio (tonnellate/ettaro)'] * np.random.uniform(0.95, 1.05),\n",
" 'oil_prod_l_ha': variety_info['Produzione Olio (litri/ettaro)'] * np.random.uniform(0.95, 1.05),\n",
" 'min_yield_pct': variety_info['Min % Resa'] * min_yield_factor,\n",
" 'max_yield_pct': variety_info['Max % Resa'] * max_yield_factor,\n",
" 'min_oil_prod_l_ha': variety_info['Min Produzione Olio (litri/ettaro)'] * min_yield_factor,\n",
" 'max_oil_prod_l_ha': variety_info['Max Produzione Olio (litri/ettaro)'] * max_yield_factor,\n",
" 'avg_oil_prod_l_ha': variety_info['Media Produzione Olio (litri/ettaro)'] * avg_yield_factor,\n",
" 'l_per_t': variety_info['Litri per Tonnellata'] * np.random.uniform(0.98, 1.02),\n",
" 'min_l_per_t': variety_info['Min Litri per Tonnellata'] * min_yield_factor,\n",
" 'max_l_per_t': variety_info['Max Litri per Tonnellata'] * max_yield_factor,\n",
" 'avg_l_per_t': variety_info['Media Litri per Tonnellata'] * avg_yield_factor,\n",
" 'olive_prod': annual_variety_production,\n",
" 'min_oil_prod': min_oil_production,\n",
" 'max_oil_prod': max_oil_production,\n",
" 'avg_oil_prod': avg_oil_production,\n",
" 'water_need': annual_variety_water_need\n",
" })\n",
"\n",
" # Appiattisci i dati delle varietà per il DataFrame finale\n",
" flattened_variety_data = {\n",
" f'{variety}_{key}': value\n",
" for variety, data in variety_data.items()\n",
" for key, value in data.items()\n",
" }\n",
"\n",
" # Aggiungi il risultato con tutti i dati della zona\n",
" all_results.append({\n",
" 'simulation_id': sim + 1,\n",
" 'zone_id': zone + 1,\n",
" 'year': selected_year,\n",
" 'temp_mean': zone_weather['temp_mean'].mean(),\n",
" 'precip_sum': zone_weather['precip_sum'].sum(),\n",
" 'solar_energy_sum': zone_weather['solarenergy_sum'].sum(),\n",
" 'ha': hectares,\n",
" 'zone': f\"zone_{zone + 1}\",\n",
" 'olive_prod': annual_production,\n",
" 'min_oil_prod': annual_min_oil,\n",
" 'max_oil_prod': annual_max_oil,\n",
" 'avg_oil_prod': annual_avg_oil,\n",
" 'total_water_need': annual_water_need,\n",
" **flattened_variety_data\n",
" })\n",
"\n",
" # Crea DataFrame finale con tutti i risultati\n",
" df_results = pd.DataFrame(all_results)\n",
" return df_results\n",
"\n",
"\n",
"simulated_data = simulate_olive_production(weather_data, olive_varieties, 100, random_state_value)\n",
"\n",
"simulated_data.to_parquet(\"./data/simulated_data.parquet\")\n",
"\n",
"\n",
"# Funzione per visualizzare il mapping delle tecniche\n",
"def print_technique_mapping(mapping_path='models/technique_mapping.joblib'):\n",
" if not os.path.exists(mapping_path):\n",
" print(\"Mapping file not found.\")\n",
" return\n",
"\n",
" mapping = joblib.load(mapping_path)\n",
" print(\"Technique Mapping:\")\n",
" for technique, code in mapping.items():\n",
" print(f\"{technique}: {code}\")\n",
"\n",
"\n",
"# Visualizza il mapping delle tecniche\n",
"print_technique_mapping()"
],
"outputs": [
{
"ename": "NameError",
"evalue": "name 'weather_data' is not defined",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mNameError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[55], line 350\u001B[0m\n\u001B[1;32m 346\u001B[0m df_results \u001B[38;5;241m=\u001B[39m pd\u001B[38;5;241m.\u001B[39mDataFrame(all_results)\n\u001B[1;32m 347\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m df_results\n\u001B[0;32m--> 350\u001B[0m simulated_data \u001B[38;5;241m=\u001B[39m simulate_olive_production(\u001B[43mweather_data\u001B[49m, olive_varieties, \u001B[38;5;241m100\u001B[39m, random_state_value)\n\u001B[1;32m 352\u001B[0m simulated_data\u001B[38;5;241m.\u001B[39mto_parquet(\u001B[38;5;124m\"\u001B[39m\u001B[38;5;124m./data/simulated_data.parquet\u001B[39m\u001B[38;5;124m\"\u001B[39m)\n\u001B[1;32m 355\u001B[0m \u001B[38;5;66;03m# Funzione per visualizzare il mapping delle tecniche\u001B[39;00m\n",
"\u001B[0;31mNameError\u001B[0m: name 'weather_data' is not defined"
]
}
],
"execution_count": 55
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-23T06:10:54.639402Z",
"start_time": "2024-10-23T06:10:52.895228Z"
}
},
"cell_type": "code",
"source": [
"simulated_data = pd.read_parquet(\"./data/simulated_data.parquet\")\n",
"\n",
"\n",
"def clean_column_names(df):\n",
" # Funzione per pulire i nomi delle colonne\n",
" new_columns = []\n",
" for col in df.columns:\n",
" # Usa regex per separare le varietà\n",
" varieties = re.findall(r'([a-z]+)_([a-z_]+)', col)\n",
" if varieties:\n",
" new_columns.append(f\"{varieties[0][0]}_{varieties[0][1]}\")\n",
" else:\n",
" new_columns.append(col)\n",
" return new_columns\n",
"\n",
"\n",
"def prepare_comparison_data(simulated_data, olive_varieties):\n",
" # Pulisci i nomi delle colonne\n",
" df = simulated_data.copy()\n",
"\n",
" df.columns = clean_column_names(df)\n",
" df = encode_techniques(df)\n",
"\n",
" all_varieties = olive_varieties['Varietà di Olive'].unique()\n",
" varieties = [clean_column_name(variety) for variety in all_varieties]\n",
" comparison_data = []\n",
"\n",
" for variety in varieties:\n",
" olive_prod_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_olive_prod')), None)\n",
" oil_prod_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_avg_oil_prod')), None)\n",
" tech_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_tech')), None)\n",
" water_need_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_water_need')), None)\n",
"\n",
" if olive_prod_col and oil_prod_col and tech_col and water_need_col:\n",
" variety_data = df[[olive_prod_col, oil_prod_col, tech_col, water_need_col]]\n",
" variety_data = variety_data[variety_data[tech_col] != 0] # Esclude le righe dove la tecnica è 0\n",
"\n",
" if not variety_data.empty:\n",
" avg_olive_prod = pd.to_numeric(variety_data[olive_prod_col], errors='coerce').mean()\n",
" avg_oil_prod = pd.to_numeric(variety_data[oil_prod_col], errors='coerce').mean()\n",
" avg_water_need = pd.to_numeric(variety_data[water_need_col], errors='coerce').mean()\n",
" efficiency = avg_oil_prod / avg_olive_prod if avg_olive_prod > 0 else 0\n",
" water_efficiency = avg_oil_prod / avg_water_need if avg_water_need > 0 else 0\n",
"\n",
" comparison_data.append({\n",
" 'Variety': variety,\n",
" 'Avg Olive Production (kg/ha)': avg_olive_prod,\n",
" 'Avg Oil Production (L/ha)': avg_oil_prod,\n",
" 'Avg Water Need (m³/ha)': avg_water_need,\n",
" 'Oil Efficiency (L/kg)': efficiency,\n",
" 'Water Efficiency (L oil/m³ water)': water_efficiency\n",
" })\n",
"\n",
" return pd.DataFrame(comparison_data)\n",
"\n",
"\n",
"def plot_variety_comparison(comparison_data, metric):\n",
" plt.figure(figsize=(12, 6))\n",
" bars = plt.bar(comparison_data['Variety'], comparison_data[metric])\n",
" plt.title(f'Comparison of {metric} across Olive Varieties')\n",
" plt.xlabel('Variety')\n",
" plt.ylabel(metric)\n",
" plt.xticks(rotation=45, ha='right')\n",
"\n",
" for bar in bars:\n",
" height = bar.get_height()\n",
" plt.text(bar.get_x() + bar.get_width() / 2., height,\n",
" f'{height:.2f}',\n",
" ha='center', va='bottom')\n",
"\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"\n",
"def plot_efficiency_vs_production(comparison_data):\n",
" plt.figure(figsize=(10, 6))\n",
"\n",
" plt.scatter(comparison_data['Avg Olive Production (kg/ha)'],\n",
" comparison_data['Oil Efficiency (L/kg)'],\n",
" s=100)\n",
"\n",
" for i, row in comparison_data.iterrows():\n",
" plt.annotate(row['Variety'],\n",
" (row['Avg Olive Production (kg/ha)'], row['Oil Efficiency (L/kg)']),\n",
" xytext=(5, 5), textcoords='offset points')\n",
"\n",
" plt.title('Oil Efficiency vs Olive Production by Variety')\n",
" plt.xlabel('Average Olive Production (kg/ha)')\n",
" plt.ylabel('Oil Efficiency (L oil / kg olives)')\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"\n",
"def plot_water_efficiency_vs_production(comparison_data):\n",
" plt.figure(figsize=(10, 6))\n",
"\n",
" plt.scatter(comparison_data['Avg Olive Production (kg/ha)'],\n",
" comparison_data['Water Efficiency (L oil/m³ water)'],\n",
" s=100)\n",
"\n",
" for i, row in comparison_data.iterrows():\n",
" plt.annotate(row['Variety'],\n",
" (row['Avg Olive Production (kg/ha)'], row['Water Efficiency (L oil/m³ water)']),\n",
" xytext=(5, 5), textcoords='offset points')\n",
"\n",
" plt.title('Water Efficiency vs Olive Production by Variety')\n",
" plt.xlabel('Average Olive Production (kg/ha)')\n",
" plt.ylabel('Water Efficiency (L oil / m³ water)')\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"\n",
"def plot_water_need_vs_oil_production(comparison_data):\n",
" plt.figure(figsize=(10, 6))\n",
"\n",
" plt.scatter(comparison_data['Avg Water Need (m³/ha)'],\n",
" comparison_data['Avg Oil Production (L/ha)'],\n",
" s=100)\n",
"\n",
" for i, row in comparison_data.iterrows():\n",
" plt.annotate(row['Variety'],\n",
" (row['Avg Water Need (m³/ha)'], row['Avg Oil Production (L/ha)']),\n",
" xytext=(5, 5), textcoords='offset points')\n",
"\n",
" plt.title('Oil Production vs Water Need by Variety')\n",
" plt.xlabel('Average Water Need (m³/ha)')\n",
" plt.ylabel('Average Oil Production (L/ha)')\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"\n",
"def analyze_by_technique(simulated_data, olive_varieties):\n",
" # Pulisci i nomi delle colonne\n",
" df = simulated_data.copy()\n",
"\n",
" df.columns = clean_column_names(df)\n",
" df = encode_techniques(df)\n",
" all_varieties = olive_varieties['Varietà di Olive'].unique()\n",
" varieties = [clean_column_name(variety) for variety in all_varieties]\n",
"\n",
" technique_data = []\n",
"\n",
" for variety in varieties:\n",
" olive_prod_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_olive_prod')), None)\n",
" oil_prod_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_avg_oil_prod')), None)\n",
" tech_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_tech')), None)\n",
" water_need_col = next((col for col in df.columns if col.startswith(f'{variety}_') and col.endswith('_water_need')), None)\n",
"\n",
" if olive_prod_col and oil_prod_col and tech_col and water_need_col:\n",
" variety_data = df[[olive_prod_col, oil_prod_col, tech_col, water_need_col]]\n",
" variety_data = variety_data[variety_data[tech_col] != 0]\n",
"\n",
" if not variety_data.empty:\n",
" for tech in variety_data[tech_col].unique():\n",
" tech_data = variety_data[variety_data[tech_col] == tech]\n",
"\n",
" avg_olive_prod = pd.to_numeric(tech_data[olive_prod_col], errors='coerce').mean()\n",
" avg_oil_prod = pd.to_numeric(tech_data[oil_prod_col], errors='coerce').mean()\n",
" avg_water_need = pd.to_numeric(tech_data[water_need_col], errors='coerce').mean()\n",
"\n",
" efficiency = avg_oil_prod / avg_olive_prod if avg_olive_prod > 0 else 0\n",
" water_efficiency = avg_oil_prod / avg_water_need if avg_water_need > 0 else 0\n",
"\n",
" technique_data.append({\n",
" 'Variety': variety,\n",
" 'Technique': tech,\n",
" 'Technique String': decode_single_technique(tech),\n",
" 'Avg Olive Production (kg/ha)': avg_olive_prod,\n",
" 'Avg Oil Production (L/ha)': avg_oil_prod,\n",
" 'Avg Water Need (m³/ha)': avg_water_need,\n",
" 'Oil Efficiency (L/kg)': efficiency,\n",
" 'Water Efficiency (L oil/m³ water)': water_efficiency\n",
" })\n",
"\n",
" return pd.DataFrame(technique_data)\n",
"\n",
"\n",
"# Esecuzione dell'analisi\n",
"comparison_data = prepare_comparison_data(simulated_data, olive_varieties)\n",
"\n",
"# Genera i grafici\n",
"plot_variety_comparison(comparison_data, 'Avg Olive Production (kg/ha)')\n",
"plot_variety_comparison(comparison_data, 'Avg Oil Production (L/ha)')\n",
"plot_variety_comparison(comparison_data, 'Avg Water Need (m³/ha)')\n",
"plot_variety_comparison(comparison_data, 'Oil Efficiency (L/kg)')\n",
"plot_variety_comparison(comparison_data, 'Water Efficiency (L oil/m³ water)')\n",
"plot_efficiency_vs_production(comparison_data)\n",
"plot_water_efficiency_vs_production(comparison_data)\n",
"plot_water_need_vs_oil_production(comparison_data)\n",
"\n",
"# Analisi per tecnica\n",
"technique_data = analyze_by_technique(simulated_data, olive_varieties)\n",
"\n",
"print(technique_data)\n",
"\n",
"# Stampa un sommario statistico\n",
"print(\"Comparison by Variety:\")\n",
"print(comparison_data.set_index('Variety'))\n",
"print(\"\\nBest Varieties by Water Efficiency:\")\n",
"print(comparison_data.sort_values('Water Efficiency (L oil/m³ water)', ascending=False).head())"
],
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADLA0lEQVR4nOzdd3yN5//H8dc52SEkxC5VexN779irQalUjaJIbGqv2lWbqK222qNWa1O1lSqtVVVqRSJLZJ3fH345354mSPQkKt7PxyOP9lzXdd/3577Pde4jn1zXdRtMJpMJERERERERERGRZGR83QGIiIiIiIiIiMjbR0kpERERERERERFJdkpKiYiIiIiIiIhIslNSSkREREREREREkp2SUiIiIiIiIiIikuyUlBIRERERERERkWSnpJSIiIiIiIiIiCQ7JaVERERERERERCTZKSklIiIi8gYzmUyvOwSRt44+dyIi1qGklIiIcOHCBQYMGED16tUpVqwYtWrVYtiwYdy6det1h2Y1GzduJH/+/Pz555+vO5QE++2333j//fcpUqQIDRo0eGHb9evXkz9/fjp16pRM0Vl69OgRX3zxBfXq1aNYsWJUqFCBdu3asWPHjjhtBw0aRM2aNc2va9asyaBBg5I8xrZt25I/f36LnyJFilC9enVGjx7N48ePk+zYSdX/9u7dy8CBA82vjx8/Tv78+Tl+/LhVj/MiwcHB1KpVi2vXrgHWfT8DAgIoVKgQ9+7di9NvXlVERAR169bl3Llz/z7AN1hoaCh+fn40adKEEiVKULZsWVq3bs3atWuJioqyaDtr1izy589vft22bVvatm2bpPENGzaMQoUK8eDBg+e26d69O5UrVyY6OvqVj5M/f35mzZqVqG3WrVvHpEmTzK/fxO8XEZH/CtvXHYCIiLxeK1euZPz48ZQrV45+/fqRMWNG/vjjDxYuXMiePXtYsmQJhQsXft1h/mvVq1dn7dq1ZMyY8XWHkmCzZ8/m9u3bzJ49m/Tp07+w7YYNG8iXLx9Hjx7l1q1bZM+ePZmihMuXL9OpUydsbGxo164dhQsXJjg4mL1799KvXz92797Nl19+iZ2dXbzbz549m9SpUydLrIUKFWLkyJHm15GRkVy8eJGpU6dy6dIlVq9ejcFgSJZYrGHp0qUWrwsXLszatWvJkydPssUwbtw4atSoQe7cua2+78OHD5MnTx4yZcpktX3a29vTr18/Bg0axJYtW3BwcLDavt8Uf/31Fx06dCAgIIC2bdtSqlQpnj59yg8//MC4cePYvn07fn5+uLi4xLv93z9DSaVFixasW7eOb7/9lvbt28epDwgI4NChQ3Ts2BEbG5tXPs7atWvJnDlzoraZO3cuZcuWNb9+E79fRET+K5SUEhF5i50+fZpx48bh7e3N0KFDzeXlypWjVq1aeHl5MXjwYLZu3foao7SOdOnSkS5dutcdRqIEBASQL18+qlev/sJ2N27c4MyZM8yfP58BAwbwzTff0K9fv2SJ8cmTJ3Tv3p306dPz9ddf4+rqaq6rXbs2NWrUoEePHrz33nv07t073n0UKlQoWWIFSJ06NSVKlLAoK1OmDKGhocycOZOffvopTv2bJL7zS0oXL15k69at7N+/P0n2f/DgQapWrWr1/dapU4cZM2awevXqeBMeKZnJZKJnz548efKETZs2kTVrVnNd9erVqV+/Ph9//DGff/45kydPjncfyZH0LFGiBHny5GHr1q3xvkfbt28nKiqKFi1a/Ovj/Ftv4veLiMh/habviYi8xRYtWoSLiwt9+/aNU5cuXToGDRpEnTp1CAkJMZfv2LEDLy8vPDw8qFSpEiNGjLCY9jRr1izq1avH999/T6NGjShatChNmzbl7NmznDt3jpYtW1KsWDEaNWrEsWPHLLarWbMm+/fvp169ehQvXpyWLVtatIFno3J8fX0pX748hQsXpkqVKowdO5bw8HBzm/z58zN79myaN29OqVKl8PPzizO94tGjR/Tv359KlSqZY9y8ebPFsX7//Xd69uxJpUqVKFGiBG3btuX06dPm+j///JP8+fOzc+dOevbsiYeHB2XKlGHo0KGEhoa+8Nrfv3+fwYMHU61aNYoVK0aLFi3Yu3evxTmcOHGCkydPkj9/fjZu3PjcfW3YsAEXFxcqVKhAvXr12LBhAxEREeb6r776isKFC/Po0SOL7VatWmUxPebs2bN4e3tTokQJqlevztdff0379u1fOBVr48aN3L59m5EjR1okpGLVqVOHBg0asHTp0udek79P96pbty4+Pj5x2rRs2ZIuXbqYX3///fd4eXlRtGhRKlWqxNixYwkLC3tunC9TpEgRAO7cuQM8m57Uv39/evbsScmSJc3HDg4OZsKECdSuXZuiRYvSqFEj1q9fb7GvmJgY/Pz8qF69OsWLF6d79+5xpgb+czpUrH9OJQoNDWXChAlUrVqVEiVK4OXlxb59+8wxnjhxghMnTpin7MU3fe/ChQt88sknlCtXjpIlS9K1a1euXLliro/d5tixY3Ts2JHixYtTsWJFJk2aFGca1z/NmzePcuXKvXAk0/r16ylQoIDFeR04cAAvLy+KFStG3bp12b59O56enhZtYmJiOHr0KNWqVbPY38aNG6lbty5FixalSZMmHDp0yKL+5MmTfPLJJ5QpU4YiRYpQs2ZNZs2aRUxMjEW7xo0bs3jxYovPyj+Fh4czZcoU6tSpQ5EiRShZsiQdOnTg0qVLFu2OHj2Kt7c3Hh4eVK5c2eK+uHHjRgoVKsS6deuoXLkyVatWNV//l91Pnz59yujRo6latSpFihShXr16LF682OLYy5cvp169ehQtWpQqVaowatQoi3v2Px08eJDz58/Tv39/i4RULA8PD9q1a8fWrVv5448/4t3H36fvdezYkWbNmsVp07t3bxo2bGh+ferUKT766COKFy9O2bJlGThwYJx70j81b96cixcvcv369Th1mzZtomzZsuTIkSNB79OgQYNo164dI0eOpHTp0rz//vtERUXF+cwFBgYyYsQIKlasSNGiRfnggw8svodq1qzJ7du32bRpk/k7Jb7pey8735iYGGbMmEHNmjXN/XTq1KlERka+8JqIiKQ0SkqJiLylTCYTR44coUKFCjg5OcXbpl69evj6+pqnVvn5+dGnTx+KFy/OzJkz8fHxYffu3bRt29YiKXT37l0mTJhA165dmT59Oo8fP6Znz5707duXDz74gKlTpxITE0OfPn0stnv06BEDBw6kTZs2zJgxAycnJzp37szPP/8MPEvkeHt78+TJEyZOnMiCBQuoX78+y5cvjzONae7cudStW5epU6dSq1atOOc2YMAArl69yujRo5k/fz6FChVi4MCB5l/mr169ipeXF7du3WLYsGF8+eWXGAwG2rVrx4kTJyz2NXLkSLJly4afnx+dOnViw4YNfPXVV8+99g8fPqRFixacOHGCPn36MGvWLLJly4aPj495VNratWspVKgQhQoVYu3atc8dLRUdHc2WLVto0KAB9vb2eHl54e/vz/fff29u06RJE6Kjo9mzZ4/Fttu3b6dChQpkyJCBa9eumUcjTJ06lR49ejB//nyLJFx8Dh8+jJubGyVLlnxum4YNG/LkyRN++OGHF+4LoGnTphw6dMjil+o//viD8+fP07RpUwC2bduGj48PuXLlYs6cOfj6+rJ161a6d+/+yosP37hxA8Bi2uPOnTuxs7Njzpw5fPzxx4SHh9OmTRu2bt1Kx44d8fPzo1SpUgwdOtTi/Z48eTJz5syhefPmzJ49Gzc3N6ZMmZLomGJiYujUqRObNm2iS5cuzJ07l3z58uHr68vx48cZOXKkRR+Jb5rtjz/+yIcffkhMTAzjxo1j7Nix/PXXX7Ru3dq8BlSs/v37U6pUKb766itzwuafCbe/Cw0NZd++fdSrV++5bXbs2MHw4cPp2rUrPXr0MMfUvXt3smTJwqxZs/D29mbkyJH89ddfFtueP3+eyMhIPDw8zGV//fUX8+fPp1evXsycOROTyUSPHj3w9/cHniWt27dvj6urK9OmTWPu3LmULFmS2bNn8+2331rsv379+ty7dy/O5/nvPvvsM9avX0+XLl1YvHgxgwYN4rfffqNPnz7mvnbw4EE6depkPuaAAQPYt28fPXv2NO8nOjqar776irFjx9K7d2/y5MmToPvpuHHjOHjwIAMHDmTRokXUqlWLSZMmmZPU3377LZMmTcLb25tFixbh4+PDli1bGDt27HPP6fDhwxiNRmrUqPHcNrHJpNgE6Is0bdqUS5cuWSSOQkND2b9/v/kze/LkSdq3b4+joyPTp09nyJAhnDhxwvy5ep5mzZphZ2cXZ7Tu1atXuXjxonmUVELeJ3iWKLp58yazZs3Cx8cHW1vLSSNPnz6lXbt27N27lz59+jB79mwyZ85Mp06dzImp2bNnkyFDBqpVq/bcKXsJOd8FCxawcuVKfHx8WLx4MR9++CELFy584XeHiEhKpOl7IiJvqYCAAJ4+fco777yToPaPHz9m7ty5tGzZ0mI9kXz58uHt7c3GjRtp06YN8GxK18iRI83Tbq5du8aUKVMYN26c+ZeI6OhoevbsyY0bNyhYsKB5u1GjRpn/6l6+fHlq167N/PnzmTlzJr/99hsFCxZkxowZ5kRZxYoVOXbsGCdPnqRr167muIoVK2YxsubixYsW53PixAm6d+9O7dq1gWdTFl1dXc1rk8yePRs7OzuWLVtmXlelevXqNGrUiMmTJ7Nu3TrzvqpVq2ZebLpChQocPXqUAwcOPHcK3ZIlS3j06BE7d+40J0GqVatG+/bt+eKLL2jUqBElSpQwn+OLppccOnSI+/fv07x5c3PbPHnysHr1avPi6FmzZqVMmTJ8++23tG7dGng2IujMmTN88cUXwLMRL6lTp2bhwoXmJGWuXLnM7Z/nzz//fGkfypEjBwC3b99+YTt4lkCbOXMm3333He+//z7wLAmVKlUqatWqhclk4ssvv6RKlSp8+eWX5u1y5sxJ+/btOXjw4AunO5pMJovRP48fP+bEiRPMnTuXEiVKmEdMARiNRsaMGYOzszPwbGTZb7/9xqpVqyhVqhQAVapUISoqCj8/P1q3bo3RaGT58uV8/PHH5iRMlSpVuHfvHocPH37p+f/doUOHOHPmDH5+fubEavny5bl58yY//vgjvXr1emkfmTJlCtmzZ2fhwoXmvl25cmXzqKTp06eb27Zs2dI8Sq1ChQp8//33HDhw4Ll94NSpU0RGRlKsWLF46/fv389nn31Gly5dLKZuzpo1izx58jB79mzz+l3p06ePM2Lz4MGDVKpUySJxEBMTw5w5c8zrVzk4ONChQwfOnTtHrVq1uHz5MhUrVmTy5MkYjc/+9lqpUiUOHDjAyZMnady4sXlf7777LmnTpuXYsWNUrlw5TvwRERGEhoYyfPhw82epbNmyhIaGMnHiRB48eEDGjBmZOXMmBQoUYM6cOeZtHR0dmTp1Kvfu3TOXde3a1dw3E3o/PXHiBBUrVjQnicqVK4ezszNubm7As1Fu2bJlw9vbG6PRSNmyZXF2diYgICDe9wSefWZdXV1fuI5b7Gc2IQt3e3p64uzszI4dO/D19QXgu+++4+nTp+brPWXKFN577z3mzZtn7ofFixenYcOGbNiwAW9v73j3nS5dOqpXr8727dst+tCmTZtImzYtdevWTfD7BBAVFcXo0aN599134z3eli1buHz5Mt988w3FixcHoGrVqrRt25Yvv/ySDRs2UKhQIezt7UmXLt0LP3cvO98TJ05QuHBh8727bNmyODk5Jdv6eiIi/xUaKSUi8paK/YUtoU8tOnfuHBERERa/1AGULl2abNmyxXna199Hzri7uwOWvzjHTvUKCgoyl9nY2FhM93B0dKRq1arm0TqVK1dmxYoVODg4cOPGDfbv389XX33Fo0eP4kzByZcv3wvPp1y5csyaNYtevXqxceNG8yit0qVLA8+SVjVq1LBY6NfW1paGDRty4cIFi6lo//zFJHPmzC+cSnbixAk8PDziLEbepEkTHjx4EO9UlefZsGED7777Lu+99x5BQUEEBQVRv359Tpw4YTESpmnTppw6dYr79+8Dz0ZYODk54enpCTwbvVKtWjWLUXMeHh5ky5bthcc3mUxxRhv8U+wvZQkZxfTOO+9QqlQpi1Et3377LXXr1sXR0ZHr169z9+5datasSVRUlPmnTJkypE6dmqNHj75w/ydPnqRw4cLmn4oVK9K3b18KFy7M1KlTLRY5f+edd8wJKXj2vmXLls2ckIrVpEkTnj59yk8//cS5c+eIjIyMMzqvfv36Lz33fzp16hR2dnYWI1oMBgOrV6+mV69eL90+LCyMCxcu0KBBA4uFoNOkSUONGjXifGb/PiIJXt6PYxMW8SUlL168SK9evciYMaNFrBEREZw9e5a6detaXOu6devG6UeHDh2Ks56Um5ubxYLqsZ+h4OBg4NnImgULFhAZGcmVK1f4/vvvmTVrFtHR0fFOi8qaNetzEy/29vYsWrSIBg0acP/+fU6ePMnatWvN62dFRkYSHh7OxYsXzcntv5/P7t27LaY1/v2elND7ably5Vi3bh2dO3dm1apV3L59Gx8fH3OfKF++PL///jteXl74+fnxyy+/0LhxY9q1axfvOUHCPrMvq/87Z2dnPD09LZ60+e2331K2bFmyZMnCkydP+Omnn6hWrZo5KRwVFUX27NnJnTv3Sz+zLVq04NatW5w5cwZ4lpjctm0bjRs3xsHBIUHvUyxHR0dzwi0+x44dI0OGDBQuXNgcZ3R0NDVq1ODnn39O0BM6E3q+5cqV44cffqBNmzYsWbKEa9eu8dFHH8U7FVJEJCXTSCkRkbeUq6srqVKlMq+hE5+wsDAiIiJwdXU1/2M8NsH0d+7u7uZfCmPF99deR0fHF8aULl26OE9oS58+vfnYMTExTJ06lZUrVxIWFkaWLFkoVqxYvE/Pii/Ov5s2bRpfffUVO3fuZNeuXRiNRipWrMioUaPInj07jx8/fu65mkwmi+ll/5z+aDQaX5iAefz4cby/yMce7++Juhd59OgRBw4cIDIykjJlysSpX7t2LUOGDAGeTcUcM2YMO3fupF27dmzfvp06deqYY3/06FG8T/jLkCHDC2PIli1bnPV1/in2l/741q+JT7NmzRg1ahQBAQHcvXuXa9euMWLECODZei8Ao0ePZvTo0XG2jU26PU/hwoXN2xkMBhwcHMiSJUu8/fWf7/+L+gRYvm//XPT4ZdcxPoGBgbi6upoTyIkVHByMyWRK8Gf2n5/Pl/Xj2O3jm/7722+/UaNGDfbv38+KFSv4+OOPgWfnFB0dHaev2dramkf/APj7+/PLL79QpUoVi3Z/TxIC5sRW7HpR4eHhjBkzhi1bthAVFcU777yDh4cHtra28Z6Lk5PTC9dfOnz4MOPHj+f69eukSpWK/PnzkypVKuBZcufx48eYTKaXPh0TsGiT0Pvp0KFDyZw5M1u3bjX3Ww8PD0aMGEGhQoVo0KABMTExrFq1itmzZzNjxgyyZctGv379LBL8f5ctWzaOHj1KeHj4c+/Jt27dAhL3mY0dZZQxY0Z++OEHPv/8c+DZ5yImJoYFCxawYMGCONu+7OmHVapUIVOmTGzbto2SJUvyww8/cO/ePYsFzl/2PsVKnz79C5+uGRgYyIMHD577xNkHDx6QNm3aF8ab0PPt1KkTqVKlYsOGDUyaNImJEyeSL18+hgwZQoUKFV54DBGRlERJKRGRt1jlypU5fvw4T58+jfcXg40bNzJu3DhWrVpl/of4w4cP4zz6/cGDB3FG/byKwMBATCaTxS8NDx8+NP8yN3/+fJYuXcqoUaOoW7eueRTTqzx9ycXFhQEDBjBgwACuX7/O3r178fPzY/To0SxcuJC0adPy8OHDONvFLgru5ub20gTI8yRk3wmxZcsWIiMjmT17NmnSpLGomzNnDps3b6Zv3744OjqSOnVqatWqxc6dO6lcuTKXL182TzmEZ6NiYtfl+Tt/f3/ee++958ZQs2ZNDh48yNmzZ+OMtIm1a9cuHB0dqVSpUoLOKzaB9t1333Hz5k2yZMlifvx67Hl+9tlnFo9kj/WyXxhTpUpF0aJFExRHfPu+efNmnPL43jd/f39y5cplfh2bTIsV28ejo6PNo5j+uRC8i4sLgYGBxMTEWCSmLl26RFRU1EvPw8XFBYPB8Ny+Ft/C9IkRe75BQUFxknCVK1fmq6++ol+/fkybNo3atWuTNWtW0qdPj52dXZy+FhMTYzHl7NChQ+TLl++FC6jHZ9y4cezevZvp06dTsWJFcxLreb/kBwUFPTfx8scff+Dj40OtWrWYN2+eeYTNypUrzVMxU6dOjcFgiLNgd0REBMeOHXvu1MaE3k/t7e3p1q0b3bp1486dO+zfvx8/Pz/69evHzp07AWjUqBGNGjUiODiYI0eOsGDBAgYMGEDp0qXjvX41a9Zk1apV5odRxGfXrl3mtglRvnx5MmXKxM6dO8mUKRO2trbUrVsXePaZMxgMtG/fPt5E2fPWNIxlY2NDs2bN+Oabbxg6dCibN2+mcOHC5mnfCXmfEsrFxYWcOXNaTA3+u4RMd0/o+RqNRry9vfH29sbf35+DBw/y1Vdf0aNHD3744Qfs7e0TFbuIyJtK0/dERN5iHTt2JDAwkGnTpsWp8/f3Z+HChbz77ruUKFGC4sWLY29vz7Zt2yzanTp1ijt37rxwoeuEioyMtPglIjw8nEOHDpl/oTx9+jR58uShRYsW5oTUvXv3+O233+I8WetFbt++TbVq1cy/eOXKlYvOnTtTsWJF7t69C0CZMmXYv3+/xWiS6Ohovv32W4oWLfqvfmEoU6YMZ8+eNY9GiLV161YyZMjw3PVO/mnjxo2UKFECT09PypUrZ/Hz4Ycf8vjxY/MvrvBsCt9PP/3EypUryZgxI+XLl7eI6dChQzx9+tRcdunSpZeuKdOkSRPeffddRowYESfxAs/WFdq8eTNt27ZN8FopLi4u1KhRg71797Jr1y4aN25sTsrkypWL9OnT8+eff1K0aFHzT+bMmZkyZQq//PJLgo7xKsqUKcPt27fjLP6+detW7OzsKFasGB4eHjg6Opr7VqzYqUSxYq/F3xf3jp2eFKt06dJERkZy8OBBc5nJZGLo0KHMnTsX4IWjqJydnSlSpAg7duywmKYbHBzMgQMH4kxDTKzYZE7sZ+bvYkeGDR48GFtbW/NINxsbG0qWLGmxED88W1D772t9HTp0KM5T9xLi9OnTlCtXjtq1a5sTUj///DOPHj2Kc48wmUzcu3fvuVNUf/75Z54+fcqnn35qMeUr9h5lMplIlSoVBQsWtHhyJsCRI0fo0qVLvNcGSND9NDw8nLp165qftpc1a1a8vb1p2LCheb+9e/c2r+Pk4uJC/fr16d69O9HR0c9NmleqVIlSpUoxadKkeNd5u3DhAgsXLqRBgwbkzJkz3n38k9FopFGjRubPbK1atcx9PHXq1BQqVIjr169bfGbz5s3L7Nmz40wjjU/z5s0JDAzkyJEj7Nu3j5YtW5rrEvI+JVTZsmX566+/SJ8+vUWsx44ds1iX7UWfu4Seb+vWrc0L0qdPnx4vLy+8vb0JDg5+4eg9EZGURiOlRETeYiVKlKBXr15Mnz6da9eu8f777+Pm5saVK1dYvHgxoaGhzJ8/H4PBgKurK126dDEvAF6rVi3+/PNPZsyYQZ48efDy8rJKTEOGDKF3796kT5+eRYsWERYWRrdu3YBni5f7+fkxf/58SpQowc2bN5k3bx4RERE8efIkwcfIli0bmTNnZuzYsYSEhJAjRw5+/vlnDh48yKeffgqAr68vhw4d4uOPP6ZLly7Y29uzYsUKbt26xcKFC//VOXbo0IGtW7fSoUMHfH19cXNzY/Pmzfz444+MHz8+QdO1zp8/z2+//cbQoUPjra9VqxZp06ZlzZo15gXDK1euTLp06VizZg3t27e3OE7Xrl3ZsWMHnTp1omPHjgQFBTFjxgwMBsMLp7s4Ozsza9YsPv30U5o1a0b79u0pVKgQT548Yd++faxfv55atWolaA2kv2vWrBk+Pj5ER0fTpEkTc7mNjQ19+vRhxIgR2NjYUKNGDYKCgvDz8+PevXvPnXZjDV5eXqxatQpfX1969uxJ9uzZ2bdvHxs2bMDX19c8iqt79+5Mnz4dJycnypcvz8GDB+MkpapVq8aECRMYPnw4nTt35u7du8yePds85QieLazv4eHB4MGD6dWrF++++y7btm3jt99+Y/jw4cCzkWNnz57l2LFjFCpUKE7M/fr145NPPqFTp0589NFHREZGMn/+fCIiIszJjFdVunRpHB0dOXPmTLzHhmdT0fr06cPo0aPZsmULTZs2pWfPnrRt25aePXvSokUL7ty5w4wZM4BnI8iio6M5evQofn5+iY6pWLFi7Ny5k9WrV5M7d24uX77M3LlzMRgMce4Rv/76K8HBwXGmCMYqXLgwtra2TJ48mY4dOxIREcHGjRs5cOAAgHm9rZ49e9KtWzd69+6Nl5cXjx49YsqUKdSoUYOCBQvGO701IfdTR0dHChcubG6TP39+bty4waZNm8yjkMqXL8/IkSOZNGkSVatWJSgoiNmzZ5MzZ04KFCgQ73kZjUamTJlCly5d8PLyol27dnh4eBATE8MPP/zAypUrKVSoULzTY1+kWbNmLFq0CBsbG3PSNFbfvn3p0qUL/fr1Mz8NdPHixfz000/m+/uLvPvuu5QpU4YJEyYQHR1tMcIroe9TQnh5ebFixQo6dOhA165dyZIlCz/88AMLFizgo48+Mk8vT5MmDb/88gsnTpyIdzRcQs63TJkyLF68GHd3dzw8PLh37x5LliyhbNmycUYeioikZEpKiYi85bp160ahQoVYuXIlEyZMIDAwkMyZM1O1alW6du1qMbWlR48euLu7s2LFCtatW4erqyv16tWjd+/eL52CkVCjRo1i/PjxPHr0iJIlS7J69WrzyKFPP/2UgIAAli1bxpw5c8iSJQtNmzbFYDAwb948Hj9+/NLpW7Fmz57N1KlTmTFjBgEBAWTJkgVfX1/zE/vy5s3LqlWrmDp1KkOGDMFgMFCsWDGWLVtmXgz9VWXIkIHVq1ebn0gYGRlJgQIFLJ6y9jIbNmzAxsbG/LSpf7K3t6d+/fqsWbOGS5cuUbBgQfNC8l9//bVFogee/dK3aNEivvjiC3r27En69On59NNPmTt3rkWiJD758+dn48aNrFixgvXr1/Pnn3/i6OhIgQIF+OKLL567ts2LVKlShbRp05I5c2by5s1rUdeyZUtSpUrFwoULWbt2Lc7OzpQsWZIvv/zSKtNIn8fJyYnly5czZcoUZs6cSUhICLly5bJ4qiQ866fOzs58/fXXfP3113h4eDBw4EBGjRplbvPee+8xadIk5s6dS5cuXcidOzdjxoxhzJgx5jY2NjYsWLCAKVOmMGvWLMLCwihQoAALFy40T5X09vbm559/pnPnzkyYMCHO4+krVKjAkiVLmDlzJn379sXe3p7SpUszadKkONf1Va5H1apVOXjwIB999NFz27Vu3ZpNmzYxfvx4qlSpQunSpZk1axYzZsyge/fuZMuWjeHDh9OnTx9SpUrFuXPniImJeeFTJ59n0KBBREZGMn36dCIiInjnnXfo1q0bV69eZd++fRbTJQ8dOkSGDBmeO8rz3XffZcqUKcyePZtu3bqRNm1aSpQowfLly2nbti2nTp0if/781KhRg3nz5jFr1ix8fHxwc3Ojfv36L03EJuR++vnnnzN9+nQWL17MgwcPSJ8+PS1atDDvu3Xr1kRGRrJmzRpWrVqFo6MjFSpUYMCAAXHW5/u7LFmysHbtWlavXs327dvNo4By587NoEGDaNGiRaIWO4dnC7kXLFiQe/fuxZmqW7lyZRYtWsTs2bPp2bMndnZ2FC5cmCVLliT4fW7evDkDBw6kWbNmFg+gSOj7lBDOzs6sXLmSKVOmMHnyZIKDg81rdHXs2NHcrmPHjowfP55PPvmEJUuWxNlPQs63V69e2Nvbs2HDBubMmYOLiws1a9Z87lNbRURSKoMpMWNaRUREksisWbOYPXs2v/766+sO5a107Ngx7OzsLBJujx8/plKlSnz22WfmhapF/u7ChQu0atWK77777qVPaoy1d+9eMmfObDGq7cqVKzRq1ChRidl/w2QyUadOHby9vWnfvn2SH09ERETipzWlREREhIsXL9KxY0eWLl3KyZMn2bNnD59++ikuLi7PXQxZpGjRotSrVy9RU1qPHDlCx44dWbduHadOnWL79u307t2bXLlyUbly5SSM9n927txJTEwMrVu3TpbjiYiISPw0fU9ERETMa7GsXr2av/76C2dnZ8qWLcukSZO0vom80IgRI/Dy8uLq1avkyZPnpe0HDhyIo6Mjc+fO5f79+7i6ulKlShX69esX71NArS0iIoJp06YxadIkHB0dk/x4IiIi8nyaviciIiIiIiIiIslO0/dERERERERERCTZKSklIiIiIiIiIiLJTkkpERERERERERFJdkpKiYiIiIiIiIhIslNSSkREREREREREkp3t6w7gTeTvH4yeWfjmMBggfXoXvW/yr6kviTWpP4m1qC+JNak/ibWoL4k1qT+9eWLfs5dRUuoVmEzog/AG0vsm1qK+JNak/iTWor4k1qT+JNaiviTWpP6U8mj6noiIiIiIiIiIJDslpUREREREREREJNkpKSUiIiIiIiIiIslOSSkREREREREREUl2SkqJiIiIiIiIiEiyU1JKRERERERERESSne3rDkBEROS/4sqV35gzZzq//noZOzs7ypQpR48efXF1deXixZ+ZPn0yv/9+HVdXN9q160ijRs3M23p7t+Du3b8wGv/3954FC5aRM+d7hISEMGfOdA4fPojJFEOlSlXp2bMv7u4uAAQFPWbGjCkcO3aUmJgYPDxK0q/fYNzd3eON8+zZ0/j5zeT336/j4pKG999vQdu2Hf5/X0FMnz6Z48d/IDIyioIFC+Hr25u8efMn3YUTEREREXkFGiklIiICPH0aTv/+PSlatDhbt+5m+fK1BAU9Zvz40QQFBTFgQC/q1WvIzp37GTRoODNnTuOXX34GIDQ0hD/+uMnKlev57rvD5p+cOd8DYPz40Vy9eoVFi5azbt02IiMjGTy4v/nYQ4d+xpMnT1i7djMbN27HaDTyxRdj443z5s3fGTCgF15eLdmz5xBffDGdNWtWsH//9wBMmjSG0NAQ1qzZzI4deylYsDCDBvVL4qsnIiIiIpJ4GiklIiIC3Lt3lzx58tG+fSdsbGxIm9aVpk29GDNmBAcP7iNNmrQ0b/4BAKVKlaFOnXps3LiOQoWK8Ouvl0mbNi2ZM2eJs9/w8HCOHDnIzJlfkSlTZgB69OhDkyZ1uXbtGn/95c/Fiz+zbdtuUqVKDcDAgcN4+PBhvHFu3PgNVapUp379RgDkyZOXuXMXkypVKgBGj55AdHQ0Dg4OBAUFERISjKurm9Wvl4iIiIjIv6WklIiICJAjR06mTJlpUbZ//17y5y/IjRvXyJ07t0VdzpzvsX37VgAuXbqIg4Mjvr5duHHjGpkzZ6Vjxy5UqlSFmJgYTCYTjo5O5m0NhmcDla9fv87vv/9JzpzvsXXrZjZvXk94+BPKlauIr2/veOP85ZeLlC5dlpEjh3Dq1HFcXd344IM2NG3qBYCtrS22trbMmzeHFSuW4uzszBdfzLDWZRIRERERsRpN3xMREfkHk8nE/Pl+HD16mF69+hMWFmaRVAJwdHTkyZMwAAwGAwULFmLgwGFs3ryLVq3aMGzYZ/z88wWcnZ0pU6Y88+fPwd//IWFhofj5zcDGxobw8HCCgh5z7doV/vzzD5YsWcmSJat48OA+Y8eOjDe24OAg1q9fS926DdiyZTcDBgxhzpwZ5ul7sdq3/4S9e4/SoUNn+vfvwe3bfybNxRIREREReUVKSomIiPxNaGgIw4Z9xp49O5kzZwG5c+fB0dGJp0/DLdqFh4fj7OwMQJs2HzN27Bdkz54DOzs76tSpT+nSZTlwYC8Aw4d/jqurG+3bt6Fjx7YULlyUVKlSkyZNGuzs7AHo2bMfzs6pSJcuPV26dOfYsaOEhYXFic/Ozo4qVapRsWJlbG1tKVGiJHXrNmDfPsuklIODI/b29rRu/RGZMmXmyJGDSXG5RERERERemabviYiI/L/bt/+kf/+eZMqUmYULl+Pq6gpArly5OXnyR4u2v/9+g1y5nk3pW7VqOfny5ad06bLm+oiISBwcHAB49Mif3r0HkCZNGvO2wcFBFClShMePwzCZTERF/a99dHTM/+/FFCfGnDlzERERYVEWExONyfSsbdeuHWnVqg01atT+WywRpEmT9hWvioiIiIhI0tBIKRERESAoKIiePbtStGhxpk6dbU5IAVSrVgN/f3+++WYVUVFRnDlzij17dtGwYVMA7t+/x9Spk7h9+0+ioqLYvn0LP//8k3kxcj+/mcyePY3IyEgePnzA1KmTqF27LunTp6ds2fJkzZqNCRM+JywsjICAABYs8KNKleo4O6eKE2ezZs05fPgAu3fvwGQyce7cGfbs2UW9eg0AKFSoMIsWzefu3b+IiIhg0aJ5REZGUqlS1aS+hCIiIiIiiWIwxf5pVRLs4cNgdNXeHAYDuLu76H2Tf019KWVbs2YFs2dPx9HREYPBYFH33XeHuXz5F2bM+JJr167h6upK+/adaNCgMfBsJNJXX81i377vCQkJ5r33ctGtW09KliwNPEtaTZ48ngsXfsLW1o6aNWvj69uLbNky8PBhMA8ePGDWrKmcO3eGp08jqFy5Kr169cfFxQUAT88qDBgwhDp16gNw7NhRFi2axx9/3MTV1ZU2bT6mWbPm5ljmz/fju+92ERUVSeHCRfH17UOOHO8m16WUZKZ7k1iT+pNYi/qSWJP605sn9j17aTslpRJPH4Q3i25gYi3qS2JN6k9iLepLYk3qT2It6ktiTepPb56EJqU0fU9ERERERERERJKdFjoXEZH/FKPRgNFoeHnDFMLG5u34+1BMjImYGP1pU0RERET+R0kpERH5zzAaDaR1dcb2LUnUALi5xV3MPCWKio7hcWCYElMiIiIiYqaklIiI/GcYjQZsbYz0WnOWq/dDXnc4YiV5MqZmRmsPjEaDklIiIiIiYqaklIiI/OdcvR/CxTtBrzsMERERERFJQm/P/AgREREREREREfnPUFJKRERERERERESSnZJSIiIiIiIiIiKS7JSUEhERERERERGRZPdaklKXL1+mQ4cOlC1blkqVKvHZZ5/x6NEjAH766SdatmyJh4cHNWvWZN26dRbbbtq0CU9PT0qUKIGXlxdnz54110VHRzNp0iQqVqyIh4cH3bp14/79++Z6f39/unfvTunSpSlXrhzjxo0jKioqeU5aRERERERERETMkj0pFR4eTqdOnfDw8ODIkSNs376dwMBAhgwZwuPHj+nSpQvNmjXj5MmTjBs3jgkTJnD+/HkAjh8/zpgxY5g4cSInT56kSZMmdOvWjSdPngAwd+5cjh49yoYNGzh8+DCOjo4MGzbMfOzevXvj7OzM4cOHWb9+PceOHWPp0qXJfQlERERERERERN56yZ6UunPnDgUKFMDHxwd7e3vc3Nxo1aoVJ0+eZM+ePbi6uuLt7Y2trS0VKlSgcePGrFy5EoB169bRsGFDSpUqhZ2dHe3bt8fNzY0dO3aY6zt37kyWLFlInTo1Q4cO5dChQ9y6dYubN29y4sQJBgwYgJOTE9mzZ6d79+7mfYuIiIiIiIiISPJJ9qRUrly5WLhwITY2Nuay3bt3U7hwYa5cuUK+fPks2ufJk4fLly8DcPXq1efWBwcHc/fuXYt6d3d30qZNy6+//sqVK1dwdXUlU6ZM5vrcuXNz584dgoKCkuJURURERERERETkOWxf58FNJhPTp09n//79rFixgmXLluHk5GTRxtHRkbCwMABCQ0OfWx8aGgqAs7NznPrYun9uG/s6LCyMNGnSJDhugyHBTeU/IPb90vsm/5b6ksi/p8+P9eneJNak/iTWor4k1qT+9OZJ6Hv12pJSISEhDB48mIsXL7JixQry58+Pk5MTwcHBFu3Cw8NJlSoV8CyJFB4eHqfezc3NnGCKXV/qn9ubTKY4dbGvY/efUOnTuySqvfw36H0Ta1FfEnk1bm6J+76VxNG9SaxJ/UmsRX1JrEn9KeV5LUmpP/74g86dO5M1a1bWr19PunTpAMiXLx9Hjx61aHv16lXy5s0LQN68ebly5Uqc+qpVq5I2bVoyZcpkMcXvwYMHBAYGki9fPmJiYggMDOThw4e4u7sDcO3aNTJnzoyLS+I6tr9/MCbTK526vAYGw7Obl943+bfUl5KejY1RiYsULCAglOjomNcdRoqje5NYk/qTWIv6kliT+tObJ/Y9e5lkT0o9fvyYdu3aUb58ecaNG4fR+L9lrTw9PZk8eTJLly7F29ub06dPs23bNvz8/ABo0aIFPj4+1K9fn1KlSrFy5Ur8/f3x9PQEwMvLi7lz51K0aFHc3NwYP348ZcuWJUeOHACUKlWK8ePH8/nnnxMQEICfnx8tWrRI9DmYTOiD8AbS+ybWor4k8ur02Uk6ujeJNak/ibWoL4k1qT+lPMmelNq4cSN37txh586d7Nq1y6Lu7NmzLF68mHHjxjFz5kzSpUvHsGHDKF++PAAVKlRg5MiRjBo1inv37pEnTx4WLFiAq6srAD4+PkRFReHt7U1oaCjlypVj+vTp5v3PnDmTzz//nFq1amE0GmnWrBndu3dPrlMXEREREREREZH/ZzCZlGdMrIcPNWTwTWIwgLu7i943+dfUl5Kere2z6XsNZx7m4h09GTWlKJw1Dd/2rEJAQChRUZq+Z226N4k1qT+JtagviTWpP715Yt+zlzG+tIWIiIiIiIiIiIiVKSklIiIiIiIiIiLJTkkpERERERERERFJdkpKiYiIiIiIiIhIslNSSkREREREREREkp2SUiIiIiIiIiIikuyUlBIRERERERERkWSnpJSIiIiIiIiIiCQ7JaVERERERERERCTZKSklIiIiIiIiIiLJTkkpERERERERERFJdkpKiYiIiIiIiIhIslNSSkREREREREREkp2SUiIiIiIiIiIikuyUlBIRERFJQgEBAbRq1YwzZ06Zy77/fjfe3i2oU6carVt7sXnz+ni3PXnyR6pWLctff92Jt37+fD+aN29sURYU9JgxY0bQoEEt6tWrweDB/Xj48GG828fExLBo0Ty8vBri6VmFjz9uxd6935nrIyIi8PObyfvvN/j/ffXn3r27ib0EIiIiIvFSUkpEREQkiZw/f46uXTtw+/af5rLr168yceIYBg8eyZ49Bxk6dCQzZkzhp5/OWmzr7/+QsWNHERMTE+++T506wapVy+KUDx36GU+ePGHt2s1s3Lgdo9HIF1+MjXcfGzd+w65dO5g1ax7ffXeYTz/1ZfTooeZ4582bzcGD+5gyZRbbtu0he/bs9OnjQ2Rk5KteEhEREREzJaVEREREksDOndsZPXoYXbp0tyi/desPoqOjMZliMJlMGAwGjEYj9vb25jYxMTF8/vlwGjduFu++Hz3yZ9KkcbRs+aFF+eXLl7h48WeGDh2Ji4sLzs6pGDhwGF279oh3P15eH7Bs2RqyZXuHiIgIAgMDcHR0wsHBEYDvvttN+/adyJUrN3Z2dnz6qS8PHtzn1KkT/+LKiIiIiDxj+7oDEBEREUmJypYtj6dnPWxtbRk5csjfyitQuHBRunX7BBsbG6Kjo/Hx6U3BgoXNbZYuXYirqxsNGzZh6dKFFvuNiYlh9OjheHt/jL29Pfv3/6/u0qWL5Mz5Hlu3bmbz5vWEhz+hXLmK+Pr2jjdGo9GIk5MTJ078SP/+PTGZTPTo0Rd3d/f/P1Y0Tk5O5vYGgwEw8Mcfv1OhQqV/f5FERETkraaRUiIiIiJJIH16d2xt4/79LzIygixZsjJt2hz27j3KF19MZ/HieZw48SMAZ8+eZs+enXz22ZA42wIsW7aY1KlT0axZ8zh1QUGPuXbtCn/++QdLlqxkyZJVPHhwn7FjR74w1hIlSrJv3w9MmzaHBQvmsnfvHgCqVavJsmWLuX37T54+fcqCBXOJiHjK06dPE3s5REREROJQUkpEREQkGS1aNA97e3vKlCmHra0tFStWpnbtumzZsoGAgADGjRvF8OFjSJUqdZxtz507w7ffbmPgwOHx7tvO7tkUwJ49++HsnIp06dLTpUt3jh07SlhY2HNjsre3x9bWltKly1K3bgO++24XAL6+fShSpBg+Pp1p06Y5Dg4O5MqVGxeXNFa4EiIiIvK20/Q9ERERkWR0795d0qRJa1FmY2OLra0dJ04cIyDgEf36+QIQE2MCoF27D2nbtgN37twmMPARH3zQBIDIyEgiIiIoXbo0kyZN47333sNkMhEVFYmDgwMA0dGxC6Wb4sQya9Y0AHr06GMui4yMMMf34MF92rX7hL59BwIQFBTEsmVLKFCgoJWuhoiIiLzNlJQSERERSUaVK1dl2rTJ1KpVh7Jly3Pu3Bn27NnJyJFjqVSpCnXrNjC3/euvO7Rs2YSvv15NlixZARg4cKi5fseObSxePJ+DBw/w8GEwkZFRZM2ajQkTPmfIkFH/P+XOjypVquPsnCpOLCVKeDB69DCqVKlGsWIl+OGHI+zdu4dp0+YA8M03q7hz5w5jx04iKiqKKVMmkj9/AYv1r0RERERelZJSIiIiIsmoUaNmhIeHM336ZPz9/cmUKRP9+w+iUqUq/3rftra2zJ49n1mzpvLhh+/z9GkElStXpVev/uY2np5VGDBgCHXq1KdKler07j2AiRPHEhDgT/bs7zJu3GSKFi0OQLduPZg8eQItWjQGoFy5CkycOOVfxykiIiICYDCZTHHHcssLPXwYjK7am8NgAHd3F71v8q+pLyU9W1sjbm6paDjzMBfvBL3ucMRKCmdNw7c9qxAQEEpUVMzLN5BE0b1JrEn9SaxFfUmsSf3pzRP7nr2MFjoXEREREREREZFkp+l7IiIikiIZjQaMRsPrDiPZ2Ni8HX9rjIkxmReAFxERkTebklIiIiKS4hiNBtK6OmP7liRqANzc4i5knhJFRcfwODBMiSkREZEUQEkpERERSXGMRgO2NkZ6rTnL1fshrzscsZI8GVMzo7UHRqNBSSkREZEUQEkpERERSbGu3g/RovkiIiIi/1Fvz5h2ERERERERERH5z1BSSkREREREREREkp2SUiIiIiIiIiIikuyUlBIRERERERERkWSnpJSIiIiIiIiIiCQ7JaVERERERERERCTZKSklIiIiIiIiIiLJTkkpERERERERERFJdkpKiYiIiIiIiIhIslNSSkREREREREREkp2SUiIiIiIiIiIikuyUlBIRERERERERkWT32pNSjx49wtPTk+PHjwMwYsQIPDw8LH4KFizIJ598Yt6mfv36FC9e3KLNtWvXAIiOjmbSpElUrFgRDw8PunXrxv37983b+vv70717d0qXLk25cuUYN24cUVFRyXvSIiIiIiIiIiJvudealDp9+jStWrXijz/+MJd9/vnnnD171vwza9Ys0qRJw6BBgwAICQnhxo0b7Nixw6Jd7ty5AZg7dy5Hjx5lw4YNHD58GEdHR4YNG2bef+/evXF2dubw4cOsX7+eY8eOsXTp0mQ9bxERERERERGRt91rS0pt2rSJ/v3706dPn+e2efToEf3792fo0KHkzZsXgJ9//hlXV1eyZcsW7zbr1q2jc+fOZMmShdSpUzN06FAOHTrErVu3uHnzJidOnGDAgAE4OTmRPXt2unfvzsqVK5PkHEVEREREREREJH62r+vAlStXpnHjxtja2j43MfXll19SpEgRmjRpYi67cOECTk5OfPTRR1y5coVs2bLRo0cPatSoQXBwMHfv3iVfvnzm9u7u7qRNm5Zff/0VAFdXVzJlymSuz507N3fu3CEoKIg0adIkKHaD4VXOWF6X2PdL75v8W+pLIv+ePj9iLepLSUPfdWIt6ktiTepPb56EvlevLSmVIUOGF9bfunWLrVu3sm7dOotyg8FA0aJF6du3L1mzZmXXrl306NGDFStWkDlzZgCcnZ0ttnF0dCQ0NBQAJycni7rY12FhYQlOSqVP75KgdvLfovdNrEV9SeTVuLmlet0hSAqhvpT09F0n1qK+JNak/pTyvLak1Mts2LDBvMj533Xq1MnidZMmTdi+fTu7d++ma9euADx58sSiTXh4OKlSpcJkMsWpi32dKlXC/3Hj7x+MyZTg5vKaGQzPbl563+TfUl9KejY2Rv2ymYIFBIQSHR2TLMdSX0rZkrMvvW30XSfWor4k1qT+9OaJfc9e5j+blNqzZw8dO3aMU75o0SIKFSpEhQoVzGURERE4ODiQNm1aMmXKxNWrV81T+B48eEBgYCD58uUjJiaGwMBAHj58iLu7OwDXrl0jc+bMuLgkPONqMqEPwhtI75tYi/qSyKvTZ0esRX0paem7TqxFfUmsSf0p5XmtT997noCAAK5du0aZMmXi1P3111+MHj2aW7duERUVxfr16zl79izvv/8+AF5eXsydO5dbt24REhLC+PHjKVu2LDly5CBnzpyUKlWK8ePHExISwq1bt/Dz86NFixbJfYoiIiIiIiIiIm+1/+RIqT///BPAYkHyWJ999hlGo5E2bdoQHBxMnjx5mD9/Pu+++y4APj4+REVF4e3tTWhoKOXKlWP69Onm7WfOnMnnn39OrVq1MBqNNGvWjO7duyfLeYmIiIiIiIiIyDMGk0mD3xLr4UPNY32TGAzg7u6i903+NfWlpGdr+2wdoIYzD3PxTtDrDkespHDWNHzbswoBAaFERSXPOkDqSynT6+hLbxt914m1qC+JNak/vXli37OX+U9O3xMRERERERERkZRNSSkREREREREREUl2SkqJiIiIiIiIiEiyU1JKRERERERERESSnZJSIiIiIiIiIiKS7JSUEhERERERERGRZKeklLxWAQEBtGrVjDNnTpnLrl69Qq9e3fD0rErjxnWYNWsqUVFRAJhMJpYuXUjLlk2oU6ca7dq1Zv/+7y32N3LkYBo2rEWDBrUYPLgfd+/ejXPc6OhofH27MG7cqOfGFhMTw6JF8/DyaoinZxU+/rgVe/d+F2/b6dO/fOG+RERERERERMSS7esOQN5e58+fY9y4Udy+/ae5LDAwkN69u9GqlTdTpsziwYP79OnjS/r0GWjTpi3r1q3m22+3MXnyDN59NydHjx5mxIjBZMqUmUKFijBt2hfY2Niwfv12ACZO/Jzx40ezatUKi2MvWbKA8+fPkSVL1ufGt3HjN+zatYNZs+aRLds7HD16mMGD+1GgQEGyZXsHgMePA5kxYwp79uykfv1GSXCVRERERERE/rsCAgLo2rUDAwcOo2TJ0sCzgQazZk3ll18u4ujoSJ069ejWrSe2traYTCa+/noR3367lcePH5MlSxbat+9EjRq1Abh79y+mTv2C8+fPASY8PErRs2df3N0LvPS4/9SvX0/Onz9rUfbkyROaNHmfzz4bSkxMDHXrVsNkMmEwGMxttm7dg5OTk/UukjyXklLyWuzcuZ2FC7+ie/eejBw5xKI8e/YctG3bAYAsWbIyffoc4NkNIjg4mA4dOpEz53sAVK5clZw5c3Lhwk8UKlSEmzdvkDNnLkwmEwAGgxFHR0eLY58+fZIDB/ZRrVrNF8bo5fUBDRs2xcnJiYiICAIDA3B0dMLB4dn+wsLCaNOmObVq1aF69RfvS0REREREJKVJioEGQ4YMoGDBQmzZshOTCSZPHse4caNZu3b1C48bnylTZlq83r59C4sXz6djx08B+P3360RFRbFnzyHs7OyseGUkoTR9T16LsmXLs3btZmrVqmNRfunSRd57LzeTJ4+nSZO6fPBBU3bv3kHGjBkB+OSTT2nQoLG5/e+/3+DGjevkz18QgI8/7sgPPxymbt1q1K1bjcuXLzFw4FBz+4CAR0ycOIaRI8fGSVb9k9FoxMnJiRMnfqR27cpMnDiGTp264u7uDoC9vT3Ll39D374DcXJytsp1EREREREReRPs3Lmd0aOH0aVL9zjlsQMNbG1tzQMNatb0BCwHGhgMBouBBgBz5y6iT5/PcHBwJDQ0hLCwMFxdXV963Jf544/fmTbtC0aOHGv+ne7SpV/InTuvElKvkZJS8lqkT++OrW3cgXpBQY/ZsWMbBQsWZuPGbxk3bjJbtmxkzZqVcdr+8cdNBgzoRZ069SlRoiTwbB2oJk28+PbbvWzduoecOXMyfPhgc93nnw+nVas25M2bL8GxlihRkn37fmDatDksWDCXvXv3AGBra0u6dOlf5fRFRERERETeaEk10MDBwQFbW1tGjx5Gs2b1uXTpF4sE1POO+zJTpkyifv1GFC/u8bdYf+Hp03A6dfqYRo1q4+PT2Zwck+ShpJT8p9jb21OwYGEaNWqKra0tefPmo0WLVuzfb7nA+JEjh/j00w5UrVqDQYOGA+Dv/5Bx40bRpk1b0qRJg5ubG/36DeKnn87y66+/snz5Euzt7WnRonWiY7K1taV06bLUrduA777bZbXzFREREREReRMl1UCDWIMGDWPPnkPUrFkbX99PCQ4OfuFxX+Snn85x8eIFOnTobFHu4OBAoUJFmDDhSzZs2E6lSlXp27cHd+7cTtT+5dUpKSX/KTlzvkdkZKRFWXR0DP+/RBQAS5cuZPToYfTp8xk9evQxL0jn7/+QqKgoi+1jb1Z2dnbs2rWDs2fPUK9ederVq8533+3iu+92Ua9e9XhjmTVrGrNmTbMoi4yMIE2atFY4UxERERERkZTn3ww0+DsHB0ecnJzw8enNkydP+PHHH185pq1bN1Czpifp07tblPfo0YfBg0eQIUNGHBwcadOmLZkyZebYsSOvfCxJHCWl5D+lYcOmXL9+lZUrvyY6Oppr166yceM31K3bAIA1a1awZs0K5syZT5069Sy2fe+93GTNmo0ZM74kLCyU0NAQZs6cSqFChcmZMyerV29gz56D7Np1gF27DuDpWQ9Pz3rs2nUg3lhKlPBgy5YNnDt3hpiYGI4cOcTevXto3LhZEl8FERERERGRN9O/GWjw9Gk4H37oxS+//GxuGxMTQ0xMNGnTvtrggKioKA4fPmT+nfLv5s2bw2+/XbYoi4yMwMHB4ZWOJYmnpJT8p7z7bk5mzZrPDz8coWHD2vTr14OmTb1o0aIVJpOJpUsX8uTJE3x8OuPpWcX8s2zZYuzs7Jg6dTYAH3zQlNatvYiJiWHChCkYjQnr6p6eVdizZycAVapUp3fvAUycOJb69WuwdOlCxo2bTNGixZPs/EVERERERN5k/2aggYODIzlz5sLPbyaBgYGEhYUxdeoksmd/lxIlSrxSPNeuXeXp03CKFCkWp+7GjWvMmDEFf/+HREREsGTJAkJDQ6latcYrHUsSz2Ay/T1fKQnx8GEwumpvDoMB3N1d9L7Jv6a+lPRsbY24uaWi4czDXLwT9LrDESspnDUN3/asQkBAKFFRMclyTPWllOl19KW3jb7rxFrUl94ulSuXZubMryhZsjQAFy/+jJ/fDK5du4qjoyPNmjWnXbtPAKhfvwZPnjzB3t7eYh9t23bg4487EhwczOzZ0zh69DAGg4FSpcrQo0cfChR4L05/+udx4dlAgwEDhlCnTn0A9u//nqlTv2Dbtj1x4g4Keszs2dM5duwo4eFPKFiwMD179iNPnrzWvkRvndh7wEvbKSmVeLqxvln0hSjWor6U9JRISJmUlBJrUVIq6em7TqxFfUmsSf3pzZPQpFTilqyXFMVoNGA0Gl53GMnGxubtmK0aE2MiJkZ3ahEREREREflvU1LqLWU0Gkjr6oztW5KoAXBzS/W6Q0gWUdExPA4MU2JKRERERCSF00CDlOltGmigpNRbymg0YGtjpNeas1y9H/K6wxEryZMxNTNae2A0Gt6am5iIiIiIyNtIAw1SrrdpoIGSUm+5q/dDtNaGiIiIiIjIG0YDDVKmt22ggZJSIiIiIiIiIm8oDTSQN9nbM85PRERERERERET+M5SUEhERERERERGRZKeklIiIiIiIiIiIJDslpUREREREREREJNkpKSUiIiIiIiIiIslOSSkREREREREREUl2SkqJiIiIiIiIiEiyU1JKRERERERERESSnZJSIiIiIiIiIiKS7JSUEhERERERERGRZKeklIiIiIiIiIiIJDslpUREREREREREJNkpKSUiIiIiIiIiIslOSSkREREREREREUl2SkqJiIiIiIiIiEiyU1JKRERERETkLRMQEECrVs04c+ZUnLqHDx/SuHEdduzYZi776KMP8PSsYvFTuXJpli9fAkBMTAxLlizAy6shnp5V6dy5HWfPnk3UceNz/fpVatWqZNE+JiYGT88q1K5d2SKeJ0+eJPYyiMhrZvu6AxAREREREZHkc/78OcaNG8Xt23/GqYuJieHzz4fx+HGgRfmKFd9YvF6wYC4//HCY5s1bAbB06UK+/34306f7kS3bO6xZs5yuXbuyadMO7OzsX3rc+ISHhzNq1FCePn1qUf7779eJiopiz55D2NnZJfS0ReQ/SCOlRERERERE3hI7d25n9OhhdOnSPd76JUsWkCFDRjJmzPTcfZw5c4pvvlnF559PxNnZmejoaL75ZjV9+gwgR453sbGx4cMP27Jw4UIMBkOCjhufKVMmUrVqjTjlly79Qu7ceZWQEkkBEp2UevToETt37mTJkiV8/fXXfPfdd4SEhLxyAI8ePcLT05Pjx4+by0aOHEmRIkXw8PAw/6xdu9Zcv2nTJjw9PSlRogReXl4Ww0Kjo6OZNGkSFStWxMPDg27dunH//n1zvb+/P927d6d06dKUK1eOcePGERUV9crxi4iIiIiIvCnKli3P2rWbqVWrTpy6M2dOsXfvHvr1G/Tc7aOjo5k8eTzt2n1C9uw5ALh16w9CQoIJDg6hY8ePaNiwFn379sDBwcGcOHrRceOzc+d2/vzzFh06dI5Td+nSLzx9Gk6nTh/TqFFtfHw6c+HCTwnar4j8tyR4+t7169eZOXMme/bsIUOGDGTOnJmoqCju379PYGAgderUoWfPnrz77rsJPvjp06cZNGgQf/zxh0X5hQsXGDNmDO+//36cbY4fP86YMWNYsGABxYoVY+XKlXTr1o39+/fj5OTE3LlzOXr0KBs2bMDFxYXhw4czbNgw5s+fD0Dv3r3JlCkThw8f5uHDh3Tr1o2lS5fSqVOnBMctIiIiIiLyJkqf3j3e8oCAR4wfP5qxY7/A2dn5udt/990unjx5QsuWrc1lQUGPAVi/fg3jx0/Gzc2NJUsW8Mknn7B8+TekSpX6uceNz82bv7NgwVz8/BZhY2MTp97BwYFChYrQqVNX0qRJw4YN6+jbtwdff72arFmzJfg4IvL6JWik1NKlS/H19aVw4cLs3buXgwcPsnbtWjZs2MDhw4fZsWMH+fLlo3PnzixevDhBB960aRP9+/enT58+FuURERH89ttvFClSJN7t1q1bR8OGDSlVqhR2dna0b98eNzc3duzYYa7v3LkzWbJkIXXq1AwdOpRDhw5x69Ytbt68yYkTJxgwYABOTk5kz56d7t27s3LlygTFLCIiIiIiktKYTCbGjBlBixatKFCg4Avbbt26iSZN3sfBwdFcZm//bM2oDh06kzlzFhwcHPn0Ux9CQkI4f/5comJ5+vQpI0YMpmfPvmTOnDneNj169GHw4BFkyJARBwdH2rRpS6ZMmTl27EiijiUir1+CRko9ffqULVu2PHfObvbs2fn000/p0KEDixYtStCBK1euTOPGjbG1tbVITF2+fJmoqChmzpzJ6dOncXFxoXnz5nTq1Amj0cjVq1dp3ry5xb7y5MnD5cuXCQ4O5u7du+TLl89c5+7uTtq0afn1118BcHV1JVOm/82Pzp07N3fu3CEoKIg0adIkKPb/nxYt8p+mfmp9sddU11bk1enzI9aivpQ09F339jEY4P79e5w7d4ZffvmZpUsXAhAaGsqUKRM5cGAvkydPB+DRI38uXPiJYcNGWfSRHDlyYGNjQ1RUpLncZDJhMpnMx4jvuPGVX778C7du/cHEiWOYOHGMuXzgwD7Uq9eQ/v0HMW/eHGrUqEW+fAXM9ZGRETg4OKjvSoryJvfnhMaeoKTUp59+mqCd2dvb061btwS1zZAhQ7zlwcHBlC1blrZt2zJ16lQuXbqEj48PRqORTp06ERoaipOTk8U2jo6OhIWFERoaChBnuKmjo6O57p/bxr4OCwtLcFIqfXqXBLUTeV3c3FK97hBSNN0DRF6N7k1iLepLSU/fdW+PtGmdKVIkLxcuXLAor1mzJr6+vnh5eZnLzpw5RsaMGSle3HI0lbu7C40bN2bOnOmULFmUjBkzMm3aNNKkSUOdOjVwdHTkn9KmdcbdPW4/q127KhcunLcoy58/P/PmzaNcuXIA/PnnTebMmc706dNJmzYt8+fP58mTMN5/vzGuruq7kjK8Ld91CV5TKtaPP/7IvXv3zFnvyMhIfv31V4YNG2aVgCpVqkSlSpXMr4sVK0a7du3YsWMHnTp1wsnJifDwcIttwsPDcXNzMyeYnjx5Eqc+VapUmEymOHWxr1OlSvgb7u8fzP+f/hvLxsb41nTyt1FAQCjR0TGvO4wUx2B49o/0lHAP+K/SvSllS857k/pSyqbvuaSj77q3z+PHYTx8GBynPDo6huDgcIu6y5evkj69e7zte/X6jEWL5vPRR20JDAykYMGCLFq0iNDQSEJCIl963Nq1qzBgwBDq1q3/0jgHDBjKrFnTady4CeHhTyhYsDDTps0hKsom3thSKn3XpWxv+ndd7PfJyyQqKTV27FjWrFljTuBER0cTGhpKlSpVXi3KeHz//fc8fPiQ1q3/t3BeRESEObueN29erly5YrHN1atXqVq1KmnTpiVTpkxcvXrVPIXvwYMHBAYGki9fPmJiYggMDOThw4e4uz9baO/atWtkzpwZF5eEZ9RNJvQlLf956qNJR/cAkVenz45Yi/pS0tJ33dvhyJFTQPzv9fr12+LUffhhWz78sG287e3s7Ona1ZeuXX2BZ7+Quru78PBh3ARnfMf97rvDz43ln+1dXNIyZMjIOO3UZyWleRv6dIIWOo+1c+dOVqxYwfTp06lZsyYnT56kXbt2z12A7lWYTCYmTJjAsWPHMJlMnD17lmXLltGqVSsAWrRowbZt2/jxxx+JjIxk6dKl+Pv74+npCYCXlxdz587l1q1bhISEMH78eMqWLUuOHDnImTMnpUqVYvz48YSEhHDr1i38/Pxo0aKF1eIXEREREREREZGXS9RIqSdPnlCiRAkePHjAxYsXMRgM+Pr60qBBA6sF5OnpyeDBgxk1ahT37t3D3d2dHj160LRpUwAqVKjAyJEjzfV58uRhwYIFuLq6AuDj40NUVBTe3t6EhoZSrlw5pk+fbt7/zJkz+fzzz6lVqxZGo5FmzZrRvXt3q8UvIiIiIiLyPEajAaPxDV69OJFsbBI1DuKNFRNjIibmLRjWImJliUpKZc6cGX9/fzJkyMDdu3eJjIzE0dGRkJCQfxVE7JPxYrVu3dpi+t4/NW3a1Jyk+ic7Ozv69+9P//794613d3dn5syZrx6siIiIiIjIKzAaDaR1dcb2LUnUwNuzWHNUdAyPA8OUmBJJpEQlpapVq0b79u35+uuvKVOmDEOGDMHBwYGcOXMmUXgiIiIiIiIpg9FowNbGSK81Z7l6/9/9YV/+O/JkTM2M1h4YjQYlpUQSKVFJqb59+5I+fXrs7OwYMWIEQ4cOJSQkhDFjxiRVfCIiIiIiIinK1fshXLwT9LrDEBF57RKVlLKzs6NTp04AuLi4sHDhwiQJSkREREREREREUrZEJaVCQ0NZuXIlt27dIioqyqJuwoQJVg1MRERERERERERSrkStsDd48GBWrlxJWFhYUsUjIiIiIiIiIiJvgUSNlDp8+DC7d+8mY8aMSRWPiIiIiIiIiIi8BRI1UipDhgy4ubklVSwiIiIiIiIiIvKWSFRSqnXr1kyaNImgID0pQkREREREREREXl2Cpu8VKFAAg8GAyWQCYOXKlXHaXLp0ybqRiYiIiIiIiIhIipWgpNSyZcuSOg4REREREREREXmLJCgptWTJEurUqUPNmjVJmzZtUsckIiIiIiIiIiIpXILWlProo484d+4cTZs2pUOHDqxatYr79+8ndWwiIiIiIiIiIpJCJWikVKVKlahUqRImk4kzZ87w3Xff0aZNG9zd3fH09KROnTpkz549qWMVEREREREREZEUIlFP3zMYDJQqVYpBgwbx/fffM3z4cIKCgujWrVtSxSciIiIiIiIiIilQgkZKxbpz547Fazc3N1q1asVHH31EREQE9vb2Vg1ORERERERERERSpkQlpTw9PYmJiQHAZDJhMBjMdUajkYoVKzJp0iTSpUtn3ShFRERERERERCRFSdT0vcGDB1OxYkW2b9/O+fPn+fbbb6lWrRo+Pj5s2rSJ1KlTM2HChKSKVUREREREREREUohEJaW+/vprpkyZQu7cubG3tydXrlxMmjSJzZs3ky9fPsaMGcOhQ4eSKlYREREREREREUkhEpWUCggIwMbGxqLMYDDg7+8PgJOTk3l6n4iIiIiIiIiIyPMkKilVpUoV+vXrx82bN4mMjOTmzZsMGTKEypUrExERwcyZMylcuHBSxSoiIiIiIiIiIilEopJSI0eOJDo6mrp161KsWDHq1atHdHQ0o0eP5tSpUxw4cIDhw4cnVawiIiIiIiIiIpJCJOrpe66urixatIh79+5x9+5dsmbNSoYMGQgPD6dixYps2bIlqeIUEREREREREZEUJFEjpZYtWwZApkyZKF68OBkyZODcuXM0bdo0SYITEREREREREZGUKVFJqblz57Jx40YAoqKimDp1Kh999BEVK1ZMkuBERERERERERCRlStT0vUWLFvHJJ58QEBDA9u3bCQoKYuHChZQvXz6p4hMRERERERERkRQoUUmpQoUKsXDhQjp06EDhwoVZtWoVTk5OSRWbiIiIiIiIiIikUAlKSs2ePdvidcmSJfnxxx+ZN28etrbPduHr62v96EREREREREREJEVKUFLq+PHjccqKFi3K6dOnATAYDNaNSkREREREREREUrQEJaWWL1+e1HGIiIiIiIiIiMhbJEFP3xs5ciSPHz9+abvAwEBGjBjxr4MSEREREREREZGULUEjpSpVqkTz5s2pUqUKjRo1olixYtjZ2QEQERHBuXPn2LFjBwcOHGDQoEFJGrCIiIiIiIiIiLz5EpSUqlOnDqVLl2bhwoV07dqVJ0+e4OrqislkIjAwEFdXV5o2bcqmTZtwc3NL6phFREREREREROQNl6CkFEC6dOn47LPP6NevHxcvXuTOnTsYjUayZs1KoUKFMBoTNBNQREREREREREQk4UmpWDY2NhQrVoxixYolRTwiIiIiIiIiIvIW0PAmERERERERERFJdkpKiYiIiIiIiIhIslNSSkREREREREREkp2SUiIiIiIiIiIikuwStdD5lStX+OKLL/j999+JiYmxqNu7d69VAxMRERERERERkZQrUUmpESNG4OTkRJcuXbC1TfSD+0RERERERERERIBEJqV+/fVXDh06ROrUqa0WwKNHj2jVqhVjx46lXLlyAOzevRs/Pz9u3bqFq6srXl5edO/eHaPx2WzD+vXrc+fOHfNrgPXr15M7d26io6P58ssv2bJlC0+ePKF8+fKMHj2ajBkzAuDv78/w4cM5ceIENjY2NGnShIEDByrJJiIiIiIiIiKSjBK1plTGjBmJiIiw2sFPnz5Nq1at+OOPP8xlP//8M5999hm9e/fm1KlTLFiwgI0bN7J06VIAQkJCuHHjBjt27ODs2bPmn9y5cwMwd+5cjh49yoYNGzh8+DCOjo4MGzbMvP/evXvj7OzM4cOHWb9+PceOHTPvW0REREREREREkkeiklIfffQRPj4+7Ny5k5MnT1r8JNamTZvo378/ffr0sSi/ffs2rVu3pkaNGhiNRnLnzo2np6f5GD///DOurq5ky5Yt3v2uW7eOzp07kyVLFlKnTs3QoUM5dOgQt27d4ubNm5w4cYIBAwbg5ORE9uzZ6d69OytXrkx0/CIiIiIiIiIi8uoSNWdt7NixAJw9e9ai3GAwcOnSpUQduHLlyjRu3BhbW1uLxFTdunWpW7eu+XV4eDgHDhygcePGAFy4cAEnJyc++ugjrly5QrZs2ejRowc1atQgODiYu3fvki9fPvP27u7upE2bll9//RUAV1dXMmXKZK7PnTs3d+7cISgoiDRp0iQodoMhUacq8lqon1pf7DXVtRV5dfr8iLWoLyUNfdeJ/Dv67Ig1vcn9KaGxJyopdfny5VeJJV4ZMmR4aZuQkBB69eqFo6Mj7du3B54lwIoWLUrfvn3JmjUru3btokePHqxYsYLMmTMD4OzsbLEfR0dHQkNDAXBycrKoi30dFhaW4KRU+vQuCWon8rq4uaV63SGkaLoHiLwa3ZvEWtSXkp6+60QST/cmsaa3pT8lenXvu3fvsm3bNm7fvk3GjBlp1KgROXLksHpg169fp2fPnqRPn55ly5aZF1fv1KmTRbsmTZqwfft2du/eTdeuXQF48uSJRZvw8HBSpUqFyWSKUxf7OlWqhL/h/v7BmEyJPqX/FBsb41vTyd9GAQGhREfHvO4wUhyD4dk/0lPCPeC/SvemlC05703qSymbvueSjr7rkpbuTSlbct+b1J9Stjf9uy72++RlEpWUunDhAu3btydXrly88847XLhwgfnz57No0SJKlSr1ysH+08GDB+nbty8ffPAB/fr1s3gy3qJFiyhUqBAVKlQwl0VERODg4EDatGnJlCkTV69eNU/he/DgAYGBgeTLl4+YmBgCAwN5+PAh7u7uAFy7do3MmTPj4pLwvwaZTOhLWv7z1EeTju4BIq9Onx2xFvWlpKXvOpFXo8+NWNPb0J8StdD55MmT6dWrF+vWrWPatGls2LCBPn368OWXX1otoHPnzuHj48PgwYMZOHCgRUIK4K+//mL06NHcunWLqKgo1q9fz9mzZ3n//fcB8PLyYu7cudy6dYuQkBDGjx9P2bJlyZEjBzlz5qRUqVKMHz+ekJAQbt26hZ+fHy1atLBa/CIiIiIiIiIi8nKJSkr9+uuvtGnTxqKsTZs2/Pbbb1YL6KuvviIqKopx48bh4eFh/omdtvfZZ59RtWpV2rRpQ+nSpVmzZg3z58/n3XffBcDHx4dq1arh7e1NtWrVePr0KdOnTzfvf+bMmURFRVGrVi0++OADqlSpQvfu3a0Wv4i8PgEBAbRq1YwzZ05ZlP/883lq1qwYp/2BA3tp2/YDateuTKtWzdi+fYu5LiQkhEmTxtKokScNG9Zi/PjRBAcH/+1Yjxg8uB/16lWnYcNazJgxhaioqOfG9s03q2nZsgl16lSjXbvWHDiw16J+06b1tGrVDE/PKnz8cSuOHj38qpdBRERERETkjZCo6XtOTk789ddfZM+e3Vz2119/kTZt2n8VROyT8eBZUupF7O3tGTJkCEOGDIm33s7Ojv79+9O/f/94693d3Zk5c+arBysi/0nnz59j3LhR3L79p7nMZDLx7bdbmTFjChERERbtz5w5xbhxo/n88wmUL1+Rs2dP079/T3LnzkPBgoUZP340Dx7cZ9Gi5bi4pGHy5PEMHtyfNWtWATBixGAyZMjI5s278Pd/yKBBffnmm1W0afNxnNiOHTvK8uVLmDNnPjly5OTAgb2MGDGYtWs3kyVLVnbu3M6SJQuYOHEKBQsW5vvvdzNs2GesW7cVd/eXPxRCRERERETkTZSokVINGjSgR48eHD58mBs3bnDw4EF69uxJgwYNkio+EZGX2rlzO6NHD6NLF8tRjxMmfM62bZv55JMucbZZs2YlLVq0okKFShgMBkqWLM3ChcvIlu0dwsPDOXLkID4+vciUKTPOzs706NGHs2dPc+3aNf788xZnz56me/eeODo6ki3bO7Rv34kNG76JN76bN29gMpmIiTFhMpkwGm2wtbXDxsYGgNWrl9OpU1cKFSqCwWDA07MeX321BGdnLVwpIiIiIiIpV6JGSvXq1YtHjx7RvXt3IiMjcXBwoHnz5vj6+iZVfCIiL1W2bHk8Petha2vLyJH/G0XZqVNXMmbMFGc6H8ClSxcpWbIUAwb04uLFn8mYMRMdO3YhV648hIWFYTKZcHR0Mrc3GJ7l8K9fv05ISDhp0qS1GMWUM2cu7t27S3BwcJwHJ9SuXY8dO7bx0UctzYmoESPGkDFjJsLDw7lx4zpGoxEfn87cuHGdHDnepVu3Hjg7O1v1OomIiIiIiPyXJGqklIODAxMnTuT06dMcPnyYc+fOMWLECBwdHZMqPhGRl0qf3j3OQxEAMmbM9NxtgoIes3r1ctq1+4StW3fToUMnRo0awsWLP+Ps7EyZMuWZP38O/v4PCQsLxc9vBjY2NoSHhxMWFhbnvhf7+smTsDjHioqKJG/efCxY8DXff3+Ezz4bysSJY7h27SrBwUGYTCbWrFlBv36D2LJlF56edenfvyd//XXnX14ZERERERGR/64EJaW2b98OwObNm9m8eTM7duzg6NGjbNmyxVwmIvImsbe3p2HDphQpUgxbW1uqVatJqVJlOHjw2QLkw4d/jqurG+3bt6Fjx7YULlyUVKlSkyZNGhwdnXj6NNxif+Hhz17HN+Vu6tQvyJkzNwULFsbOzo6GDZtQuHBRduzYhp2dPQCtWnmTK1du7OzsaN68FZkyZeHYsaNJfBVERERERERenwRN3/vqq69o1KjRcxcINxgMNGvWzJpxiYgkqZw53yMyMtKiLDo6BpPp2f8/euRP794DSJMmDQC//36D4OAgihQpwh9/3OXx48c8euRPunTp/7/+OhkzZiJ16tRxjnXv3l0KFChoUWZra4udnR2urq64uaWLsxB7TEw0pthgREREREREUqAEJaViR0rt27cv3vq/PyZdRORN0KxZC6ZN+4KyZctTqlQZDh3az9mzp/j0Ux8A/Pxmkj59egYMGMLjx4FMnTqJ2rXrkj59ekwme4oVK8GMGVMYOHAogYGBLF26kIYNm8R7rMqVq7Jx4zdUqlSVvHnzcfDgPs6cOW0+VrNmzVm6dCHFihXnvfdys2nTeh48eEDVqtWT63KIiIiIiIgku0QtdF62bFlOnDgRp7xGjRqcOhV3IWERkf+qhg2bYDQamTVrKn/99ReZM2dm1Kjx5M9fAICBA4cyefJ4Gjf2xNbWjpo1a+Pr28u8/dixk5g69QtatmyCwWCkXr2GtG/fyVzv6VmFAQOGUKdOfTp06IzRaGTYsM8ICnrMO+/kYMKEL8mbNz8AHTp0xtk5FSNGDObhwwe8++57fPnlDDJkyJi8F0VERERERCQZvTQpdfPmTUaMGIHJZCIkJISPP/7Yoj4kJMQ8vUVE5HU7ciRugrxkydLxltev34j69RvFu5+MGTMxefIMizKD4X//ny5desaOnfTcOL777rD5/21tbfnkk0/55JNP421rNBr58MOP+PDDj567PxERERERkZTmpUmpd999lzp16hAQEMCZM2coW7asRb29vT01a9ZMsgBFRERERERERCTlSdD0PW9vbwDeeecdmjZtSkxMDDY2Njx8+BA3NzdsbGySNEgR+W8zGg0YjYaXN0whbGwS9ODSN15MjImYGC22LiIiIiIiSSNRa0oVKFCAmjVrMmPGDIoVK8aCBQv4/vvvWbhwIe+9915SxSgi/2FGo4G0rs7YviWJGgA3t1SvO4RkERUdw+PAMCWmREREREQkSSQqKTVu3Djef/99ChUqBMCAAQNwcXFhzJgxLF68OEkCFJH/NqPRgK2NkV5rznL1fsjrDkesJE/G1Mxo7YHRaFBSSkREREREkkSiklKXLl1i2bJlGP5/tV9bW1u6detG+fLlkyQ4EXlzXL0fwsU7Qa87DBEREREREXlDJGq+TerUqblx44ZF2a1bt/T0PRERERERERERSZREjZR6//336datG506dSJr1qzcuXOHRYsW4eXllVTxiYiIiIiIiIhICpSopJSvry9Go5GvvvqKBw8ekCVLFry8vOjUqVNSxSciIiIiIiIiIilQopJSNjY29OjRgx49eiRVPCIiIiIiIiIi8hZIVFJq9uzZz63z9fX918GIiIiIiIiIiMjbIVFJqePHj1u8DgwM5Nq1a9SrV8+qQYmIiIiIiIiISMqWqKTU8uXL45Rt2bIlTrJKRERERERERETkRYz/dgdNmzZl79691ohFRERERERERETeEv86KXXixAmcnZ2tEYuIiIiIiIiIiLwlEjV9r2bNmhgMBvPryMhIHj58SLdu3awemIiIiIiIiIiIpFyJSkr5+vpaJKWMRiO5c+emSJEiVg9MRERERERERERSrkQlpby8vJIqDhEREREREREReYskKCnVtm1bixFS8Vm2bJlVAhIRERERERERkZQvQQudlytXjrJly5I1a1Z++eUXChYsSN26dSlevDi//vor7733XlLHKSIiIiIiIiIiKUiCRkr5+voC0KZNG+bPn0/JkiXNdXXr1mX48OFJE52IiIiIiIiIiKRICRopFevSpUsUL17coix//vz8/vvv1oxJRERERERERERSuEQlpXLnzs3SpUstyr766isKFChgzZhERERERERERCSFS9TT94YMGULXrl1Zvnw5mTNn5s6dO8TExLBo0aKkik9ERERERERERFKgRCWlSpYsyZ49ezhw4AD37t0jc+bM1KxZExcXl6SKT0REREREREREUqBETd8DsLOzw97eHqPRiMlkwmQyJUVcIiIiIiIiIiKSgiUqKXXz5k0aNWrE+PHj+e677/jyyy+pV68eV65cSar4RERERETkb27e/J2+fX2pV686Xl4N+frrRcTExABw7NgROnRog6dnVdq1+5CDB/ebt4uJiWHevDm8/34D6tatRpcu7Tl79rS5Pjo6mtmzZ1CxYkVq167KoEF9efjw4UvjefLkCd7eLVi0aF689devX6VWrUqcOXPqX565iIikNIlKSk2YMIF69epx6NAhvvnmGw4dOkTTpk2ZOHFiUsUnIiIiIiL/LywsjL59fcmUKTObNu3Ez28h+/Z9x9KlC/n118sMHtwfL68P2LlzH337fsa4caPMyaAtWzZy+PBB5s9fys6d+6lVy5PPPuvN06dPAfj660WcPPkjGzZsYMuWHTg4ODBp0piXxjRlykRu3foj3rrw8HBGjRpqPoaIiMjfJSop9dNPP9GnTx+MxmebGY1GevXqxU8//ZQkwYmIiIiIyP+cP3+OgIAA+vYdiJOTE5kzZ+HjjzuyefMG9u7dQ7FiJWjcuBm2trYUL+5BnTr12Lx5AwA3b97AZIohJiYGk8mEwWDEwcHRvO/t27fg7d2OLFmykCpVanr16s+PP/7A7dt/PjeeHTu2ce/eXYoWLR5v/ZQpE6latYZ1L4KIiKQYiUpK2djYEBISYlEWEhKCk5OTVYMSEREREZG4YmJisLOzxdb2f88rMhiMPHrkT3BwEI6Olv8uNxiM3Lz5OwBNmzYnPDyc5s0bUbNmRRYsmMvYsZNwcHAgJCSE+/fvkTt3HvO26dKlx8UlDdeuXY03lt9/v8GiRfMYMWIMBoMhTv3Ondv5889bdOjQ2QpnLiIiKVGiklI1atSgX79+XL9+nYiICK5du8aAAQOoUUN//RARERERSWpFixbHwcGRr76aTXh4OHfv/sXq1csAaNCgMSdP/siBA3uJiori/Plz7N27xzx1LioqEg+PUqxatZ49ew7i7f0xw4YNxN//IWFhoQA4OjpaHM/R0ZEnT8LixPH0aTgjRw6mT58BZMiQMU79zZu/s2DBXEaOHIeNjY21L4OIiKQQiUpK9evXj6ioKBo0aEDx4sVp1KgRDg4O9O/fP6niExERERGR/+fi4sKXX87gl19+xsurIcOHD6JevYYA5M2bn2HDPmfx4vk0aVKX1auX06BBY1xcXAAYM2YE5ctXJEeOnDg4ONK+fSdSp07N/v3fm0dYPX0abnG88PBwnJ2d48QxffqXeHiUonLlanHqnj59yogRg+nZsy+ZM2e29iUQEZEUxPblTf7n6tWrLF26lDt37uDv70+2bNnIkCFDUsUmIiIiIiJ/ExkZSXR0NDNnfmWeMrdp03py5sxFRMRT3nsvF8uWrTW3HzFiMAUKFALg3r27REZGWuzP1tYWW1s70qRJQ4YMGbl+/Tply3oA4O//kKCgx+TKlYd/2r17J3Z2tuza9S3w7Al8v/zyM4cO7adv34HcuvUHEyeOYeLE/y2UPnBgH+rWbUj//oOse1FEROSNlaiRUj4+PkRERJA9e3ZKlChhlYTUo0eP8PT05Pjx4+ayn376iZYtW+Lh4UHNmjVZt26dxTabNm3C09OTEiVK4OXlxdmzZ8110dHRTJo0iYoVK+Lh4UG3bt24f/++ud7f35/u3btTunRpypUrx7hx44iKivrX5yEiIiIiktRMJhN9+vjy7bdbMJlMXL58iWXLFvPBBx9y69YtPv20PVeu/EZUVBR79+7h6NFDvP9+CwAqV67K118v4vbtP4mKiuKbb1bz8OFDKlWqAjyb/vf114u4desWoaGhzJw5hRIlSpIt2ztx4ti37yi7dx9k164D7Np1gKJFi+Pt3Y6vv15D8eIe7Nt31Fy3a9cBACZNmqaElIiIWEhUUip79uxcuHDBagc/ffo0rVq14o8//vcI2cePH9OlSxeaNWvGyZMnGTduHBMmTOD8+fMAHD9+nDFjxjBx4kROnjxJkyZN6NatG0+ePAFg7ty5HD16lA0bNnD48GEcHR0ZNmyYef+9e/fG2dmZw4cPs379eo4dO8bSpUutdk4iIiIiIknF3t6eiROnsHHjeurUqcaIEYPw9v6YJk3ep3DhIvj49GLIkP7Ur1+T1atXMGnSNHLlyg1Av36DKV++Er6+XWjUyJNDh/Yzbdps85pQHTp0pmLFynh7e/P++w2IiIhgzJiJ5mP369eTyZPHv5bzFhGRlClR0/fSpk1Lhw4deOedd8iYMaPFUzaWLVuWqANv2rSJmTNnMmDAAPr06WMu37NnD66urnh7ewNQoUIFGjduzMqVKylWrBjr1q2jYcOGlCpVCoD27duzdu1aduzYQfPmzVm3bh39+/cnS5YsAAwdOpTKlStz69YtYmJiOHHiBIcOHcLJyYns2bPTvXt3Jk+eTKdOnRIVv4iIiIjI61CiREkWL14Rb12zZi1o1qxFvHXOzs707t2f3r3jXw/W1taWbt16MHz4EB4+DMZksqyfMmXmc2OaPXv+C2M+cuTUC+tFROTtlKiklIeHBx4eHlY5cOXKlWncuDG2trYWSakrV66QL18+i7Z58uRh/fr1wLN1rZo3bx6n/vLlywQHB3P37l2L7d3d3UmbNi2//vorAK6urmTKlMlcnzt3bu7cuUNQUBBp0qRJUOzxPPFW5D9H/VSsRX1JrEn9SaxFfSlpxF5XXV+RV6PPjljTm9yfEhp7opJSvr6+rxJLvJ63HlVoaChOTk4WZY6OjoSFhb20PjT02aNs//mEEEdHR3PdP7eNfR0WFpbgpFT69C4Jaifyuri5pXrdIUgKob4k1qT+JNaivpT09O9dkcTTvUms6W3pTwlKSgUEBNCzZ09++eUXKleuzNixY82PlrU2JycngoODLcrCw8NJlSqVuT48PO6jat3c3MwJptj1pf65vclkilMX+zp2/wnh7x93OPObxsbG+NZ08rdRQEAo0dExyXIs9aWULTn7Eqg/pXS6N4m1JPe9yWg0kCatM7Y2iVqOVd4AUdExBD0OIyYmef5xr3tTyqZ/N4k1JXd/sjaDIWF/4EhQUmrkyJFER0fTt29fNm/ezJdffsno0aP/dZDxyZcvH0ePHrUou3r1Knnz5gUgb968XLlyJU591apVSZs2LZkyZeLq1avmKXwPHjwgMDCQfPnyERMTQ2BgIA8fPsTd3R2Aa9eukTlz5kQl2Uwm3viklKR86qNiLepLYk3qT2ItydmXDAYDtjZGeq05y9X7Icl3YElSeTKmZkZrDwwGAybdnMRK1JXEmt6G/pSgpNTx48fZvXs3rq6uVKhQgS5duiRZQJ6enkyePJmlS5fi7e3N6dOn2bZtG35+fgC0aNECHx8f6tevT6lSpVi5ciX+/v54enoC4OXlxdy5cylatChubm6MHz+esmXLkiNHDgBKlSrF+PHj+fzzzwkICMDPz48WLeJfDFJEREREJNbV+yFcvBP0usMQERFJMRKUlIqMjMTV1RWAXLly8fjx4yQLyM3NjcWLFzNu3DhmzpxJunTpGDZsGOXLlweePY1v5MiRjBo1inv37pEnTx4WLFhgjs/Hx4eoqCi8vb0JDQ2lXLlyTJ8+3bz/mTNn8vnnn1OrVi2MRiPNmjWje/fuSXY+IiIiIiIiIiISV6IWOo9lsPIS8LFPxotVtGhR1qxZ89z2TZs2pWnTpvHW2dnZ0b9/f/r3j/9Rt+7u7syc+fzH2YqIiIiIiIiISNLTao0iIiIiIiIiIpLsEjRSKiIigsGDB5tfh4WFWbwGmDBhgnUjExERERERERGRFCtBI6UaN278wtciIiIiIiIiIiKJkaCRUhoFJSIiIiIiIiIi1qQ1pUREREREREREJNkpKSUiIiIiIiIiIslOSSkREREREREREUl2SkqJiIiIiIiIiEiyS3RS6tq1a4wdOxZfX18CAgJYsWJFUsQlIiIiIiIiIiIpWKKSUkePHuWDDz4gICCAH374gfDwcObMmcP8+fOTKj4REREREREREUmBEpWUmjp1KlOnTmXKlCnY2NiQJUsW5s+fz9q1a5MqPhERERERERERSYESlZS6efMmVatWBcBgMABQtGhRHj9+bP3IREREREREREQkxUpUUipr1qycOXPGouzChQtkyZLFqkGJiIiIiIiIiEjKZpuYxp9++indunXjww8/JDIykgULFrB8+XL69u2bVPGJiIiIiIiIiEgKlKikVMOGDUmdOjUrV64ka9as/PjjjwwdOpS6desmVXwiIiIiIiIiIpICJSop9fPPP1OtWjWqVauWVPGIiIiIiIiIiMhbIFFrSnl7e9O0aVNWrFhBcHBwUsUkIiIiIiIiIiIpXKKSUkeOHKFVq1Zs3bqVypUr069fP44dO5ZUsYmIiIiIiIiISAqVqKSUi4sLbdq04ZtvvmHjxo288847DB48GE9Pz6SKT0REREREREREUqBEJaVihYWFcf78eS5cuMDjx48pVqyYteMSEREREREREZEULFELnf/www9s2rSJ77//nnfeeYcWLVowbdo00qZNm1TxiYiIiIiIiIhICpSopJSPjw8NGjRgyZIllChRIolCEhERERERERGRlC5RSakjR46QKlWqpIpFRERERERERETeEglKSo0aNYpRo0YxduzY57aZMGGC1YISEREREREREZGULUELnZtMJov/ioiIiIiIiIiI/BsJGik1evRoACZOnJikwYiIiIiIiIiIyNshQUmp2bNnv7SNr6/vvw5GRERERERERETeDglKSh0/fvyF9QaDwSrBiIiIiIiIiIjI2yFBSanly5cndRwiIiIiIiIiIvIWSVBSKtbhw4fZtWsX9+/fJ0OGDNStW5dq1aolVWwiIiIiIiIiIpJCJejpewBDhw6la9eu3Lx5ExcXF65evYqPjw+DBw9OyvhERERERERERCQFStBIqc2bN3P06FG2bt1K7ty5zeW//PILPj4+bN68mWbNmiVVjCIiIiIiIiIiksIkaKTUN998w4gRIywSUgCFChVi6NChrF27NkmCExERERERERGRlClBSalr1649d+2oSpUqce3aNasGJSIiIiIiIiIiKVuCklIRERFERkY+t95kMlktIBERERERERERSfkSlJTKnTs3P/zwQ7x1x44dizOtT0RERERERERE5EUSlJRq2bIl48eP5/bt2xblV65cYdy4cXzwwQdJEpyIiIiIiIiIiKRMCXr6XqtWrThx4gT169enZMmSuLu7c+fOHS5cuEDjxo3x8vJK6jhFRERERERERCQFSVBSCmDKlCl8//337N27l/v375MjRw66dOlC9erVkzA8ERERERERERFJiRKclAKoXbs2tWvXTqpYRERERERERETkLZGgNaWS09atW/Hw8LD4KVKkCEWKFAFg5MiRFClSxKJ+7dq15u03bdqEp6cnJUqUwMvLi7Nnz5rroqOjmTRpEhUrVsTDw4Nu3bpx//79ZD9HEREREREREZG33X8uKdWkSRPOnj1r/tm1axeurq6MGzcOgAsXLjBmzBiLNq1atQLg+PHjjBkzhokTJ3Ly5EmaNGlCt27dePLkCQBz587l6NGjbNiwgcOHD+Po6MiwYcNe27mKiIiIiIiIiLyt/nNJqb8zmUwMGDCA6tWr07RpUyIiIvjtt9/Mo6b+ad26dTRs2JBSpUphZ2dH+/btcXNzY8eOHeb6zp07kyVLFlKnTs3QoUM5dOgQt27dSs7TEhERERERERF56yVqTanktmXLFq5evYqfnx8Aly9fJioqipkzZ3L69GlcXFxo3rw5nTp1wmg0cvXqVZo3b26xjzx58nD58mWCg4O5e/cu+fLlM9e5u7uTNm1afv31V7Jnz57guAwG65yfSFJSPxVrUV8Sa1J/EmtRXxJrUn8Sa1FfEmt6k/tTQmNPVFKqZs2aGOLZs52dHenSpaNGjRp88sknGI3/fgBWTEwMc+fOpWvXrqROnRqA4OBgypYtS9u2bZk6dSqXLl3Cx8cHo9FIp06dCA0NxcnJyWI/jo6OhIWFERoaCoCzs3Oc+ti6hEqf3uVfnJlI0nNzS/W6Q5AUQn1JrEn9SaxFfUmsSf1JrEV9SazpbelPiUpKffDBB3zzzTd06tSJ7Nmzc/v2bRYvXkzFihXJlSsXq1atIjw8nB49evzrwI4fP879+/dp0aKFuaxSpUpUqlTJ/LpYsWK0a9eOHTt20KlTJ5ycnAgPD7fYT3h4OG5ubuZkVez6Un+vT5UqcW+2v38wJlNiz+i/xcbG+NZ08rdRQEAo0dExyXIs9aWULTn7Eqg/pXS6N4m16N4k1qR7k1iL7k1iTcndn6zNYEjYgJ5EJaV2797NvHnzyJs3r7msbNmy9O/fnxEjRlC9enXatm1rlaTU7t278fT0tBjZ9P333/Pw4UNat25tLouIiMDR0RGAvHnzcuXKFYv9XL16lapVq5I2bVoyZcrE1atXzVP4Hjx4QGBgoMWUvoQwmXjjk1KS8qmPirWoL4k1qT+JtagviTWpP4m1qC+JNb0N/SlR8+xu3rxJzpw5LcqyZ8/OjRs3AHjnnXcICgqySmCnT5+mTJkyFmUmk4kJEyZw7NgxTCYTZ8+eZdmyZean77Vo0YJt27bx448/EhkZydKlS/H398fT0xMALy8v5s6dy61btwgJCWH8+PGULVuWHDlyWCVmERERERERERFJmESNlCpQoADz5s3D19fXXLZ48WLy5MkDwKFDh8iWLZtVAvvzzz/JmDGjRZmnpyeDBw9m1KhR3Lt3D3d3d3r06EHTpk0BqFChAiNHjjTX58mThwULFuDq6gqAj48PUVFReHt7ExoaSrly5Zg+fbpV4hURERERERERkYRLVFJq2LBhdO7cmXXr1pElSxb++usv84LkZ86cwcfHhxkzZlglsLNnz8Zb3rp1a4vpe//UtGlTc5Lqn+zs7Ojfvz/9+/e3SowiIiIiIiIiIvJqEpWUKlSoELt372bfvn3cvXuXbNmyUbNmTZycnAgMDOTAgQOkT58+qWIVEREREREREZEUIlFJqTFjxtCyZUuaNGkSpy52ipyIiIiIiIiIiMjLJGqhc39/f1q1aoWXlxerV68mODg4qeISEREREREREZEULFFJqenTp3PkyBFatGjBpk2bqFKlCgMHDuTkyZNJFZ+IiIiIiIiIiKRAiUpKAbi4uNCmTRu++eYb5s6dy8mTJ/n444+TIjYREREREREREUmhErWmFEBoaCi7du1i8+bNnD9/nurVqzNmzJikiE1ERERERERERFKoRCWl+vXrx759+8icOTMtW7ZkxowZpEuXjkePHiVVfCIiIiIiIiIikgIlKilla2vLggULKF26NAA3btxg+vTpbN26lXPnziVFfCIiIiIiIiIikgIlKik1adIkAE6dOsWiRYs4ePAgefPmZcCAAUkSnIiIiIiIiIiIpEwJTkrFxMSwa9culixZwpUrV4iKimLevHlUqVIlKeMTEREREREREZEUKEFP3/v666/x9PRk8uTJeHp6cuDAAVKnTk2+fPmSOj4REREREREREUmBEjRSasKECbRp04ZBgwZhb2+f1DGJiIiIiIiIiEgKl6CRUsOHD+f48eNUq1aNadOmce/ePQwGQ1LHJiIiIiIiIiIiKVSCklLe3t58++23TJ06latXr+Lp6UlQUBDHjh0jOjo6qWMUEREREREREZEUJkFJqVgVKlRgzpw57Ny5k/bt2zNx4kSqVKnCxIkTkyo+ERERERERERFJgRKVlIqVLVs2BgwYwKFDh+jbty8nTpywdlwiIiIiIiIiIpKCvVJSKpa9vT0tWrRg48aN1opHRERERERERETeAv8qKSUiIiIiIiIiIvIqlJQSEREREREREZFkp6SUiIiIiMj/tXef0VGV+9vHr5k0klBDCQkQkCIIiHQE9YAIRlCpCdIJ0kJvoUnvAelVeiK9oxSliAgoICVIDTVAqIEQShpJZuZ54co8BPH89RhnAnw/a2UtMnv2+Jtz7rX3nWvfBQAA2ByhFAAAAAAAAGyOUAoAAAAAAAA2RygFAAAAAAAAmyOUAgAAAAAAgM0RSgEAAAAAAMDmCKUAAAAAAABgc4RSAAAAAAAAsDlCKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANkcoBQAAAAAAAJsjlAIAAAAAAIDNEUoBAAAAAADA5gilAAAAAAAAYHOEUgAAAAAAALA5QikAAAAAAADYHKEUAAAAAAAAbI5QCgAAAAAAADZHKAUAAAAAAACbI5QCAAAAAACAzWXIUGrbtm0qWbKkypUrZ/3p16+fJOm3336Tv7+/ypUrp5o1a2rt2rVpzt24caNq166tsmXLqlGjRgoLC7MeM5lMmjBhgqpVq6Zy5cqpc+fOioqKsul3AwAAAAAAQAYNpU6ePKn69esrLCzM+vPll1/q4cOH6tixoxo0aKDDhw9r7NixGj9+vE6cOCFJOnTokEaPHq3g4GAdPnxY9erVU+fOnZWQkCBJmjt3rn7++WetX79e+/btU6ZMmTRkyBB7flUAAAAAAIBXUoYNpUqXLv2H13fs2KHs2bOrRYsWcnR0VNWqVfXpp59q+fLlkqS1a9fq448/VoUKFeTk5KSAgADlyJFD27Ztsx7v0KGDvLy8lDlzZg0ePFh79+5VZGSkTb8fAAAAAADAq87R3gU8y2w26/Tp03J1ddXChQtlMplUvXp1BQUF6cKFC3r99dfTvL9o0aJat26dJOnixYtq3LjxH46Hh4fr8ePHun37dprzc+XKpWzZsuncuXMqUKDAX67RYPgHXxCwEdop0gttCemJ9oT0QltCeqI9Ib3QlpCeXuT29Fdrz3Ch1P3791WyZEn5+vpqxowZiomJ0YABA9SvXz/lzp1brq6uad6fKVMmxcfHS5Li4uL+9HhcXJwkyc3N7Q/HU4/9VTlzZvm7XwuwqRw53O1dAl4StCWkJ9oT0gttCemJ9oT0QltCenpV2lOGC6Vy5cplnY4nSa6ururXr5+aNGmiRo0aKTExMc37ExMT5e7ubn3v847nyJHDGlalri/1vPP/qujox7JY/tYpGY6Dg/GVaeSvopiYOJlMZpv8t2hLLzdbtiWJ9vSy49qE9MK1CemJaxPSC9cmpCdbt6f0ZjD8tQE9GW5NqfDwcE2aNEmWp1KfpKQkGY1GlSlTRhcuXEjz/osXL6pYsWKSpGLFiv3p8WzZssnT01MXL160Hrt7964ePHjwhymB/xeL5cX/wcuPtoT0wrUJ6Ym2hPTCtQnpibaE9MK1CenJlu3JXm00w4VS2bNn1/Lly7Vw4UKlpKTo5s2b+vLLL9WwYUP5+vrq3r17CgkJUXJysg4ePKjNmzdb15Hy8/PT5s2bdfDgQSUnJyskJETR0dGqXbu2JKlRo0aaO3euIiMjFRsbq3Hjxqly5cry8fGx51cGAAAAAAB45WS46Xt58+bVvHnzNGXKFM2dO1cuLi76+OOP1a9fP7m4uGjx4sUaO3asZsyYIQ8PDw0ZMkRvv/22JKlq1aoaPny4RowYoTt37qho0aJasGCBsmfPLknq2rWrUlJS1KJFC8XFxalKlSqaNm2a/b4sAAAAAADAKyrDhVKSVLlyZa1ateq5x958880/PSZJ9evXV/369Z97zMnJSUFBQQoKCkqXOgEAAAAAAPC/yXDT9wAAAAAAAPDyI5QCAAAAAACAzRFKAQAAAAAAwOYIpQAAAAAAAGBzhFIAAAAAAACwOUIpAAAAAAAA2ByhFAAAAAAAAGyOUAoAAAAAAAA2RygFAAAAAAAAmyOUAgAAAAAAgM0RSgEAAAAAAMDmCKUAAAAAAABgc4RSAAAAAAAAsDlCKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANkcoBQAAAAAAAJsjlAIAAAAAAIDNEUoBAAAAAADA5gilAAAAAAAAYHOEUgAAAAAAALA5QikAAAAAAADYHKEUAAAAAAAAbI5QCgAAAAAAADZHKAUAAAAAAACbI5QCAAAAAACAzRFKAQAAAAAAwOYIpQAAAAAAAGBzhFIAAAAAAACwOUIpAAAAAAAA2ByhFAAAAAAAAGyOUAoAAAAAAAA2RygFAAAAAAAAmyOUAgAAAAAAgM0RSgEAAAAAAMDmCKUAAAAAAABgc4RSAAAAAAAAsDlCKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANpchQ6nw8HC1bdtWlStX1jvvvKP+/fvr/v37kqThw4erdOnSKleunPVn9erV1nM3btyo2rVrq2zZsmrUqJHCwsKsx0wmkyZMmKBq1aqpXLly6ty5s6Kiomz+/QAAAAAAAF51GS6USkxMVPv27VWuXDnt379fW7Zs0YMHD/TFF19Ikk6ePKnRo0crLCzM+vPZZ59Jkg4dOqTRo0crODhYhw8fVr169dS5c2clJCRIkubOnauff/5Z69ev1759+5QpUyYNGTLEbt8VAAAAAADgVZXhQqmbN2+qRIkS6tq1q5ydnZUjRw599tlnOnz4sJKSknT+/HmVLl36ueeuXbtWH3/8sSpUqCAnJycFBAQoR44c2rZtm/V4hw4d5OXlpcyZM2vw4MHau3evIiMjbfkVAQAAAAAAXnkZLpQqXLiwFi5cKAcHB+tr27dvV6lSpRQeHq6UlBTNmDFD1apVk6+vr+bPny+z2SxJunjxol5//fU0n1e0aFGFh4fr8ePHun37dprjuXLlUrZs2XTu3DnbfDkAAAAAAABIkhztXcB/Y7FYNG3aNP34449atmyZ7t27p8qVK6tVq1aaMmWKzp49q65du8poNKp9+/aKi4uTq6trms/IlCmT4uPjFRcXJ0lyc3P7w/HUY3+VwfDPvhdgC7RTpBfaEtIT7QnphbaE9ER7QnqhLSE9vcjt6a/WnmFDqdjYWA0aNEinT5/WsmXLVLx4cRUvXlzvvPOO9T1lypRRmzZttG3bNrVv316urq5KTExM8zmJiYnKkSOHNaxKXV/q6ePu7u5/q7acObP8j98KsI0cOf5emwb+DG0J6Yn2hPRCW0J6oj0hvdCWkJ5elfaUIUOpa9euqUOHDvL29ta6devk4eEhSdq1a5fu3bunpk2bWt+blJSkTJkySZKKFSumCxcupPmsixcv6j//+Y+yZcsmT0/PNFP87t69qwcPHvxhyt//JTr6sSyWf/IN7c/BwfjKNPJXUUxMnEwms03+W7Sll5st25JEe3rZcW1CeuHahPTEtQnphWsT0pOt21N6Mxj+2oCeDLem1MOHD9WmTRuVL19eixYtsgZS0u/T+caPH68DBw7IYrEoLCxMX3/9tXX3PT8/P23evFkHDx5UcnKyQkJCFB0drdq1a0uSGjVqpLlz5yoyMlKxsbEaN26cKleuLB8fn79Vo8Xy4v/g5UdbQnrh2oT0RFtCeuHahPREW0J64dqE9GTL9mSvNprhRkpt2LBBN2/e1Hfffafvv/8+zbGwsDANGjRII0aM0J07d5QrVy51795d9evXlyRVrVpVw4cPtx4vWrSoFixYoOzZs0uSunbtqpSUFLVo0UJxcXGqUqWKpk2bZuNvCAAAAAAAgAwXSrVt21Zt27b90+NNmzZNM33vWfXr17eGVM9ycnJSUFCQgoKC/nGdAAAAAAAA+N9luOl7AAAAAAAAePkRSgEAAAAAAMDmCKUAAAAAAABgc4RSAAAAAAAAsDlCKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANkcoBQAAAAAAAJsjlAIAAAAAAIDNEUoBAAAAAADA5gilAAAAAAAAYHOEUgAAAAAAALA5QikAAAAAAADYHKEUAAAAAAAAbI5QCgAAAAAAADZHKAUAAAAAAACbI5QCAAAAAACAzRFKAQAAAAAAwOYIpQAAAAAAAGBzhFIAAAAAAACwOUIpAAAAAAAA2ByhFAAAAAAAAGyOUAoAAAAAAAA2RygFAAAAAAAAmyOUAgAAAAAAgM0RSgEAAAAAAMDmCKUAAAAAAABgc4RSAAAAAAAAsDlCKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANkcoBQAAAAAAAJsjlAIAAAAAAIDNEUoBAAAAAADA5gilAAAAAAAAYHOEUgAAAAAAALA5QikAAAAAAADYHKEUAAAAAAAAbI5QCgAAAAAAADZHKAUAAAAAAACbeyVDqejoaHXp0kUVK1ZUlSpVNHbsWKWkpNi7LAAAAAAAgFfGKxlK9erVS25ubtq3b5/WrVunAwcOKCQkxN5lAQAAAAAAvDJeuVDq6tWr+vXXX9WvXz+5urqqQIEC6tKli5YvX27v0gAAAAAAAF4Zr1wodeHCBWXPnl2enp7W14oUKaKbN2/q0aNHdqwMAAAAAADg1eFo7wJsLS4uTq6urmleS/09Pj5eWbNm/T8/w2iULJZ/pTybK+WdVa7ODvYuA+mkcC5367+NNo6caUsvF3u2JYn29LLh2oT0wrUJ6YlrE9IL1yakJ3u3p/RiMPzF91ksL0u88tfs3LlTQ4YM0aFDh6yvnTt3TvXq1dORI0eUJUsWO1YHAAAAAADwaniBc7f/TbFixfTgwQPdu3fP+tqlS5eUN29eAikAAAAAAAAbeeVCqUKFCqlChQoaN26cYmNjFRkZqTlz5sjPz8/epQEAAAAAALwyXrnpe5J07949jRo1SocOHZLRaFSDBg0UFBQkBwfm4QIAAAAAANjCKxlKAQAAAAAAwL5euel7AAAAAAAAsD9CKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANkcoBQAAAAAAAJsjlAIAAAAAAIDNEUoBeOVZLBZ7lwAAAPBCeF6/ib4U/le0HRBK4YVkNpvtXQJeEiaTSQaDQRLtCv/c89oQnS38r0wmk71LwEuCtoT0ktpviouL07179/TgwQOlpKTIYDDQj8Lfltp2JOnx48eKjY1VcnKyJPrlrxKDhd4yXjAmk0kODg66du2a9u3bp0yZMqlx48b2LgsvoNS2ZDabNWrUKN27d08mk0n/+c9/1KhRI7m4uNi7RLxAUlJS5OjoKIvFonPnzslkMsnDw0NeXl6yWCzWThfwV6S2J7PZrG+//Vbe3t4qWLCgPD097V0aXjCp97qIiAitW7dOPj4+qlChgooWLWrv0vCCMZvNMhqNOnfunEaNGqX4+HgZjUYVL15cAwcOVNasWbnf4S97uh/eq1cvPX78WNHR0SpbtqwCAwPl7e1tbXN4uRFK4YWSemEKDw9X69atVaZMGe3fv19NmjTR8OHD5eDgYO8S8YIxm81q3LixChYsqA8//FD79u3TjRs3VLhwYX3xxRdydna2d4l4AaRem8xmswICApSSkqLo6GjFxcVp1KhRqlmzJh0r/GVPt6dGjRrJZDLpzp07ql+/vpo2baoiRYrYu0S8IJ7tN5UvX15hYWF6//331bx5c5UpU8beJeIFc/XqVTVr1kwdO3bUe++9p6NHj+q7776TwWDQzJkz5e7ubu8S8QJIDS8tFov8/PxUqFAhdezYUQcPHtShQ4d07949zZw5kwcxrwh6x3ihGI1G3bhxQ71791ZQUJAWLlyoPn36aM2aNRoxYoS9y8MLaPny5fLy8tK0adNUt25djRkzRr6+vjp37pxOnjxp7/LwAkj9o89isSggIEBeXl4KDQ3VnDlz5O/vr27duunQoUMEUvjLUttT69atVbRoUW3evFnNmjXTvn37tHLlSl2+fNneJeIFYTQadefOHfXq1UvdunXTV199pbZt2+ro0aNasWKFTp06Ze8S8YLZvXu3fH19FRAQoCJFisjf31+ff/65YmNjdfDgQXuXhxdE6nTP3bt3y8PDQ5MnT1bx4sXVpk0bff7553J1ddXOnTslsQzCq4AeMl44x44dk4+Pj5o0aaJ79+7p8uXL6tWrl7Zs2aKxY8cqIiLC3iXiBXLv3j2lpKRI+v/DiBs1aqRbt27p6NGjdq4OGZ3FYrGGTZGRkTIYDBo8eLCcnJxUpEgR9ezZU35+fpo9e7bi4+PpWOEvO3jwoBwdHTVp0iRJUnJysooVK6Z9+/ZpxYoVCgsLs3OFyOhSrzcnT55U3rx51bp1a0VHR+vSpUvy9fXV0aNHtWjRIm3bts3OleJFcuPGDZ0/f9663o/BYFDlypUVGxuryMhIO1eHjG7hwoVavHixpN9D86ioKF2+fFmxsbHW91SsWFGOjo4KDw+XJKaDvgIIpZDhPftH3M2bN+Xp6anExER16NBBmTNnVmBgoN58800tXbpU69ats1OlyOiet9Cru7u7Hj16pBs3blinf7q6uqpSpUrKmzevrUvEC2TcuHGaPXu29ffbt2/r0KFDunXrliRZw87ChQvLwcFBbm5udKzwp56918XHx+vevXuSpL59++rChQuaOXOmypQpo2+//VYLFixQXFycPUpFBvd0WJDK3d1dsbGx+vzzz5U5c2YFBQWpbNmy+u2333TkyBECczxXar/p6QWn33jjDZlMJv3666/W11xcXFSgQAHlypXL5jXixfHo0SOdPXvW+nBF+r2PlDVrVv36669p+ulFihSx9sO5Pr38HO1dAPDfpI5ciY2NVUpKirJnz65mzZrJZDJp69at8vDw0JAhQyRJ+fLl05QpU+Tr62vnqpERPb2Y4po1a+Th4aEKFSrI399fK1as0Lhx49S2bVsVL15cmzdv1s8//6zu3bvbu2xkUCaTSfXq1VPp0qU1Z84cBQYGqnLlyqpatapCQ0PVt29f5cyZU5L05MkTZcmSRU+ePJGzszPBFP4gdVFz6fc//sxms6pVq6YiRYpo3759Onv2rHU0S7Zs2dSoUSO1a9eOtVvwB6n3uuvXr+v48eNKSEhQhQoVNHHiRO3Zs0dZsmTR8OHDJf3e1lq0aKHPP//curYL1yekMpvNcnBw0OXLl7V48WLlzp1b1apV0yeffKItW7Zo3rx5OnHihN5++20tXbpUt2/f1kcffWTvspGBZc2aVf3799e8efO0fft2OTs7y8/PTwULFtT8+fN18+ZNlStXTocPH9Y333xjDa64Lr38CKWQYaXeDM+dO6cxY8YoKipKvr6+atq0qby9vRUdHa34+HjdvHlTkydP1uXLlzV27FgZjUZrpwyQ/n9bMpvNql+/vhwcHHT16lXVqFFDvXr10po1a9SjRw8NHjxY7u7uSklJ0YIFC+Tj42Pv0pEBWSwWOTg4qHTp0jp9+rRWr16tU6dOafbs2WrSpIlWrFihoKAgffDBB7p7965WrVql0NBQdnPEc5nNZusue3379lV8fLwKFCigDh06qFChQoqIiFDWrFl17do1/fLLL9q9e7dCQ0OVO3due5eODCb12hQeHq6AgABVrFhRd+7c0XvvvSd3d3c5OjoqISFBe/fu1ZYtW3T16lVNnDjRurYL694hVWp7uHTpkvz9/fXuu+8qLCxMYWFhateunebMmaNp06bpu+++0969e+Xh4aF169bJ0dGRPjj+4Om1Nz09PdWpUyfNmzdPGzZskJubm6ZMmaKJEydq06ZNWr16tbJly6YlS5awqccrhN33kCGlXrxu3ryppk2bys/PT66urvr666/l6+urwMBAxcXFqV69eipevLgsFotWrFghJycnOlZI4+n2MH/+fEVERGj8+PE6dOiQZs+eLQ8PD/Xs2VP58uXT1atX9eTJE3l7e8vDw8POlSMjel5n+8CBA/ryyy+VP39+zZgxQ8eOHdP69et15coVFShQwDoCD3hW6ggpi8Wi+vXry8fHR3nz5tX58+fl5uamESNG6MGDBwoKCpKbm5tu3bqluXPnqnTp0vYuHRnU48eP1bp1a33yySdq166d4uPj5ebmpjt37uinn37S1q1blZSUJKPRqJCQEDk5OREiII3UEXN3797V5s2b5eDgoDZt2ujSpUtasmSJIiMj1bZtW9WoUUPJycmKjY1V9uzZZTAY0oz6BKS097ljx44pKSlJ+fPnl6enpyZOnKjTp0+refPm+vTTT/XkyRPFxMQoc+bMypw5s71Lhw0RSiHDSb0ZRkdHa/bs2cqZM6e6du0qSdq/f7+GDh2q999/X3379lVycrJiYmJUsGBBGY1GboZI4+LFiypatKgkaeLEidq7d68GDRqkd955R5J09OhRTZkyRV5eXvrss89UqVIle5aLDC71+mI2m7V27VrrH3v+/v765ZdfNG3aNOXNm1czZ86UwWBQYmKinJyc+GMP/5XZbNa+fft08OBBDRgwQJL0448/auXKlXJyctKECRP0+PFj3blzR56envLy8rJzxcjIbt68qV69emn27NnKnTu3dW27hQsXymg0qn79+jIYDMqVKxf9JqQRGxuro0ePqnr16kpISFCnTp109uxZ667EknT58mUtWLDAOnuhSZMm1vOZ/olnpT4YNpvNat68uTJlyqQrV67I1dVVTZo0UZs2bTRu3DhduHBB77//vgICAuxdMuyE4STIMCIjI3XlyhUZDAbFxsZq7dq12rZtm86dO2d9z7vvvqsRI0bop59+0siRI5WSkqLXXnvNesGjY4VUCxcu1IYNGyT9Prole/bsunHjhnbv3m19T4UKFRQUFKTz589r8+bNSkhIsFe5yOAsFos1kPLz89OuXbt06NAhTZs2TZ9//rl8fHzUp08f3blzRy1atJDZbFamTJkIpPBcwcHB1n8vXrxYnTp10qlTp5SYmChJev/999WkSROZTCZ17txZklS2bFkCKfzB0wtQS1KmTJl07do1ff/995IkR0dHOTo6KmfOnDp27Jhy586tPHny0G/CHyxdulRXrlyRyWSSq6urWrduLVdXV23fvt36nsKFC6tjx47KlCmTLl26lGYBagIpPO3p3Ynbt2+vfPnyKSQkRCEhIerUqZOmT5+u9evXq3fv3sqbN68OHz6shw8f2rlq2At3ImQYy5cv18aNGzVu3DidPXtW77zzjh48eKAdO3Zo/fr1aty4sSSpevXqGjhwoL799ts0U6yYsoen1ahRQ0WLFtWUKVNUvXp1dezYUc7Ozpo3b55y586twMBASVK5cuU0ZswY5cyZU66urnauGhnd4MGDVbBgQU2dOlXS70+WGzdurAkTJmj27NlKSkpSaGio7ty5Q4CA57p+/boePXpk/b19+/aKjo7WsmXLdOrUKVWsWFGSVKtWLSUlJWnHjh32KhUZXOq0uzt37ujSpUtKTExUzZo15e/vrx9++EE5c+ZU3bp1JUlHjhyRp6dnmr4S/SZIUlJSkuLi4tS5c2fFx8fL399f7dq108cffywnJyf16tVLQ4YM0ZgxYyRJr732moYMGSJPT0+CKDzXjRs3lC9fPknSrVu3lJKSoi+++EKSVKhQIXl7e+vWrVv69ttv5e/vrz59+shoNCpbtmz2LBt2RCiFDGPgwIH67bff1LVrV3Xs2FHlypVTzpw5ZTAYtHr1alksFvn5+UmSateurdq1a0sSa0ghjdSpCEWLFtXVq1d16tQphYWFqV+/fgoICJDBYFBISIiMRqM6duwoSSpTpoydq0ZGFB0draSkJHl5eVk73jExMWrUqJEkKSEhQZkzZ9aMGTPUsmVLnT17VtWqVVPlypXl5uZmz9KRAT169EhxcXHKnz+/xo0bp+DgYO3YsUO7d+/WgAED9OjRI3Xo0EHz5s1T5cqVJUl169ZV9erV2WUPf5C6gUd4eLi6desmT09PZc2aVTVr1lSTJk308OFDzZ07VyEhIfLw8NCdO3e0Zs0aSUyzwv9nMpk0YcIEnT17VpMnT5aHh4dKliypKVOmyMXFRbVq1dLUqVOtocGoUaMkyfrQhT44njV37lwlJiaqd+/ekn7vKx0/flxHjhyRr6+vLBaLnJ2d5ePjo507dyouLk6enp52rhr2xlUEGUJycrIsFovi4+OVL18+bd68WZcuXZKPj4+aNGmiChUqaM2aNQoNDf3DudwMkerpxRRv374tR0dH9ezZU15eXpowYYJOnDihNm3a6PPPP9fcuXO1ZMkSe5eMDGzDhg1atWqVIiMjtXnzZpnNZl28eFGHDx+WJLm6uspkMilz5swqUKCA3Nzc5OzsTCCF51q8eLG1Pa1fv14ffvihnJyc1KxZM0nS2LFjVbduXXXr1k2//PKL9TwCKTyP0WjUnTt3FBgYqMDAQC1fvlxz5szRjz/+qMuXL6tx48YaM2aMPvjgA33yySdau3atnJyclJKSQiAFKwcHB5UvX17ZsmXT6NGj9ejRIw0ePFi1atXS6NGjtWvXLtWoUUNTp07VmjVrNH/+/DTn0wfHs6pXr67evXtrxowZOnXqlAoXLqwaNWpoz549Cg8Pt15/oqKilCtXLq5HkMRC57CzZ5+wJCUlydnZWe3atdP58+cVEhKiIkWK6ObNm5o3b54sFotGjhzJBQx/8PRiiqlr+ty6dUvr169XZGSkVq5cqZs3b2rgwIF68803tXLlSlWtWlWFChWyd+nIoNauXavVq1fr1q1beu+99xQcHKxVq1YpNDRUrVu3toYJa9eu1ddff63Q0FB2bcSf2r17t0aOHKmEhATVrVtXI0aM0Llz59SjRw/lyJFDq1atkiT16tVLYWFh2r59uzJlymTnqpGR/fLLLwoNDdXcuXN15MgRDRkyRO7u7jp79qyaNGliHdWSil328LSn++A7d+7U6tWr5eTkpFGjRsnd3V3Tp0/X9u3bNWTIENWqVUthYWF68803WYcMz/V0ezpz5ozGjBkjV1dXjR49Wrdu3dKkSZOsD/GyZMmiVatWKSQkRG+88YadK0dGQCgFu0ntHF27dk27du1SSkqKsmbNqqZNm8pkMqlr1646c+aMli1bprCwMHl4eOjdd9+VwWBg6Dmey2KxqFWrVvL09NS4ceN05coVFS9eXCkpKdq7d6927typU6dOKTg4WKVKlbJ3ucignr6+NGzYUNeuXVP79u3VrFkzmc1mff3111q/fr08PT3l7e2t48ePa+7cubQpPNfT7al+/fq6evWq2rdvr+bNm8vDw0Ph4eHq0aOH8uTJo2XLlkn6/Qlynjx57Fk2MqBnH+RdvXpVzZo1k4uLi3LmzKlixYpp/Pjx2rJli7Zs2aJp06YRbOK5UtvS00HlgQMHNH/+fGXKlMkaTM2cOVNff/21QkJCrDsUs2MjnvW8NnHs2DEtXLhQiYmJGj9+vGJjY/XDDz/o0KFDev3119WoUSMVK1bMThUjoyGUgl2dP39ebdu21X/+8x85Ojrqp59+UqlSpTRnzhyZTCYFBgbq6NGjKlCggDZu3CgHBwcCKfypy5cva/jw4Vq0aJGcnZ0l/T76bs2aNcqbN69y5sypDRs2qFOnTsqfP7+dq0VGlNpBN5vNSklJ0f79+xUVFaX169fr7bffVkBAgLJly6YzZ85oz549yps3r6pUqaKCBQvau3RkQKntKfW+dejQIT1+/Fhjx47VRx99pNatW8vLy0sXLlxQ27ZtVbRoUYWEhNi7bGRAqW3p5s2bOnPmjNzc3FStWjWdPn1aV69elbe3t8qWLStJCgoKksVi0eTJk+1bNDKk1LYUERGhTZs26cGDB8qRI4e6d++uX3/9VQsXLpSLi4tGjhwpNzc3bdiwQc2bN2eUHZ7r6X7TsGHDZDAY9Oabb8rPz0+//fab5s2bp6SkJA0dOlSvvfaaTCaTjEYjf8shDUIp2IXJZFJycrK6du2qihUrqnPnzkpKStKnn36qKlWqqEuXLsqbN68kKSwsTGXKlLFe8Ji/jlTPTkW4dOmSGjdurOnTp6t69erWPwQnT56s8PBwLViwQE+ePJGLi4sdq0ZG9XSAsGPHDjk4OKhWrVqSpJCQEG3evFnvvvuuAgMDFRMTI29vbztXjIws9cmx2WzWunXrZDAYVL9+fTk7O2vTpk2aNm2aPvnkE3Xt2lWXL1+W2WxW9uzZVaBAAXuXjgwmte8THh6ugIAAFSpUSMePH9eAAQPUtm1bSdKuXbu0c+dOxcfHKyIiQhs3bpSTkxMP8vBc58+fV5s2bVS/fn09fvxYZ86cUVJSkpYuXaqLFy9q/vz5io+P15w5c5Q9e3ZJTP/EH6VeX8xmsxo2bChPT0/ruq4ff/yxOnTooBMnTmjx4sW6deuWxo8fz+goPBdjL2Ez8fHxOnjwoGrWrCkHBweZTCYlJSXp448/liQ1adJE5cqV08CBA9W8eXMNGDBAVatWVbly5SRxM0RaTy9qfvz4ccXHx8vHx0c1a9bU7t275e3tbb3xZcqUST4+PpJEIIXnslgs1uC7UaNGMplMunbtmt566y0tXLhQAQEBcnBw0MaNG3XgwAHduHFDGzduZIoVnstsNlsDqfr168vR0VHR0dHWqZ8NGjSwBuaHDx9WdHS0li9fzg5EeC6j0ahr166pe/fu6tWrlz744APNmDFDEyZMUEpKijp06CCDwSCj0ajixYtr6tSpcnR0ZJoV/iD1ofCECRPUunVrde7cWdLvu4MGBgaqd+/eCg0NVXR0tE6cOKGsWbNaz6UPjmelBt79+vXTG2+8oeDgYF28eFHDhg3Tzp07JUmdOnVSQECAVqxYwcYd+FPcqWAzW7du1dChQxUcHKwGDRpI+n3djHXr1unIkSMqVqyYgoODdefOHZnNZhUuXDjN+dwMkcpisVj/4PPz85Orq6uuXbumFStWyNfXV8uWLdPMmTNVuHBhubi4WBehBp7n6RGYY8aMUenSpTVs2DBFRESoR48eateunRYvXqxWrVrJy8tLly9fVs2aNQmk8KeMRqMsFos6dOigsmXLavTo0frmm280evRoNW7cWOvXr1f9+vWVJ08enT59Wu+//z6BFNJISkqSJOtU9N27d6tChQpq2rSpbt++raSkJDVr1kyTJ09WtmzZ5O/vrw8++MB6vslkIpCCJCkhIUFbtmyRv7+/HBwc9PjxYz18+FCVK1eW9PsO2FmzZlWXLl00fPhw3b59W3Xq1FGdOnUk/XEtM+DZwDsiIkLTp0+XJC1btkylS5eW2WzWsmXLdP36dQ0dOlTjx4+3Xs+AZ3GFwb8uMTFRd+7ckb+/v3r37q2BAwdq3bp1cnZ2Vvv27bV27VolJibqyy+/lCRNmzZN2bNnV+7cue1cOTKq1CczgYGBKliwoJYvX67Vq1erQIEC8vX1Vd26dVWqVCkdO3ZMt2/f1tdff60SJUrYuWpkVKkBwqxZsxQREaGmTZvK2dlZxYsX18KFC3Xr1i116NBBT548Ua1atdShQwcVLVrU3mUjAzKZTNZ/R0RE6MmTJxo2bJgk6fjx4/rss89kMBjUokULXbt2TVWrVlW7du1UpEgRe5WMDCg5OVkfffSRzp49a33t3LlzypEjh1JSUtSlSxflyZNHffv2Vb58+TRs2DDNmTMnzWfwIA+pdu3apdGjR2vevHmSpGzZsikhIUHff/+9JMnJyUmSlD9/fnl4eMhsNqc5n0AKT0sdCWwymTRs2DDdunVL+fLlU1JSkkaNGqUTJ07oiy++UP369eXu7q6oqCjdu3ePQAr/FY9Q8K+yWCyaOnWqtm7dqlWrVqlTp04ym80aMmSIMmXKJH9/f0VFRenbb79V06ZN5e7urtjYWC1btkxGo5GnM/hTDx8+VHJysnr27ClJypMnj1JSUrR161Y9evRInTp1Urt27WQwGOic47mevr4kJyfr4sWLOnLkiL7//nsVL15cTk5OKlCggEJDQ9WgQQP16tVLc+fOZX0WPNfTi70eOHBA8fHxio2NlaOjowYOHKhbt25pwYIFMpvNWrJkibp27ao1a9bI1dXV3qUjg3FyctKMGTNUqFAhrVq1Sk2bNlX37t1lNBq1ePFieXp6qm/fvpKkypUrq0aNGtb174BnffTRR4qJiVFISIhcXFwUEBAgf39/bd++XQsXLlTbtm3l4OCgefPmKWvWrPLy8rJ3ycignu439e/fXyaTSV5eXpowYYISExMVHh5uHTF14MABlSpVSsOHD1e2bNnsWTZeAIRS+FcZDAbVqVNHt27dUteuXTVr1ix17txZFotFQUFBMhqN6tq1qz799FMdOnRI3t7eevvtt+Xg4MBaCEjj2cVaTSaTTp06pZ9++kmFChWythWz2awdO3aobdu2PJXBn3r6+nL37l3lzp1bkyZN0vjx43Xs2DFt2rRJ9erVk4uLi/Lly6dvvvlGycnJdq4aGZXZbLYukt+8eXOVKlVKQ4cOVeHChXX27FmdP39eX3/9tZydneXs7KyxY8fqnXfeIZDCHyQnJ8vJyUmlS5fWli1bNGLECCUkJKh169ZycHBQVFSUdZ2foKAgXb9+XWPHjpXRaKTfhDRSg/IbN27o5MmTcnJy0uTJk+Xg4KA2bdro0aNH+vbbb7VkyRK9/vrrio2N1YoVK6wLV/NQGM9KbRP9+vXTzZs3NXLkSEmSm5ubTCaTzGazpk+frsKFCyskJETLly8nkMJfwp0L/5rUEKFs2bLq0KGD5s6dq65du2r27Nnq0qWLJKlPnz5KTExUo0aNrAtRS6yFgLSeXeQ+Pj5eHh4eatasmX766ScVLFhQNWrUkCQ9fvxY+fLls1OleBGkXl/MZrO6dOmiGzduqFSpUurdu7cGDRqkUaNGadOmTTIYDPr000/l4uLCTnv4r1I76lOnTpW7u7uGDh0qSSpSpIj279+vu3fv6sGDB1q3bp3WrFmjlStXWneYBVJZLBY5OTnp5s2bunbtmj755BMlJiZqyJAhkqS2bduqWrVq6tKliyIiIpSYmKj169dbR5bTb8LTHBwcdOXKFX322Wfq1q2b6tSpo3PnzikkJERms1k9evRQs2bNtG/fPuXLl08VK1bkoTCe69kHwy4uLjpx4oS2bt0qLy8vZcmSRc7OzqpZs6ZOnjypn3/+WaGhoey0h7+MKw7+FalPWFLDhDfffFNBQUGaMGFCmmDKaDTqiy++UM6cOVW9enXr+Uy3Qqqnp8QMHz5cjx490uPHj9W8eXPVrl1bt2/f1syZM7Vx40Z5eXnpm2++0eLFixklhT+V2p4aN24sHx8ftWvXTuPHj5fJZFLv3r01dOhQjRs3TqGhoXJ0dLRuzAA8T2pn/fDhwwoLC9OJEyd0+vRplSpVSpJUqVIlZc+eXYGBgYqPj9fChQtVqFAh+xaNDCf1XvfgwQNNnDhRR44cUXBwsPz8/GSxWKxBZ9u2bbV582bFxMSoQoUKhAj4r37++WeVK1dOrVq1kiRVrVpVBQoUUHBwsBwdHdWiRQs1atTI+n4eCuNZT19fkpKS5OzsrDFjxih37tz69ttv9dprr+mDDz5QlixZFBAQIGdnZ8XHx8vNzc3OleNFwlUH6S61YxUREaFNmzYpISFBOXLkUOfOnTVgwABNmjRJ3bp106xZsxQYGChPT0+988479i4bGVRqgNCkSRMVLFhQdevWVVRUlLp166aFCxeqa9euOn36tH744QdlzZpVS5cuZRFqPNfTT/omTZqkEiVKWMOo/fv3a+/evUpISNCwYcM0ePBgTZ48WRUrVrRz1cioUu91qW2qUqVK6tevnyZOnKjg4GCNGDFCRYoUkYuLi1atWqXIyEjlzp1bOXPmtHPlyGgsFoscHBx09uxZDR482LqmXZ8+fTR58mT5+/tLkkaMGKG4uDh169bNei4hAv6b+/fv6/79+9bfXV1dVaFCBbm4uGj06NFyc3NTw4YNrcd5KIynPT2yfNiwYbp//74eP36sTz75xLqm6+zZs2UwGFSzZk1lyZJFkgik8LcxWRjpzsHBQRcvXlTz5s2VkJAgV1dX7dy5U5988ony5MmjHj16KF++fGrWrJmioqLUsGFDOTo6KiUlxd6lIwPZtWuX9d/ff/+9MmXKpMmTJ8vX11dXr15VyZIl5e3trUePHqlu3bqaPHmyunTpQiCF5zKZTGmGnt+5c8c6ZXjQoEHy9vbWggULtHv3bgUFBWn//v0aMGCA8ufPb6+SkYE9PYJz6dKlmjlzpubPn68SJUooKChImTNn1rhx43T58mVJkru7u0qUKEEghecyGAyKiYlRv3791LhxY40fP14//vijGjZsqMGDB2vv3r3y9/dX//79tX//flksFuu5hAhIlbr7Z1JSkhITEyVJtWrV0rlz5xQaGmp9n5eXl958802NGjVK9erVs0uteDE8PbI8NjZWfn5+eu2117RlyxaNGjVKPXv2VO3atTV+/Hjt27cvzbUJ+Dt4tIJ0lboQ8MyZM9WkSRP17t1bKSkp2rNnj8qWLatHjx6pRIkS6tatm77//vs0HXSe9CHVqVOn1K1bN3Xu3Fk9e/ZUXFycMmfOLEnq27evzp8/r40bN+qrr77S4cOH03S2gGfdv3/fus11x44d1aRJE7355pt65513NGvWLJ09e1bjxo1TSkqKypQpozx58qh48eL2LhsZVOqoltSOer58+WQ0GnX9+nWtXr1aS5cuVWBgoObNm6dBgwZp4sSJKliwoL3LRgYXGxsro9GoatWqWV8bNGiQbt26paFDh2rs2LFq06aNWrduLYPB8Ic1XvBqS91s4cKFC/rqq6/04MEDNWrUSB9//LF69eql2bNnKyIiQhUqVNAPP/ygK1euWBc9f3bdTkD6/6PLV69eLU9PT02bNk2SVLNmTa1du1Zr1qzR8ePH1b9/f0lS6dKluSbhf8ZIKfxj8fHxWrJkiaTftzE2Go2KjY3Ve++9J0lq3LixXn/9dY0YMUJdu3bVrl27VLJkSfXp08d6MwSeVrp0ac2YMUOLFi3SV199JR8fH/38889q166dbty4obVr18rR0VHXrl1T2bJl7V0uMrDOnTvr5MmTMplMWrp0qbJly6YPP/xQzZs3V7FixXTjxg21bNlSjo6OWrdunTw8PDRo0CC2xMafSu10jxw5Uvnz59esWbM0Y8YMLV26VIULF1anTp1UunRpffbZZypQoICcnJzsXDEyIrPZLEl69OiREhMT5ejoqCdPnuj27duSfh/tIklVqlSRyWTSgAEDFB4eLoPBoJSUFP74g5XFYpHRaFRERIRatWolZ2dn5ciRQ0FBQVq3bp1atGihsWPH6rffftN3330ng8GgtWvXWsN1Aik8LfXvstRrzMOHDxUXF2fdXU+SGjZsqAcPHujHH3+UJPXv3z/NhlXA38XQFPxjx48f14QJExQVFaUBAwZYF938+uuvNWnSJJUsWVLjx49XcnKyTCbTH6bDcDPE83z44Yf68ssvrTuitW/fXvPmzdP8+fNlNBq1fPly/fTTT1qxYoW9S0UGtWTJEp09e1bVq1dX06ZNdfHiRXXv3l3S77ulPXnyRA8fPtSGDRt05MgR7dmzR6GhoUyxwnM9O5ogOjpatWvXlvR7gODu7q4BAwaoffv2OnnypKpXr66KFSvK3d3dXiUjg0rdDCY6OlqzZs1SsWLF1Lx5c5UvX16DBw/WkiVLrMH4uXPnNGTIEO3YsUODBg3Sxo0bGVmONAwGgx48eKCNGzcqMDBQAQEBkqRy5cpp6NCh1nU533///TRthwXy8azU+5zFYtGuXbuUP39+PXnyRM7Ozrp69aoKFy4s6ffZLRUrVrQGUYzcxD/FlQj/iMViUbVq1TRlyhT1799fLi4u6tWrlzp27KiRI0fKYDBo1apVkqRhw4bJzc1Nr7/+up2rxovC19dXU6dOVd++fVW3bl0NHjxYffv2VfHixfXkyROFhISoSJEi9i4TGVBycrJcXV3l4+OjunXrysPDQ4ULF9Y333wjf39/ubm5ydHRUZ06ddKWLVtkMpm0fPlyrk94rtQ/3iwWi3799VdlzZpVUVFR2rNnj+rXr2/d7TNv3rzy8PCQ0fj7QHQCKTwrNZC6fPmylixZol27dmnfvn3KkiWLhgwZov79+6tly5bW+9yNGzc0atQoeXp6asaMGUpOTmb0HawsFosSExM1cOBA/fbbb2ratKn1WIsWLWSxWDRq1Cg9evRI7du3T3MegRSe9fTU9Hv37il37twqXry4jh07ppkzZ6px48Z64403tH37du3Zs0eBgYGSRCCFf8xgYUUy/I9S0/Tz589r0aJFOnv2rM6fP6+OHTuqT58+Wr9+vVasWKGHDx/Kx8fHGiI4OTlZO2XAX7Fr1y717NlTQ4cO1bvvvis3NzcZjUZlz57d3qUhA7t27Zrq1aun7Nmza/r06cqbN69atGih1157TbNmzZKLi4skWRfmpFOF50l9Amw2m+Xn52edPlWtWjUdPXpUNWrUUJcuXSRJq1ev1uLFi7Vs2TLlzp3bzpUjo4qIiJC/v7+6du2qQoUKadu2bXr48KHq1q2rBg0aaNu2bYqJiVFycrJatGghJycnzZkzR0eOHNHs2bPl6upq768AO3t2ZMqBAwc0ffp0ZcmSRV27dk2ztMH8+fO1Z88eLV++nPscnuvpkcArV67UiRMnNH78eM2dO1dXrlxRcnKyzp49q2zZsikuLk6Ojo4aM2aMSpUqZefK8bIglMI/EhkZqSZNmqhbt24qWbKkIiIiNHr0aLVs2VJ9+/ZVUlKS9u7dK29vbxUvXtw6tY+nM/i7duzYoR49eqhXr17WJzPAf3P58mXNnj1biYmJMpvNat68uXx8fNSuXTsVLVpU06dPtwZTwP8lMDBQbm5umjJliu7fv69MmTJp8eLFOnjwoK5fv65y5crp2LFjmjNnDh11/Fdz5sxRVFSURowYIen30VOTJ0/Wzz//rPbt28vX11dOTk46ceKEwsPDFRERoXXr1mnp0qUqUaKEfYuH3aUGCA8fPtTjx4/l7OysPHnyKDw8XCNGjFDBggXVtGlTlStXznpOaojFNCs86+ndZL///nsdP35cZcuWVd26dSVJCxYs0JkzZ5QlSxbVqVNHhQoVkouLizw8POxcOV4mhFL4R7799lutX78+ze5nhw8fVps2bdSlSxd169YtzfsZIYV/Yvfu3SpYsCBT9vC33LlzR0OGDJGDg4Nat26t/Pnzq3HjxqpWrZqmT59u7/LwAoiPj1e3bt3Ut29flSpVSklJSXJ2dtbOnTt15coVWSwW+fj4qFSpUipQoIC9y0UGN378eJ05c0YhISHW0QmPHj1S3bp15e3trWbNmqlhw4Zau3at9u3bJxcXF3Xo0IHpxbD2o8PDw9WvXz9lyZJFUVFRqly5sjp16qSHDx8qODhYBQsWVMOGDVW5cmXruQRSeFZqezKbzapTp46cnZ114cIF64CDPHnySJJCQkK0detWVatWTb1797Zz1XgZkQ7gH4mPj1dMTIz195SUFL3xxhsqUaKEZs2apWXLlqV5P4EU/omaNWsSSOFv8/T01LBhw2Q2m7V8+XJFRERow4YN6tOnj71LwwsiMTFRJ06c0IkTJyTJOtr3wYMH2rt3rzp06KCPPvqIQAp/kLqTVUpKivW1t956S5L066+/WqcPZ82aVVWqVJGHh4c2b96s+/fvy9/fXzNmzFBwcDCBFCT93o++ffu2AgMDVb9+fa1YsUJ9+vTRli1btH//fpUpU0YDBgxQWFiYjh49muZcAik8K/Xvst27d6t8+fLavHmzBg8erP3792vTpk26c+eOJCkgIEANGzZUkyZN7FkuXmIkBPhH3n33XUVGRmrGjBmSfu+oZ86cWcWLF9e4cePSLLgIAPZSoEABDR06VPfv39c333yjXLlyqWDBgvYuCy8IDw8PBQQEaOXKldq3b5+1I5+UlKTMmTPryZMndq4QGVHqtJiLFy9q4MCBmjBhgvbt26datWrJxcVF8+fPV0hIiC5evKi+ffvqyZMnmjp1qi5cuKBvvvnG+jnsUgzp91EtknTp0iWVLFlS7du3l8ViUWhoqBo0aKDKlSsrJCREb731lr788kt17NjRzhXjRdCmTRtNnz5dVapUkSS1atVKbdu21YoVK7R582bdvn1bktS8eXPly5fPnqXiJcbCPvifmc1m5c+fX2PHjlX//v115coVlShRQqdPn9aFCxc0ZswY1pACkGEUKFBAX375pRwcHFgoGH9b06ZNdffuXX3xxReqUqWK3N3dtXPnTi1atEiZMmWyd3nIYFIDqXPnzqlVq1b64IMPdODAAR0/flySNGvWLE2fPl3fffedtmzZoixZsuirr75SpkyZVK1aNeXNm9e+XwAZRuoUq9QwPDk5WVeuXNHVq1fVu3dvFSpUSKNGjdKUKVN05swZBQQE6M0335SUdgFr4Hk+++wzDRs2TIcOHVKDBg0k/R5MGY1GTZo0SY6OjmrVqhXtCP8q1pRCuvjtt980Z84cZc2aVS4uLho+fDi77AEAXiqxsbHav3+/fvrpJxUoUEC+vr5MKUYa9+7dU65cuSRJMTExatOmjfz8/NS6dWtt2rRJS5YsUebMmdWxY0dVr15dknTr1i3rwsGrVq3SzJkztXLlSvn4+NjzqyADSA2Vrl69qu+++04ODg6Kj49XRESEfvvtN7311luaNm2aJKl79+4qWLCggoKC7Fs0Xji7du1Sr1691L59e/Xq1cv6+urVq1WlShUVKlTIbrXh1UAohX/s6e2ynw6gGCEFAABeFbGxsZo3b56aNm0qFxcXnThxQl999ZXWrFmjR48eafDgwSpVqpQOHz6sqKgo1apVSz179tSVK1c0d+5cnTlzRgkJCZo2bZpKly5t768DO0vtX58/f15NmjTRO++8o4SEBJ09e1aPHj3S66+/rlq1aqlAgQL66aefdOHCBW3YsIG+N/4nO3bsUJ8+fRQYGPiHjaqAfxtXLfxjqQsnPptvclMEAACvipiYGO3YsUNnzpzRzZs31bJlS+XNm1f3799Xhw4dVLx4cQUGBkqStm7dqhs3bkiSvL291aJFC5nNZnl5ecnT09OeXwMZhMFg0P379/XLL7+oS5cu6tixo+Li4nT8+HH17dtXCQkJevLkiXbs2CEvLy+tX79ejo6OTNnD/+TDDz/UtGnT1K1bNzk5OalTp072LgmvEEZK4bn+7rS7p7eZvXnzpnLnzi0nJ6d/qzwAAIAM58cff1T37t1VuHBhLViwQDly5NCpU6c0ceJErVq1SpIUFBSkwoULq3PnzuyIhj8VFxcnX19fJSYmavDgwWrYsKE1cFq0aJEOHDig6dOny8XFxfogmEAK/9Tu3btVsGBBpqbDpljsB39gMplkNBoVGRmppUuXav/+/bp3796fvv/pQCokJETDhg1jJyIAAPDKKVCggLp37y6LxaLg4GBFRkbKaDQqJiZG8+bNU9++fXXx4kV17NjRuvQB8Dzu7u4aNmyYjEajzp07J+n/z07InTu3DAaDXF1d08xMIJDCP1WzZk0CKdgc86uQhtlsloODg8LDwxUQECAfHx9FRkaqSZMm8vf3V/78+dO8/+lAavny5Zo9e7YWLVqkzJkz26N8AAAAuylatKiKFi2qmjVrqmfPnpozZ47q1aunjz76SDt37lTBggW1du1aplnhL/nwww9lMBjUq1cv5c2bV/7+/nJ3d9f+/fuVJUsWNhMC8FJg+h7+4Pr162rTpo3atGmj1q1ba+jQoTp69Khq1aqlZs2aycvLS1LaIcLLly/X9OnTFRISopIlS9qzfAAAALu7cOGCunXrpkqVKun8+fMqX768+vfvL6PRyGYw+Fu2b9+uvn37ysPDQ++++64uX76sr7/+Ws7OzmkeEAPAi4h4HZKUZvj4L7/8orJly6p169a6e/eukpOTVbp0aW3ZskUrVqzQqVOnJOkPgdSSJUsIpAAAACQVK1ZMs2bNkslkkpeXl4KCgmQ0GmU2mwmk8Lf4+vpq1qxZevz4sRITE7Vq1So5OzsrJSWFQArAC49QCtZFza9cuaLTp08rJSVFSUlJevLkidq1aycPDw9NnDhRefLk0ebNm/XNN99Yz12+fLmmTp2qkJAQlSpVyo7fAgAAIGMpVqyYRo4cqenTp8vR0VEpKSlMucL/pEaNGvryyy+1Y8cOzZkzRxI7XQN4OXAle8WlTsG7ffu2PvvsM/Xv3181atTQxx9/rFWrVil37tzq37+/JMnT01N16tRRq1atJElnzpzRypUrFRoayggpAACA53B2dpb0+zqchAj4J2rVqqWpU6eqe/fucnBwUKdOnexdEgD8Y9wZX3EODg66fPmylixZooYNG6px48bWY6lDzCMjIzV79mzdv39fLVu2tD7hK1mypEJDQ5UzZ057lQ8AAPBCYJoV0kPt2rU1Z84cFSxY0N6lAEC6IJSCzp8/r7Vr16pkyZKKiopSnjx5JElZs2ZVTEyMevToIQcHB61cuVIODg7W9aeMRiOBFAAAAGBDNWvWtHcJAJBu2H3vFZQ6ZS91XQOj0ajvvvtOvXv3Vs+ePRUQECBXV1dJv+8cYzabVbRoUes5DD0HAAAAAAD/FOnCKyY1kLp06ZKWL1+uR48eqWfPnqpTp46ePHmigQMHymg0qmXLlnJ3d1exYsXSnEsgBQAAAAAA0gPbf7xCzGazHBwcdO7cOX322WeKj4/X2bNn1bJlS4WHh6tBgwYKDg7WjBkz9NVXXykpKSnN+Q4ODnaqHAAAAAAAvGyYvveKuXv3rjp16qTmzZvLz89Pe/bs0bBhw2SxWLRgwQKVKFFCa9eu1fr167Vy5UoW5QQAAAAAAP8KRkq95BITExUWFqaUlBRJUnR0tJydneXn56fY2FitXr1affr0UZEiRdSjRw9t27ZN/v7+WrVqlQwGg8gsAQAAAADAv4FQ6iU3adIk9e/fXwcPHlRycrJiYmKUL18+xcbGqm3btsqVK5caNGig0qVLKzo6Wtu3b08TRDFSCgAAAAAA/BuYvveSSkpKkpOTk0wmk7p3767o6Gj17t1bVatWVVJSks6cOaOZM2dq0aJFkqSgoCC9//77qlOnjoxGoywWC4EUAAAAAAD41zBS6iVksVjUqlUrBQYGysHBQbNmzVL27Nk1adIk7d+/X0ajUXFxcTp06JC+++479ejRQ+Hh4fL19ZXRaJTZbCaQAgAAAAAA/ypGSr2kTpw4obZt26pmzZqaOHGizGazunTpovv376tPnz6qWrWqevfurXv37snV1VWzZ8+2jqxilz0AAAAAAPBvI5R6CaWkpMjR0VFnzpxRs2bNVLt2bX355Zcym83q3LmzoqOjNXDgQFWqVElxcXFyc3OTwWCwngcAAAAAAPBvY/reS8RsNkuSHB0dZTabVbJkSa1YsUI//PCDgoKCZDQaNXfuXOXOnVsDBgzQiRMn5O7ubt1lj0AKAAAAAADYCiOlXhKp0+6uXLmiPXv26ObNm6pataref/99Xbp0SX5+fqpVq5YmTpwok8mkyZMnKygoiKl6AAAAAADALgilXiLnz5/X559/rnfffVcuLi764Ycf9Pbbb2vSpEk6e/asWrRooYoVK2revHnWhcxZQwoAAAAAANgD0/deEgkJCZo2bZratWun4OBgjRw5UpLk7e2tu3fv6o033tCSJUv05MkTPZ1DEkgBAAAAAAB7IJR6SRiNRt2/f19ly5aV2WxWgwYNVK1aNXXs2FF+fn46cuSI3nrrLYWGhspoNFrXnwIAAAAAALAHQqkXlMlkSvO7s7OzDAaDzpw5o6ZNm6pIkSKaOHGiJClnzpzy8vKSJOsoKaOR/+sBAAAAAID9kEy8gFLXgbp06ZImTZqkwMBARUREqE6dOho9erRcXV01efJkSdLw4cPl5uZmDaVS15ICAAAAAACwJ0d7F4C/z8HBQefPn1erVq1Up04dFSxYUPHx8WrdurViY2MVGhqqNm3ayGAwKC4uTitWrLBO2WOEFAAAAAAAyAjYfe8F9OTJE/Xr10+lS5dWx44dra+Hh4dbFy6/du2aHBwc9N5778nBwUEpKSlydCSDBAAAAAAAGQMpxQvIxcVFMTExcnFxSfP6vXv3NGjQIG3YsEHFihWzvm4ymQikAAAAAABAhsJcrhfAszvlJSUlKVu2bIqMjFRsbKz1dW9vbxUrVkyZM2dO8/7U0VMAAAAAAAAZBcNnMrjURc2joqJ0+fJlmUwmFStWTB07dlTz5s2VI0cO1axZU2+88YYWLFggg8GgTJky2btsAAAAAACA/4o1pTKw1IXJw8PD1b17d+XPn183btyQ2WzW+PHjZTAYNGzYMCUnJ8vT01PJyclatmyZnJycWNQcAAAAAABkaIRSGVxUVJSaNWumNm3aqHXr1rpy5Yq2bt2qefPmaeXKlfL09NTNmzdlMpn01ltvyWg0sqg5AAAAAADI8AilMiiLxSKDwaAjR45o7ty5WrRokfXY48ePNWLECLm5uWnUqFEyGAzWY4yQAgAAAAAALwLSiwzGZDKl+f3Jkyc6duyYzp07Zz2eJUsWeXp6Kj4+Pk0gJYlACgAAAAAAvBCY45WBpC5qfvnyZa1YsUIeHh7y8PBQ9erVtXnzZmXOnFn58uWTJN26dUve3t52rhgAAAAAAOB/w/S9DCJ1ut6FCxfUtGlTlS9fXjExMcqcObNSUlKUPXt2xcfH64033lBkZKQiIiK0ceNG1o4CAAAAAAAvJEKpDOT+/fvasWOHEhMTFRAQoBMnTmjbtm06d+6c8uXLp2LFiunkyZPKly+funfvLkdHR+voKgAAAAAAgBcJw2wyiLi4ONWrV09Go1GDBg2SJJUpU8a6m96ZM2f03nvvqU2bNtZzCKQAAAAAAMCLilWxMwh3d3cNHTpUCQkJOnr0qPX10qVLy8/PT15eXtq3b5+k36f6SSKQAgAAAAAALyym72UwO3fuVO/evdWhQwf17NnT+vrVq1dVoEABdtcDAAAAAAAvBUKpDGjHjh3q06ePOnXqpO7du6c5ZjabCaYAAAAAAMALj3QjA/rwww81depUzZ49W2vXrk1zjEAKAAAAAAC8DBgplYH9+uuvKl++vBwdWY8eAAAAAAC8XAilXgApKSkEUwAAAAAA4KVCKAUAAAAAAACbY4EiAAAAAAAA2ByhFAAAAAAAAGyOUAoAAAAAAAA2RygFAAAAAAAAmyOUAgAAAAAAgM0RSgEAALxCrly5Yu8SAAAAJBFKAQAA2NTnn3+ubt26PffYmjVrVK1aNSUlJf3lz/vqq6/Uvn37v/Te3bt3q127dn/5swEAAP5NjvYuAAAA4FXSqlUrdevWTXfv3lXu3LnTHFu5cqWaNm0qZ2fnv/x5gYGBf/m9Dx48kMVi+cvvBwAA+DcxUgoAAMCGqlevLm9vb23cuDHN68ePH9eFCxf03nvvqVOnTqpRo4bKlCmjunXr6scff5QkXb9+XcWLF1dwcLAqVaqkkSNHaubMmWrVqpX1c3755Rf5+fmpYsWK+vjjj/Xtt99Kkg4dOqThw4fr5s2bKleunI4dO6Y33nhDt2/ftp578uRJlS1bVrGxsTb4XwIAALzqCKUAAABsyGg0qnnz5lq7dm2aUUsrV67URx99pMGDB+v111/Xzp07deTIEb377rsaMWJEms+Ii4vTzz//rN69e6d5PTw8XJ07d1bHjh116NAhjR49WuPGjdO+fftUpUoVjRw5Ut7e3goLC1P58uVVuHBha2glSZs2bZKvr68yZ878r/5vAAAAIBFKAQAA2Jyfn5/u3bungwcPSvp9Wt13332n1q1ba968eerevbssFotu3LihrFmz6s6dO2nOb9CggZydnZU1a9Y0r69atUoffPCBPvzwQzk4OKh8+fJq0qSJli9f/tw6GjVqZA2lkpOTtWXLFjVu3Phf+MYAAAB/xJpSAAAANpYlSxbVq1dPa9euVdWqVbV+/XqVLFlSZcqU0c6dO9WlSxfdvXtXRYoUkYeHxx/WgcqTJ89zP/fGjRs6ePCgKlasaH3NZDLJx8fnue+vX7++pkyZojNnzuj69evKkiWLKlWqlH5fFAAA4L8glAIAALCDVq1aqWHDhoqJidGaNWvUo0cP3blzRz179tSsWbNUs2ZNSdL27du1Y8eONOcaDIbnfmbevHnVsGFDjRo1yvpaVFTUny5unitXLv3nP//R1q1bdf36dTVq1OhPPxsAACC9MX0PAADADooWLaoKFSooODhYCQkJ+vDDDxUXFyeTySRXV1dJ0sWLFzV79mxJUlJS0v/5mX5+ftqyZYv2798vs9msK1euqGXLllq8eLEkycXFRQkJCUpJSbGe07hxY+3cuVO//PKLGjZs+C98UwAAgOcjlAIAALCTli1batOmTWrWrJmcnJxUuHBh9e/fX/369VOFChXUs2dPNW7cWE5OTjp//vz/+XlvvfWWpkyZoilTpqhSpUpq2bKlatasqb59+0qSKlWqpJw5c6pSpUo6d+6cJKlGjRqKi4tTmTJl5OXl9a9+XwAAgKcZLH82nhsAAACvhIYNG6pDhw6qW7euvUsBAACvENaUAgAAeEVFRETo0KFDunv3rmrVqmXvcgAAwCuGUAoAAOAVNXToUF26dEnBwcFydna2dzkAAOAVw/Q9AAAAAAAA2BwLnQMAAAAAAMDmCKUAAAAAAABgc4RSAAAAAAAAsDlCKQAAAAAAANgcoRQAAAAAAABsjlAKAAAAAAAANkcoBQAAAAAAAJsjlAIAAAAAAIDNEUoBAAAAAADA5v4f+Pk7Nrsl3VQAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzq0lEQVR4nOzdd1yV5f/H8fdh4wIcqZkjRXHkwL1nuFeIZZKJO8OZmJqWmjtHTnBrpaa598q9cmdpaWKmpomCqIgi6/z+8Mf5dgIU8nBIfD0fDx917us+9/25z7k4wJvrum6D0Wg0CgAAAAAAALAim/QuAAAAAAAAAC8fQikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAD/YUajMb1LADIUvqYA4L+DUAoAkCI///yzBg4cqLp166pMmTJq0KCBhg0bpmvXrqV3aRazZs0aeXh46M8//0zvUlLst99+01tvvaU33nhDTZs2feq+q1atkoeHh7p27Wql6szduXNHX3zxhRo3bqwyZcqoWrVq6tixo7Zs2ZJo38GDB6t+/fqmx/Xr19fgwYOTPXbCe/f3fyVKlFClSpXUuXNnnTx5Mk2uKYGHh4dmzJhh0WPevHlTPXr00PXr103bnvU6pIVRo0bpyy+/lJS6r5Hw8HCVLFlSISEhid7Pfys6OlqNGjXSjz/++NzHepFFRkYqMDBQLVu2VLly5VS5cmW1a9dOK1asUGxsrNm+M2bMkIeHh+lxhw4d1KFDhzStb9iwYSpZsqRu376d7D4ffvihatasqbi4uH99nn/zdbdy5UpNmDDB9PhF/NwHgIzELr0LAAD89y1dulRjx45VlSpVNGDAAL3yyiu6evWq5s+frx07dmjRokUqVapUepf53OrWrasVK1bolVdeSe9SUmzmzJm6fv26Zs6cqRw5cjx139WrV6tYsWI6dOiQrl27pvz581upSun8+fPq2rWrbG1t1bFjR5UqVUoRERHatWuXBgwYoO3bt2vSpEmyt7eX9OQX1vfffz/V55k5c6Zy5colSYqPj1doaKhmzZqljh07atWqVSpevLhFrystHT58WHv37tWnn35q2jZz5kxlyZLFajX88MMP2rFjh7Zv357q5x44cEDu7u7KnTu3xepxcHDQgAEDNHjwYK1fv16Ojo4WO/aL4q+//lKnTp0UHh6uDh06qEKFCnr8+LEOHz6sMWPGaNOmTQoMDFTWrFmTfP7w4cPTvEYfHx+tXLlSmzdvlp+fX6L28PBw7d+/X507d5atre2/Ps+KFSuUJ0+eVD0nKChIlStXNj1+ET/3ASAjIZQCADzVyZMnNWbMGPn6+mro0KGm7VWqVFGDBg3k7e2tIUOGaMOGDelYpWVkz55d2bNnT+8yUiU8PFzFihVT3bp1n7rf5cuXderUKc2dO1cDBw7Ud999pwEDBlilxkePHunDDz9Ujhw59NVXX8nV1dXU9uabb6pevXrq3bu3Xn/9dfXr10+SVKBAgX91rhIlSui1114z21ayZEl5eXlp2bJl+vzzz//tZfwnlCxZ0qrnGzdunN5//31lypQp1c/dt2+fateubfGaGjZsqGnTpunbb79NMvDIyIxGo/r06aNHjx5p7dq1evXVV01tdevWVZMmTfT+++/r888/18SJE5M8hru7e5rXWa5cObm7u2vDhg1JvkebNm1SbGysfHx8nvs8z+tF/NwHgIyE6XsAgKdasGCBsmbNqo8++ihRW/bs2TV48GA1bNhQDx48MG3fsmWLvL295enpqRo1auizzz7TvXv3TO0zZsxQ48aN9f3336t58+YqXbq0WrVqpdOnT+vHH39U27ZtVaZMGTVv3lxHjhwxe179+vW1Z88eNW7cWGXLllXbtm3N9pGejMrp1auXqlatqlKlSqlWrVoaPXq0oqKiTPt4eHho5syZatOmjSpUqKDAwMBE0zju3LmjgIAA1ahRw1TjunXrzM71xx9/qE+fPqpRo4bKlSunDh06mE0V+/PPP+Xh4aGtW7eqT58+8vT0VKVKlTR06FBFRkY+9bW/deuWhgwZojp16qhMmTLy8fHRrl27zK7h2LFjOn78uDw8PLRmzZpkj7V69WplzZpV1apVU+PGjbV69WpFR0eb2mfPnq1SpUrpzp07Zs9btmyZ2TSc06dPy9fXV+XKlVPdunX11Vdfyc/P75lT665fv67hw4ebBVIJGjZsqKZNm2rx4sWm18RS070k6bXXXpObm5tu3LhhqqdkyZJauXKlatasqdq1a+vixYuSnt13JenYsWN65513VLZsWTVq1EiHDx82a094z//5fiR1TZs3b5a3t7fKli2runXrauLEiYqOjtaaNWs0ZMgQSVKDBg1Mr+8/p+9FRERo3LhxevPNN1W6dGk1b95cq1atMjtH/fr1NX36dE2YMEHVq1dXmTJl1KVLF12+fPmpr9vevXt14cIFNW/e/Kn7JSU+Pl6HDh1SnTp1zLavWbNGjRo1UunSpdWyZUvt37/frP348ePq0qWLKlWqpDfeeEP169fXjBkzFB8fb7ZfixYttHDhQrM+/E9RUVGaPHmyGjZsqDfeeEPly5dXp06d9Ouvv5rtd+jQIfn6+srT01M1a9Y0e8+fp688fvxYI0eOVO3atfXGG2+ocePGWrhwodm5v/nmGzVu3FilS5dWrVq1NGLECLPP0n/at2+ffvrpJwUEBJgFUgk8PT3VsWNHbdiwQVevXk3yGH+fvte5c2e1bt060T79+vVTs2bNTI9PnDih9957T2XLllXlypU1aNCgRJ8V/9SmTRudO3dOv//+e6K2tWvXqnLlyipQoECK3qfBgwerY8eOGj58uCpWrKi33npLsbGxiabv3b17V5999pmqV6+u0qVL6+233zb7/lC/fn1dv35da9euNX3WJzV971nXGx8fr2nTpql+/fqmfjplyhTFxMQ89TUBACRGKAUASJbRaNTBgwdVrVo1OTs7J7lP48aN1atXL9OUosDAQPXv319ly5bV9OnT5e/vr+3bt6tDhw5modDNmzc1btw4ffDBB5o6daru3bunPn366KOPPtLbb7+tKVOmKD4+Xv379zd73p07dzRo0CC1b99e06ZNk7Ozs7p166azZ89KehLk+Pr66tGjRxo/frzmzZunJk2a6JtvvtHixYvNag8KClKjRo00ZcoUNWjQING1DRw4UMHBwRo5cqTmzp2rkiVLatCgQTp69KgkKTg4WN7e3rp27ZqGDRumSZMmyWAwqGPHjjp27JjZsYYPH658+fIpMDBQXbt21erVqzV79uxkX/vQ0FD5+Pjo2LFj6t+/v2bMmKF8+fLJ39/fNCptxYoVKlmypEqWLKkVK1YkO1oqLi5O69evV9OmTeXg4CBvb2+FhYXp+++/N+3TsmVLxcXFaceOHWbP3bRpk6pVq6ZcuXLp0qVLplEPU6ZMUe/evTV37txnrtd04MABubm5qXz58snu06xZMz169ChRwGMJ4eHhCg8PNxt9FRcXp9mzZ2v06NHq16+f3N3dU9R3z507p86dOytLliyaNm2aOnbsmGRgmxLLly/XRx99pBIlSmjmzJnq0aOHli1bphEjRqhu3brq2bOnpCdT9j788MNEz4+KilL79u21YcMGde7cWYGBgapQoYKGDh2aqG99/fXX+v333zVu3DiNHj1aZ8+efebaVBs2bFC5cuWUN2/eVF/bTz/9pJiYGHl6epq2/fXXX5o7d6769u2r6dOny2g0qnfv3goLC5P0JEz28/OTq6urvvzySwUFBal8+fKaOXOmNm/ebHb8Jk2aKCQkJNHX2d99/PHHWrVqlbp3766FCxdq8ODB+u2339S/f3/TQtf79u1T165dTeccOHCgdu/erT59+piO82/7ypgxY7Rv3z4NGjRICxYsUIMGDTRhwgRTWLl582ZNmDBBvr6+WrBggfz9/bV+/XqNHj062Ws6cOCAbGxsVK9evWT3SQiTdu/enew+CVq1aqVff/3VLDiKjIzUnj171KpVK0lPgkI/Pz85OTlp6tSp+uSTT3Ts2DG9//77Zp/N/9S6dWvZ29snGkUbHBysc+fOmUZJpeR9kp4ERVeuXNGMGTPk7+8vOzvzCR+PHz9Wx44dtWvXLvXv318zZ85Unjx51LVrV1MwlTC9t06dOslO2UvJ9c6bN09Lly6Vv7+/Fi5cqHfffVfz589/6mc6ACBpTN8DACQrPDxcjx8/TjQdKjn37t1TUFCQ2rZta7ZuSbFixeTr66s1a9aoffv2kp5M6Ro+fLhpes+lS5c0efJkjRkzxvTLSlxcnPr06aPLly+rRIkSpueNGDHC9Nf9qlWr6s0339TcuXM1ffp0/fbbbypRooSmTZtmCsqqV6+uI0eO6Pjx4/rggw9MdZUpU0bdu3c3PT537pzZ9Rw7dkwffvih3nzzTUlPpiy6urqa1kCZOXOm7O3t9fXXX5vWb6lbt66aN2+uiRMnauXKlaZj1alTR4MGDZIkVatWTYcOHdLevXuTnUK3aNEi3blzR1u3bjWt/VSnTh35+fnpiy++UPPmzVWuXDnTNT5tGsv+/ft169YttWnTxrSvu7u7vv32W9Pi6K+++qoqVaqkzZs3q127dpKkGzdu6NSpU/riiy8kSXPmzFGWLFk0f/58U0hZuHBh0/7J+fPPP5/ZhxICo78v6v1vxMfHmxZ6fvz4sa5cuaKJEyfKxsZG77zzjtm+H3zwgSnIS2nfnTNnjrJnz66goCA5ODhIklxdXdW/f/9U1zljxgx5eXlpzJgxpu2PHz/W2rVrlSVLFtNrktSUROnJKJ7ffvtNy5YtU4UKFSRJtWrVUmxsrAIDA9WuXTvTyLRs2bIpMDDQ1HevXr2qGTNmKDw8XG5ubknW+MMPP5iNlkmNffv2qUaNGmbBQXx8vGbNmqUiRYpIkhwdHdWpUyf9+OOPatCggc6fP6/q1aub3i9JqlGjhvbu3avjx4+rRYsWpmMVLFhQLi4uOnLkiGrWrJno/NHR0YqMjNSnn35q6uOVK1dWZGSkxo8fr9u3b+uVV17R9OnTVbx4cc2aNcv0XCcnJ02ZMkUhISGmbf+mrxw7dkzVq1c3vYZVqlRRpkyZTK/30aNHlS9fPvn6+srGxkaVK1dWpkyZFB4enuzr+ueff8rV1fWp64ol9JuULNzt5eWlTJkyacuWLerVq5ckaefOnXr8+LHp9Z48ebJef/11zZkzx9R/ypYtq2bNmmn16tXy9fVN8tjZs2dX3bp1tWnTJtO0XOnJKCkXFxc1atQoxe+TJMXGxmrkyJEqWLBgkudbv369zp8/r++++05ly5aVJNWuXVsdOnTQpEmTtHr1apUsWVIODg7Knj17sp+ZKbneY8eOqVSpUqbP1MqVK8vZ2dmq670BQEbBSCkAQLISfjFM6d2RfvzxR0VHR5v98ihJFStWVL58+UwjjBL8feRMzpw5JZmHKwm/UN+/f9+0zdbW1uwXZScnJ9WuXds0WqdmzZpasmSJHB0ddfnyZe3Zs0ezZ8/WnTt3Ek31KVas2FOvp0qVKpoxY4b69u2rNWvWmEZpVaxYUdKT0KpevXpmCwrb2dmpWbNm+vnnn82m5/3zF6A8efLo4cOHyZ772LFj8vT0TLQYecuWLXX79u0kp8QkZ/Xq1SpYsKBef/113b9/X/fv31eTJk107NgxXbp0ybRfq1atdOLECd26dUvSk5Eczs7O8vLykvQkpKhTp47ZqDlPT0/ly5fvqec3Go2JRjX8U8Ivf897q3YvLy+VKlVKpUqVUvny5fXWW2+Zgqm/34FMMn//U9p3T548qVq1apkCKenJ9MPULtZ8+fJlhYaGmgLPBH5+flq/fr3Z8ZNz7Ngx5cuXzxRIJWjZsqUeP36sM2fOmLaVLl3arMaExaEfPXqU5LEfPXqksLCwFAfS/7R///5E60m5ubmZAilJpr4dEREh6cnImnnz5ikmJkYXL17U999/rxkzZiguLi7JaVGvvvpqssGLg4ODFixYoKZNm+rWrVs6fvy4VqxYoT179kiSYmJiFBUVpXPnziV6Dxo1aqTt27ebLdD+b/pKlSpVtHLlSnXr1k3Lli3T9evX5e/vbxrlVLVqVf3xxx/y9vZWYGCgfvnlF7Vo0UIdO3ZM9nVNydfSs9r/LlOmTPLy8jK7A+bmzZtVuXJl5c2bV48ePdKZM2dUp04dGY1GxcbGKjY2Vvnz51eRIkV06NChpx7fx8dH165d06lTpyQ9CSY3btyoFi1ayNHRMUXvUwInJ6enrjV35MgR5cqVS6VKlTLVGRcXp3r16uns2bOJpuEmJaXXW6VKFR0+fFjt27fXokWLdOnSJb333ntJToUEADwdI6UAAMlydXVV5syZTWvxJOXhw4eKjo6Wq6ur6Yf+hIDp73LmzGn65TNBUn9VdnJyempN2bNnN92hLUGOHDlM546Pj9eUKVO0dOlSPXz4UHnz5lWZMmWSvEtXUnX+3ZdffqnZs2dr69at2rZtm2xsbFS9enWNGDFC+fPn171795K9VqPRaLY2zD+nP9rY2Dw1gLl3716SgUDC+f4e1D3NnTt3tHfvXsXExKhSpUqJ2lesWKFPPvlE0pOpmKNGjdLWrVvVsWNHbdq0SQ0bNjTVfufOnSTv8Jdwt7vk5MuXL9E6Pv+UEC4ktU5OagQFBZnqsbe3l5ubW7J3f/v7taS07967dy/Rosh2dnbJjjZKzt27dxPVkFpP63+SeR9Jqv9JSrRWU4KE5/6bBc7DwsL0yy+/qFatWmbb/3ksg8FgVkNUVJRGjRql9evXKzY2Vq+99po8PT1lZ2eX5NeKs7PzU9dfOnDggMaOHavff/9dmTNnloeHhzJnzizpSbhz7949GY3GFL0H/6avDB06VHny5NGGDRs0cuRISU9C3M8++0wlS5ZU06ZNFR8fr2XLlmnmzJmaNm2a8uXLpwEDBiQ7Qi1fvnw6dOiQoqKikv2svHbtmqSUfy21bt3aNMrolVde0eHDh003BLh//77i4+M1b948zZs3L9Fzn3X3w1q1ail37tzauHGjypcvr8OHDyskJMRsgfNnvU8JcuTIYeozSbl7965u376d7J1gb9++LRcXl6fWm9Lr7dq1qzJnzqzVq1drwoQJGj9+vIoVK6ZPPvlE1apVe+o5AADmCKUAAE9Vs2ZNHT16VI8fP07yF5A1a9ZozJgxWrZsmekH/tDQULMREdKTXwj+Oern37h7966MRqPZLyehoaGmXxrnzp2rxYsXa8SIEWrUqJFpFNO/uctT1qxZNXDgQA0cOFC///67du3apcDAQI0cOVLz58+Xi4uLQkNDEz0vYVFwNzc306ij1ErJsVNi/fr1iomJ0cyZM5UtWzaztlmzZmndunX66KOP5OTkpCxZsqhBgwbaunWratasqfPnz5umHEpPRtckrP/zd2FhYXr99deTraF+/frat2+fTp8+bbbG0N9t27ZNTk5OqlGjRoquKznFihX7V6N7Utp3XV1dE70vCQFHgoS++c8Rhn8fGZfwXvxzsei7d+/q3LlzKbqrmIuLi65cuZJoe2r7SFISnpvS8PPv9u/fr2LFiiUbBiZnzJgx2r59u6ZOnarq1aubQqzkfsm/f/9+ssHL1atX5e/vrwYNGmjOnDmmETZLly7VgQMHJD0JxQ0GQ6L3IDo6WkeOHFGZMmWSPHZK+4qDg4N69uypnj176saNG9qzZ48CAwM1YMAAbd26VZLUvHlzNW/eXBERETp48KDmzZungQMHqmLFikm+fvXr19eyZctMN4lIyrZt20z7pkTVqlWVO3dubd26Vblz55adnZ0aNWokScqcObMMBoP8/PySDMqSW2swga2trVq3bq3vvvtOQ4cO1bp161SqVCnTdOyUvE8plTVrVhUqVEiTJk1Ksj0lnwspvV4bGxv5+vrK19dXYWFh2rdvn2bPnq3evXvr8OHDKRrpCAB4gul7AICn6ty5s+7evasvv/wyUVtYWJjmz5+vggULqly5cipbtqwcHBy0ceNGs/1OnDihGzduPHWh65SKiYkx+2UlKipK+/fvN/3ievLkSbm7u8vHx8cUSIWEhOi3335LdlRIUq5fv646deqYfsErXLiwunXrpurVq+vmzZuSpEqVKmnPnj1mI8Di4uK0efNmlS5d+rl+MalUqZJOnz5tGvWQYMOGDcqVK1ey66r805o1a1SuXDl5eXmpSpUqZv/effdd3bt3z/QLsvRkCt+ZM2e0dOlSvfLKK6patapZTfv379fjx49N23799ddnrl3TsmVLFSxYUJ999plphNDf7dmzR+vWrVOHDh3SbU2WlPbdatWqaf/+/WbT3g4cOGA2zSjhGhL6ifSk3/7000+mx4ULF5abm5vZ3RQlaePGjerWrZseP35sGs2UnEqVKun69euJFprfsGGD7O3tkw1VUsLBwUG5cuXSX3/9lern7t+/P9Fd91Li5MmTqlKlit58801TIHX27FnduXMn0deu0WhUSEhIslNHz549q8ePH6tHjx5mU74SPjuMRqMyZ86sEiVKJHoPDh48qO7du5u9f3+Xkr4SFRWlRo0ame629+qrr8rX11fNmjUzHbdfv36mdZyyZs2qJk2a6MMPP1RcXFyyYXaNGjVUoUIFTZgwIcn1137++WfNnz9fTZs2VaFChZI8xj/Z2NioefPm2rVrl7Zt26YGDRqY+nCWLFlUsmRJ/f777ypdurTpX9GiRTVz5sxEU7KT0qZNG929e1cHDx7U7t271bZtW1NbSt6nlKpcubL++usv5ciRw6zWI0eOaP78+abpq0/7ukrp9bZr1860IH2OHDnk7e0tX19fRUREPHX0HgAgMUZKAQCeqly5curbt6+mTp2qS5cu6a233pKbm5suXryohQsXKjIyUnPnzpXBYJCrq6u6d+9uWgC8QYMG+vPPPzVt2jS5u7vL29vbIjV98skn6tevn3LkyKEFCxbo4cOHpjuVlSlTRoGBgZo7d67KlSunK1euaM6cOYqOjk52/Zyk5MuXT3ny5NHo0aP14MEDFShQQGfPntW+ffvUo0cPSVKvXr20f/9+vf/+++revbscHBy0ZMkSXbt2TfPnz3+ua+zUqZM2bNigTp06qVevXnJzc9O6dev0ww8/aOzYsc8MLKQnd0D77bffNHTo0CTbGzRoIBcXFy1fvlxvvfWWpCcj47Jnz67ly5fLz8/P7DwffPCBtmzZoq5du6pz5866f/++pk2bJoPB8NRpNZkyZdKMGTPUo0cPtW7dWn5+fipZsqQePXqk3bt3a9WqVWrQoIH69u2bylfJclLad/39/fX999+rS5cu6tq1q8LDw/Xll1+aTSl1cXGRp6enlixZooIFC8rNzU3ffPONoqKiTGGLra2tevfurc8//1wjRoyQl5eX/vjjD02dOlXvvvuusmfPbhpNtXPnTtWuXTvRqBxvb28tW7ZMvXr1Up8+fZQ/f37t3r1bq1evVq9evRKNjEutGjVqmNYC+qfVq1cnORWqQ4cOOnTokAIDA1N9vjJlymjr1q369ttvVaRIEZ0/f15BQUEyGAyJvnYvXLigiIiIRFMEE5QqVUp2dnaaOHGiOnfurOjoaK1Zs0Z79+6V9L9Ra3369FHPnj3Vr18/eXt7686dO5o8ebLq1aunEiVKJDntNCV9xcnJSaVKlTLt4+HhocuXL2vt2rWmUUhVq1bV8OHDNWHCBNWuXVv379/XzJkzVahQIRUvXjzJ67KxsdHkyZPVvXt3eXt7q2PHjvL09FR8fLwOHz6spUuXqmTJkqbpginVunVrLViwQLa2tgoKCjJr++ijj9S9e3cNGDDAdJfOhQsX6syZM6bP3acpWLCgKlWqpHHjxikuLs5shFdK36eU8Pb21pIlS9SpUyd98MEHyps3rw4fPqx58+bpvffeM32NZsuWTb/88ouOHTuWZHCbkuutVKmSFi5cqJw5c8rT01MhISFatGiRKleunGh6LwDg6QilAADP1LNnT5UsWVJLly7VuHHjdPfuXeXJk0e1a9fWBx98YDaFpnfv3sqZM6eWLFmilStXytXVVY0bN1a/fv2eOdUjpUaMGKGxY8fqzp07Kl++vL799lvTyKEePXooPDxcX3/9tWbNmqW8efOqVatWMhgMmjNnju7du/fMdUUSzJw5U1OmTNG0adMUHh6uvHnzqlevXqY79hUtWlTLli3TlClT9Mknn8hgMKhMmTL6+uuvTYuh/1u5cuXSt99+a7ojYUxMjIoXL67AwEA1aNAgRcdYvXq1bG1tTXe1+icHBwc1adJEy5cv16+//qoSJUqYFpL/6quv1LJlS7P9CxYsqAULFuiLL75Qnz59lCNHDvXo0UNBQUGmNWCS4+HhoTVr1mjJkiVatWqV/vzzTzk5Oal48eL64osv/vVd3iwpJX23UKFCWrJkicaPH6/+/fsrR44cGjRokMaPH292rPHjx2vUqFH69NNPlSVLFvn4+MjT09Psjoy+vr7KlCmTFixYoFWrVil37tzq3LmzqX9VqVJF1atX1+TJk3XkyBHNnTvX7BzOzs765ptvNHnyZE2fPl0PHjxQ4cKFze5g+TwaNWqkjRs36tatW6Y7oCVILnQqXbq04uPjUzT98J8GDx6smJgYTZ06VdHR0XrttdfUs2dPBQcHa/fu3YqLizONdtm/f79y5cqV7OjLggULavLkyZo5c6Z69uwpFxcXlStXTt988406dOigEydOyMPDQ/Xq1dOcOXM0Y8YM+fv7y83NTU2aNHlmQJqSvvL5559r6tSpWrhwoW7fvq0cOXLIx8fHdOx27dopJiZGy5cv17Jly+Tk5KRq1app4MCBidbN+7u8efNqxYoV+vbbb7Vp0ybTKKAiRYpo8ODB8vHxSdVi59KTaa8lSpRQSEhIoim0NWvW1IIFCzRz5kz16dNH9vb2KlWqlBYtWpTi97lNmzYaNGiQWrdubXZjiJS+TymRKVMmLV26VJMnT9bEiRMVERFhWqOrc+fOpv06d+6ssWPHqkuXLlq0aFGi46Tkevv27SsHBwetXr1as2bNUtasWVW/fv1k76YKAEiewfi8t7kBAMBKZsyYoZkzZ+rChQvpXcpL6ciRI7K3tzcL3O7du6caNWro448/1vvvv5+O1cHSjEajWrVqpUaNGsnf3z+9yzExGo1q2LChfH195efnl97lAACA58CaUgAAIEXOnTunzp07a/HixTp+/Lh27NihHj16KGvWrMkuuowXl8FgUEBAgL799tv/1Do5W7duVXx8vNq1a5fepQAAgOfE9D0AAJAiCWu+fPvtt/rrr7+UKVMmVa5cWRMmTGAdlQyqdu3apjuj/RemJkVHR+vLL7/UhAkT5OTklN7lAACA58T0PQAAAAAAAFgd0/cAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVmeX3gX8V4WFRYj7Er44DAYpR46svG+wCPoTLI0+BUuiP8HS6FOwJPoTLI0+9WJKeN+ehVAqGUaj6PAvIN43WBL9CZZGn4Il0Z9gafQpWBL9CZZGn8qYmL4HAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFidXXoXAADAf8GuXTv0+eefysHBwbStdu26+vTTUTp37qymTp2oP/74Xa6uburYsbOaN29t2s/X10c3b/4lG5v//a1n3ryvVajQ64qPj9dXXy3Q5s3rde/efRUq9Lr69h2gN94ok2QdS5Ys1rx5QWZ1+Pi0U48e/pKkdetWacWKZQoNDVWOHDn19tvvytu7rYVfDQAAACDtEUoBACDp119/UaNGTfXJJ8PNtt+/f18DB/ZVly491KqVt86cOa0hQwJUuLC7SpZ8Q5GRD3T16hWtXLlBefLkTXTcxYvn6/vvt2vx4sXKlMlNy5Z9o48/7q9167aaBU8Jzp//RR07dlHnzt0Tte3fv1ezZ8/SpEnTVarUGzp37mcFBPRV9uzZVbduA8u9GAAAAIAVMH0PAAA9CYM8PEok2r5v325ly+aiNm3elp2dnSpUqKSGDRtrzZqVkqQLF87LxcUlyUAqLi5O3333rfr3H6jXX39dtra2evfdDpoyZYYMBkOSdfz66y8qXrxkkm2hobf13nsd9cYbpWUwGPTGG2VUvnxF/fjj6ee4cgAAACB9MFIKAPDSi4+P14UL5+Xk5KRly75WfHy8qlatoZ49e+vy5UsqUqSI2f6FCr2uTZs2SJJ+/fWcHB2d1KtXd12+fEl58ryqzp27q0aNWrp27aoePIjQgwcP5O3trT///FNFi3qoT5+PZG9vn6iO8PA7Cgm5qY0b12rChNFycHBQvXoN1KXLB3J0dEw0TS88/I7OnDmlXr36p92LAwAAAKQRRkoBAF56d++Gq1gxD9Wt20BLl65SUNBC/fnnVY0a9akePnwoJydns/2dnJz06NFDSZLBYFCJEiU1aNAwrVu3Te+8017Dhn2ss2d/1v379yRJK1cu14wZM7R27WZ5eJTQRx/11oMHDxLVERYWprJlPdW0aQutXLlBEydO0w8/HNbMmVOT2DdUAwb0kYdHCXl5Nbb8iwIAAACkMUIpAMBLL3v2HJo1a56aN28lJycn5cmTRx9+2Ec//HBYRqNRjx9Hme0fFRWlTJkySZLat39fo0d/ofz5C8je3l4NGzZRxYqVtXfvLtOaUZ07d1O+fPnk6OikHj38FRkZqZ9//jFRHe7uRTVr1jzVqlVXDg4OKlTodfn5ddPu3TvM9jt79md169ZRBQoU1PjxU2Rnx8BnAAAAvHgIpQAAL73g4IsKCpoho9Fo2hYdHSMbGxuVKFFKly//brb/H39cVuHCT6b0LVv2jU6cOGbWHh0dI0dHR+XPX0C2traKiYkxtRmNRhmN8frbqUxOnz6pb75ZZLYtJiZajo5OpsebNq1Xv3491bbtuxoxYkySi6UDAAAALwJCKQDASy9btmxas+Y7LVv2tWJjY3Xz5k0FBk5TkybNVa9eA4WFhem775YpNjZWp06d0I4d29SsWStJ0q1bIZoyZYKuX/9TsbGx2rRpvc6ePaMmTZorc+Ys8vJqrOnTp+jPP/9UdHS0Zs+eqaxZs6lChYqJ6nB2dtaCBXO0Y8c2xcfH6/ffL2nRovlq2fItSdLevbs0efJ4jRkzUe+++55VXyMAAADA0gxGY1J/q0VoaESSf8XGf5PBIOXMmZX3DRZBf3o5nT59UnPmzNLvv1+Sg4OD3nyzoXr27CNHR0edP/+Lpk2bpEuXLsnV1VV+fl3VtGkLSfr/oGmGdu/+Xg8eROj11wurZ88+Kl++oql94cK52rNnp+7cCVfx4iXUv//HppFWAwb0UZ48eTRw4CeSntztb9Gi+bp+/ZqyZMmqFi1ay8+vq2xsbNSxYztdvvy7HB0dzWpv2LCJ6fnI+PiMgqXRp2BJ9CdYGn3qxZTwvj1zP0KppNHhXyx8UMGS6E+wNPoULIn+BEujT8GS6E+wNPrUiymloRTT9wAAAAAAAGB13K4HAJAubGwMsrExpHcZVmVr+3L8LSg+3qj4eP6UCQAAgKdLt1Bqy5YtCggIMFsX480339TEiRN15swZjR49WsHBwXJzc1PPnj3Vtm1b035r165VYGCgbt++rcKFC+vTTz+Vp6enJCkuLk6TJk3S+vXr9ejRI1WtWlUjR47UK6+8YvVrBAAkzcbGIBfXTLJ7SUKaBG5umdO7BKuIjYvXvbsPCaYAAADwVOkWSv38889q1aqVxo0bZ7b93r176t69u/r06aN33nlHx48fl7+/vzw8PFSmTBkdPXpUo0aN0rx581SmTBktXbpUPXv21J49e+Ts7KygoCAdOnRIq1evVtasWfXpp59q2LBhmjt3bjpdKQDgn2xsDLKztVHf5acVfOtBepcDC3J/JYumtfOUjY2BUAoAAABPla6hVJMmTRJt37Fjh1xdXeXr6ytJqlatmlq0aKGlS5eqTJkyWrlypZo1a6YKFSpIkvz8/LRixQpt2bJFbdq00cqVKxUQEKC8efNKkoYOHaqaNWvq2rVryp8/v/UuEADwTMG3HujcjfvpXQYAAACAdJAu8ybi4+N17tw57d27V/Xq1VPt2rX16aef6t69e7p48aKKFStmtr+7u7vOnz8vSQoODk62PSIiQjdv3jRrz5kzp1xcXHThwoW0vzAAAAAAAACkSLqMlLpz545KliypRo0aafr06QoPD9egQYM0cOBA5cqVS87Ozmb7Ozk56eHDh5KkyMjIZNsjIyMlSZkyZUrUntCWUoaXa+3dF17C+8X7BkugPwGWwddQ2uAzCpZGn4Il0Z9gafSpF1NK3690CaVy5syppUuXmh47Oztr4MCBevvtt+Xt7a2oqCiz/aOiopQ5c2bTvkm1u7m5mcKqR48eJfv8lMqRI2uq9sd/A+8bLIn+BPx7L8ui7umJzyhYGn0KlkR/gqXRpzKmdAmlzp8/r02bNmnAgAEy/H98Fh0dLRsbG5UpU0ZfffWV2f7BwcEqWrSoJKlo0aK6ePFiovbatWvLxcVFuXPnNpvid/v2bd29ezfRlL9nCQuLkJH1WV8YBsOTDyneN1gC/Snt2draEFpkcOHhkYqLi0/vMjIkPqNgafQpWBL9CZZGn3oxJbxvz5IuoZSrq6uWLl0qFxcXderUSbdu3dLEiRP11ltvqVGjRpo8ebIWL14sX19fnTx5Uhs3blRgYKAkycfHR/7+/mrSpIkqVKigpUuXKiwsTF5eXpIkb29vBQUFqXTp0nJzc9PYsWNVuXJlFShQIFU1Go2iw7+AeN9gSfQn4Pnw9ZO2+IyCpdGnYEn0J1gafSpjSpdQKk+ePJozZ46mTJmioKAgOTo6qlmzZho4cKAcHR21cOFCjRkzRtOnT1f27Nk1bNgwVa1aVdKTu/ENHz5cI0aMUEhIiNzd3TVv3jy5urpKkvz9/RUbGytfX19FRkaqSpUqmjp1anpcJgAAAAAAAJJhMBrJGpMSGsrQwBeJwSDlzJmV9w0WQX9Ke3Z2T6bvNZt+QOdu3E/vcmBBpV7Nps19aik8PFKxsUzfSwt8RsHS6FOwJPoTLI0+9WJKeN+excYKtQAAAAAAAABmCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKuzS+8CAAAAMqq4uDj17dtTefO+qqFDR2jixLHasWOr2T6PHz9WxYqVNWXKTEnS1q2btHjxfIWFhapgwdfVv/9AvfFGmUTHnjs3UNu3b9WqVRuTPf+pUyc0Z84sXblyWc7OmVSnTj198EFvOTk5SZLWrVulFSuWKTQ0VDly5NTbb78rb++2FnwFAAAAksdIKQAAgDSyaNE8/fTTj6bHAwd+op07D5j+jRkzUVmyZFWvXv0lPQmRvvxyooYOHaFt2/aqYcPGGjz4I0VFRZkd98iRI1q69Ounnvv27VsaNOgjNWvWUps379Ls2Qt19uzPCgqaLknav3+vZs+epaFDR2rHjn0aNmyE5s4N1N69uyz7IgAAACSDUAoAACANnDx5XHv37ladOvWTbL97964+/3yY+vULUOHCRSRJmzatV4MGDVWmTDnZ2dnpnXd85eLiql27dpied+dOmIYNG6a2bd996vlv3LiumjVrq2XLt2Rra6vcufOoUaOm+vHH05Kk0NDbeu+9jnrjjdIyGAx6440yKl++oqkdAAAgrRFKAQAAWFh4+B2NHz9Kw4ePNk2V+6egoOny8Ciphg2bmLZdvnxJRYoUMduvUKHXFRx8UZIUHx+vkSM/Vbdu3fT664WfWkPZsp4aPny06XF8fLz27dstD4/ikiRv77Z67z0/s5rPnDllagcAAEhrhFIAAAAWFB8fr88//1TvvNNeRYsWS3KfGzeua/v2LfrgA3+z7Q8fPpSTk7PZNicnJz169FCS9PXXC5U5c2a1a9cuVTXFxsZq3LjPdePGdXXv/mGi9rCwUA0Y0EceHiXk5dU4VccGAAD4twilAAAALOibbxbJwcFBPj7JB0ebN29Q6dJlVbSoh9l2JydnPX5svn5UVFSUMmXKpB9/PKXNmzdq8OBPU1VPaGio+vbtqYsXf1NQ0ALlzJnLrP3s2Z/VrVtHFShQUOPHT5GdHffBAQAA1sFPHQAAABa0ffsWhYaGqnHjupJkWqT8wIG92rZtryRp377datfuvUTPLVy4iC5f/t1s2x9/XFa1ajW0fftW3b17R23btpTBYFB0dLSio6PVuHFdTZgwVWXLlkt0vF9/PafBgz9ShQqV9fHHQxNNJdy0ab2mTp2oLl0+0LvvJq4HAAAgLRFKAQAAWNCyZavNHo8ZM0KSNHTok//eu3dXf/xxWeXKlU/03GbNWuqTTwaqfn0vlSlTTmvWfKc7d+6odu16at68tQYNGiqDQcqZM6u++mqZFi6cq1WrNiZZx/Xrf6p/f3/5+LRT164fJGrfu3eXJk8er/Hjp6hKlWrPd9EAAAD/AqEUAACAFf311w1JUq5cuRK1VaxYWQMGDNKkSeN0+/YtFSpUWJMmTVe2bC4pOvaAAX2UJ08eDRz4iVau/FYPHjzQihVLtWLFUtM+uXPn1ZIl32nRonmKi4vTsGEfmx2jYcMmGjjwk+e4QgAAgJQxGI1GY3oX8V8UGhohXpkXR8JfjXnfYAn0p7RnZ2cjN7fMajb9gM7duJ/e5cCCSr2aTZv71FJ4eKRiY+PTu5wMic8oWBp9CpZEf4Kl0adeTAnv27Ow0DkAAAAAAACsjul7AAAgQ7CxMcjGxpDeZViNre3L87fF+Hij4uP58zgAABkNoRQAAHjh2dgY5OKaSXYvUVDj5pY5vUuwmti4eN27+5BgCgCADIZQCgAAvPBsbAyys7VR3+WnFXzrQXqXAwtyfyWLprXzlI2NgVAKAIAMhlAKAABkGMG3HrB4PgAAwAvi5RnjDgAAAAAAgP8MQikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYXbqGUnFxcerQoYMGDx5s2nbmzBm1bdtWnp6eql+/vlauXGn2nLVr18rLy0vlypWTt7e3Tp8+bXa8CRMmqHr16vL09FTPnj1169Ytq10PAAAAAAAAUiZdQ6mZM2fqxIkTpsf37t1T9+7d1bp1ax0/flxjxozRuHHj9NNPP0mSjh49qlGjRmn8+PE6fvy4WrZsqZ49e+rRo0eSpKCgIB06dEirV6/WgQMH5OTkpGHDhqXLtQEAAAAAACB56RZKHTlyRDt27FDDhg1N23bs2CFXV1f5+vrKzs5O1apVU4sWLbR06VJJ0sqVK9WsWTNVqFBB9vb28vPzk5ubm7Zs2WJq79atm/LmzassWbJo6NCh2r9/v65du5Yu1wgAAAAAAICk2aXHScPCwjR06FAFBgZq8eLFpu0XL15UsWLFzPZ1d3fXqlWrJEnBwcFq06ZNovbz588rIiJCN2/eNHt+zpw55eLiogsXLih//vypqtFgSOVFIV0lvF+8b7AE+hNgGXwNwdLoU2mD73uwJPoTLI0+9WJK6ftl9VAqPj5eAwcOVKdOnVS8eHGztsjISDk7O5ttc3Jy0sOHD5/ZHhkZKUnKlClTovaEttTIkSNrqp+D9Mf7BkuiPwH/nptb5vQuARkMfSrt8X0PlkR/gqXRpzImq4dSc+bMkYODgzp06JCozdnZWREREWbboqKilDlzZlN7VFRUonY3NzdTWJWwvlRSz0+NsLAIGY2pfhrSicHw5EOK9w2WQH9Ke7a2NvyCmcGFh0cqLi7eauejT2V81u5TLxO+78GS6E+wNPrUiynhfXsWq4dS69ev161bt1SxYkVJMoVM33//vT7++GMdOnTIbP/g4GAVLVpUklS0aFFdvHgxUXvt2rXl4uKi3LlzKzg42DSF7/bt27p7926iKYEpYTSKDv8C4n2DJdGfgOfD1w8sjT6Vtvi+B0uiP8HS6FMZk9UXOt+2bZtOnTqlEydO6MSJE2revLmaN2+uEydOyMvLS6GhoVq8eLFiYmL0ww8/aOPGjaZ1pHx8fLRx40b98MMPiomJ0eLFixUWFiYvLy9Jkre3t4KCgnTt2jU9ePBAY8eOVeXKlVWgQAFrXyYAAAAAAACeIl0WOk+Om5ubFi5cqDFjxmj69OnKnj27hg0bpqpVq0qSqlWrpuHDh2vEiBEKCQmRu7u75s2bJ1dXV0mSv7+/YmNj5evrq8jISFWpUkVTp05NvwsCAAAAAABAktI9lBo/frzZ49KlS2v58uXJ7t+qVSu1atUqyTZ7e3sFBAQoICDAojUCAAAAAADAsqw+fQ8AAAAAAAAglAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAq7NL7wLw8jh58rhmz56pK1f+kJOTk+rVa6APP+wjR0cnTZo0Tps3b5Cd3f+6ZK9e/dWqlbfee+9thYT8ZXasR48eqUcPf3Xo0Enh4eGaOvULnTx5XPHxRpUtW059+w5Unjx5nlrPo0eP1LVrB9Wv76UuXXpIkuLj47Vo0Txt3rxBERH3lTfvq+rYsasaNPCy/AsCAAAAAMBLjFAKVhEeHq6BA/spIGCwGjdupjt37uijj/y1ZMlX6tKlh3799Rd9/PFQNWnSPNFzlyz5zuzxvHlBOnz4gNq0eUeS9OWXX8jW1lZ79uxRWNgDjRv3ucaNG6lp04KeWtPkyeN17dpVs21r1nynbdu2aMaMOcqX7zUdOnRAQ4YMUPHiJZQv32vP+SoAAAAAAIAEhFKwCjc3N23atEOZMmWW0WjU/ft3FR0dLVdXV0VHR+v334Pl4VHimcc5deqEvvtumRYuXKpMmTJJkq5cuazXXy8so9Eoo9Eog8FGjo5OTz3Oli0bFRJyU6VLlzXb7u39tpo1ayVnZ2dFR0fr7t1wOTk5P/N4AAAAAAAgdQilYDWZMmWWJHl7N9Pt27dUtqynmjZtqeDg3xQbG6sFC2brp5/OKHPmLGrevKXat39fNjb/W/YsLi5OEyeOVceOXZQ/fwHT9vff76zx40epQoUKkqR8+fJr1qy5ydbxxx+XtWDBHM2evVAjRw4za7OxsZGzs7OOHftBAQF9ZDQa1bv3R8qZM6clXwoAAAAAyDD+7VItjx8/VmDgNO3Zs0uPHj3S668XVo8e/qpQoZLZ8ePi4jRkyEAVKeJuWnolKUuWLNa8eUFycHAwbfPxaacePfwlPRmcsGTJYt2+fVuFCxdRz569Va5ceQu/GkgNFjqH1S1fvkbr1m2VjY2Nhg0bpMjIB/L0rCAfn3Zau3aLPvvsc61atULLly8xe97Ondv06NEjtW3bzmx7fHy8WrXy1tGjR7Vx4w4VKlRIn302JMlzP34cpeHDh6h//4HKleuVZGssV668du8+rC+/nKV584K0a9eO579wAAAAAMhgEpZqeestH23btkcLFy7V6dMntWTJV5JkWqpl584Dpn+tWnlLkubODdQvv5zVokVLtX37XjVu3EyDB3+khw8fmo5/8+ZNde/eXfv373lmLefP/6KOHbuYnSshkDp4cJ8mTRonf/9+2rZtj9q376CAgD66evUPy78oSDFCKVido6OTcubMpZ49e+vo0cPy8Cip6dNny9Ozguzs7FSy5Bt6++13tWvXTrPnbdiwVi1bvmU2lS4sLFRjxoxQ+/Yd5OLiIjc3Nw0YMFhnzpzWpUvBic49deokeXpWUM2adZ5ao4ODg+zs7FSxYmU1atRUO3dus8zFAwAAAEAGkrBUS9OmLWQwGFK1VMuHH/bRjBlzlSNHTj1+/Fj3799TlixZTaOqrl69os6dfVW2bFmVLl3mmbX8+usvKl68ZJJtO3du05tvNlKNGrVka2urOnXqq2zZ8tq0acO/v3g8N6bvwSp+/vmMxo37XF99tVz29vaSpJiYGNnb2+v48aOKiLiv1q3bmPaPjo6Wo6Oj6fGdO2H6+eczGjp0hNlxw8JCFRsbq5iYGNO2hA8we/vE3Xv79q2yt7fTtm2bJT25A98vv5zV/v179NVXyzVjxpeSpN69+5ueExMTrWzZXJ7zFQAAAACAjOnfLtVia2srW1tbrV+/RpMmjZOdnZ0++2yUafpdzpw59d1361WoUF4dPnzkqTWEh99RSMhNbdy4VhMmjJaDg4Pq1WugLl0+kKOjo+Li4uXs7Gz2HBsbAyOl0hkjpWAVRYoUVVRUlGbPnqGYmBjdvPmXZs6cqmbNWsnOzk4zZkzRiRPHZDQadfbsT1q1arlpSKf0JNTKmTNXojvgvf56Eb36aj5NnTpJDx48UGTkA02fPkUlSpTSa68V+GcZ2r37kLZv36dt2/Zq27a9Kl26rHx9O+qrr5ZLksqV89T69av144+nFB8fr4MH92vXrh1q0aJ1mr4+AAAAAPCi+7dLtTRu3Ex79hzR0KEj9Pnnn+qnn36U9CTsypIlS4rOHRYW9v9hWAutXLlBEydO0w8/HNbMmVMlSXXr1te2bZt1+vRJxcbG6sCBvTp58rgeP35suRcAqcZIKVhFpkyZNHnyDE2fPlktWjRUlixZ1LBhE/n5dZWDg4N69/5IkyeP1+3bt5Q9ew517txDjRo1NT3/+vXrypkzV6Lj2tvba8qUmZo1a6refPNNSQaVL19R48ZNNi2SPmBAH+XJk0cDB37yzDpr1aqrfv0Gavz40QoPD1P+/AU1ZszERHfpAwAAAACYc3R0kqOjk3r27K3u3f00fPhoTZ8+29T+96Va2rd//2/PezJL5s03G2nbts3avft7lSlTLlXndncvqlmz5pkeFyr0uvz8umny5HEaMGCQ3nyzke7eDdeECWP04MF9Va1aQ2++2UhRUVHPd9F4LoRSsJrXXy+sL7+clWRb69ZtzKbv/VP79h3Uvn2HJNteey2/xo+frJw5syo0NEJGo3n75MnTkz3uzJmJ79LXvHkrNW/eKtnnAAAAAACeeJ6lWj77bIhKlXpD77zja2qPiYlRtmzZUl3H6dMndfbsT+rQodPfjhVtWpM4LCxUVapUl4/P/26c1b27n+rWrZ/qc8FymL4HAAAAAAD+ledZquWNN8po6dKvdelSsGJjY7Vx4zr9+usvZrNmUsrZ2VkLFszRjh3bFB8fr99/v6RFi+arZcu3JEk//nhKvXv30M2bf+nx48f67rtlunr1ipo0aW7R1wOpk6qRUrGxsdq9e7eOHDmiv/76S7a2tsqbN69q1aqlGjVqmBaYxn+DjY1BNjaG9C7DqmxtX46cNT7eqPh447N3BAAAAIA09DxLtbRt206PHz/WoEH99eDBA7m7F9W0aYGJ1hJOzt+XailevKRGjhyrRYvma+LEMcqSJatatGit99/vLElq0KChrlz5Qz16dNKjR49UrJiHpk8Pkptb9jR7bfBsBqPxn5OdkrZ69WrNmDFD9vb2KleunPLkyaPY2FjdunVLp0+fliT16dNHrVu3Tst6rSapaWAvEhsbg1xcM8nuJQlpXjaxcfG6d/chwVQaMRiU7HRQWIadnY3c3DKr2fQDOnfjfnqXAwsq9Wo2be5TS+HhkYqNjbfaeelTGVd69amXCd/3YEn0J1gaferFlPC+PUuKhjb5+/src+bMmj59usqUKZPkPqdPn9ZXX32l7du3KygoKHXVwuJsbAyys7VR3+WnFXzrQXqXAwtyfyWLprXzlI2NgVAKAAAAAPDCSlEo1aVLF5UvX/6p+3h6esrT01MnTpywSGGwjOBbD/iLMQAAAABkMC/bci0s1ZIxpSiUelYg9XcVK1b818UAAAAAAICnexmXa3Fzy5zeJVjFy7ZUS6pWJg8PD9c333yjkJAQxcc/mdMfExOj3377TRs2bEiTAgEAAAAAwP+wXEvG9DIu1ZKqUGrIkCH6448/lD17dkVGRipv3rw6ePCgfH1906o+AAAAAACQBJZrwYsuVaHU8ePHtWXLFoWEhGju3LmaOXOm1q9fr02bNqVVfQAAAAAAAMiAUjUB1c7OTrlz51ahQoV04cIFSVKzZs30yy+/pElxAAAAAAAAyJhSFUrly5dPZ8+eVbZs2RQZGak7d+7o4cOHioqKSqv6AAAAAAAAkAGlavpe+/bt1aFDB23evFnNmzdXx44dZWdnp0qVKqVVfQAAAAAAAMiAUhVK+fj4qFixYsqZM6cGDhyoRYsWKTIyUp07d06r+gAAAAAAAJABpSqUkqQyZcqY/r979+4WLQYAAAAAAAAvh1SFUsHBwRo/fryuXbum2NhYs7Zdu3ZZtDAAAAAAAABkXKkKpYYMGSI3Nzd16dJF9vb2aVUTAAAAAAAAMrhUj5Q6evSoHBwc0qoeAAAAAAAAvARsUrNzwYIF9eDBg7SqBQAAAAAAAC+JFI2UOn78uCSpTp066tWrlzp37iwXFxezfSpVqmT56gAAAAAAAJAhpSiU6tChg9njU6dOmT02GAz69ddfLVcVAAAAAAAAMrQUhVLnzp2Tra1tWtcCAAAAAACAl0SK1pSqW7euhgwZoj179ig6OjqtawIAAAAAAEAGl6JQatu2bapVq5bWr1+v+vXrq1+/ftq8ebMiIyPTuj4AAAAAAABkQCmavpc5c2Y1bdpUTZs2VXR0tA4ePKgdO3Zo3LhxKlWqlLy8vOTj45PWtQIAAAAAACCDSFEo9XcODg6qX7++6tevr7i4OB09elQ7d+4klAIAAAAAAECKpWj6XnJsbW1VvHhx7rwHAAAAAACAVHmuUEqSYmJidObMGUvUAgAAAAAAgJfEc4dSAAAAAAAAQGoRSgEAAAAAAMDqCKUAAAAAAABgdSm6+179+vVlMBiSbIuLi7NoQQAAAAAAAMj4UhRK9erVK9lQCgAAAAAAAEitFIVSrVq1kq2tbYoOGBcXl+J9AQAAAAAA8HJK0ZpSvr6+OnLkyDP3279/v3x9fZ+7KAAAAAAAAGRsKRopNXHiRA0ZMkSjR49W8+bN5enpqdy5cys+Pl63bt3SyZMntW3bNrm4uOiLL75I65oBAAAAAADwgktRKJU/f34tWbJEe/fu1bfffqu5c+fq0aNHkiRnZ2fVrFlTAQEBqlu3blrWCgAAAAAAgAwiRaFUgrp166pu3boyGo0KDw+XjY2NXF1d06g0AAAAAAAAZFSpCqUSGAwGZc+e3dK1AAAAAAAA4CWRooXOAQAAAAAAAEsilAIAAAAAAIDVEUoBAAAAAADA6lK9plR0dLTu3Lmj+Ph4s+2vvvqqxYoCAAAAAABAxpaqUGrr1q0aPny4IiIiTNuMRqMMBoN+/fVXixcHAAAAAACAjClVodSMGTPUvn17vfXWW7Kz+1c37gMAAAAAAABSt6bUX3/9pV69eqlgwYLKly+f2b/UOnLkiNq2bavy5curRo0aGjVqlKKioiRJZ86cUdu2beXp6an69etr5cqVZs9du3atvLy8VK5cOXl7e+v06dOmtri4OE2YMEHVq1eXp6enevbsqVu3bqW6PgAAAAAAAKSdVIVSpUqVUnBw8HOf9M6dO+rRo4feffddnThxQmvXrtWxY8c0d+5c3bt3T927d1fr1q11/PhxjRkzRuPGjdNPP/0kSTp69KhGjRql8ePH6/jx42rZsqV69uypR48eSZKCgoJ06NAhrV69WgcOHJCTk5OGDRv23DUDAAAAAADAclI1B698+fLy8/NT48aNlTNnTrO2Xr16pfg42bNn1+HDh5UlSxYZjUbdvXtXjx8/Vvbs2bVjxw65urrK19dXklStWjW1aNFCS5cuVZkyZbRy5Uo1a9ZMFSpUkCT5+flpxYoV2rJli9q0aaOVK1cqICBAefPmlSQNHTpUNWvW1LVr15Q/f/7UXC4AAAAAAADSSKpCqdOnT6to0aK6dOmSLl26ZNpuMBhSfeIsWbJIkurUqaOQkBBVrFhR3t7emjp1qooVK2a2r7u7u1atWiVJCg4OVps2bRK1nz9/XhEREbp586bZ83PmzCkXFxdduHCBUAoAAAAAAOA/IlWh1DfffGPxAnbs2KF79+4pICBAffr0Ue7cueXs7Gy2j5OTkx4+fChJioyMTLY9MjJSkpQpU6ZE7QltKfUvcjbA6uinaSPhdeX1BZ4PX0OwNPpU2uD7HiyJ/gRYxov+NZTS+lN9C73vv/9eK1as0PXr15UrVy75+PioRYsWqT2MiZOTk5ycnDRw4EC1bdtWHTp0UEREhNk+UVFRypw5syTJ2dnZtCD639vd3NxMYVXC+lJJPT+lcuTImtpLAazKzS11fRqpx+cA8O/xGQVLo0+lPb7vwZLoT8C/9zJ9z0tVKLVx40aNHDlS77zzjurXr6+rV69qxIgRioqKUtu2bVN8nFOnTumTTz7Rhg0b5ODgIEmKjo6Wvb293N3ddejQIbP9g4ODVbRoUUlS0aJFdfHixUTttWvXlouLi3Lnzq3g4GDTFL7bt2/r7t27iaYEPktYWISMxlQ95T/F1tbmperIL6Pw8EjFxcWndxkZksHw5AepF/1z4L+Mz6iMz9qfUfSpjI/ve2mH73uwJPqTdfB9L2PLCN/zEj4LniVVodS8efM0c+ZMVa1a1bStTp06+vzzz1MVSnl4eCgqKkqTJ0/WgAEDdPv2bU2YMEE+Pj5q1KiRJk+erMWLF8vX11cnT57Uxo0bFRgYKEny8fGRv7+/mjRpogoVKmjp0qUKCwuTl5eXJMnb21tBQUEqXbq03NzcNHbsWFWuXFkFChRIzaXKaBQfovjPo4+mLT4HgOfD1w8sjT6Vtvi+B0uiPwHP52X5+klVKHXjxg1VqVLFbFvlypV18+bNVJ00c+bMmj9/vsaOHasaNWooa9asatGihfz9/eXg4KCFCxdqzJgxmj59urJnz65hw4aZgrBq1app+PDhGjFihEJCQuTu7q558+bJ1dVVkuTv76/Y2Fj5+voqMjJSVapU0dSpU1NVHwAAAAAAANJWqkKpPHny6Pjx46pcubJp2/Hjx/Xqq6+m+sTu7u5auHBhkm2lS5fW8uXLk31uq1at1KpVqyTb7O3tFRAQoICAgFTXBAAAAAAAAOtIVSjVsWNH+fv765133lH+/Pl19epVrVixQkOGDEmr+gAAAAAAAJABpSqUatu2rWxtbbVmzRp9//33ypcvn0aPHq3GjRunVX0AAAAAAADIgFIVSklPFhL39vZOi1oAAAAAAADwkkhRKDVixAiNGDHiqdP0xo0bZ7GiAAAAAAAAkLHZpGQn48tyL0IAAAAAAABYRYpGSo0cOVKS1K5dO5UtWzZR+/79+y1bFQAAAAAAADK0FI2UStCpU6dE2x48eKC+fftarCAAAAAAAABkfM8cKXXlyhU1a9ZMcXFxMhqNKlGiRKJ9ypcvnybFAQAAAAAAIGN6ZihVsGBBrVy5Uvfv31f37t01b948s3ZHR0cVK1YszQoEAAAAAABAxpOiNaUSRkdt2rRJ0dHRyp07t7JkyaIff/xRWbJkkbOzc5oWCQAAAAAAgIwlVWtKnT17Vq1bt9Yff/whSTp9+rTatm2rffv2pUVtAAAAAAAAyKBSNFIqwcyZMxUYGKg33nhD0pOFz93d3TVx4kTVqVMnTQoEAAAAAFjWxYu/adasqbpw4bzs7e1VqVIV9e79kVxdXRUcfFEzZkzRL7+ck5OTkxo2bKyePfvIzu7Jr4++vj66efMv2dj8b4zDvHlfq1Ch183OMXduoHbs2KpVqzY+s54//7ym7t39tGDBN8qb91VJ0oABffTTT6fN9nv06JFatnxLH3889HlfAgD/AakaKXXjxg3VqlXLbFvNmjV148YNixYFAAAAAEgbjx9HKSCgj0qXLqsNG7brm29W6P79exo7dqTu3r2rfv16qmLFytq6dbfmzl2sQ4cO6rvvvpUkRUY+0NWrV7R06Srt3HnA9O+fgdSJE8e0bNnXKarn4MF96tmzi+7fv2e2ffLk6Wbn6Ns3QK+8kludO/ewzAsBIN2lKpR67bXXdODAAbNtR44c0auvvmrRogAAAAAAaSMk5Kbc3YvJz6+r7O3t5eLiqlatvHXmzClt3bpJ+fMXUIcOnWRnZ6e8eV/V1KmzVL++lyTpwoXzcnFxUZ48eZM9fmhoqCZMGKO2bd99Zi0LF87V7Nmz1KPHh0/d7+rVP/Tll19o+PDRypkzZ+ouGMB/Vqqm73Xv3l3+/v5q2LCh8uXLpxs3bmjnzp2aMGFCWtUHAAAAALCgAgUKafLk6Wbb9uzZJQ+PEvr113N6/fUimjhxrA4c2CcnJyc1a9ZSHTp0kiT9+us5OTo6qVev7rp8+ZLy5HlVnTt3V40aT2bUxMfH6+OPA+Tr+77s7R20Z8/Ta2nRorU6deqmmzf/eup+kydPUJMmzVW2rOe/v3AA/zmpGinVokULzZs3T/b29jp37sn84oULF6pRo0ZpVR8AAAAAII0YjUbNnRuoQ4eeTI+7f/+etmzZqBIlSmnNms0aM2ai1q9fo+XLl0qSDAaDSpQoqUGDhmndum165532GjbsY509+7Mk6auvFipr1qxq3bpNis6fK9crMhgMT93nzJkfde7cz+rUqdvzXSyA/5xUjZSSpCpVqqhKlSppUQsAAAAAwEoiIx9o7NiRunDhvGbNmqciRdzl4OCgEiVKqXnzVpKkokWLycfnHe3Zs1Pt23dQ+/bvmx2jYcMm2rlzm/bu3aXY2Bht2bJR69atVUyM5ercsGG16tf3Uo4cTNsDMppUhVIdOnRINsX++uuULWIHAAAAAEhf16//qYCAPsqdO4/mz/9Grq6ukqRChV7XqVMnzfaNi4uX0fjk/5ct+0bFinmoYsXKpvbo6Bg5Ojpq+/atCg+/owYNGshoNComJkbR0dFq3LiuJkyYqrJly6W6ztjYWB04sF/jxk36t5cK4D8sVdP3qlSposqVK5v+FS1aVJcuXVLFihXTqj4AAAAAgAXdv39fffp8oNKly2rKlJmmQEqSmjVrpd9/D9bSpV8pLi5Oly4Fa82a79SoUVNJ0q1bIZoyZYKuX/9TsbGx2rRpvc6ePaMmTZpr0KCh+v77Azpx4oS2b9+rAQMGK3fuPNq2be+/CqQk6dKlYD1+HKU33ihjgSsH8F+TqpFSvXr1SrTN29tbX3zxhcUKAgAAAACknS1bNigk5KZ2796pPXu+N2vbufOAZsyYq8DAafrmm8VycnJS69Zt5OPzjiTpww/7yMbGIH//bnrwIEKvv15YEydO02uv5U/RuQcM6KM8efJo4MBPUrT/jRt/Kls2Fzk6OqbuIgG8EFK9ptQ/lSpVSmfPnrVELQAAAACANNau3Xtq1+69ZNtLlXpDs2bNS7LNwcFBffoMUJ8+A555nqZNW6hp0xZm2/55178EefO+qoMHTyTaXq/em6pX781nngvAiylVodSNGzfMHsfExGjz5s3KmzevRYsCAAAAAABAxpaqUKp+/fpmC50bjUa5uLho9OjRFi8MAAAAADIKGxuDbGySvmlURmRrm6rli19o8fFGxccb07sM4IWUqlBq165dZo9tbW2VI0cO2dvbW7QoAAAAAMgobGwMcnHNJLuXKKhxc8uc3iVYTWxcvO7dfUgwBfwLqQql8uXLl1Z1AAAAAECGZGNjkJ2tjfouP63gWw/SuxxYkPsrWTStnadsbAyEUsC/kKJQqnjx4mbT9pLy66+/WqQgAAAAAMiIgm890Lkb99O7DAD4z0hRKPX1119Lkg4dOqT9+/erV69eKlCggP766y/NmjVLNWrUSNMiAQAAAAAAkLGkKJSqXLmyJGno0KFasmSJcufOLUkqWrSoSpQoobZt26pPnz5pVyUAAAAAAAAylFSttHfnzh1ly5bNbJujo6MiIiIsWhQAAAAAAAAytlSFUpUqVdKgQYN07do1xcTE6Pfff1dAQIDq1KmTVvUBAAAAAAAgA0pVKDVq1CiFhYXJy8tLZcqUUdOmTRUXF6cRI0akUXkAAAAAAADIiFK0plSCXLlyaenSpbpx44ZCQkKUJ08e5c2bN61qAwAAAAAAQAaVqlBKks6ePatVq1bp+vXrypUrl7y9vVWxYsW0qA0AAAAAAAAZVKqm7x08eFDt27fX3bt35eHhoQcPHqhTp076/vvv06o+AAAAAAAAZECpGik1ffp0TZgwQU2aNDFt27p1qwIDA/Xmm29avDgAAAAAAABkTKkaKXX58mU1atTIbFujRo30xx9/WLImAAAAAAAAZHCpCqVcXV3122+/mW07f/68cuXKZdGiAAAAAAAAkLGlavpe27Zt1bNnT/Xo0UOvvfaarl69qnnz5ql9+/ZpVR8AAAAAAAAyoFSFUt26ddPjx481Z84chYaGKl++fHrvvffUqVOntKoPAAAAAAAAGVCqQqkFCxaoS5cu6t27d1rVAwAAAAAAgJdAqtaUmjt3rhwdHdOqFgAAAAAAALwkUjVSqlatWpo3b568vb31yiuvpFVNAPBMFy/+plmzpurChfOyt7dXpUpV1Lv3R3J1ddXevbu0ePEC3bhxXdmyZVPTpi3k59dVNjY2MhqNWrbsa61bt1r37t1TiRKl1LfvRypc2F2SdO/eXc2cOVXHj/+gx48fq1ix4urVq5+KFvVIso6bN//StGmTdPr0SdnY2Kp69Zr66KNBypQpk9l+e/fu0qxZ07Vy5fo0f20AAAAA4EWQqpFSJ0+e1NSpU1WnTh2VKFHC7B8AWMvjx1EKCOij0qXLasOG7frmmxW6f/+exo4dqfPnf9WoUZ+pW7ee2rZtjyZNmq6tWzdpxYplkqRVq1Zo2bKv9dlno7Rlyy7VqlVbffp8oLt370qSxo8fpXv37mrTpk3auHGHSpcuqwED+ujRo0eJ6oiJiVH//v7KlesVrVu3TUuXrtL169c0e/YM0z6xsbFauvQrDR/+iYzGeKu8PgAAAADwIkjVSKkvvvgireoAgBQLCbkpd/di8vPrKltbW7m4uKpVK2+NGvWZbt68odat26hGjVqSpEKFXlft2nV15swpvfvue9q5c5t8fNqpdOmykiQfn3Zau3aV9uz5Xq1bt5FkULduH8jNzU2hoRF69933tHjxfF27dkXFihU3q+PQof2Kjo5W374BsrW1lZOTk0aN+kKPHj007dO/v78cHBz13nt+2r59i9VeIwAAAAD4r0txKPXgwQNlyZJF7u7ucnBwSMuaAOCpChQopMmTp5tt27Nnlzw8Sqhu3QaqW7eBafvjx1E6fPigGjZsIkmKj4+Xk5Oz2XMNBhtdufKHDAaDxo2bJIPB/LjOzs4qUKBQojp++eWcihYtpvnzZ5sCp3r1Gqh79w9N+3z66ed65ZXc2rJl4/NeNgAAAABkKCmavvfzzz+rXr16atOmjRo2bKiLFy+mdV0AkCJGo1Fz5wbq0KED6ts3wKzt4cNIDRkSIEdHJ73zTntJUp069bVq1XJdvHhBsbGxWrdula5du6LHjx8nOvaBA/s0depEffTRIDk5OSVqj4i4ryNHDsnR0VHffrtGM2bM0alTJzRr1jTTPq+8ktvCVwwAAAAAGUOKQqlx48apdevW2rBhg6pXr64pU6akdV0A8EyRkQ80bNjH2rFjq2bNmqciRdxNbVev/qEePTopLi5O06fPVqZMmSVJ7777npo0aa4hQwLUpk0zXblyRZUrV1XWrFlNzzUajQoMDNTIkcM0ZMhnatKkeZLnt7e3V44cOeXn11WOjo7Kl+81dejQWbt3f5+2Fw4AAAAAGUCKpu+dP39eX331lezt7TVgwAC1atUqresCgKe6fv1PBQT0Ue7ceTR//jdydXU1tR05clAjRgxVixZv6YMPesnO7n8fdaGht9W8eSt17fqBpCcLkbdt21JNmrSQJEVFRWn48CG6cuWyAgPnqWhR83Wk/q5QocLas2eX4uPjZWPzJOOPj4+TZLT8BQMAAABABpPiu+/Z29tLknLkyJHkNBcAsJb79++rT58PVLp0WU2ZMtMskDp79md98slA9e79kXr16mcWSEnS999v1+DBA3Tv3l09fPhQs2fPlL29vWlh9OHDh+jWrRCtXr060cLm/1S/vpfi4+M0ffpkRUdH66+/buibbxapUaOmFr9mAAAAAMhoUnX3vQSGv68CDABWtmXLBoWE3NTu3Tu1Z4/5VLny5SsqNjZW06ZN0rRpk0zby5Tx1OTJ09Wu3XsKCQmRr29bxcbGqEwZT02bFiRHR0dduHBehw4dkIODg+rVqyej8X8jniZNmq6yZT01YEAf5cmTRwMHfiJXV1cFBS3Q9OlT5O39JIhq2LCJevToZZ0XAgAAAABeYP8qlAKA9NSu3Xtq1+69f/VcOzs7DRgwSAMGDErU5uFRXAcPnpDBIOXMmVWhoREy/mMm3j/v+legQCFNmmS+LSlNm7ZQ06Yt/lXNAAAAAJARpSiUevTokRo0+N8t1iMiIsweS9KuXbssWxkAAAAAAAAyrBSFUmPHjk3rOgC8AGxsDLKxeXmm79rapnjZvRdefLxR8fEs0A4AAADAelIUSr311ltpXQeA/zgbG4NcXDPJ7iUKatzcMqd3CVYTGxeve3cfEkwBAAAAsBrWlAKQIjY2BtnZ2qjv8tMKvvUgvcuBBbm/kkXT2nnKxsZAKAUAAADAagilAKRK8K0HOnfjfnqXAQAAAAB4wb0883AAAAAAAADwn0EoBQAAAAAAAKtL0fS9IUOGPHOfcePGPXcxAAAAAAAAeDkwUgoAAAAAAABWl6KRUoyCAgAAAAAAgCWlKJSaO3euunfvrpkzZya7T69evSxWFAAAAAAAADK2FIVSx48fV/fu3XX06NEk2w0Gg0WLAgAAAAAAQMaWolBq3rx5kqRvvvkmTYsBAAAAkNjFi79p1qypunDhvOzt7VWpUhX17v2RXF1dde7cWU2dOlF//PG7XF3d1LFjZzVv3lqSZDQa9dVXC7R58wbdu3dPefPmlZ9fV9Wr96Yk6d69u5o5c6qOH/9Bjx8/VrFixdWrVz8VLeqRZB1LlizWvHlBcnBwMG3z8WmnHj38JUnr1q3SihXLFBoaqhw5curtt9+Vt3fbtH1xAAAvrBSFUgkOHDigbdu26datW8qVK5caNWqkOnXqpFVtAAAAwEvv8eMoBQT0UcuWb2nixGl6+DBSo0cP19ixIzVs2EgNHNhXXbr0UKtW3jpz5rSGDAlQ4cLuKlnyDa1c+a02b96oiROnqWDBQjp06IA++2yIcufOo5Il39D48aMUFxenTZs2KSrKqMWLF2jAgD5asWKdnJ2dE9Vy/vwv6tixizp37p6obf/+vZo9e5YmTZquUqXe0LlzPysgoK+yZ8+uunUbWOOlAgC8YFJ8972hQ4fqgw8+0JUrV5Q1a1YFBwfL399fQ4YMScv6AAAAgJdaSMhNubsXk59fV9nb28vFxfX/A6hT2rdvt7Jlc1GbNm/Lzs5OFSpUUsOGjbVmzUpJUkREhDp16qpChV6XwWBQzZq1VahQIf388xkZjUZJBnXr9oHc3Nxkb2+vd999T3fuhOnatStJ1vLrr7+oePGSSbaFht7We+911BtvlJbBYNAbb5RR+fIV9eOPp9PqpQEAvOBSNFJq3bp1OnTokDZs2KAiRYqYtv/yyy/y9/fXunXr1Lp167SqEQAAAHhpFShQSJMnTzfbtmfPLnl4lNDly5fMfj6XpEKFXtemTRskSV269DBr++OPy7p8+Xd5eJSQwWDQuHGT9PflYffs2SVnZ2cVKFAoUR3h4XcUEnJTGzeu1YQJo+Xg4KB69RqoS5cP5OjomGiaXnj4HZ05c0q9evV/jqsHAGRkKRop9d133+mzzz5L9A2vZMmSGjp0qFasWJEmxQEAAAD4H6PRqLlzA3Xo0AH17Rughw8fysnJfJqdk5OTHj16mOi5V69e0cCBfdWwYROVK1c+UfuBA/s0depEffTRIDk5OSVqDwsLU9mynmratIVWrtygiROn6YcfDmvmzKlJ7BuqAQP6yMOjhLy8Gv/7CwYAZGgpCqUuXbqU7NpRNWrU0KVLlyxaFAAAAABzkZEPNGzYx9qxY6tmzZqnIkXc5eTkrMePo8z2i4qKUqZMmcy2HTy4Xz16dFLt2vU0ePCnZm1Go1GBgYEaOXKYhgz5TE2aNE/y/O7uRTVr1jzVqlVXDg4OKlTodfn5ddPu3TvM9jt79md169ZRBQoU1PjxU2Rnl6plbAEAL5EUfYeIjo5WTEyMbG1tk2x/Mh8dAAAAQFq4fv1PBQT0Ue7ceTR//jdydXWVJBUuXETHj/9gtu8ff1xW4cL/m+GwePF8LV36tQYO/EQNG5qPWoqKitLw4UN05cplBQbOU9GixZOt4fTpkzp79id16NDJtC0mJlqOjv8bVbVp03pNnTpRXbp8oHfffe95LhkA8BJI0UipIkWK6PDhw0m2HTlyJNG0PgAAAACWcf/+ffXp84FKly6rKVNmmgIpSapTp57CwsL03XfLFBsbq1OnTmjHjm1q1qyVJGn58iVavnyJZs2amyiQkqThw4fo1q0QrV69WsWKJR9ISZKzs7MWLJijHTu2KT4+Xr//fkmLFs1Xy5ZvSZL27t2lyZPHa8yYiQRSAIAUSdFIqbZt22rs2LHy8PBQvnz5TNsvXryoMWPGyN/fP80KBAAAAF5mW7ZsUEjITe3evVN79nxv1rZz5wFNnTpL06ZN0vz5c+Tq6qp+/QJUvnxFGY1GLV48X48ePZK/fzez53Xo0ElVqlTXoUMH/n/B8npmsx8mTZqusmU9NWBAH+XJk0cDB36i4sVLauTIsVq0aL4mThyjLFmyqkWL1nr//c6SpEWL5ikuLk7Dhn1sdq6GDZto4MBP0ujVAQC8yFIUSr3zzjs6duyYmjRpovLlyytnzpy6ceOGfv75Z7Vo0ULe3t6pOun58+c1YcIEnTt3Tvb29qpRo4YGDx6s7Nmz68yZMxo9erSCg4Pl5uamnj17qm3b/93JY+3atQoMDNTt27dVuHBhffrpp/L09JQkxcXFadKkSVq/fr0ePXqkqlWrauTIkXrllVdSVR8AAADwX9Gu3Xtq1y75kUfFi5dUUNDCRNsNBoO2bdv71GMfPHhCBoOUM2dWhYZG6J+rcvzzrn916tRXnTr1kzzWV18tf+q5AAD4pxRN35OkyZMna8qUKcqbN6/Cw8NVoEABzZgxQ2PHjk3VCaOiotS1a1d5enrq4MGD2rRpk+7evatPPvlE9+7dU/fu3dW6dWsdP35cY8aM0bhx4/TTTz9Jko4ePapRo0Zp/PjxOn78uFq2bKmePXvq0aNHkqSgoCAdOnRIq1ev1oEDB+Tk5KRhw4alqj4AAAAAAACkvVTdCuPNN9/Um2+++VwnvHHjhooXLy5/f3/Z2trKwcFB77zzjj7++GPt2LFDrq6u8vX1lSRVq1ZNLVq00NKlS1WmTBmtXLlSzZo1U4UKFSRJfn5+WrFihbZs2aI2bdpo5cqVCggIUN68eSVJQ4cOVc2aNXXt2jXlz5//ueoGAADAy8PGxiAbG0N6l2FVtrYp/nv1Cy0+3qj4eG7UBAD/BVa/P2vhwoU1f/58s23bt29XqVKldPHiRRUrVsyszd3dXatWrZIkBQcHq02bNonaz58/r4iICN28edPs+Tlz5pSLi4suXLiQ6lDK8HL9DIIXFP0UlkafgiXRn2Bp1upTNjYGZXPJJLuXJKRJ4OaWOb1LsIrYuHjdv/eQYAoWx/c9WNKL3p9SWr/VQ6m/MxqNmjp1qvbs2aMlS5bo66+/lrOzs9k+Tk5OevjwoSQpMjIy2fbIyEhJUqZMmRK1J7SlRo4cWVP9HMCaXpYfHGE99ClYEv0JlpYefarv8tMKvvXA6udF2nF/JYumtfNU9uxZ0rsUZDB834MlvUz9Kd1CqQcPHmjIkCE6d+6clixZIg8PDzk7OysiIsJsv6ioKGXO/OQNcXZ2VlRUVKJ2Nzc3U1iVsL5UUs9PjbCwxAs9vkhsbW1eqo78MgoPj1RcXLzVzkefyvis2afoTxkfn1GwtPT4jAq+9UDnbty3yjlhXXxGwdLoU7Aka/entGAwpGywT7qEUlevXlW3bt306quvatWqVcqePbskqVixYjp06JDZvsHBwSpatKgkqWjRorp48WKi9tq1a8vFxUW5c+dWcHCwaQrf7du3dffu3URTAlPCaNQLHUrh5UAfhaXRp2BJ9CdYGn0KlkR/gqXRp2BJL0t/SlUoVb9+fRmSmBhob2+v7Nmzq169eurSpYtsbJKff3/v3j117NhRVatW1ZgxY8z29fLy0sSJE7V48WL5+vrq5MmT2rhxowIDAyVJPj4+8vf3V5MmTVShQgUtXbpUYWFh8vLykiR5e3srKChIpUuXlpubm8aOHavKlSurQIECqblMAAAAAAAApLFUhVJvv/22vvvuO3Xt2lX58+fX9evXtXDhQlWvXl2FCxfWsmXLFBUVpd69eyd7jDVr1ujGjRvaunWrtm3bZtZ2+vRpLVy4UGPGjNH06dOVPXt2DRs2TFWrVpX05G58w4cP14gRIxQSEiJ3d3fNmzdPrq6ukiR/f3/FxsbK19dXkZGRqlKliqZOnZq6VwQAAAAAAABpLlWh1Pbt2zVnzhzTdDpJqly5sgICAvTZZ5+pbt266tChw1NDqU6dOqlTp07JtpcuXVrLly9Ptr1Vq1Zq1apVkm329vYKCAhQQEBACq4GAAAAAAAA6SVV97m9cuWKChUqZLYtf/78unz5siTptdde0/37LAYJAAAAAACAp0tVKFW8eHHNmTPHbNvChQvl7u4uSdq/f7/y5ctnueoAAAAAAACQIaVq+t6wYcPUrVs3rVy5Unnz5tVff/2l+Ph4BQUF6dSpU/L399e0adPSqlYAAAAAAABkEKkKpUqWLKnt27dr9+7dunnzpvLly6f69evL2dlZd+/e1d69e5UjR460qhUAAAAAAAAZRKpCqVGjRqlt27Zq2bJloraEO+ABAAAAAAAAz5KqNaXCwsL0zjvvyNvbW99++60iIiLSqi4AAAAAAABkYKkKpaZOnaqDBw/Kx8dHa9euVa1atTRo0CAdP348reoDAAAAAABABpSqUEqSsmbNqvbt2+u7775TUFCQjh8/rvfffz8tagMAAAAAAEAGlao1pSQpMjJS27Zt07p16/TTTz+pbt26GjVqVFrUBgAAAAAAgAwqVaHUgAEDtHv3buXJk0dt27bVtGnTlD17dt25cyet6gMAAAAAAEAGlKpQys7OTvPmzVPFihUlSZcvX9bUqVO1YcMG/fjjj2lRHwAAAAAAADKgVIVSEyZMkCSdOHFCCxYs0L59+1S0aFENHDgwTYoDAAAAAABAxpTiUCo+Pl7btm3TokWLdPHiRcXGxmrOnDmqVatWWtYHAAAAAACADChFd9/76quv5OXlpYkTJ8rLy0t79+5VlixZVKxYsbSuDwAAAAAAABlQikZKjRs3Tu3bt9fgwYPl4OCQ1jUBAAAAAAAgg0vRSKlPP/1UR48eVZ06dfTll18qJCREBoMhrWsDAAAAAABABpWiUMrX11ebN2/WlClTFBwcLC8vL92/f19HjhxRXFxcWtcIAAAAAACADCZFoVSCatWqadasWdq6dav8/Pw0fvx41apVS+PHj0+r+gAAAAAAAJABpSqUSpAvXz4NHDhQ+/fv10cffaRjx45Zui4AAAAAAABkYP8qlErg4OAgHx8frVmzxlL1AAAAAAAA4CXwXKEUAAAAAAAA8G8QSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdekeSt25c0deXl46evSoaduZM2fUtm1beXp6qn79+lq5cqXZc9auXSsvLy+VK1dO3t7eOn36tKktLi5OEyZMUPXq1eXp6amePXvq1q1bVrseAAAAAAAAPFu6hlInT57UO++8o6tXr5q23bt3T927d1fr1q11/PhxjRkzRuPGjdNPP/0kSTp69KhGjRql8ePH6/jx42rZsqV69uypR48eSZKCgoJ06NAhrV69WgcOHJCTk5OGDRuWLtcHAAAAAACApKVbKLV27VoFBASof//+Ztt37NghV1dX+fr6ys7OTtWqVVOLFi20dOlSSdLKlSvVrFkzVahQQfb29vLz85Obm5u2bNliau/WrZvy5s2rLFmyaOjQodq/f7+uXbtm9WsEAAAAAABA0tItlKpZs6Z27typpk2bmm2/ePGiihUrZrbN3d1d58+flyQFBwcn2x4REaGbN2+atefMmVMuLi66cOFCGl0JAAAAAAAAUssuvU6cK1euJLdHRkbK2dnZbJuTk5MePnz4zPbIyEhJUqZMmRK1J7SllMGQqt2BdEE/haXRp2BJ9CdYGn0KlkR/gqXRp2BJL3p/Smn96RZKJcfZ2VkRERFm26KiopQ5c2ZTe1RUVKJ2Nzc3U1iVsL5UUs9PqRw5sqa2dMCq3NxS16eBZ6FPwZLoT7A0+hQsif4ES6NPwZJepv70nwulihUrpkOHDpltCw4OVtGiRSVJRYsW1cWLFxO1165dWy4uLsqdO7fZFL/bt2/r7t27iab8PUtYWISMxue4kHRma2vzUnXkl1F4eKTi4uKtdj76VMZnzT5Ff8r4+IyCpfEZBUviMwqWRp+CJVm7P6UFgyFlg33S9e57SfHy8lJoaKgWL16smJgY/fDDD9q4caPatGkjSfLx8dHGjRv1ww8/KCYmRosXL1ZYWJi8vLwkSd7e3goKCtK1a9f04MEDjR07VpUrV1aBAgVSVYfR+GL/w8uBPgVLoz/BkviMgqXRn2BJfEbB0uhTsCRr9qf07Kf/uZFSbm5uWrhwocaMGaPp06cre/bsGjZsmKpWrSpJqlatmoYPH64RI0YoJCRE7u7umjdvnlxdXSVJ/v7+io2Nla+vryIjI1WlShVNnTo1/S4IAAAAAAAAifwnQql/3hmvdOnSWr58ebL7t2rVSq1atUqyzd7eXgEBAQoICLBojQAAAAAAALCc/9z0PQAAAAAAAGR8hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoyZCgVFhamDz/8UBUrVlSVKlU0ZswYxcbGpndZAAAAAAAA+H8ZMpTq16+fMmXKpAMHDmjVqlU6cuSIFi9enN5lAQAAAAAA4P9luFDqypUrOnbsmAYOHChnZ2flz59fH374oZYuXZrepQEAAAAAAOD/ZbhQ6uLFi3J1dVXu3LlN24oUKaIbN27o/v376VgZAAAAAAAAEtildwGWFhkZKWdnZ7NtCY8fPnyobNmypeg4NjaS0Wjx8qyu1KvZ5Oxgm95lwIIK58xs+n+bdIiV6VMZT3r2KfpTxsNnFCyNzyhYEp9RsDT6FCwpvfuTJRkMKdzPaMwI0cv/7Ny5U8OGDdPRo0dN2y5cuKCWLVvqxIkTypo1azpWBwAAAAAAACkDTt8rWrSo7t69q9DQUNO2S5cuKU+ePARSAAAAAAAA/xEZLpQqVKiQKlSooLFjx+rBgwe6du2aAgMD5ePjk96lAQAAAAAA4P9luOl7khQaGqrPP/9cR48elY2NjVq3bq2AgADZ2jLXFgAAAAAA4L8gQ4ZSAAAAAAAA+G/LcNP3AAAAAAAA8N9HKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAC8No9GY3iUAAAC8sJL6WYqfr/Bv0XcgEUrhPyw+Pj69S0AGEhcXJ4PBIIm+BctIqh/xwxWeR1xcXHqXgAyE/gRLS/hZKjIyUqGhobp7965iY2NlMBj42QqpltB3JCkiIkIPHjxQTEyMJH5Wf9kYjPwEjf+guLg42dra6urVqzpw4ICcnJzUpk2b9C4LL6iE/hQfH6/PP/9coaGhiouLU+3ateXt7S1HR8f0LhEvmNjYWNnZ2cloNOrChQuKi4tT9uzZlTdvXhmNRtMPWUBKJfSp+Ph4bdiwQa+++qoKFiyo3Llzp3dpeAElfN+7fPmyVq1apQIFCqhChQpyd3dP79LwgoqPj5eNjY0uXLigzz//XA8fPpSNjY08PDw0ePBgZcuWje9/SLG//2zer18/RUREKCwsTOXKldMHH3ygV1991dTnkPERSuE/J+ED6Pz583r//fdVpkwZHTx4UG+//baGDx8uW1vb9C4RL6D4+Hi1adNGBQsWVMOGDXXgwAFdv35dhQsX1ieffCIHB4f0LhEviITPqPj4ePn5+Sk2NlZhYWGKjIzU559/rvr16/ODFFLl733K29tbcXFxCgkJUatWrdSuXTsVKVIkvUvEC+SfP0eVL19ep0+fVr169dS+fXuVKVMmvUvEC+rKlSt699131b17d9WqVUsnT57U1q1bZTAYNGPGDGXOnDm9S8QLICG8NBqN8vHxUaFChdS9e3f98MMPOnr0qEJDQzVjxgz+KPMS4Sdm/OfY2Njo+vXr6t+/vwICAjR//nx99NFH+u677zRixIj0Lg8vqKVLlypv3ryaOnWqmjZtqtGjR6tRo0a6cOGCfv755/QuDy+IhF/2jEaj/Pz8lDdvXn311VcKDAxU27Zt1atXLx09epRACqmS0Kfef/99ubu7a+PGjXr33Xd14MABffvtt/r999/Tu0S8QGxsbBQSEqJ+/fqpV69emj17tjp16qSTJ09q2bJlOnv2bHqXiBfU7t271ahRI/n5+alIkSJq27atOnfurAcPHuiHH35I7/LwgkiY7rl7925lz55dkydPloeHhzp27KjOnTvL2dlZO3fulMSyCC8LfmrGf9KpU6dUoEABvf322woNDdXvv/+ufv36adOmTRozZowuX76c3iXiBRMaGqrY2FhJ/xsy7O3trb/++ksnT55M5+rwIjAajf/X3n2GR1W1bx/+zUwKSWgGISQhBClSRTqC+AcRRVCpCdKLtNBbaA+9CAHpEJCe0HtHpYgoKCJVBBJqQodQAiE9mZn3A0fmTRDUx0eZANf5iczMnuMenWPvNdde6162sOnKlSsYDAaGDBmCo6MjhQoVolevXvj5+REcHEx8fLwGUvJf+fnnn3FwcGDSpEkApKSkUKRIEfbt28eKFSs4duyYnSuU50Haeee3334jb968tG7dmrt373LhwgVq167NkSNHWLhwIV999ZWdK5Xn0bVr1zh79qyt34/BYKBSpUrExsZy5coVO1cnmd2CBQtYtGgR8Cg8j4qK4uLFi8TGxtpeU6FCBRwcHAgPDwfQctCXhEIpyRQe//F2/fp1PDw8SExMpGPHjmTNmpWAgADeeOMNli5dyrp16+xUqTwPntTc1c3NjZiYGK5du2ZbAuri4kLFihXJmzfvsy5RnjPjxo0jODjY9vfNmzc5ePAgN27cALAFngULFsRkMuHq6qqBlPyhx6978fHx3LlzB4B+/fpx7tw5Zs6cSenSpdmyZQvz588nLi7OHqXKcyB9SJDGzc2N2NhYPvvsM7JmzUpgYCBlypTh119/5fDhwwrO5Q+ljaXSN5wuXrw4ZrOZX375xfaYs7MzPj4+vPrqq8+8Rnl+xMTEEBYWZrvRAo/GTNmzZ+eXX37JMHYvVKiQbWyu89TLwcHeBYikzVqJjY0lNTWVnDlz0qxZM8xmM9u3b8fd3Z2hQ4cC4O3tzZQpU6hdu7adq5bMKn3jxDVr1uDu7k758uXx9/dnxYoVjBs3jnbt2lG0aFG2bt3Kjz/+SI8ePexdtmRiZrOZevXqUapUKWbPnk1AQACVKlWiSpUqhIaG0q9fP3LlygVAUlIS2bJlIykpCScnJwVT8kRpTc3h0Q8+i8VC1apVKVSoEPv27SMsLMw2kyVHjhw0atSI9u3bq1+LPFHade/q1ascP36chIQEypcvz8SJE9m7dy/ZsmVjxIgRwKPvW4sWLfjss89sPV10npLHWSwWTCYTFy9eZNGiReTOnZuqVavy8ccfs23bNubOncuJEyd46623WLp0KTdv3uTDDz+0d9mSiWXPnp0BAwYwd+5cduzYgZOTE35+fvj6+jJv3jyuX79O2bJlOXToEJs3b7YFVzo/vRwUSoldpV30zpw5w9ixY4mKiqJ27do0bdoULy8v7t69S3x8PNevX2fy5MlcvHiRzz//HKPRaBuEiaRJ+z5ZLBbq16+PyWTi0qVL1KhRg969e7NmzRp69uzJkCFDcHNzIzU1lfnz55M/f357ly6ZlNVqxWQyUapUKU6dOsXq1as5efIkwcHBNGnShBUrVhAYGMh7773H7du3WbVqFaGhodrRUZ7KYrHYdtnr168f8fHx+Pj40LFjRwoUKEBERATZs2fn8uXL/PTTT+zZs4fQ0FBy585t79IlE0o7R4WHh9O2bVsqVKjArVu3eOedd3Bzc8PBwYGEhAR++OEHtm3bxqVLl5g4caKtp4v638nj0r4XFy5cwN/fn2rVqnHs2DGOHTtG+/btmT17NtOmTePrr7/mhx9+wN3dnXXr1uHg4KCxufxO+l6cHh4edO7cmblz57JhwwZcXV2ZMmUKEydOZNOmTaxevZocOXKwePFibfDxktHue2I3aSep69ev07RpU/z8/HBxcWHJkiXUrl2bgIAA4uLiqFevHkWLFsVqtbJixQocHR01kJLfSf+dmDdvHhEREYwfP56DBw8SHByMu7s7vXr1wtvbm0uXLpGUlISXlxfu7u52rlwyqycNrg8cOMAXX3xBvnz5mDFjBkePHmX9+vVERkbi4+Njm4Un8iRpM6SsViv169cnf/785M2bl7Nnz+Lq6srIkSO5f/8+gYGBuLq6cuPGDebMmUOpUqXsXbpkYg8fPqR169Z8/PHHtG/fnvj4eFxdXbl16xbff/8927dvJzk5GaPRSEhICI6OjgoP5InSZs7dvn2brVu3YjKZaNOmDRcuXGDx4sVcuXKFdu3aUaNGDVJSUoiNjSVnzpwYDIYMM0BFIOM17+jRoyQnJ5MvXz48PDyYOHEip06donnz5nzyySckJSURHR1N1qxZyZo1q71Ll2dMoZTYRdpF7+7duwQHB5MrVy66desGwP79+xk2bBjvvvsu/fr1IyUlhejoaHx9fTEajbroye+cP3+ewoULAzBx4kR++OEHBg8ezNtvvw3AkSNHmDJlCp6ennz66adUrFjRnuXKcyDtPGOxWFi7dq3tR56/vz8//fQT06ZNI2/evMycORODwUBiYiKOjo76kSd/ymKxsG/fPn7++WcGDhwIwHfffcfKlStxdHRkwoQJPHz4kFu3buHh4YGnp6edK5bM7vr16/Tu3Zvg4GBy585t63G3YMECjEYj9evXx2Aw8Oqrr2ocJU8UGxvLkSNHqF69OgkJCXTu3JmwsDDbTsUAFy9eZP78+bZVDU2aNLEdr2Wg8ri0m8UWi4XmzZuTJUsWIiMjcXFxoUmTJrRp04Zx48Zx7tw53n33Xdq2bWvvksWONNVEnqkrV64QGRmJwWAgNjaWtWvX8tVXX3HmzBnba6pVq8bIkSP5/vvvGTVqFKmpqbz22mu2E5sGUpLeggUL2LBhA/BoZkvOnDm5du0ae/bssb2mfPnyBAYGcvbsWbZu3UpCQoK9ypXngNVqtQVSfn5+7N69m4MHDzJt2jQ+++wz8ufPT9++fbl16xYtWrTAYrGQJUsWBVLyVEFBQbZ/L1q0iM6dO3Py5EkSExMBePfdd2nSpAlms5kuXboAUKZMGQVS8kTpG08DZMmShcuXL/PNN98A4ODggIODA7ly5eLo0aPkzp2bPHnyaBwlT7V06VIiIyMxm824uLjQunVrXFxc2LFjh+01BQsWpFOnTmTJkoULFy5kaECtQErSS79bcYcOHfD29iYkJISQkBA6d+7M9OnTWb9+PX369CFv3rwcOnSIBw8e2LlqsSddleSZWr58ORs3bmTcuHGEhYXx9ttvc//+fXbu3Mn69etp3LgxANWrV2fQoEFs2bIlw/IqLdmTx9WoUYPChQszZcoUqlevTqdOnXBycmLu3Lnkzp2bgIAAAMqWLcvYsWPJlSsXLi4udq5angdDhgzB19eXqVOnAo/uJDdu3JgJEyYQHBxMcnIyoaGh3Lp1S+GBPNXVq1eJiYmx/d2hQwfu3r3LsmXLOHnyJBUqVACgVq1aJCcns3PnTnuVKs+BtGV3t27d4sKFCyQmJlKzZk38/f359ttvyZUrF3Xr1gXg8OHDeHh4ZBg7aRwl6SUnJxMXF0eXLl2Ij4/H39+f9u3b89FHH+Ho6Ejv3r0ZOnQoY8eOBeC1115j6NCheHh4KIiSJ7p27Rre3t4A3Lhxg9TUVP7zn/8AUKBAAby8vLhx4wZbtmzB39+fvn37YjQayZEjhz3LFjtTKCXP1KBBg/j111/p1q0bnTp1omzZsuTKlQuDwcDq1auxWq34+fkB8P777/P+++8DqIeU/E7a8oPChQtz6dIlTp48ybFjx+jfvz9t27bFYDAQEhKC0WikU6dOAJQuXdrOVUtmdffuXZKTk/H09LQNtKOjo2nUqBEACQkJZM2alRkzZtCyZUvCwsKoWrUqlSpVwtXV1Z6lSyYVExNDXFwc+fLlY9y4cQQFBbFz50727NnDwIEDiYmJoWPHjsydO5dKlSoBULduXapXr65d9uSJ0jbzCA8Pp3v37nh4eJA9e3Zq1qxJkyZNePDgAXPmzCEkJAR3d3du3brFmjVrAC2vkt8zm81MmDCBsLAwJk+ejLu7OyVKlGDKlCk4OztTq1Ytpk6dagsNRo8eDWC7CaOxuTxuzpw5JCYm0qdPH+DR2On48eMcPnyY2rVrY7VacXJyIn/+/OzatYu4uDg8PDzsXLVkBjqTyDOTkpKC1WolPj4eb29vtm7dyoULF8ifPz9NmjShfPnyrFmzhtDQ0N8dq4uepJe+ceLNmzdxcHCgV69eeHp6MmHCBE6cOEGbNm347LPPmDNnDosXL7Z3yZLJbdiwgVWrVnHlyhW2bt2KxWLh/PnzHDp0CAAXFxfMZjNZs2bFx8cHV1dXnJycFEjJUy1atMj2nVq/fj0ffPABjo6ONGvWDIDPP/+cunXr0r17d3766SfbcQqk5GmMRiO3bt0iICCAgIAAli9fzuzZs/nuu++4ePEijRs3ZuzYsbz33nt8/PHHrF27FkdHR1JTUxVIye+YTCbKlStHjhw5GDNmDDExMQwZMoRatWoxZswYdu/eTY0aNZg6dSpr1qxh3rx5GY7X2FweV716dfr06cOMGTM4efIkBQsWpEaNGuzdu5fw8HDbeSgqKopXX31V5yWxUaNz+dc9ficlOTkZJycn2rdvz9mzZwkJCaFQoUJcv36duXPnYrVaGTVqlE5U8kTpGyem9fO5ceMG69ev58qVK6xcuZLr168zaNAg3njjDVauXEmVKlUoUKCAvUuXTGzt2rWsXr2aGzdu8M477xAUFMSqVasIDQ2ldevWtiBh7dq1LFmyhNDQUO3cKH9oz549jBo1ioSEBOrWrcvIkSM5c+YMPXv25JVXXmHVqlUA9O7dm2PHjrFjxw6yZMli56ols/vpp58IDQ1lzpw5HD58mKFDh+Lm5kZYWBhNmjSxzWZJo1325EnSj8137drF6tWrcXR0ZPTo0bi5uTF9+nR27NjB0KFDqVWrFseOHeONN95QPzJ5ovTfp9OnTzN27FhcXFwYM2YMN27cYNKkSbabetmyZWPVqlWEhIRQvHhxO1cumYVCKflXpQ2GLl++zO7du0lNTSV79uw0bdoUs9lMt27dOH36NMuWLePYsWO4u7tTrVo1DAaDpprLU1mtVlq1aoWHhwfjxo0jMjKSokWLkpqayg8//MCuXbs4efIkQUFBlCxZ0t7lSiaW/jzTsGFDLl++TIcOHWjWrBkWi4UlS5awfv16PDw88PLy4vjx48yZM0ffK3mq9N+p+vXrc+nSJTp06EDz5s1xd3cnPDycnj17kidPHpYtWwY8umucJ08ee5YtmdTjN/YuXbpEs2bNcHZ2JleuXBQpUoTx48ezbds2tm3bxrRp0xRuyh9K+06lDywPHDjAvHnzyJIliy2YmjlzJkuWLCEkJMS2a7F2bpTHPek7cfToURYsWEBiYiLjx48nNjaWb7/9loMHD/L666/TqFEjihQpYqeKJTNSKCX/urNnz9KuXTv+7//+DwcHB77//ntKlizJ7NmzMZvNBAQEcOTIEXx8fNi4cSMmk0mBlPyhixcvMmLECBYuXIiTkxPwaAbemjVryJs3L7ly5WLDhg107tyZfPny2blayazSBuQWi4XU1FT2799PVFQU69ev56233qJt27bkyJGD06dPs3fvXvLmzUvlypXx9fW1d+mSSaV9p9KuYQcPHuThw4d8/vnnfPjhh7Ru3RpPT0/OnTtHu3btKFy4MCEhIfYuWzKptO/T9evXOX36NK6urlStWpVTp05x6dIlvLy8KFOmDACBgYFYrVYmT55s36IlU0v7TkVERLBp0ybu37/PK6+8Qo8ePfjll19YsGABzs7OjBo1CldXVzZs2EDz5s01206eKP04avjw4RgMBt544w38/Pz49ddfmTt3LsnJyQwbNozXXnsNs9mM0WjUbzz5HYVS8q8xm82kpKTQrVs3KlSoQJcuXUhOTuaTTz6hcuXKdO3albx58wJw7NgxSpcubTuxaZ26pPf48oMLFy7QuHFjpk+fTvXq1W0/ACdPnkx4eDjz588nKSkJZ2dnO1YtmVn68GDnzp2YTCZq1aoFQEhICFu3bqVatWoEBAQQHR2Nl5eXnSuWzC7tbrHFYmHdunUYDAbq16+Pk5MTmzZtYtq0aXz88cd069aNixcvYrFYyJkzJz4+PvYuXTKhtLFQeHg4bdu2pUCBAhw/fpyBAwfSrl07AHbv3s2uXbuIj48nIiKCjRs34ujoqBt78ofOnj1LmzZtqF+/Pg8fPuT06dMkJyezdOlSzp8/z7x584iPj2f27NnkzJkT0DJQ+b2084zFYqFhw4Z4eHjYer1+9NFHdOzYkRMnTrBo0SJu3LjB+PHjNTtKnkrzL+UfFR8fz88//0zNmjUxmUyYzWaSk5P56KOPAGjSpAlly5Zl0KBBNG/enIEDB1KlShXKli0L6KInv5e+qfnx48eJj48nf/781KxZkz179uDl5WW7yGXJkoX8+fMDKJCSp7JarbYAvFGjRpjNZi5fvsybb77JggULaNu2LSaTiY0bN3LgwAGuXbvGxo0btbxKnspisdgCqfr16+Pg4MDdu3dtyz8bNGhgC84PHTrE3bt3Wb58uXYdkqcyGo1cvnyZHj160Lt3b9577z1mzJjBhAkTSE1NpWPHjhgMBoxGI0WLFmXq1Kk4ODhoeZU8VdrN4gkTJtC6dWu6dOkCPNopNCAggD59+hAaGsrdu3c5ceIE2bNntx2rsbk8Li347t+/P8WLFycoKIjz588zfPhwdu3aBUDnzp1p27YtK1as0CYe8od01ZJ/1Pbt2xk2bBhBQUE0aNAAeNQrY926dRw+fJgiRYoQFBTErVu3sFgsFCxYMMPxuuhJelar1fZDz8/PDxcXFy5fvsyKFSuoXbs2y5YtY+bMmRQsWBBnZ2dbA2qRp0k/E3Ps2LGUKlWK4cOHExERQc+ePWnfvj2LFi2iVatWeHp6cvHiRWrWrKlASv6Q0WjEarXSsWNHypQpw5gxY9i8eTNjxoyhcePGrF+/nvr165MnTx5OnTrFu+++q0BKfic5ORnAtix9z549lC9fnqZNm3Lz5k2Sk5Np1qwZkydPJkeOHPj7+/Pee+/ZjjebzQqkJIOEhAS2bduGv78/JpOJhw8f8uDBAypVqgQ82hk7e/bsdO3alREjRnDz5k3q1KlDnTp1gN/3NBN5PPiOiIhg+vTpACxbtoxSpUphsVhYtmwZV69eZdiwYYwfP952XhN5Ep1l5B+RmJjIrVu38Pf3p0+fPgwaNIh169bh5OREhw4dWLt2LYmJiXzxxRcATJs2jZw5c5I7d247Vy6ZWdpdmICAAHx9fVm+fDmrV6/Gx8eH2rVrU7duXUqWLMnRo0e5efMmS5YsoVixYnauWjKztPBg1qxZRERE0LRpU5ycnChatCgLFizgxo0bdOzYkaSkJGrVqkXHjh0pXLiwvcuWTMpsNtv+HRERQVJSEsOHDwfg+PHjfPrppxgMBlq0aMHly5epUqUK7du3p1ChQvYqWTKplJQUPvzwQ8LCwmyPnTlzhldeeYXU1FS6du1Knjx56NevH97e3gwfPpzZs2dneA/d2JPH7d69mzFjxjB37lwAcuTIQUJCAt988w0Ajo6OAOTLlw93d3csFkuG4xVISXpps4LNZjPDhw/nxo0beHt7k5yczOjRozlx4gT/+c9/qF+/Pm5ubkRFRXHnzh0FUvKndDtF/mdWq5WpU6eyfft2Vq1aRefOnbFYLAwdOpQsWbLg7+9PVFQUW7ZsoWnTpri5uREbG8uyZcswGo26CyN/6MGDB6SkpNCrVy8A8uTJQ2pqKtu3bycmJobOnTvTvn17DAaDBuTyVOnPMykpKZw/f57Dhw/zzTffULRoURwdHfHx8SE0NJQGDRrQu3dv5syZo74s8lTpG7weOHCA+Ph4YmNjcXBwYNCgQdy4cYP58+djsVhYvHgx3bp1Y82aNbi4uNi7dMmEHB0dmTFjBgUKFGDVqlU0bdqUHj16YDQaWbRoER4eHvTr1w+ASpUqUaNGDVsfPJGn+fDDD4mOjiYkJARnZ2fatm2Lv78/O3bsYMGCBbRr1w6TycTcuXPJnj07np6e9i5ZMqn046gBAwZgNpvx9PRkwoQJJCYmEh4ebpsxdeDAAUqWLMmIESPIkSOHPcuW54RCKfmfGQwG6tSpw40bN+jWrRuzZs2iS5cuWK1WAgMDMRqNdOvWjU8++YSDBw/i5eXFW2+9hclkUu8D+Z3HG7SazWZOnjzJ999/T4ECBWzfF4vFws6dO2nXrp3uwMgfSn+euX37Nrlz52bSpEmMHz+eo0ePsmnTJurVq4ezszPe3t5s3ryZlJQUO1ctmZnFYrE1ym/evDklS5Zk2LBhFCxYkLCwMM6ePcuSJUtwcnLCycmJzz//nLfffluBlDxRSkoKjo6OlCpVim3btjFy5EgSEhJo3bo1JpOJqKgoW3+fwMBArl69yueff47RaNQ4Sp4oLTS/du0av/32G46OjkyePBmTyUSbNm2IiYlhy5YtLF68mNdff53Y2FhWrFhha1ytm8XyuLTvRP/+/bl+/TqjRo0CwNXVFbPZjMViYfr06RQsWJCQkBCWL1+uQEr+Ml3F5H+SFiCUKVOGjh07MmfOHLp160ZwcDBdu3YFoG/fviQmJtKoUSNbE2pQ7wP5vccb3cfHx+Pu7k6zZs34/vvv8fX1pUaNGgA8fPgQb29vO1Uqz4u084zFYqFr165cu3aNkiVL0qdPHwYPHszo0aPZtGkTBoOBTz75BGdnZ+20J38qbXA+depU3NzcGDZsGACFChVi//793L59m/v377Nu3TrWrFnDypUrbbvNiqRntVpxdHTk+vXrXL58mY8//pjExESGDh0KQLt27ahatSpdu3YlIiKCxMRE1q9fb5tprnGUPInJZCIyMpJPP/2U7t27U6dOHc6cOUNISAgWi4WePXvSrFkz9u3bh7e3NxUqVNDNYnmix28WOzs7c+LECbZv346npyfZsmXDycmJmjVr8ttvv/Hjjz8SGhqqnfbkv6KzjvxtaXdS0oKEN954g8DAQCZMmJAhmDIajfznP/8hV65cVK9e3Xa8llpJeumXwowYMYKYmBgePnxI8+bNef/997l58yYzZ85k48aNeHp6snnzZhYtWqRZUvKH0r5TjRs3Jn/+/LRv357x48djNpvp06cPw4YNY9y4cYSGhuLg4GDboEHkadIG6IcOHeLYsWOcOHGCU6dOUbJkSQAqVqxIzpw5CQgIID4+ngULFlCgQAH7Fi2ZUtp17/79+0ycOJHDhw8TFBSEn58fVqvVFna2a9eOrVu3Eh0dTfny5RUeyF/y448/UrZsWVq1agVAlSpV8PHxISgoCAcHB1q0aEGjRo1sr9fNYnlc+vNMcnIyTk5OjB07lty5c7NlyxZee+013nvvPbJly0bbtm1xcnIiPj4eV1dXO1cuzxudeeRvSRtIRUREsGnTJhISEnjllVfo0qULAwcOZNKkSXTv3p1Zs2YREBCAh4cHb7/9tr3LlkwsLTxo0qQJvr6+1K1bl6ioKLp3786CBQvo1q0bp06d4ttvvyV79uwsXbpUDajlqdLf2Zs0aRLFihWzhVH79+/nhx9+ICEhgeHDhzNkyBAmT55MhQoV7Fy1ZGZp172071XFihXp378/EydOJCgoiJEjR1KoUCGcnZ1ZtWoVV65cIXfu3OTKlcvOlUtmZLVaMZlMhIWFMWTIEFtvu759+zJ58mT8/f0BGDlyJHFxcXTv3t12rMID+Svu3bvHvXv3bH+7uLhQvnx5nJ2dGTNmDK6urjRs2ND2vG4WS3rpZ5oPHz6ce/fu8fDhQz7++GNbn9fg4GAMBgM1a9YkW7ZsAAqk5G/RgmH5W0wmE+fPn6d58+YkJCTg4uLCrl27+Pjjj8mTJw89e/bE29ubZs2aERUVRcOGDXFwcCA1NdXepUsms3v3btu/v/nmG7JkycLkyZOpXbs2ly5dokSJEnh5eRETE0PdunWZPHkyXbt2VSAlT2U2mzNMNb9165Zt6fDgwYPx8vJi/vz57Nmzh8DAQPbv38/AgQPJly+fvUqWTC79TM6lS5cyc+ZM5s2bR7FixQgMDCRr1qyMGzeOixcvAuDm5kaxYsUUSMlTGQwGoqOj6d+/P40bN2b8+PF89913NGzYkCFDhvDDDz/g7+/PgAED2L9/P1ar1XaswgN5XNpOoMnJySQmJgJQq1Ytzpw5Q2hoqO11np6evPHGG4wePZp69erZpVZ5PqSfaR4bG4ufnx+vvfYa27ZtY/To0fTq1Yv333+f8ePHs2/fvgznKJH/lm6zyH8trQHwzJkzadKkCX369CE1NZW9e/dSpkwZYmJiKFasGN27d+ebb77JMCjXnT1J7+TJk3Tv3p0uXbrQq1cv4uLiyJo1KwD9+vXj7NmzbNy4kS+//JJDhw5lGFiJPMm9e/ds21p36tSJJk2a8MYbb/D2228za9YswsLCGDduHKmpqZQuXZo8efJQtGhRe5ctmVjajJa0wbm3tzdGo5GrV6+yevVqli5dSkBAAHPnzmXw4MFMnDgRX19fe5ctz4HY2FiMRiNVq1a1PTZ48GBu3LjBsGHD+Pzzz2nTpg2tW7fGYDD8rreLCPz/jRfOnTvHl19+yf3792nUqBEfffQRvXv3Jjg4mIiICMqXL8+3335LZGSkren54708ReD/zzZfvXo1Hh4eTJs2DYCaNWuydu1a1qxZw/HjxxkwYAAApUqV0rlJ/ieaKSV/SXx8PIsXLwYebVtsNBqJjY3lnXfeAaBx48a8/vrrjBw5km7durF7925KlChB3759bRc9kceVKlWKGTNmsHDhQr788kvy58/Pjz/+SPv27bl27Rpr167FwcGBy5cvU6ZMGXuXK5lcly5d+O233zCbzSxdupQcOXLwwQcf0Lx5c4oUKcK1a9do2bIlDg4OrFu3Dnd3dwYPHqwtsOUPpQ20R40aRb58+Zg1axYzZsxg6dKlFCxYkM6dO1OqVCk+/fRTfHx8cHR0tHPFkllZLBYAYmJiSExMxMHBgaSkJG7evAk8muUCULlyZcxmMwMHDiQ8PByDwUBqaqp+9MnvWK1WjEYjERERtGrVCicnJ1555RUCAwNZt24dLVq04PPPP+fXX3/l66+/xmAwsHbtWlvQrkBK0kv7vZZ2rnnw4AFxcXG23fUAGjZsyP379/nuu+8AGDBgQIaNrET+Dk1bkb/k+PHjTJgwgaioKAYOHGhrsrlkyRImTZpEiRIlGD9+PCkpKZjN5t8tg9FFT57mgw8+4IsvvrDthtahQwfmzp3LvHnzMBqNLF++nO+//54VK1bYu1TJxBYvXkxYWBjVq1enadOmnD9/nh49egCPdkpLSkriwYMHbNiwgcOHD7N3715CQ0O1vEqe6vEZBHfv3uX9998HHoUHbm5uDBw4kA4dOvDbb79RvXp1KlSogJubm71KlkwsbXOYu3fvMmvWLIoUKULz5s0pV64cQ4YMYfHixbaA/MyZMwwdOpSdO3cyePBgNm7cqJnm8kQGg4H79++zceNGAgICaNu2LQBly5Zl2LBhtl6d7777bobvkBrly+PSrnlWq5Xdu3eTL18+kpKScHJy4tKlSxQsWBB4tOqlQoUKtiBKMzjln6Czkfwpq9VK1apVmTJlCgMGDMDZ2ZnevXvTqVMnRo0ahcFgYNWqVQAMHz4cV1dXXn/9dTtXLc+T2rVrM3XqVPr160fdunUZMmQI/fr1o2jRoiQlJRESEkKhQoXsXaZkUikpKbi4uJA/f37q1q2Lu7s7BQsWZPPmzfj7++Pq6oqDgwOdO3dm27ZtmM1mli9frvOUPFXaDzar1covv/xC9uzZiYqKYu/evdSvX9+262fevHlxd3fHaHw08VyBlDxJWiB18eJFFi9ezO7du9m3bx/ZsmVj6NChDBgwgJYtW9quedeuXWP06NF4eHgwY8YMUlJSNANPfsdqtZKYmMigQYP49ddfadq0qe25Fi1aYLVaGT16NDExMXTo0CHDcQqk5HHpl6nfuXOH3LlzU7RoUY4ePcrMmTNp3LgxxYsXZ8eOHezdu5eAgAAABVLyjzBY1ZVM/kBaan727FkWLlxIWFgYZ8+epVOnTvTt25f169ezYsUKHjx4QP78+W0BgqOjo20QJvJX7d69m169ejFs2DCqVauGq6srRqORnDlz2rs0yeQuX75MvXr1yJkzJ9OnTydv3ry0aNGC1157jVmzZuHs7Axga8SpQZQ8TdpdX4vFgp+fn23pVNWqVTly5Ag1atSga9euAKxevZpFixaxbNkycufObefKJTOLiIjA39+fbt26UaBAAb766isePHhA3bp1adCgAV999RXR0dGkpKTQokULHB0dmT17NocPHyY4OBgXFxd7fwTJJB6fmXLgwAGmT59OtmzZ6NatW4Z2B/PmzWPv3r0sX75c1z15ovSzgleuXMmJEycYP348c+bMITIykpSUFMLCwsiRIwdxcXE4ODgwduxYSpYsaefK5UWiUEr+1JUrV2jSpAndu3enRIkSREREMGbMGFq2bEm/fv1ITk7mhx9+wMvLi6JFi9qW9ukujPwdO3fupGfPnvTu3dt2F0bkz1y8eJHg4GASExOxWCw0b96c/Pnz0759ewoXLsz06dNtwZTIXxEQEICrqytTpkzh3r17ZMmShUWLFvHzzz9z9epVypYty9GjR5k9e7YG5/KnZs+eTVRUFCNHjgQezZ6aPHkyP/74Ix06dKB27do4Ojpy4sQJwsPDiYiIYN26dSxdupRixYrZt3jJNNIChAcPHvDw4UOcnJzIkycP4eHhjBw5El9fX5o2bUrZsmVtx6SFWFpmJY9Lv7PsN998w/HjxylTpgx169YFYP78+Zw+fZps2bJRp04dChQogLOzM+7u7nauXF40CqXkT23ZsoX169dn2Pns0KFDtGnThq5du9K9e/cMr9cMKflf7dmzB19fXy3Zk//arVu3GDp0KCaTidatW5MvXz4aN25M1apVmT59ur3Lk+dEfHw83bt3p1+/fpQsWZLk5GScnJzYtWsXkZGRWK1W8ufPT8mSJfHx8bF3ufIcGD9+PKdPnyYkJMQ2KyEmJoa6devi5eVFs2bNaNiwIWvXrmXfvn04OzvTsWNHLTMWm7TxdXh4OP379ydbtmxERUVRqVIlOnfuzIMHDwgKCsLX15eGDRtSqVIl27EKpORxad8ni8VCnTp1cHJy4ty5c7aJCHny5AEgJCSE7du3U7VqVfr06WPnquVFpeRA/lR8fDzR0dG2v1NTUylevDjFihVj1qxZLFu2LMPrFUjJ/6pmzZoKpORv8fDwYPjw4VgsFpYvX05ERAQbNmygb9++9i5NniOJiYmcOHGCEydOANhm/t6/f58ffviBjh078uGHHyqQkidK28EqNTXV9tibb74JwC+//GJbRpw9e3YqV66Mu7s7W7du5d69e/j7+zNjxgyCgoIUSEkGRqORmzdvEhAQQP369VmxYgV9+/Zl27Zt7N+/n9KlSzNw4ECOHTvGkSNHMhyrQEoel/Z7bc+ePZQrV46tW7cyZMgQ9u/fz6ZNm7h16xYAbdu2pWHDhjRp0sSe5coLTumB/Klq1apx5coVZsyYATwanGfNmpWiRYsybty4DI0VRUTszcfHh2HDhnHv3j02b97Mq6++iq+vr73LkueIu7s7bdu2ZeXKlezbt882eE9OTiZr1qwkJSXZuULJrNKWw5w/f55BgwYxYcIE9u3bR61atXB2dmbevHmEhIRw/vx5+vXrR1JSElOnTuXcuXNs3rzZ9j7atVjSs1gsAFy4cIESJUrQoUMHrFYroaGhNGjQgEqVKhESEsKbb77JF198QadOnexcsTwP2rRpw/Tp06lcuTIArVq1ol27dqxYsYKtW7dy8+ZNAJo3b463t7c9S5UXnJr+yB+yWCzky5ePzz//nAEDBhAZGUmxYsU4deoU586dY+zYseohJSKZjo+PD1988QUmk0kNguVvadq0Kbdv3+Y///kPlStXxs3NjV27drFw4UKyZMli7/IkE0oLpM6cOUOrVq147733OHDgAMePHwdg1qxZTJ8+na+//ppt27aRLVs2vvzyS7JkyULVqlXJmzevfT+AZDppS6zSgvGUlBQiIyO5dOkSffr0oUCBAowePZopU6Zw+vRp2rZtyxtvvAFkbGAt8iSffvopw4cP5+DBgzRo0AB4FEwZjUYmTZqEg4MDrVq10vdI/nXqKSV/2a+//srs2bPJnj07zs7OjBgxQrvsiYjICys2Npb9+/fz/fff4+PjQ+3atbW0WH7nzp07vPrqqwBER0fTpk0b/Pz8aN26NZs2bWLx4sVkzZqVTp06Ub16dQBu3Lhhaxi8atUqZs6cycqVK8mfP789P4pkImmh0qVLl/j6668xmUzEx8cTERHBr7/+yptvvsm0adMA6NGjB76+vgQGBtq3aHnu7N69m969e9OhQwd69+5te3z16tVUrlyZAgUK2K02eXkolJK/JP0W2ekDKM2QEhERkZdVbGwsc+fOpWnTpjg7O3PixAm+/PJL1qxZQ0xMDEOGDKFkyZIcOnSIqKgoatWqRa9evYiMjGTOnDmcPn2ahIQEpk2bRqlSpez9cSSTSBt3nz17liZNmvD222+TkJBAWFgYMTExvP7669SqVQsfHx++//57zp07x4YNGzQml79l586d9O3bl4CAgN9tYCXyLOjMJX9JWoPExzNMXfxERETkZRUdHc3OnTs5ffo0169fp2XLluTNm5d79+7RsWNHihYtSkBAAADbt2/n2rVrAHh5edGiRQssFguenp54eHjY82NIJmMwGLh37x4//fQTXbt2pVOnTsTFxXH8+HH69etHQkICSUlJ7Ny5E09PT9avX4+Dg4OW7Mnf8sEHHzBt2jS6d++Oo6MjnTt3tndJ8pLRTKmX2H+77C79drLXr18nd+7cODo6/lvliYiIiGR63333HT169KBgwYLMnz+fV155hZMnTzJx4kRWrVoFQGBgIAULFqRLly7aCU3+VFxcHLVr1yYxMZEhQ4bQsGFDW+C0cOFCDhw4wPTp03F2drbdIFYgJf+rPXv24Ovrq2Xq8sypEdBLymw2YzQauXLlCkuXLmX//v3cuXPnqa9PH0iFhIQwfPhw7T4kIiIiLz0fHx969OiB1WolKCiIK1euYDQaiY6OZu7cufTr14/z58/TqVMnWysEkT/i5ubG8OHDMRqNnDlzBvj/qxZy586NwWDAxcUlw4oFBVLyv6pZs6YCKbELrb16CVksFkwmE+Hh4bRt25b8+fNz5coVmjRpgr+/P/ny5cvw+vSB1PLlywkODmbhwoVkzZrVHuWLiIiIZBqFCxemcOHC1KxZk169ejF79mzq1avHhx9+yK5du/D19WXt2rVaXiX/lQ8++ACDwUDv3r3Jmzcv/v7+uLm5sX//frJly6ZNhkTkhaHley+pq1ev0qZNG9q0aUPr1q0ZNmwYR44coVatWjRr1gxPT08g41Tg5cuXM336dEJCQihRooQ9yxcRERHJdM6dO0f37t2pWLEiZ8+epVy5cgwYMACj0ajNYeRv2bFjB/369cPd3Z1q1apx8eJFlixZgpOTU4YbxyIizytF7C+R9NPFf/rpJ8qUKUPr1q25ffs2KSkplCpVim3btrFixQpOnjwJ8LtAavHixQqkRERERJ6gSJEizJo1C7PZjKenJ4GBgRiNRiwWiwIp+Vtq167NrFmzePjwIYmJiaxatQonJydSU1MVSInIC0Gh1Esiral5ZGQkp06dIjU1leTkZJKSkmjfvj3u7u5MnDiRPHnysHXrVjZv3mw7dvny5UydOpWQkBBKlixpx08hIiIikrkVKVKEUaNGMX36dBwcHEhNTdVSK/mf1KhRgy+++IKdO3cye/ZsQDtgi8iLQ2ezl0DaErybN2/y6aefMmDAAGrUqMFHH33EqlWryJ07NwMGDADAw8ODOnXq0KpVKwBOnz7NypUrCQ0N1QwpERERkb/AyckJeNSXU+GB/BNq1arF1KlT6dGjByaTic6dO9u7JBGRf4Suki8Bk8nExYsXWbx4MQ0bNqRx48a259KmlF+5coXg4GDu3btHy5YtbXf0SpQoQWhoKLly5bJX+SIiIiLPJS2vkn/S+++/z+zZs/H19bV3KSIi/xiFUi+Js2fPsnbtWkqUKEFUVBR58uQBIHv27ERHR9OzZ09MJhMrV67EZDLZ+k8ZjUYFUiIiIiIimUDNmjXtXYKIyD9Ku++9oNKW7KX1MTAajXz99df06dOHXr160bZtW1xcXIBHO8VYLBYKFy5sO0ZTzUVERERERETk36Tk4QWUFkhduHCB5cuXExMTQ69evahTpw5JSUkMGjQIo9FIy5YtcXNzo0iRIhmOVSAlIiIiIiIiIv82bQXygrFYLJhMJs6cOcOnn35KfHw8YWFhtGzZkvDwcBo0aEBQUBAzZszgyy+/JDk5OcPxJpPJTpWLiIiIiIiIyMtEy/deQLdv36Zz5840b94cPz8/9u7dy/Dhw7FarcyfP59ixYqxdu1a1q9fz8qVK9WEU0RERERERESeOc2UegEkJiZy7NgxUlNTAbh79y5OTk74+fkRGxvL6tWr6du3L4UKFaJnz5589dVX+Pv7s2rVKgwGA8olRURERERERORZUyj1Apg0aRIDBgzg559/JiUlhejoaLy9vYmNjaVdu3a8+uqrNGjQgFKlSnH37l127NiRIYjSTCkREREREREReda0fO85lpycjKOjI2azmR49enD37l369OlDlSpVSE5O5vTp08ycOZOFCxcCEBgYyLvvvkudOnUwGo1YrVYFUiIiIiIiIiJiF5op9ZyyWq20atWKgIAATCYTs2bNImfOnEyaNIn9+/djNBqJi4vj4MGDfP311/Ts2ZPw8HBq166N0WjEYrEokBIRERERERERu9FMqefYiRMnaNeuHTVr1mTixIlYLBa6du3KvXv36Nu3L1WqVKFPnz7cuXMHFxcXgoODbTOrtMueiIiIiIiIiNiTQqnnVGpqKg4ODpw+fZpmzZrx/vvv88UXX2CxWOjSpQt3795l0KBBVKxYkbi4OFxdXTEYDLbjRERERERERETsScv3njMWiwUABwcHLBYLJUqUYMWKFXz77bcEBgZiNBqZM2cOuXPnZuDAgZw4cQI3NzfbLnsKpEREREREREQkM9BMqedI2rK7yMhI9u7dy/Xr16lSpQrvvvsuFy5cwM/Pj1q1ajFx4kTMZjOTJ08mMDBQS/VEREREREREJNNRKPWcOXv2LJ999hnVqlXD2dmZb7/9lrfeeotJkyYRFhZGixYtqFChAnPnzrU1MlcPKRERERERERHJbLR87zmSkJDAtGnTaN++PUFBQYwaNQoALy8vbt++TfHixVm8eDFJSUmkzxoVSImIiIiIiIhIZqNQ6jliNBq5d+8eZcqUwWKx0KBBA6pWrUqnTp3w8/Pj8OHDvPnmm4SGhmI0Gm39p0REREREREREMhuFUpmY2WzO8LeTkxMGg4HTp0/TtGlTChUqxMSJEwHIlSsXnp6eALZZUkaj/veKiIiIiIiISOak1CKTSusDdeHCBSZNmkRAQAARERHUqVOHMWPG4OLiwuTJkwEYMWIErq6utlAqrZeUiIiIiIiIiEhm5WDvAuTJTCYTZ8+epVWrVtSpUwdfX1/i4+Np3bo1sbGxhIaG0qZNGwwGA3FxcaxYscK2ZE8zpEREREREREQks9Pue5lUUlIS/fv3p1SpUnTq1Mn2eHh4uK1x+eXLlzGZTLzzzjuYTCZSU1NxcFDOKCIiIiIiIiKZnxKMTMrZ2Zno6GicnZ0zPH7nzh0GDx7Mhg0bKFKkiO1xs9msQEpEREREREREnhta55VJPL5TXnJyMjly5ODKlSvExsbaHvfy8qJIkSJkzZo1w+vTZk+JiIiIiIiIiDwPNLUmE0hrah4VFcXFixcxm80UKVKETp060bx5c1555RVq1qxJ8eLFmT9/PgaDgSxZsti7bBERERERERGRv009pewsrTF5eHg4PXr0IF++fFy7dg2LxcL48eMxGAwMHz6clJQUPDw8SElJYdmyZTg6OqqpuYiIiIiIiIg8txRKZQJRUVE0a9aMNm3a0Lp1ayIjI9m+fTtz585l5cqVeHh4cP36dcxmM2+++SZGo1FNzUVERERERETkuaZQyo6sVisGg4HDhw8zZ84cFi5caHvu4cOHjBw5EldXV0aPHo3BYLA9pxlSIiIiIiIiIvK8U7JhB2azOcPfSUlJHD16lDNnztiez5YtGx4eHsTHx2cIpAAFUiIiIiIiIiLy3NP6r2csran5xYsXWbFiBe7u7ri7u1O9enW2bt1K1qxZ8fb2BuDGjRt4eXnZuWIRERERERERkX+elu89Q2nL9c6dO0fTpk0pV64c0dHRZM2aldTUVHLmzEl8fDzFixfnypUrREREsHHjRvWOEhEREREREZEXjkKpZ+zevXvs3LmTxMRE2rZty4kTJ/jqq684c+YM3t7eFClShN9++w1vb2969OiBg4ODbXaViIiIiIiIiMiLQlNwnqG4uDjq1auH0Whk8ODBAJQuXdq2m97p06d55513aNOmje0YBVIiIiIiIiIi8iJSx+xnyM3NjWHDhpGQkMCRI0dsj5cqVQo/Pz88PT3Zt28f8GipH6BASkREREREREReSFq+Zwe7du2iT58+dOzYkV69etkev3TpEj4+PtpdT0REREREREReeAql7GTnzp307duXzp0706NHjwzPWSwWBVMiIiIiIiIi8kJT8mEnH3zwAVOnTiU4OJi1a9dmeE6BlIiIiIiIiIi86DRTys5++eUXypUrh4ODes6LiIiIiIiIyMtDoVQmkZqaqmBKRERERERERF4aCqVEREREREREROSZU/MiERERERERERF55hRKiYiIiIiIiIjIM6dQSkREREREREREnjmFUiIiIiIiIiIi8swplBIRERERERERkWdOoZSIiIjICywyMtLeJYiIiIg8kUIpERERkX/RZ599Rvfu3Z/43Jo1a6hatSrJycl/+f2+/PJLOnTo8Jdeu2fPHtq3b/+X31tERETkWXKwdwEiIiIiL7JWrVrRvXt3bt++Te7cuTM8t3LlSpo2bYqTk9Nffr+AgIC//Nr79+9jtVr/8utFREREniXNlBIRERH5F1WvXh0vLy82btyY4fHjx49z7tw53nnnHTp37kyNGjUoXbo0devW5bvvvgPg6tWrFC1alKCgICpWrMioUaOYOXMmrVq1sr3PTz/9hJ+fHxUqVOCjjz5iy5YtABw8eJARI0Zw/fp1ypYty9GjRylevDg3b960Hfvbb79RpkwZYmNjn8F/CREREZGMFEqJiIiI/IuMRiPNmzdn7dq1GWYtrVy5kg8//JAhQ4bw+uuvs2vXLg4fPky1atUYOXJkhveIi4vjxx9/pE+fPhkeDw8Pp0uXLnTq1ImDBw8yZswYxo0bx759+6hcuTKjRo3Cy8uLY8eOUa5cOQoWLGgLrQA2bdpE7dq1yZo167/630BERETkSRRKiYiIiPzL/Pz8uHPnDj///DPwaFnd119/TevWrZk7dy49evTAarVy7do1smfPzq1btzIc36BBA5ycnMiePXuGx1etWsV7773HBx98gMlkoly5cjRp0oTly5c/sY5GjRrZQqmUlBS2bdtG48aN/4VPLCIiIvLn1FNKRERE5F+WLVs26tWrx9q1a6lSpQrr16+nRIkSlC5dml27dtG1a1du375NoUKFcHd3/10fqDx58jzxfa9du8bPP/9MhQoVbI+ZzWby58//xNfXr1+fKVOmcPr0aa5evUq2bNmoWLHiP/dBRURERP4LCqVEREREnoFWrVrRsGFDoqOjWbNmDT179uTWrVv06tWLWbNmUbNmTQB27NjBzp07MxxrMBie+J558+alYcOGjB492vZYVFTUU5ubv/rqq/zf//0f27dv5+rVqzRq1Oip7y0iIiLyb9PyPREREZFnoHDhwpQvX56goCASEhL44IMPiIuLw2w24+LiAsD58+cJDg4GIDk5+U/f08/Pj23btrF//34sFguRkZG0bNmSRYsWAeDs7ExCQgKpqam2Yxo3bsyuXbv46aefaNiw4b/wSUVERET+GoVSIiIiIs9Iy5Yt2bRpE82aNcPR0ZGCBQsyYMAA+vfvT/ny5enVqxeNGzfG0dGRs2fP/un7vfnmm0yZMoUpU6ZQsWJFWrZsSc2aNenXrx8AFStWJFeuXFSsWJEzZ84AUKNGDeLi4ihdujSenp7/6ucVERER+SMG69Pmd4uIiIjIC6lhw4Z07NiRunXr2rsUEREReYmpp5SIiIjISyIiIoKDBw9y+/ZtatWqZe9yRERE5CWnUEpERETkJTFs2DAuXLhAUFAQTk5O9i5HREREXnJaviciIiIiIiIiIs+cGp2LiIiIiIiIiMgzp1BKRERERERERESeOYVSIiIiIiIiIiLyzCmUEhERERERERGRZ06hlIiIiIiIiIiIPHMKpURERERERERE5JlTKCUiIiIiIiIiIs+cQikREREREREREXnmFEqJiIiIiIiIiMgz9/8A1SsUX+mFU7wAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJOCAYAAACN2Q8zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7wklEQVR4nOzdd3RUVf/24XvSSEJJAqELUgOIIKH3akKTIgRBEAHpHZTQq0AI0kJoUgWUDtK7dJAOUlR4QFEDSElIIQmBlPP+wZv5OQYwwcTR8LnWci3n7FO+c2bPDHPn7H1MhmEYAgAAAAAAAP5hNtYuAAAAAAAAAK8mgikAAAAAAABYBcEUAAAAAAAArIJgCgAAAAAAAFZBMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVBFMAACDdMwzD2iUA+BfhMwEA/j0IpgAAf9ulS5fk6+ur2rVrq3Tp0qpXr55GjhypoKAga5eWar7++msVK1ZMN2/etHYpyfa///1P7777rt588001atToheuuX79exYoVU5cuXf6h6qSDBw+qWLFi+uabb5K0NWvWTMWKFdPGjRuTtLVo0ULvvfdeso8zb948LV68+G/V+iJ169ZV2bJldfv27We2FytWTLNmzUqz47/s8W7evKnatWvrwYMHL32sGzduqEWLFvLy8lKtWrX01VdfWbTv3btX9evXl/T0PA0dOvSlj5Xo+vXrqlu3riIiIv72vv7Lbt68qTFjxqhevXoqVaqUqlevrh49eujo0aNJ1m3fvr3at29vfvxP9Mn69eurcePGz22Pi4tTlSpVNGDAgJc+xsmTJ1WsWDGdPHky2ds8efJEkyZN0tatW83Lhg4dqrp16750HQCAv4dgCgDwt6xYsUJt2rRRSEiIPvnkEy1cuFA9evTQ6dOn1bJlS33//ffWLjFV1K5dW2vWrFGOHDmsXUqyzZ49W7du3dLs2bM1efLkF667YcMGeXh46NixY/9YoFihQgXZ29vr7NmzFsvv37+vq1evytXVVUeOHLFoi4yM1JUrV1StWrVkHycgIECPHj1KlZqfJyoqSiNHjkzTY6QmwzA0fPhwdejQQVmzZn3p/URGRqpPnz7auXOnvLy8tG3bNov2Q4cOqUaNGn+3XAtFihRR3bp1NXHixFTd73/J8ePH1bRpU506dUqdO3fW4sWLNXLkSNnZ2alz587y8/N74fZr1qxRq1at0rTGli1b6vr16/rxxx+f2X7o0CE9ePBAPj4+L32MkiVLas2aNSpZsmSyt7l3756WLl2quLg487JevXpp9uzZL10HAODvIZgCALy0s2fPauLEiWrbtq2WLFmiJk2aqFKlSmrVqpVWrVolZ2dnDRs2zNplpoqsWbOqTJkycnBwsHYpyRYaGioPDw/Vrl1bpUqVeu56N27c0Llz5zRo0CBlzpxZa9eu/Ufqy5gxo0qXLq3z589bLD969KgcHR3Vtm1bHTt2TAkJCea2c+fOKT4+PkXB1D8hS5YsOnbs2D927v6uvXv36sqVK2rbtu3f2k+pUqVUt25djRo1Shs3blTHjh0t2o8cOaKaNWv+rWM8S7du3bR169Z0E3ynxN27d9WvXz95enpq06ZNatu2rSpWrKgGDRpo9uzZGjZsmJYtW6Z169Y9dx9lypRRrly50rTO5s2by9bWVlu2bHlm+6ZNm5Q3b15VrVr1pY+RKVMmlSlTRpkyZXrpfUhS/vz59cYbb/ytfQAAXh7BFADgpS1evFiZM2fWxx9/nKQta9asGjp0qLy9vRUZGWlevmPHDrVo0UKenp6qVq2aRo8erfDwcHP7rFmz1KBBA33zzTd65513VKpUKTVr1kznz5/Xd999p1atWql06dJ65513dPz4cYvt6tatqwMHDqhBgwZ666231KpVK4t1JOnKlSvq06ePKleurJIlS6pGjRqaMGGCYmJizOsUK1ZMs2fPVsuWLVWuXDnNnTs3yVC+Bw8eaNCgQapWrZq5xk2bNlkc65dfflG/fv1UrVo1lSlTRu3bt7e4OujmzZsqVqyYdu7caf6hWaFCBY0YMUJRUVEvPPf37t3TsGHDVKtWLZUuXVo+Pj7at2+fxXM4deqUTp8+rWLFiunrr79+7r42bNigzJkzq0qVKmrQoIE2bNigJ0+emNs///xzlSxZMsmQr5UrV+qNN97Q/fv3JUnnz59Xu3btVKZMGdWuXVvLli1Tx44dXzh8q0qVKrp8+bIeP35sXnbkyBFVqFBBtWvXVlhYmC5fvmxuO3PmjPnHqCSdPn1anTt3VoUKFfTmm2+qbt26mjVrljnMKlasmKSnV48l/r/0dJhj9+7dVbZsWZUtW1a9e/e2uFIscYjQ6tWrVadOHVWtWvWZQ6QS1a1bVxUrVtTkyZP1+++/P3c9SUpISNCCBQvk5eWlN998U/Xr19eXX36ZZL1vvvlGLVq0UKlSpVStWjVNmDBB0dHRFuucOnVKrVu31ltvvaX69evr22+/feGxE82fP1/e3t7KkCGDeVmxYsW0atUqDR06VOXKlVPFihXN743JkyercuXKqlSpkkaMGGHxeknSpEmTNG/ePPn6+prf71euXFFYWJgqVapkXi82NlafffaZ+T3x0Ucf6ddff7XY17p169SiRQuVKVNGpUuXVrNmzbRjxw6LdXLkyKHKlStrwYIFL3yeN2/e1ODBg1W9enWVLFlSVapU0eDBgxUaGmpexzAMrVixQo0bN1bp0qXl5eWlhQsXmucgGjp0qDp06KAxY8aofPnyevfddxUXF6fHjx9rzpw5atCggUqVKiVvb28tWLDAIkgNCgpSz549ValSJb311ltq3bq1Dh06ZG5//Pixxo0bp5o1a+rNN99UgwYNtGTJkhc+p6VLlyoqKkoTJkyweP0SdezYUWXKlNG8efOeO49S4lC+x48fq3z58kmusEpISFD16tU1btw487J169apcePGevPNN1W7dm3NmjXL4qqjP8uRI4dq1qypbdu2WZwTSQoLC9OBAwfUokUL2djYJOt1qlu3rvz8/NShQweVLVtWo0ePfuZQvhe9t2/evKl69epJkoYNG2YevvesoXx/9XyT8x0AAEgegikAwEsxDENHjx5VlSpV5OTk9Mx1GjRooD59+pj/mj137lwNHDhQb731lgIDA9W7d2/t3r1b7du3twiG7ty5o0mTJqlHjx4KCAhQeHi4+vXrp48//ljvvfeepk+froSEBA0cONBiuwcPHmjIkCFq27atZs6cKScnJ3Xt2tUcbNy7d0/t2rXTo0eP5O/vr4ULF6phw4b68ssvtXTpUova582bp/r162v69OnmHzJ/5Ovrq+vXr2vcuHFasGCB3njjDQ0ZMsT8A+n69etq0aKFgoKCNHLkSE2dOlUmk0kdOnTQqVOnLPY1ZswY5c2bV3PnzlWXLl20YcMGff75588998HBwfLx8dGpU6c0cOBAzZo1S3nz5lXv3r3NVyesWbNGb7zxht544w2tWbNGtWvXfua+4uPjtXnzZjVq1EgODg5q0aKFQkJCLOZ9atq0qeLj47Vnzx6Lbbdt26YqVaooe/bs+umnn8xXy0yfPl19+/bVggULkgzT+7MqVaooNjZWly5dkvT0B/GxY8dUvXp1lSpVSi4uLjp8+LB5/dOnT6tSpUqys7PTlStX1LFjR7m6umrGjBmaN2+eypYtq9mzZ2v79u3m8yBJPj4+5v+/ceOGefipv7+/Jk6cqKCgIL3//vsKCQmxqG/GjBkaMmSIhgwZYg7DnsVkMsnPz08JCQl/OaRv7NixCgwMVNOmTfX555+rQYMG8vPz05w5c8zrbN26Vb1791ahQoU0Z84c9enTR1u2bFGvXr3MYcP333+vjz76SJkyZdLMmTPVoUOHZ4bEf/bzzz/r8uXLatCgQZK2qVOnysHBQbNnz1azZs305Zdfqnnz5vr99981ZcoUtWnTRuvXrzcHaX5+fho9erQMw9CtW7dkZ2cne3t7SdLhw4dVqVIli/Bkx44dunbtmvz9/TV69GhdunRJAwcONLevWLFCo0ePVr169TR//nxNmTJF9vb28vX1TTKHV8OGDbVv377nhriPHj3Shx9+qJ9++kljxozR4sWL9cEHH2jbtm2aPn26eb3p06dr4sSJqlWrlubNm6dWrVppxowZmjt3rnmdM2fO6Ndff9WsWbPUu3dv2draqkePHlq0aJF8fHzMr2NAQIDGjBkj6Wlf7t69u6Kjo/XZZ59p7ty5cnV1Va9evcxh3MSJE3Xo0CENGTJEixcvVr169TR58uQXBslHjx5ViRIllDt37ueu07BhQ926deu5w+gSZciQQfXr19fOnTstwqOTJ0/q/v37atasmaSnQeaoUaNUpUoVff7552rXrp0WLlyo0aNHv3D/Pj4+unfvXpI5oLZv3674+Hi1bNky2a+T9LR/JIZqibX90V+9t3PkyGEestezZ8/nDt9LzvP9q+8AAEAKGAAAvISQkBDDw8PDmDJlSrLWDwsLM958801jxIgRFstPnz5teHh4GCtWrDAMwzACAwMNDw8P49ChQ+Z15s+fb3h4eBjr1q0zL9u1a5fh4eFh/PDDDxbbbdy40bzOo0ePjGrVqhl9+/Y1DMMwjhw5YrRr1854+PChRQ3vvPOO8dFHH5kfe3h4GG3atLFYZ8OGDYaHh4cRFBRkGIZhvPnmm8bcuXPN7fHx8Ya/v79x+vRpwzAMo3///kbFihWNiIgI8zqxsbFG/fr1DR8fH8MwDCMoKMjw8PAwBg0aZHGs9u3bG++8885zz+Vnn31mlCxZ0vjtt98slnfo0MGoVq2aER8fbxiGYXzwwQfGBx988Nz9GIZh7N+/3/Dw8DC+++4787JGjRol2e7P+7p165ZRrFgxY/PmzYZhGIavr69RtWpVIzo62rzOuXPnDA8PD2PIkCHPPX5sbKxRpkwZY/78+YZhGMaFCxcMDw8P4/r164ZhGEa/fv2M1q1bG4bx9PUsWbKk8dVXXxmGYRgbN240unTpYn6+hvH0dShXrpwxatQo8zIPDw8jMDDQ/Pjjjz82qlSpYtEPQkNDjXLlyhn+/v6GYRjGiRMnDA8PD2P69OkvPH+GYRh16tQxP8fly5cbHh4extq1a595/J9//tkoVqyY+fkmmjFjhlGqVCnjwYMHRkJCglGzZk2jc+fOFut8++23hoeHh3HgwAHDMAyjb9++Ro0aNYzHjx+b19m+fXuS5/tnK1asMDw8PIzw8HCL5R4eHkarVq3MjxNfm7p16xqxsbHm5e+8847Rs2dPwzAM486dO0avXr2Md955x2jdurVx7Ngx83pt27Y1vvzyS4vzVKtWLePJkyfmZdOnTzc8PDzMr8WkSZOMzz77zKKuy5cvGx4eHsbWrVstlv/444+Gh4eHcfDgwWc+zx9++MF4//33jV9//dVieffu3Q1vb2/DMAwjPDzcKFmypOHn52exzqRJk4xOnToZhmEYQ4YMMTw8PIxffvnF3H7w4EHDw8PD3P8TzZkzx/Dw8DCuXbtm3Lt3L8k6ERERhp+fn3H16lXDMAyjfv36ST4TZ8+ebezfv/+Zz8kwDKNMmTJGv379nttuGP/3vt6zZ49hGEnfv3/sIydPnjQ8PDyMkydPmtuHDRtmeHl5mWt+6623jNGjR1scY+3atYaHh4fxv//977l1xMbGGlWrVjWGDh1qsdzHx8fcv5PzOhnG0/5Tu3Zti/d74vv0xIkThmEk772d+Lm7YcMG8zpDhgwx6tSpk6Ln+1ffAQCA5LOzdjAGAPhvsrF5etFtfHx8stb/7rvv9OTJEzVp0sRiefny5ZU3b16dPHnSYr6bsmXLmv/f3d1dkiyuWHF1dZUkiztz2draWtwFytHRUTVr1jQPnalevbqqV6+u2NhY3bhxQ7/88ouuXr2qBw8emPeXyMPD44XPp1KlSpo1a5auXLmiWrVqqWbNmhoyZIi5/dSpU6pTp44yZ85sXmZnZ6fGjRtrzpw5Fld5/PlKnFy5cunWrVvPPfapU6fk6empfPnyWSxv2rSphg0bpp9//llFihR5Yf2JNmzYoNdff10FCxY0n8uGDRtq1qxZ+umnn1S4cGFJT++SN2rUKN27d085cuTQ9u3b5eTkJC8vL0nSiRMnVKtWLYur5zw9PZU3b94XHt/Ozk4VKlTQuXPnJD0dxpcnTx7zcatXr64xY8YoMjJSly9fVmxsrKpXry7p6Rw2zZs31+PHj/Xbb7/p119/1ffff6/4+HjFxsY+95gnTpxQpUqV5OjoaB6akylTJpUvXz7JULg/Dv9Ljg8++EC7d++Wv7+/atSokWQenxMnTsgwDNWtW9diWFDdunU1b948nT17VgULFtSdO3fUvXt3i3UqVKigTJky6dixY6pdu7bOnj2r2rVrW8x75u3tLVtb2xfWGBQUpCxZsihLlixJ2jw9Pc3/b2dnJzc3N7355puys/u/fzK6urrq4cOHkqScOXNaXOmV6OHDh/ruu+/k7+9vsbx06dLmK6okmftwRESEMmXKZB72+fDhQ/3yyy/65ZdfzMNx//yaJvat590ps0SJElq5cqUSEhIUFBSkX375RdeuXdPPP/9sPq/fffedYmNjzf040Z+Hnzo6Oip//vzmx6dOnZKtrW2Su102bdpUM2fONH+eFSlSRKNGjdK3336rmjVrqnr16hbz7lWqVEmrV6/W3bt3VadOHdWqVUu9e/d+5vNJZBiGxevxLIl9wHjOUL4/qlChgvLmzavt27erYsWKevLkifbu3asOHTpIejpE99GjR8/ss5J07NgxFS1a9Jn7trOzU9OmTbV27VqNHTtWGTJk0M8//6yLFy8qMDBQUvJep0SFCxc2f/c8S0re28+T3Of7V98BAIDkI5gCALwUV1dXZcyYMcnwmj+Kjo7WkydP5Orqap5HKjFk+iN3d3fzD91Ez5rM1tHR8YU1Zc2a1eJHryRly5bNfOyEhARNnz5dK1asUHR0tHLnzq3SpUs/c56WZ9X5RzNmzNDnn3+unTt3ateuXbKxsVHVqlU1duxY5cuXT+Hh4c99roZhWMy79eehkDY2Ni/8QRkeHq7XXnvtuTX/Max7kQcPHujgwYOKjY1VhQoVkrSvWbNGw4cPl/R0WOb48eO1c+dOdejQQdu2bZO3t7e59gcPHihbtmxJ9pE9e/a/rKNq1arm+XCOHDliDp6kp8FUfHy8zpw5o8uXL+u1117T66+/LkmKiYnR+PHjtXnzZsXFxem1116Tp6en7OzsXnj+wsLCtGPHjiTzFklKcoe6Zz2nF0kc0te0aVONHDlSixYtSnJsSRYB6h/dvXtXbm5ukqRx48ZZzPGT6N69e5Ke9oM/15sYJr1IZGTkc4ffPut997x1X+To0aN67bXXkoSnzs7OFo8TQ4bEYWS//fabRo8erRMnTsjOzk6FChUyh4N/fk0T6/rje+nPvvjiC82fP1+hoaFyd3dXyZIl5eTkZP68SXw9/urOhNmyZZPJZDI/Dg8Pl5ubW5KAKLG/P3z4UCaTSUuWLNG8efO0d+9ebdy4Ufb29nr77bc1duxYubq6asSIEcqVK5e2bNlifq09PT01evTo507GnTdv3hcG15LMcyrlyZPnhetJT/tskyZNtHbtWo0aNUqHDx9WRESEeahc4jnq1q3bM7dP7I/P4+PjoyVLlmj//v1q2LChNm3apKxZs1rM6fRXr1Oiv/pcTsl7+0X7kP76+f7VdwAAIPkIpgAAL6169eo6efKkHj9+/Mxw5+uvv9bEiRO1cuVKubi4SHo6P1Li1TCJ7t+/nyr/kA8LC5NhGBY/IIODg83hwoIFC7R06VKNHTtW9evXN1/N9DK3K8+cObN8fX3l6+urn3/+Wfv27dPcuXM1btw4LVq0SC4uLgoODk6yXeJE4W5ubn/5g+55krPv5Ni8ebNiY2M1e/bsJFfPzJkzR5s2bdLHH38sR0dHZcqUSfXq1dPOnTtVvXp1XblyxeLqgFy5ciWZn0mSQkJCVLBgwRfWUaVKFU2aNEk//PCDLl68qE6dOpnbcufOrUKFCuncuXO6dOmSxd34Jk6cqN27dysgIEBVq1Y1hx5VqlR54fEyZ86sqlWrWhwn0V9diZIc+fPn18CBA+Xn56f169dbtCWe52XLliljxoxJts2TJ495kvnBgwerYsWKSdZJfC+5urom6QeGYVjcTOBZ3NzckvzgT22HDx9O8d34EhIS1K1bN9nb22vt2rV64403ZGdnp+vXrz/zzm6JAezz+vvWrVvl7++vTz75RD4+PuZgon///uY5zRJfjwcPHqhQoULmbX///Xf9+uuvKleu3DP37eLiotDQUMXFxVn0mcT3dGJNOXPm1NixYzVmzBhduXJFu3bt0sKFC+Xi4qJx48bJwcFBPXv2VM+ePXX79m0dOHBAc+fO1SeffKKdO3c+89h169bVkiVL9Pvvvz93nqndu3crd+7cyb7TXLNmzfT555/r5MmT2rZtm8qWLWv+TE48R1OnTlWBAgWSbPtXYVHhwoXl6emprVu3qkGDBtqyZYuaN29u/iNCcl6n5EqN93Zyn+9ffQcAAJKPyc8BAC/to48+UlhYmGbMmJGkLSQkRIsWLdLrr7+uMmXK6K233pKDg4O2bt1qsd6ZM2d0+/Zti6F7Lys2NlZHjhwxP46JidHhw4fNQcXZs2dVpEgR+fj4mEOpu3fv6n//+1+Su0a9yK1bt1SrVi3t2rVLklSoUCF17dpVVatW1Z07dyQ9HR5z4MABiwAgPj5e27dvV6lSpSyGX6VUhQoVdP78eYu7yEnSli1blD17dvMVRX/l66+/VpkyZeTl5aVKlSpZ/Pf+++8rPDzc4sdxs2bNdOHCBa1YscJ8V7Q/1nT48GGLu7X9+OOPzx1m9UfFihWTu7u7li9fLilpsFS9enX98MMPunDhgsXVVGfPnlWlSpX09ttvm0Opy5cv68GDBxav55+H/lSsWFHXr19XiRIlVKpUKZUqVUpvvvmmli5dqr179ybn1P2lDz/8UOXLl08ylC3xyrTQ0FDzsUuVKqWwsDAFBAQoLCxMhQoVUrZs2XTz5k2LdXLlyqVp06bphx9+MJ+nw4cP69GjR+b9Hzly5IXDGKWn4Vd0dPRfBlgvK/HKt1q1aqVou9DQUN24cUM+Pj4qXbq0OUhInPz+z+/RxLsfPu+qoLNnzypz5szq1q2bOeyIiorS2bNnzftKHFr4xztaSk+Dw/79+1uE3H9UsWJFxcfHJ7kyJzFAK1eunM6fP6+qVavq4sWLMplMKlGihAYOHCgPDw/duXNHMTExql+/vvkufHny5FG7du3UuHFj8+fIs7Rv316ZMmXSsGHDktwdUXp6t8yTJ0+qe/fuLxz29keFChVSqVKltH37dh08eNBiYvG33npL9vb2unv3rkV/tLe317Rp05L1Hm/ZsqWOHj2qY8eO6ffff7f4Y0ByXqfkSs57+6+Guibn+SbnOwAAkHxcMQUAeGllypRR//79FRAQoJ9++knvvvuu3NzcdO3aNS1ZskRRUVFasGCBTCaTXF1d1a1bN82ePVv29vaqV6+ebt68qZkzZ6pIkSJq0aJFqtQ0fPhwDRgwQNmyZdPixYsVHR2tnj17Snr6I3Tu3LlasGCBypQpo19//VXz58/XkydPLH7c/5W8efMqV65cmjBhgiIjI5U/f35dvnxZhw4dUvfu3SVJffr00eHDh/Xhhx+qW7ducnBw0FdffaWgoKC//df0Tp06acuWLerUqZP69OkjNzc3bdq0SSdOnJCfn1+yfoxevHhR//vf/zRixIhntterV08uLi5avXq13n33XUlPA6KsWbNq9erV6tixo8VxevTooR07dqhLly766KOPFBERoZkzZ8pkMj33x/0fVa5cWdu3b1fp0qWTXL1VvXp1rVq1SgkJCRZhWOnSpbVz506tWrVKhQsX1pUrVzRv3jyZTCaL1zNLliw6f/68Tp8+rfLly6tXr15q06aNunfvrvfff18ZMmTQmjVr9M0335jnvfm7/jik7488PDzUtGlTjRo1Srdu3dKbb76pGzduaMaMGXrttddUoEAB2draauDAgRo9erRsbW1Vp04dRUREaO7cubp7965KliwpSerdu7e++eYbde7cWV26dFFoaKhmzJiRZDjrnyVedXbu3DnVqVMnVZ7vH/3www+KjIx85vDQF8mWLZvy5s2rFStWKFeuXMqSJYuOHj2qZcuWSVKS9+jZs2fl5OSk8uXLP3N/pUuX1qpVq+Tv7686dero3r17Wrx4sYKDg81XnWXNmlUffvihli1bJgcHB1WuXFmXLl3SV199pY8//vi5V9nUrFlTlSpV0pgxY3Tv3j298cYbOnXqlBYuXKh3331XRYoU0ePHj+Xo6KjBgwerb9++cnd317fffqsff/xRH374oRwdHVWyZEnzZ2KxYsV048YNbdy4UfXr13/uecqRI4dmzpypfv36qUWLFvrwww9VqFAhc5C8fft2tWvXTu+//36Kzn/z5s3Nnx8NGzY0L3dzc1OXLl00c+ZMRUZGqlKlSrp79675/V28ePG/3HejRo3k5+en8ePHy9PT0+Kq2eS8TsmVnPd24h8ljh8/rsKFC+utt96y2Edynm/mzJn/8jsAAJB8BFMAgL+lZ8+eeuONN7RixQpNmjRJYWFhypUrl2rWrKkePXpYXM2Q+OPsq6++0rp16+Tq6qoGDRpowIABLzWPzbOMHTtWfn5+evDggcqWLatVq1aZryDq3r27QkNDtXz5cs2ZM0e5c+dWs2bNZDKZNH/+fIWHhyf7h9Ds2bM1ffp0zZw5U6GhocqdO7f69OljnpekaNGiWrlypaZPn67hw4fLZDKpdOnSWr58+XN/SCdX9uzZtWrVKk2bNk0TJ05UbGysihcvrrlz56pevXrJ2seGDRueOXlzIgcHBzVs2FCrV6/Wjz/+qBIlSpgnl1+2bFmSwOX111/X4sWL9dlnn6lfv37Kli2bunfvrnnz5j1zyNqfValSRdu2bbO4IipRxYoVzefvj6HV0KFDFRsbq4CAAD158kSvvfaaevbsqevXr2v//v2Kj4+Xra2tevTooblz56pr167asWOHihcvrhUrVmjGjBkaPHiwDMOQh4eH5syZk+zzlxyvv/66Bg4cqEmTJlksnzRpkubPn6/Vq1frzp07ypYtmxo1aqQBAwaYr+Zo1aqVMmbMqEWLFmnNmjVydnZW2bJlNXXqVPMQqwIFCuirr76Sv7+/Bg4cqGzZsmnIkCFJrtL6s3z58qlkyZI6dOhQmgRThw8fVqVKlZ45vPevzJ07VxMnTtTQoUPl4OCgIkWKaN68efLz89OZM2fUvn17i+PUrl37uXPPvfvuu7p586Y2bNiglStXKmfOnKpVq5batm2rUaNG6fr16ypSpIh8fX3l7u6uVatWacmSJXrttdc0fPhwi5sx/FniZ0ZgYKCWL1+uBw8e6LXXXtPAgQPNw8gyZMigJUuWmN+nERERKlCggD799FNzEP/pp58qICBAS5Ys0f3795UtWzb5+Piof//+LzxPlStX1qZNm7R06VLzsL4sWbKoVKlSWrhwoWrUqJHSU69GjRrJ399ftWvXTvI5OGDAAGXPnl0rV640D1WuUqWKPv74Y4sbPDxPxowZ1bBhQ23YsCHJ3E3JfZ2SIznv7UyZMqlTp05as2aNDh48qGPHjiXZT3Ke7199BwAAks9kJOd2HQAA/MvNmjVLs2fP1tWrV61dyivp+PHjsre3twjdwsPDVa1aNQ0ePFgffvihFavDn+3evVvDhw/XkSNHkkxI/l9w8+ZNeXt7a/369cmeRwkAAPw7MccUAAD4277//nt99NFHWrp0qU6fPq09e/aoe/fuypw5s9555x1rl4c/8fb2Nl/V91+0aNEiNWjQgFAKAIB0gKF8AADgb/voo4/05MkTrVq1Sr///rucnZ1VsWJFTZ48Odm3acc/x2Qy6bPPPtMHH3ygFi1a/Kdeo+vXr+vgwYPauHGjtUsBAACpgKF8AAAAAAAAsAqG8gEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsws7aBfxXhYQ8FPcz/G8wmaRs2TLzmiFV0J+QWuhLSE30J6QW+hJSC30JqYn+9N+T+JolB8HUSzIM8Yb4j+E1Q2qiPyG10JeQmuhPSC30JaQW+hJSE/0pfWIoHwAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAaSg+Pl59+nTTxIljk7QFBwerSRNv7dix1WL5zp3b1Lp1c739dnV17txely9ftNjfnDkz1aSJt7y8amro0I8VHBxsbj979rS6du0gb+9aatq0vmbM+EyPH8c8s7aEhAQtXjxfLVo0lpdXDX34YWvt27f3mesGBEx95nMAAAD4OwimAAAA0tAXXyzUxYvfJVmekJCgTz8dqfDwMIvl586d0YwZUzRixFjt2nVQ3t4NNHTox4qJeRouLVu2WKdOndCiRcu1adMOZciQQf7+4yVJoaGh8vUdoHff9dGuXQe0ZMkKnT9/Vl99teyZtX399Vrt2rVDs2bN1969R9S9ex+NGzdCt27dNK8THh6mTz8dpfXrV6fOCQEAAPgDgikAAIA0cvbsaR08uF+1atVN0vbFFwuVPXsO5ciR02L5tm2bVa+et0qXLiM7Ozu1bt1OLi6u2rdvj7m9XbsOypkzlzJmzKT+/QfpxIlvFRQUJDc3N23btkeNGjWRyWRSRESYnjx5IldX12fW16LFe1q+fLXy5n1NT548UVhYqBwdnZQhg6MkKTo6Wm3btlSmTJlUu3bS5wAAAPB3EUwBAACkgdDQB/L3H68xYybI0dHRou3cuTPat2+PPvlkaJLtbtz4SYULF7ZYVqBAQV2/fk2RkZG6d++uChcuYm7LmjWbMmfOoqtXr0qSnJ0zSpJatGisDz9so2zZ3NWoUdNn1mhjYyMnJyedOnVCb79dXf7+49WlSw+5u7tLkhwcHPTll2v18cdD5OTk/PInAwAA4DkIpgAAAFLZ02F6o9S6dVsVLeph0RYa+kB+fuM0evQEOTsnDXuio6Pl6OhksczR0VGPHkUrOjrK/PjP7VFRURbLVq/+Wps27ZSNjY1GjhzywnrLlCmr/fu/1YwZc7Rw4Tzz1Vl2dnbKmjVb8p40AADASyCYAgAASGVffvmFHBwc5OPTxmK5YRgaP360fHxaq3jxEs/c1tHRKclk5TExMXJ2djYHVs9qz5gxo8WyDBkc5e6eXT179tXJk98qIiLiufU6ODjIzs5O5ctXVP36jbR3765kP1cAAIC/w87aBQAAAKQ3u3fvUHBwsBo0qC1J5onLd+3aLnt7e/3ww2UtXbpIkhQVFaVp0/x18OA+ffZZgAoVKqwbN3622N8vv9xQlSrVlCVLFmXPnkM3bvysQoWeDucLCQlWRES4PDw8dOnSBfn5faply1bL3t5ekhQbGyt7e3s5OVlehSVJs2bNkCT17TvQvCw29omyZHFJ3RMCAADwHARTAAAAqWzlyg0WjydOHCtJGjFibJJ1fXya6KOPuqlRoyaSpMaNm2r4cF/Vreul0qXL6Ouv1+rBgweqWbOOJKlRoyZatmyxSpQoKVdXVwUGTpOnZ1nlz59fUgbFxMTo889nqUePvgoJCdbs2QFq3LiZOaj6ozJlPDVu3EjVqFFLpUuX0bffHtW+fXs0Y8acVD0fAAAAz0MwBQAA8C9SvnxFffLJEE2dOkn3799TgQKFNHVqoPkqpk6duiouLk69e3dVdHSUypYtr/Hj/SVJzs7OmjZtlgIDp6lJE29lypRJ3t4N1bFjF/P+vbxqyNd3uLy9G6pGjdoaMMBX/v4TFBoaonz5XtfEiVNUqtRbVnnuAADg1WMyDMOwdhH/RcHBD8WZ+28wmSR398y8ZkgV9CekFvoSUhP9CamFvoTUQl9CaqI//fckvmbJweTnAAAAAAAAsAqG8gEAgHTLxsYkGxuTtcv4x9japv+/OSYkGEpI4M/lAACkFwRTAAAgXbKxMcnF1Vl2r0BYk8jNLaO1S0hzcfEJCg+LJpwCACCdIJgCAADpko2NSXa2Nuq/+ryu34u0djlIBUVyZNLMNp6ysTERTAEAkE4QTAEAgHTt+r1IfX87wtplAAAA4BlenWvbAQAAAAAA8K9CMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVBFMAAAAAAACwCoIpAAAAAAAAWAXBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQAAAAAAAKsgmAIAAAAAAIBVEEwBAAAAAADAKgimAAAAAAAAYBUEUwAAAAAAALAKgikAAAAAAABYBcEUAAAAAAAArIJgCgAAAAAAAFZBMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVBFMAAAAAAACwCqsHU/Hx8Wrfvr2GDh1qXnbhwgW1atVKnp6eqlu3rtatW2exzcaNG+Xl5aUyZcqoRYsWOn/+vMX+Jk+erKpVq8rT01M9e/bUvXv3zO0hISHq1auXypcvr0qVKmnixImKi4tL+ycKAAAAAAAAC1YPpmbPnq0zZ86YH4eHh6tbt25q3ry5Tp8+rYkTJ2rSpEm6ePGiJOnkyZMaP368/P39dfr0aTVt2lQ9e/bUo0ePJEnz5s3TsWPHtGHDBh05ckSOjo4aOXKkef8DBgyQs7Ozjhw5ovXr1+v48eNaunTpP/qcAQAAAAAAYOVg6vjx49qzZ4+8vb3Ny/bs2SNXV1e1a9dOdnZ2qlKlipo0aaIVK1ZIktatW6fGjRurXLlysre3V8eOHeXm5qYdO3aY27t27arcuXMrU6ZMGjFihA4fPqygoCD9+uuvOnXqlHx9feXk5KR8+fKpV69e5n0DAAAAAADgn2O1YCokJEQjRozQtGnT5OTkZF5+7do1eXh4WKxbpEgRXblyRZJ0/fr157Y/fPhQd+7csWh3d3eXi4uLrl69qmvXrsnV1VU5c+Y0txcuXFi3b99WREREWjxNAAAAAAAAPIedNQ6akJAgX19fderUScWLF7doi4qKsgiqJMnR0VHR0dF/2R4VFSVJcnZ2TtKe2PbnbRMfR0dHK0uWLMl+DiZTsleFlSW+VrxmSA30J6QW+hLw9/DeSRt8NiG10JeQmuhP/z0pea2sEkzNnz9fDg4Oat++fZI2JycnPXz40GJZTEyMMmbMaG6PiYlJ0u7m5mYOmRLnm/rz9oZhJGlLfJy4/+TKli1zitaH9fGaITXRn5Ba6EtAyrm5pezfbUg5PpuQWuhLSE30p/TJKsHU5s2bde/ePZUvX16SzEHTN998o8GDB+vYsWMW61+/fl1FixaVJBUtWlTXrl1L0l6zZk25uLgoZ86cFsP97t+/r7CwMHl4eCghIUFhYWEKDg6Wu7u7JOmnn35Srly5lDlzyjp4SMhDGUbKnzv+eSbT0w8wXjOkBvoTUgt9Ke3Z2toQYKRToaFRio9PsHYZ6RKfTUgt9CWkJvrTf0/ia5YcVgmmdu3aZfF46NChkiR/f3+FhoZqypQpWrp0qdq1a6ezZ89q69atmjt3riTJx8dHvXv3VsOGDVWuXDmtWLFCISEh8vLykiS1aNFC8+bNU6lSpeTm5iY/Pz9VrFhR+fPnlySVK1dOfn5++vTTTxUaGqq5c+fKx8cnxc/BMMQb4j+G1wypif6E1EJfAl4O75u0xWcTUgt9CamJ/pQ+WSWYehE3NzctWbJEEydOVGBgoLJmzaqRI0eqcuXKkqQqVapozJgxGjt2rO7evasiRYpo4cKFcnV1lST17t1bcXFxateunaKiolSpUiUFBASY9x8YGKhPP/1U9erVk42NjZo3b65evXpZ4ZkCAAAAAAC82kyGQd74MoKDuYTwv8JkktzdM/OaIVXQn5Ba6Etpz87u6VC+xoFH9P1t7r6bHpTMk0Xb+9VQaGiU4uIYypcW+GxCaqEvpX9nz57W55/P1q+//iJHR0fVqVNPvXr1U4YMjvrmm9364ouFun//vrJmzaY2bdqqefOnI5UMw9CyZYu1ffsWhYeHK3fu3OrYsYvq1HlbkhQfH6/PP5+tXbu2KyYmRuXKlZev73AVL15QwcEP9b///U9z5gTo6tUrsre3V4UKldS378fmi1X+KCEhQV98sVDbt2/Rw4cRyp07jzp06KJ69bzM62zcuF6rV3+lBw9ClDt3HnXv3kfVqtX4R85hepb4GZAcNmlcCwAAAAAASEdCQ0Pl6ztA777ro127DmjJkhU6f/6svvpqmX7++br8/cdr2LAx2rPnkEaMGKOZM6fpwoXzkqR161Zp+/atmjJlpnbvPqiuXXtp/Pgx+uGHy5KkZcsW69SpE1q0aLk2bdqhDBkyyN9/vCTp8eMYDRrUT6VKvaUtW3bryy/XKCIiXH5+455Z59dfr9WuXTs0a9Z87d17RN2799G4cSN069ZNSdLOndv0xRcLNWbMBO3Zc1jt23fSyJGDFRx8/x84i0j0rxvKBwAAAAAA/r3c3Ny0bdseOTtnlGEYiogI05MnT+Tq6qqgoN8UHx8vw0iQYRgymUyysbGRg4ODJOnhw4fq1KmLChQoKEmqXr2mChQooEuXLuiNN97Utm2b1aNHX+XMmUuS1L//IDVr1kBBQUG6dy9MRYp4qGPHLrK1tZWLi6uaNWuh8eNHP7POFi3eU+PGzeTk5KQnT54oLCxUjo5OypDBUZK0atWX6tKlh954401JkpdXA+XPX0DOztw85Z9EMAUAAAAAAFIkMbxp0aKx7t+/p7fe8lSjRk0lSSVLllLPnp1la2ur+Ph49e49QCVKlJQkde7c3WI/v/xyQzdu/KxixUooMjJS9+7dVeHCRcztWbNmU+bMWXT16lWVKVNJ06YFWmx/4MA+FStW4pk12tjYyMnJSadOndCgQf1kGIb69v1Y7u7uiomJ0Y0bP8vGxka9e3fVjRs/K3/+19WzZ185Ozun2nnCX2MoHwAAAAAAeCmrV3+tTZt2ysbGRiNHDlFs7BPlzp1HM2bM0b59x/TZZwFasmS+Tp06kWTb3377Vb6+/eXt3VBlypRVdHSUJMnR0dFiPUdHR0VFRVksMwxDCxbM1bFjR9S//6AX1limTFnt3/+tZsyYo4UL52nfvj16+DBChmFo9eqv9MknQ7V58y55edXXoEH99Pvvt//mWUFKEEwBAAAAAICXkiGDo9zds6tnz746efJbLV48Xw4ODqpQoZLs7OxUtWp1vf12fW3evMFiu6NHD6t7906qWbOOhg4dJUlydHSS9HQuqT+KiYlRxoz/N7wuKipSI0cO1p49OzVnzkKLK6yexcHBQXZ2dipfvqLq12+kvXt3yd7+6dDC1q3bqVChwrK3t1fLlq2VM2duHT9+7G+fFyQfwRQAAAAAAEi2S5cuqG3bloqNjTUvi42Nlb29vW7evGmxXJJsbe1kZ2dvfrx06SKNGzdSAwcOVt++A2UymSRJWbJkUfbsOXTjxs/mdUNCghURES4PDw9J0q1bN9Wly4eKiorSokVfvjCUmjVrhmbNmmGxLDb2ibJkcZGrq6vc3LLqyZMnFu0JCfEyuJXkP4pgCgAAAAAAJFvhwkUVExOjzz+fpdjYWN2587tmzw5Q48bNVKdOXe3bt0cnTx6XYRg6f/6s9uzZKW/vhpKk1au/0urVX2nOnAXy9m6QZN+NGjXRsmWLdfv2LUVHRykwcJo8Pcsqf/78ioiIUL9+PVSq1FuaPn22XF1dX1hnmTKe2rx5g7777pwSEhJ09Ohh7du3R02aNJckNW/eUkuXLtK1a1cVFxendetW6/79+6pZs3YqnzG8CJOfAwAAAACAZHN2dta0abMUGDhNTZp4K1OmTPL2bqiOHbvIwcFBMTExCgiYopCQEOXMmVODBg1VtWo1ZBiGli5dpEePHql3764W+2zfvpM+/PAjderUVXFxcerdu6uio6NUtmx5jR/vL0nasWOL7t69o/379+rAgW8stt+794gkycurhnx9h8vbu6Fq1KitAQN85e8/QaGhIcqX73VNnDhFpUq9JUnq1KmrnJ0zavToYQoOvq/XXy+oqVNnKnv2HP/AWUQik8E1ai8lOPihOHP/DSaT5O6emdcMqYL+hNRCX0p7dnY2cnPLqMaBR/T97Qhrl4NUUDJPFm3vV0OhoVGKi0uwdjnpEp9NSC30JaQm+tN/T+JrlhwM5QMAAAAAAIBVMJQPAAAAAID/IBsbk2xsTNYu4x9ja/tqXFuTkGAoIeHVuTSMYAoAAAAAgP8YGxuTXFydZfeKhDWS5OaW0dol/CPi4hMUHhb9yoRTBFMAAAAAAPzH2NiYZGdro/6rz+v6vUhrl4NUUiRHJs1s4ykbGxPBFAAAAAAA+He7fi+Sm3zgP+3VueYPAAAAAAAA/yoEUwAAAAAAALAKgikAAAAAAABYBcEUAAAAAAAArIJgCgAAAAAAAFZBMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVBFMAAAAAAACwCoIpAAAAAAAAWAXBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQAAAAAAAKsgmAIAAAAAAIBVEEwBAAAAAADAKgimYDVnz55W164d5O1dS02b1teMGZ/p8eMYi3WCg4PVpIm3duzYarF8585tat26ud5+u7o6d26vy5cvmtsSEhL0xRcL1aJFY3l51VTXrh10/vz5JMcPDQ1V69bNde7cmRfWuWPHVrVt21JeXjXVvXsnfffdOXPb48ePNXPmNL37biPVr19LXbt2+Mv9AQAAAACApwimYBWhoaHy9R2gd9/10a5dB7RkyQqdP39WX321zLxOQkKCPv10pMLDwyy2PXfujGbMmKIRI8Zq166D8vZuoKFDP1ZMzNNQa+nSRdq7d5cCAuZq164DqlWrjnr06KEnT56Y93Hx4nfq0aOTbt26+cI6jx49pKlTJ6l37wHateuA2rZtr0GD+um3336RJH3++WxdunRBn3++RDt27FeTJs01ePAA3blzJ3VOFAAAAAAA6RjBFKzCzc1N27btUaNGTWQymRQREaYnT57I1dXVvM4XXyxU9uw5lCNHTottt23brHr1vFW6dBnZ2dmpdet2cnFx1b59exQfH6+1a1dp4EBf5c//umxtbfX+++21aNEimUwmSU+vtho3bqS6dev1l3Xu3btLb79dX9Wq1ZCtra1q1aqrt94qq23btkiSHj+OUefO3ZUzZy7Z2tqqadN3ZW/voKtXf0y9kwUAAAAAQDpFMAWrcXbOKElq0aKxPvywjbJlc1ejRk0lPb0qat++Pfrkk6FJtrtx4ycVLlzYYlmBAgV1/fo1BQX9psjIh3r4MFIfffSBGjeup48/7qsMGTLI3t5eklSxYmWtWbNJ9ep5/2WN8fEJcnJyslhmY2MyXzE1ePAIValSzdx29uxpRUVFqmhRj+SfCAAAAAAAXlEEU7C61au/1qZNO2VjY6ORI4coNPSB/PzGafToCXJ2dk6yfnR0tBwdLcMiR0dHPXoUrYiIcEnS+vWr5ec3RV9/vV3Fi5dQ586dFRkZKUnKls1ddnZ2yaqtdu262rVru86fP6u4uDgdOXJQZ8+e1uPHj5Ose/nyJY0aNVQffdRNefLkTdlJAAAAAADgFZS8X+dAGsqQwVEZMjiqZ8++6tato8aPHy0fn9YqXrzEM9d3dHRKMkl6TEyMXFxc5eDgIEnq1KmrcuXKLUnq3r23vv56nS5e/E5VqlRPUW1vv11fYWGhmjx5oiIjI1S5cjW9/XZ983xWibZu3aTAwGnq3Lm72rT5IEXHAAAAAADgVUUwBau4dOmCJk36VMuWrTYPsYuNjZUknT59Uj/8cFlLly6SJEVFRWnaNH8dPLhPn30WoEKFCuvGjZ8t9vfLLzdUpUo15cuXX7a2tuZ9SZJhGDIM46XqDAkJVqVKVeXj08a8rFu3jqpdu64kKT4+XtOm+evw4QPy85uqChUqvdRxAAAAAAB4FTGUD1ZRuHBRxcTE6PPPZyk2NlZ37vyu2bMD1Ly5j44cOa1duw6a/8uZM5c++WSoPvssQJLUuHFT7dmzS+fOnVFcXJzWrl2pBw8eqGbNOsqYMZO8vBpo1qzp+v3323ry5InmzZutLFmyqFy58imu87vvzqlv3+66c+d3PX78WGvXrtRvv/2qhg3fkSTNmjVdJ058q0WLviSUAgAAAAAghbhiClbh7OysadNmKTBwmpo08VamTJnk7d1QHTt2+ctty5evqE8+GaKpUyfp/v17KlCgkKZODVSWLC6Snk5IvmTJAvXr10NhYWEqXryEFi9erAwZHJWcC6e8vGrI13e4vL0bql49b/366y/q3r2THj16JA+PYgoMnCc3t6wKCwvT11+vk42Njdq3f89iH4nbAwAAAACA5zMZLzvG6RUXHPwwWSEHrM9kktzdM/OaIVXQn5Ba6Etpz87ORm5uGdU48Ii+vx1h7XKQCkrmyaLt/WooNDRKcXEJ1i4nXeKzCamFvpT2+J5Ln9LLd13iZ0ByMJQPAAAAAAAAVsFQvleYjY1JNjYma5fxj7G1fTVy2IQEQwkJ/FkKAAAAAPDvRzD1irKxMcnF1Vl2r0hYI0lubhmtXcI/Ii4+QeFh0YRTAAAAAIB/PYKpV5SNjUl2tjbqv/q8rt+LtHY5SCVFcmTSzDaesrExEUwBAAAAAP71CKZecdfvRTJRHgAAAAAAsIpXZxwXAAAAAAAA/lUIpgAAAAAAAGAVBFMAAAAAAACwCoIpAAAAAAAAWAXBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQAAAAAAAKsgmAIAAAAAAIBVEEwBAAAAAADAKgimAAAAAAAAYBUEUwAAAAAAALAKgikAAAAAAABYBcEUAAAAAAAArIJgCgAAAAAAAFZBMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVdi+z0YMHD3Ty5EnduXNHNjY2ypMnj6pUqaJMmTKldn0AAAAAAABIp1IUTP38888KDAzUnj17lD17duXKlUtxcXG6d++ewsLC5O3trX79+un1119Pq3oBAAAAAACQTiQ7mFq6dKnWrl2rd999V0OGDFHu3Lkt2oOCgrRjxw517dpVbdq00UcffZTqxQIAAAAAACD9SHYw9fjxY23evFn29vbPbM+XL5+6d++uTp06afHixalWIAAAAAAAANKnZAdT3bt3T9Z6Dg4O6tmz50sXBAAAAAAAgFfDS92V78SJE9q8ebM2bdqkTZs2ad26dZowYUKK9nH8+HG1atVKZcuWVbVq1TR+/HjFxMRIki5cuKBWrVrJ09NTdevW1bp16yy23bhxo7y8vFSmTBm1aNFC58+fN7fFx8dr8uTJqlq1qjw9PdWzZ0/du3fP3B4SEqJevXqpfPnyqlSpkiZOnKi4uLiXOQ0AAAAAAAD4G1IcTE2YMEFdunSRn5+fJk2apAkTJmj06NH67bffkr2PBw8eqHv37nr//fd15swZbdy4UadOndKCBQsUHh6ubt26qXnz5jp9+rQmTpyoSZMm6eLFi5KkkydPavz48fL399fp06fVtGlT9ezZU48ePZIkzZs3T8eOHdOGDRt05MgROTo6auTIkeZjDxgwQM7Ozjpy5IjWr1+v48ePa+nSpSk9DQAAAAAAAPibUhxM7dy5U1999ZUCAgJUt25dnT59Wh06dFCuXLmSvY+sWbPq22+/VYsWLWQymRQWFqbHjx8ra9as2rNnj1xdXdWuXTvZ2dmpSpUqatKkiVasWCFJWrdunRo3bqxy5crJ3t5eHTt2lJubm3bs2GFu79q1q3Lnzq1MmTJpxIgROnz4sIKCgvTrr7/q1KlT8vX1lZOTk/Lly6devXqZ9w0AAAAAAIB/TrLnmEr06NEjlSlTRvfv39f3338vk8mkPn36qFGjRinaT6ZMmSRJtWrV0t27d1W+fHm1aNFCAQEB8vDwsFi3SJEiWr9+vSTp+vXratmyZZL2K1eu6OHDh7pz547F9u7u7nJxcdHVq1clSa6ursqZM6e5vXDhwrp9+7YiIiKUJUuWZNdvMqXo6QL/OPpo2kg8r5xf/F30JeDv4b2TNvhsQmqhLwF/33/5/ZOS2lMcTOXKlUshISHKnj277ty5o9jYWDk6OioyMjKlu5Ik7dmzR+Hh4Ro0aJD69eunnDlzysnJyWIdR0dHRUdHS5KioqKe2x4VFSVJcnZ2TtKe2PbnbRMfR0dHpyiYypYtc7LXBf5pbm4ZrV1CusdnAFILfQlIOb7n0h6fTUgt9CXg5bxK33UpDqZq1aqljh07atmyZapQoYKGDx+uDBkyqECBAi9VgKOjoxwdHeXr66tWrVqpffv2evjwocU6MTExypjx6Yvi5ORkniT9j+1ubm7mkClxvqk/b28YRpK2xMeJ+0+ukJCHMowUbfKvYmtr80p19FdNaGiU4uMTrF1GumQyPf0H1n/9MwDWR19Ke3zXpV98z6UdPpuQWuhLaY/vufTtv/5dl/gZkBwpDqY+/vhjZcuWTfb29ho9erRGjBihyMhIjR8/Ptn7OHfunIYPH64tW7bIwcFBkvTkyRPZ29urSJEiOnbsmMX6169fV9GiRSVJRYsW1bVr15K016xZUy4uLsqZM6euX79uHs53//59hYWFycPDQwkJCQoLC1NwcLDc3d0lST/99JNy5cqlzJlTluQbhviAxb8a/TNt8RmA1EJfAl4O75u0xWcTUgt9CXh5r8p7J8WTn9vb26tLly7KnDmzcubMqUWLFmn16tUqWbJksvdRrFgxxcTEaNq0aXry5Ilu3bqlyZMny8fHR/Xr11dwcLCWLl2q2NhYnThxQlu3bjXPK+Xj46OtW7fqxIkTio2N1dKlSxUSEiIvLy9JUosWLTRv3jwFBQUpMjJSfn5+qlixovLnz68CBQqoXLly8vPzU2RkpIKCgjR37lz5+Pik9DQAAAAAAADgb0rxFVNRUVFasWKFgoKCFBcXZ9E2adKkZO0jY8aMWrRokfz8/FStWjVlzpxZTZo0Ue/eveXg4KAlS5Zo4sSJCgwMVNasWTVy5EhVrlxZklSlShWNGTNGY8eO1d27d1WkSBEtXLhQrq6ukqTevXsrLi5O7dq1U1RUlCpVqqSAgADzsQMDA/Xpp5+qXr16srGxUfPmzdWrV6+UngYAAAAAAAD8TSkOpoYNG6YLFy6ofPny5mF4L6NIkSJasmTJM9tKlSql1atXP3fbZs2aqVmzZs9ss7e316BBgzRo0KBntru7uyswMDDlBQMA0r1r1/6nOXMCdPXqFdnb26tChUrq2/djubq66ptvduuLLxbq/v37ypo1m9q0aavmzZ9ecWsYhpYtW6zt27coPDxcuXPnVseOXVSnztuSpAcPQtS0aX2LG3C4uLjq0KGDkqSrV68oMHCafvrpmjJkyKA6dbzUq1e/537Pbtq0XmvWrFRwcLCyZXPXe++9rxYtWkmSvLxqWKybkJCgx48fa8yYCfLyapDapwwAAAD4W1IcTB05ckS7d+9Wjhw50qIeAACs4vHjGA0a1E9Nm76rKVNmKjo6ShMmjJGf3zj16NFb/v7jFRAwT2++WUqXLl1Qv349VLBgYb31lqfWrVul7du3asqUmXr99QI6duyIRo8eppw5c+mNN97Ujz/+oNy582jdui3m4yXeQjchIUGDBw/QBx901KxZ8xUcfF8DBvSSq6urOnbskqTOw4cP6vPP52jq1ECVLPmmvv/+kgYN6q+sWbOqdu162rv3iMX648ePVmhoqDkkAwAAAP5NUjzHVPbs2eXm5pYWtQAAYDV3795RkSIe6tixi+zt7eXi4qpmzVrowoVzCgr6TfHx8TKMBBmGIZPJJBsbG/MVTQ8fPlSnTl1UoEBBmUwmVa9eUwUKFNClSxckSVeu/KBixUo887gPH0YoJCTYvG9JsrGxUYYMjs9cPzj4vj74oIPefLOUTCaT3nyztMqWLa/vvjufZN0dO7bqzJmTGjNmvOzsUvy3KAAAACDNpfhfqW3atNHkyZPVr18/ZcmSJS1qAgDgH5c/fwFNm2Y51PvAgX0qVqyEKlasopIlS6lnz86ytbVVfHy8evceoBIlnt74o3Pn7hbb/fLLDd248bM5jPrxx+8VERGh9u3fU2joAxUv/ob69Bkgd/e35OLiqtat22r27ADNmTNT8fHxqlGjllq3bvvMOhOH7CUKDX2gCxfOqU+fgRbLIyMjNXt2gD75ZIhcXFz/zqkBAAAA0kyyg6nixYvLZDKZ/5q7YsWKJOv8+OOPqVcZAABWYhiGFi6cp2PHjmjOnIWKjX2i3LnzqEOHzvL0LKdTp05ozJhhKly4iCpWrGyx7W+//Spf3/7y9m6oMmXKSpIyZcqsggULq127DnJwsNfChZ9rwIDe2rVrpxISEuTgkEEDBw5W48ZNdfNmkIYP99XixfPVtWvPF9YZEhIsX98BKlasRJL5o9avX61cuXKrbl2v1D05AAAAQCpKdjC1fPnytKwDAIB/haioSPn5jdPVq1c0Z85CFS5cRDNmfCYHBwdVqFBJklS1anW9/XZ9bd68wSKYOnr0sCZOHKtGjZqoT58B5uVjx060OEbfvgO1ffsWnTlzRsHB4Tp0aL9WrtwgSSpUqLA++qirAgKmvjCYunz5kkaPHqrSpcto+PAxFkP1DMPQ1q2b1KVLD5kSJ7MCAAAA/oWSHUx98cUX8vb2Vt26deXi4pKWNQEAYBW3bt3UoEH9lDNnLi1a9KVcXV0lPZ1/KksWy+8+W1s72dnZmx8vXbpIK1Ysl6/vcHl7/9/VS9HRUVqyZKF8fForV67ckp5OeB4XFydHR0fdvXtVsbGxSfZtb//8r+ht2zYrIGCKOnfuofff/yBJ+48/fs+E5wAAAPhPSPbk5x988IG+++47NWvWTJ06ddLKlSt17969tKwNAIB/TEREhPr166FSpd7S9OmzzaGUJFWvXlP79u3RyZPHZRiGzp8/qz17dsrbu6EkafXqr7R69VeaM2eBRSglSc7OGXXmzCnNnh2gyMhIRUdHa/r0ycqTJ4/Kly+vSpWqKCQkWMuXL1F8fLxu3bqp5csXy9u70TPrPHhwn6ZN89fEiVOeGUpJ0sWL36lYseJydHz2BOoAAADAv0Wyr5iqVq2aqlWrJsMwdO7cOe3du1dt27aVu7u7vLy85O3trXz58qVlrQAApJkdO7bo7t072r9/rw4c+Maibe/eI4qJiVFAwBSFhIQoZ86cGjRoqKpVqyHDMLR06SI9evRIvXt3tdiufftO+vDDj+TvP02BgdPVunUzxcbGqWzZcpo2LVD29vYqWLCQJk+eoYUL52nlyuXKmDGTvL0b6qOPupn34+VV4/9fidVQX3yxUPHx8Ro5crDFsby9G8rXd7gk6fbtW8qePUcanSkAAAAg9ZiMxNnMX9L333+vPXv2aN++fdq2bVtq1fWvFxz8UH/vzFmXnZ2N3NwyqnHgEX1/O8La5SCVlMyTRdv71VBoaJTi4hKsXU66ZDJJ7u6Z//OfAbA++lLa47su/eF7Lu3x2YTUQl9Ke3zPpU/p5bsu8TMgOZI1lO/SpUtatWqVLly4oN69e+uHH34wt5UsWVIDBw58pUIpAAAAAAAA/H3JGso3bNgwFS5cWMuWLVOXLl00efJkLVu2LK1rAwC8gmxsTLKxeXXuJGdrm+zpHv/TEhIMJSTwJ3MAAABYSlYwlSFDBk2fPl2LFy+Wj4+P1q5dm9Z1AQBeQTY2Jrm4OsvuFQlrJMnNLaO1S/hHxMUnKDwsmnAKAAAAFpIVTOXNm1cHDhxQt27dtGrVKhUvXjyt6wIAvIJsbEyys7VR/9Xndf1epLXLQSopkiOTZrbxlI2NiWAKAAAAFpIVTM2cOVOPHj2SJNWpU0c+Pj5pWhQA4NV2/V4kk3gCAAAAr4BkBVMmk0nOzs6SpGzZsmnHjh26deuWEhIsZ4jv06dP6lcIAAAAAACAdClZwdQfffLJJzp58qSKFi0qk+n/Jqf94/8DAAAAAAAAfyXFwdTRo0e1ZcsWvfbaa2lRDwAAAAAAAF4RKb7tUfbs2eXq6poGpQAAAAAAAOBVkuIrpoYMGaL+/furbdu2ypIli0VbhQoVUq0wAAAAAAAApG8pDqYuXLigY8eO6dixYxbLTSaTfvzxx1QrDAAAAAAAAOlbioOplStXasGCBapevbpsbFI8EhAAAAAAAACQ9BJzTGXIkEHVqlUjlAIAAAAAAMDfkuIrpjp16qSpU6eqR48ecnFxSYuaAAAAAABp4Nq1/2nOnABdvXpF9vb2qlChkvr2/Viurq6aOnWStm/fIju7//uZ2KfPQDVr1kIffPCe7t793WJfjx49UvfuvdW+fSclJCRo2bLF2rp1kx4+fKiCBQtq9OhRypeviCQpIiJcM2dO0/Hjx5SQkCBPz7L65JNhcnd3f2adn3zST+fPn5Gtra152fjxk1W5clU9efJEixZ9rr17d+nRo0fy9CynAQMGKWfOXGlwxgCktRQHUytWrNDt27e1dOnSJG3MMQUAAAAA/06PH8do0KB+atr0XU2ZMlPR0VGaMGGM/PzG6bPPZujHH3/Q4MEj1LDhO0m2/eqrtRaPFy6cp2+/PaKWLVtLkpYuXaRvvtmtgIC5ypv3Na1e/aV69OihjRt3yN7eQSNGDFbmzFm0Zs0m2draaOLEsfrsswn67LOAZ9Z69eoPmjZtljw9yyVpmz9/to4ePaxp02YpX778WrhwrgYO7K1ly1bL3t7+758oAP+oFAdT/v7+aVEHAAAAACAN3b17R0WKeKhjxy6ytbWVi4urmjVrofHjR+vJkyf6+efrKlasxF/u59y5M1q7dqWWLFkhZ2dnxcfHa+3aVRo/fpLy539dkvT+++1Vr15tmUwmXbnyo77//rK2bt2tjBkzSZKGDBmp4ODgZ+7/9u1bioiIULFixZ/ZvnfvbvXs2VeFChWWJHXv3kcbN67XmTOnVKVKtZc5NQCsKNnB1M2bN/Xaa6+pYsWKf7luUFCQ8uXL97cKAwAAAACknvz5C2jatECLZQcO7FOxYiV0/fr/FBcXp8WLP9fFixeUMWMmvfNOU7Vt+6HF/MLx8fGaMsVPHTp0Vr58+SVJQUG/KTLyoR4+jNRHH32gu3d/V9GixTRmzCjZ29vrxx+/V4ECBbVlyyZt2rReMTGPVKlSVfXpM+CZdf744w9ydnbW6NHDdOXKD3Jzy6rWrdvpnXeaSZISEuLl5ORkXt9kMkky6bfffiGYAv6Dkj2D+eDBgzVjxoznptqSdO/ePU2dOlW+vr6pUhwAAAAAIPUZhqEFC+bq2LEj6t9/kKKiIuXpWU4+Pm20ceMOjR79qdavX6PVq7+y2C5xXqdWrdqYl0VEhEuS1q9fLT+/Kfr66+0qXryEOnfurMjISEVEhOunn67p5s3f9MUXK/TFFyt1//49TZgw5pm1xcY+UcmSpdWtWy9t2rRLfft+rJkzp2n//m8kSbVq1dXy5Ut069ZNPX78WAsXztOTJ4/1+PHjNDpbANJSsq+YWr58uWbPnq369eurdOnS8vT0VM6cOZWQkKC7d+/q7NmzunLlij744AMtX748LWsGAAAAALykqKhI+fmN09WrVzRnzkIVLlxEhQsXUYUKlc3rvPHGm3rvvfe1b99etW37oXn5li0b1bTpu8qQwdG8zMHBQZLUqVNX5cqVW5LUvXtvff31Ol28+J3s7Z+29+v3iTJkyCBn54zq1q2XunXrqOjoaDk7O1vU16BBYzVo0Nj8uGLFymrQoLH279+junXfVp8+AzVvXqB69+4qW1tbNWnSXIUKFVbmzFlS/2QBSHPJDqbs7Ow0YMAAffjhh9q4caNOnDihPXv2yGQyKW/evPL29lZAQICyZcuWlvUCAAAAAF7SrVs3NWhQP+XMmUuLFn0pV1dXSdLhwwf14EGImjdvaV73yZMnypAhg/nxgwchunTpgkaMGGuxz3z58svW1laxsbHmZYZhyDAMSVLBggVlGIbi4mLN+4uPT0hcM0mN27ZtlrNzRtWt+7Z5WWzs/9Vy//49dejQWR9/PESSFBERoeXLv1Dx4n89PxaAf58UT36eNWtWde7cWZ07d06LegAAAAAAaSAiIkL9+vVQuXIVNHToKIu5owzD0KxZ0/Xaa/lUrlwFff/9Ja1fv1p9+35sXufSpQtyd8+uvHlfs9hvxoyZ5OXVQLNmTVfBgoWULZu7Fi6cpyxZsqhcufKysbFTnjx5NWnSpxo+fOz/H343VzVq1Jazc8YkdUZFRWr+/Dl67bXXVKSIh06c+FZ79+7S9OmzJUlr167U7du3NWHCZMXFxWnaNH8VK1ZcJUqUTKMzByAtpTiYAgAAAAD89+zYsUV3797R/v17deDANxZte/ceUd++H2vaNH/dv39PWbNm00cfdVf9+o3M69y6dUvu7tmfue/Bg0doyZIF6tevh8LCwlS8eAktXrxYGTI4yjCk2bMXaNas6Xr//Xf1+PETVa9eU/37DzJv7+VVQ76+w+Xt3VDvvddWjx490vDhvgoNfaA8efJq5MhxeustT0lSz559NWXKJPn4NJEkVapURf7+01L7dAH4h5iMxOsrkSLBwQ/1Xz5zdnY2cnPLqMaBR/T97Qhrl4NUUjJPFm3vV0OhoVGKi0v46w2QYiaT5O6e+T//GfBvxWdT+mStzyb6U/rD91za43sOqYW+lPb4nkuf0st3XeJnQHIk+658AAAAAAAAQGpiKB8AAAAA/ENsbEyysTFZu4x/jK3tq3EtREKCoYQELg0DXkayg6lNmzb95TrNmzf/G6UAAAAAQPplY2OSi6uz7F6RsEaS3NySTm6eHsXFJyg8LJpwCngJyQ6mAgMDJUkJCQm6e/euXF1dlSdPHt27d0/BwcEqVqwYwRQAAAAAPIeNjUl2tjbqv/q8rt+LtHY5SCVFcmTSzDaesrExEUwBLyHZwdT+/fslSZMnT5aDg4P69+9vvr3o3LlzdfPmzbSpEAAAAADSkev3IpmsGgD+vxRfQ7phwwb16dPHHEpJUrdu3bR79+5ULQwAAAAAAADpW4qDqQwZMuinn36yWHb58mVlyZIl1YoCAAAAAABA+pfiu/K1a9dOnTt3VqtWrZQnTx4FBQVp7dq16tevX1rUBwAAAAAAgHQqxcFUjx495O7uri1btmjnzp3KnTu3Ro8ercaNG6dFfQAAAAAAAEinUhxMSZKPj498fHxSuxYAAAAAAAC8QlI8x5QkrV27Vk2bNlWlSpV0+/Zt9evXT1FRUaldGwAAAAAAANKxFAdTS5cu1eLFi/XBBx8oPj5eGTNm1N27dzVp0qS0qA8AAAAAAADpVIqDqVWrVmnu3Ll67733ZGNjIxcXF82aNUsHDhxIi/oAAAAAAACQTqU4mAoNDVXBggUlSYZhSJKyZcumuLi41K0MAAAAAAAA6VqKg6nixYtrzZo1kiSTySRJ2rFjh4oWLZq6lQEAAAAAACBdS/Fd+YYMGaKOHTtq8+bNio6OVteuXfXdd99p0aJFaVEfAAAAAAAA0qkUB1MlS5bUtm3btHXrVpUoUUK5cuXSuHHjlCdPnrSoDwAAAAAAAOlUioMpScqZM6datWqloKAglShRQvHx8aldFwAAAAAAANK5FM8xFRUVpU8++USVKlXSBx98oF9//VVeXl76+eef06I+AAAAAAAApFMpDqY+++wzRUdHa+fOnbK3t1e+fPlUp04dTZw4MS3qAwAAAF551679TwMG9FLDhnXVtGl9jR8/WmFhYZKkgwf3qWPHtvL2riUfnyZasmSBEhISzNsePLhP7du/p7ffrq7WrZtr27bNzzzGggVz1bJlE4tloaEPNGzYJ2rQoLYaN66nmTOnJetu3AcP7lOrVs2e2RYQMFUTJ45N3hMHAKR7KQ6mDhw4IH9/fxUsWFAmk0n29vYaOnSoLl26lBb1AQAAAK+0x49jNGhQP5Uq9Za2bNmtL79co4iIcPn5jdOVKz9q/PjR6tq1p3btOqCpUwO1c+c2rVmzUpJ07twZTZw4Tr169dfevUc0ZMhITZ8+WT/++L3FMc6cOaWVK5cnOfbo0cPk5OSsTZt2acGCZTpz5qTWrl353Frj4uK0YsUyjRkzXIaRYNEWHh6mTz8dpfXrV6fCWQEApBcpDqYSEhLk4OAgSTIMI8kyAAAAAKnn7t07KlLEQx07dpG9vb1cXFzVrFkLXbhwTnfu3Fbz5i1VrVoN2djYqECBgqpZs7YuXDgnSVq9eoV8fFqrSpVqMplMKlu2vBYtWq68eV8z7//BgxBNnjxRrVq9b3HcmzeDdP78WfXq1U+Ojo7Km/c1dezYRRs2rH1urQMH9ta5c2f1wQcdLZZHR0erbduWypQpk2rXrpt6JwcA8J+X4mCqcuXK+vTTT/Xo0SOZTCZJUkBAgCpWrJjqxQEAAACvuvz5C2jatEDZ2tqalx04sE/FipVQ7dr11Lfvx+bljx/H6Ntvj6pYsRKSpB9//F4uLi7y9e2vRo3qqWPHtrp586ayZHGR9PQPzOPGjVK7dh+qYMFCFse9ceMnZcniInf37OZlBQoU0t27d/Tw4cNn1jpq1KeaNi3QIviSJAcHB3355Vp9/PEQOTk5/70TAgBIV1IcTA0bNkw//fSTKlSooIcPH8rT01OnT5/WkCFD0qI+AAAAAP+fYRhasGCujh07ov79B1m0RUdHadiwQcqQwVGtW7eVJEVEhGvVqi/VoUNnbdmyW506ddHYscP1/feXJUnLly9RpkwZ1bx5yyTHio6OlqOjo8WyxMePHkU/s74cOXI+c7mdnZ2yZs2WsicLAHgl2KV0g2zZsmnNmjW6dOmSbt26pVy5cql06dIWf8EBAAAAkLqioiLl5zdOV69e0Zw5C1W4cBFz22+//aIRIwYra9ZsCgz8XM7OGSU9vVKpceNmevPN0pKkWrXqqly5Cjp0aJ9iY59o+/atWrz4y2cez9HRSY8fx1gsi4l5+jhx/wAA/F0pDqYkyWQyqXTp0ipdunRq1wMAAADgT27duqlBg/opZ85cWrToS7m6uprbjh8/qrFjR6hJk3fVo0cf2dn93z/xCxQoqNjYWIt9xccnyDCk3bt3Kizsgd57r6kkKTY2Vk+ePFH58uU1efIMFSpUWOHh4XrwIMR8tdMvv/ysHDlyKlOmTGn/pAEAr4RkB1PFixc3zyn1LCaTST/88EOqFAUAAADgqYiICPXr10PlylXQ0KGjZGPzf7NxXL58ScOH++qTT4bqnXeaJdm2eXMfzZjxmSpWrKxy5Sro8OEDOn/+jLp3761ixYpryJAR5nV37NiqJUsW6NChgwoOfijDkEqXLqOZM6dpyJARCgsL09Kli9S4cdN/5HkDAF4NyQ6mli9PevtYSdq9e7dWrFihGjVqpFpRAAAAAJ7asWOL7t69o/379+rAgW8s2sqWLa+4uDjNnDlVM2dONS8vXdpT06YFqnHjprKxsdGsWdP1+++/K1euXBo71k/FihVP1rEnTJis6dM/U6tWTWUy2ahBg8bq2LGLud3Lq4Z8fYfL27th6jxZAMArJ9nB1J/vuhcbGyt/f3+tWbNGgwYNUpcuXZ6zJQAAAICX1abNB2rT5oOX3r5hw3fUsOE7f7leo0ZN1LhxE4tlWbNm04QJk5+7zd69R567r0aNmjyzbcSIsX9ZCwDg1fFSc0wFBQWpf//+CgsL05dffilPT8/UrgsAAAAAAADpXIqDqV27dmnkyJEqX768vvjiC7m4uKRFXQAAAMC/ho2NSTY2z59vNb2xtbX565XSgYQEQwkJhrXLAIBXWrKDqdjYWPn5+Wn9+vX65JNP1LFjxzQsCwAAAPh3sLExycXVWXavSFgjSW5uGa1dwj8iLj5B4WHRhFMAYEXJDqbee+89XblyRW3atJGrq6s2bdqUZJ3mzZunYmkAAACA9dnYmGRna6P+q8/r+r1Ia5eDVFIkRybNbOMpGxsTwRQAWFGyg6nw8HDlzp1bhw4d0qFDh5K0m0wmgikAAACkW9fvRer72xHWLgMAgHQl2cHU/v3707IOAAAAAAAAvGJenYHyAAAAAAAA+FchmAIAAAAAAIBVEEwBAAAAAADAKlIcTJ05c0YJCQlpUQsAAAAAAABeISkOpnr37q3Hjx+nRS0AAAAAAAB4haQ4mMqXL58uXbqUFrUAAAAAAADgFWKX0g1cXFzUqVMnvfbaa8qRI4dMJpO5bfny5alaHAAAAAAAANKvFAdTnp6e8vT0TItaAAAAAAAA8ApJcTDVp0+ftKgDAAAAAAAAr5gUzzElSWvXrlWTJk1UqVIl3b59W/369VNUVFRq1wYAAAAAAIB0LMXB1NKlS7V48WK1b99e8fHxypgxo+7evatJkyalRX0AAAAAAABIp1IcTK1atUpz587Ve++9JxsbG7m4uGjWrFk6cOBAWtQHAAAAAACAdCrFwVRoaKgKFiwoSTIMQ5KULVs2xcXFpW5lAAAAAAAASNdSHEwVL15ca9askSSZTCZJ0o4dO1S0aNHUrQwAAAAAAADpWorvyjdkyBB17NhRmzdvVnR0tLp27arvvvtOixYtSov6AAAAAAAAkE6lOJgqWbKktm/fri1btqhEiRLKlSuXxo0bpzx58qRFfQAAAAAAAEinUhxMTZgwQSNHjlSXLl0slg8ePFifffZZqhUGAAAAAACA9C1ZwdTdu3d1/PhxSdK6dev05ptvWrQ/fPhQe/fuTdGBr1y5osmTJ+v777+Xvb29qlWrpqFDhypr1qy6cOGCJkyYoOvXr8vNzU09e/ZUq1atzNtu3LhRc+fO1f3791WoUCGNGjVKnp6ekqT4+HhNnTpVmzdv1qNHj1S5cmWNGzdOOXLkkCSFhIRo1KhROnXqlGxtbdW0aVMNGTJEdnYpzugAAAAAAADwNyRr8nM3Nzd99dVXCgwM1JMnTxQYGGjx38qVK9WnT59kHzQmJkZdunSRp6enjh49qm3btiksLEzDhw9XeHi4unXrpubNm+v06dOaOHGiJk2apIsXL0qSTp48qfHjx8vf31+nT59W06ZN1bNnTz169EiSNG/ePB07dkwbNmzQkSNH5OjoqJEjR5qPPWDAADk7O+vIkSNav369jh8/rqVLl6bglAEAAAAAACA1JOsyIQcHB61fv16S1LlzZy1evPhvHfT27dsqXry4evfuLVtbWzk4OKh169YaPHiw9uzZI1dXV7Vr106SVKVKFTVp0kQrVqxQ6dKltW7dOjVu3FjlypWTJHXs2FFr1qzRjh071LJlS61bt06DBg1S7ty5JUkjRoxQ9erVFRQUpISEBJ06dUqHDx+Wk5OT8uXLp169emnKlClJhiYCAAAAAAAgbaV4/NqzQqm4uDj973//0xtvvJGsfRQqVCjJXfx2796tkiVL6tq1a/Lw8LBoK1KkiDkYu379ulq2bJmk/cqVK3r48KHu3Lljsb27u7tcXFx09epVSZKrq6ty5sxpbi9cuLBu376tiIgIZcmSJVn1S5LJlOxVAaugj6aNxPPK+QVeDu8dpBb6ElIT/Qmphb6E1PRf7k8pqT3FwdShQ4c0duxY3b17V4Zh/N+O7Ox06dKllO5OhmEoICBABw4c0FdffaXly5fLycnJYh1HR0dFR0dLkqKiop7bHhUVJUlydnZO0p7Y9udtEx9HR0enKJjKli1zstcF/mlubhmtXUK6x2cAkHJ8NiG10JeQmuhPSC30JaSmV6k/pTiYmjJliry9vZUlSxZdvXpV77zzjubMmSMfH58UHzwyMlLDhg3T999/r6+++krFihWTk5OTHj58aLFeTEyMMmZ8+qI4OTkpJiYmSbubm5s5ZEqcb+rP2xuGkaQt8XHi/pMrJOSh/pDL/efY2tq8Uh39VRMaGqX4+ARrl5EumUxPQ6n/+mfAvxWfTenbP/3ZRH9Kv+hLSE3/ZH+iL6VvfDYhNf3Xf9Ml/m5KjhQHU0FBQfL19dXNmzd14sQJeXt7q1ChQho4cKDat2+f7P389ttv6tq1q/LkyaP169cra9askiQPDw8dO3bMYt3r16+raNGikqSiRYvq2rVrSdpr1qwpFxcX5cyZU9evXzcP57t//77CwsLk4eGhhIQEhYWFKTg4WO7u7pKkn376Sbly5VLmzCm7+sEwxI9S/KvRP9MWnwHAy+F9g9RCX0Jqoj8htdCXkJpelf6UrLvy/VHWrFllY2OjPHny6KeffpL0dI6nO3fuJHsf4eHh6tChg8qWLavFixebQylJ8vLyUnBwsJYuXarY2FidOHFCW7duNc8r5ePjo61bt+rEiROKjY3V0qVLFRISIi8vL0lSixYtNG/ePAUFBSkyMlJ+fn6qWLGi8ufPrwIFCqhcuXLy8/NTZGSkgoKCNHfu3Je62gsAAAAAAAB/T4qvmCpWrJhmzpyp3r17K1u2bDp06JAcHR2VIUOGZO/j66+/1u3bt7Vz507t2rXLou38+fNasmSJJk6cqMDAQGXNmlUjR45U5cqVJT29S9+YMWPM81wVKVJECxculKurqySpd+/eiouLU7t27RQVFaVKlSopICDAvP/AwEB9+umnqlevnmxsbNS8eXP16tUrpacBAAAAAAAAf1OKgylfX1/169dP7733nvr166devXopISFBgwcPTvY+OnXqpE6dOj23vVSpUlq9evVz25s1a6ZmzZo9s83e3l6DBg3SoEGDntnu7u6uwMDAZNcKAAAAAACAtJHsYGrFihWqV6+eChcurO3bt0uS8ubNqwMHDigqKkoFCxZMsyIBAAAAAACQ/iR7jqlFixapTp06atasmWbOnKmLFy9KknLkyEEoBeBfITQ0VK1bN9e5c2fMy775ZrfatfORt3cttWnTQps2rbfYZufObWrdurnefru6Ondur8uXL5rbwsPDNHHiWDVtWl8NGtRR//499b//XU1y3Pj4ePXp000TJ459YX07dmxV27Yt5eVVU927d9J335175noBAVP/cl8AAAAAkB4kO5g6cOCAtm/frvfee0//+9//1LlzZ1WvXl2jRo3S/v379fjx47SsEwBe6OLF79SjRyfdunXTvOznn6/L33+8hg0boz17DmnEiDGaOXOaLlw4L0k6d+6MZsyYohEjxmrXroPy9m6goUM/VkxMjCTJ33+8wsPD9OWXa7R16x6VKvWWPvmkn6Kjoy2O/cUXC3Xx4ncvrO/o0UOaOnWSevceoF27Dqht2/YaNKiffvvtF/M64eFh+vTTUVq//vlDmQEAAAAgPUnRXfkKFSqkdu3aac6cOTp58qRmz56tnDlzasKECebJyQHgn7Zz5zaNGzdS3bpZ3sggKOg3xcfHyzASZBiGTCaTbGxs5ODgIEnatm2z6tXzVunSZWRnZ6fWrdvJxcVV+/btkWEYkkzq0qWHXFxcZW9vr/ff/0APHoTol19+MR/j7NnTOnhwv2rVqvvCGvfu3aW3366vatVqyNbWVrVq1dVbb5XVtm1bJEnR0dFq27alMmXKpNq1X7wvAAAAAEgvUjz5uSQFBwdr//79Onz4sE6cOKEsWbKoZcuWqV0bACRLxYqV5eXVQHZ2dhozZvgflldRyZKl1LNnZ9na2io+Pl69ew9QiRIlJUk3bvykxo2bWuyrQIGCun79mkwmkyZNmmrRduDAPjk5OalgwYKKiopTaOgD+fuPl5/fVK1du/KFNcbHJ8jJyclimY2NyXzFlIODg778cq2yZs3GMD4AAAAAr4xkB1M3btzQN998o2+++UaXLl1S8eLFVa9ePfXp00fFixdPyxoB4IWyZXN/5vLY2CfKnTuPOnToLE/Pcjp16oTGjBmmwoWLqGLFyoqOjpajo2VY5OjoqEePopPs6+jRQwoImKJBg4bKyclJDx+G69NPR6l167YqWtTjL2usXbuupkzxU+3a9VSq1Fs6fvyozp49rbfe8pQk2dnZKWvWbC/x7AEAAADgvyvZwVTDhg1VpkwZvfvuuwoMDFTOnDnTsi4A+NsWL54vBwcHVahQSZJUtWp1vf12fW3evEEVK1aWo6OTHj+OsdgmJiZGLi6u5seGYWjZssVasWKZhg0brbff9pYkffnlF3JwcJCPT5tk1fL22/UVFhaqyZMnKjIyQpUrV9Pbb9c3z2cFAAAAAK+iZAdTlStX1rlzT+8gFRERobfffluFChVKs8IA4O+6e/eOsmRxsVhma2snOzt7SVKhQoV148bPFu2//HJDVapUk/Q0pBozZph+/vlnzZmzUB4e/3d16K5dOxQcHKwGDWqb15WkI0cOateug0lqCQkJVqVKVS2CrG7dOjKfFAAAAIBXWrInP1+6dKmOHTumtm3b6vLly/Lx8VH9+vX12Wef6ezZs/9/omAA+PeoXr2m9u3bo5Mnj8swDJ0/f1Z79uyUt3dDSVLjxk21Z88unTt3RnFxcVq7dqUePHigmjXrSJLGjBmme/fuavHi5RahlCStWrVBe/Yc0q5dT4MoL68G8vJq8MxQSpK+++6c+vbtrjt3ftfjx4+1du1K/fbbr2rY8J00PQcAAAAA8G+WosnPM2fOrKZNm6pp06Z68uSJvv32Wx08eFC+vr6KiYnRt99+m1Z1AkCKvfNOc8XExCggYIpCQkKUM2dODRo0VNWq1ZAklS9fUZ98MkRTp07S/fv3VKBAIU2dGqgsWVx09eoVHTt2RA4ODmrZ0jI8WrRokQoUKPaXx/fyqiFf3+Hy9m6oevW89euvv6h790569OiRPDyKKTBwntzcsqbJcwcAAACA/4KXuitfVFSUzpw5o5MnT+ry5csKDw9XuXLlUrs2AEixo0fPWDz28Wnzwnmg6tdvpPr1GyVZXqxY8ST7kiSTSXJ3z6zg4IcWy0eMGJtk3b17j1g8/uijbvroo24vKv+5+wIAAACA9CjZwdTx48d14sQJcxiVI0cO1axZU3369FGVKlWUIUOGtKwTAAAAAAAA6Uyyg6kuXbrI09NTdevW1aeffioPj7++PTqAV4eNjUk2NiZrl/GPsbVN9hR9/2kJCYYSEphDEAAAAEDaSHYw9e2338rFxeWvVwTwyrGxMcnF1Vl2r0hYI0lubhmtXcI/Ii4+QeFh0YRTAAAAANJEsoMpQikAz2NjY5KdrY36rz6v6/cirV0OUkmRHJk0s42nbGxMBFMAAAAA0sRLTX4OAM9y/V6kvr8dYe0yAAAAAAD/Ea/OuBsAAAAAAAD8qxBMAQAAAAAAwCpSPJSvbt26MpmS3nnL3t5eWbNmVZ06ddS5c2fZ2JB5AQAAAAAA4PlSHEy99957Wrt2rbp06aJ8+fLp1q1bWrJkiapWrapChQpp5cqViomJUd++fdOiXgAAAAAAAKQTKQ6mdu/erfnz56to0aLmZRUrVtSgQYM0evRo1a5dW+3btyeYAgAAAAAAwAuleLzdr7/+qgIFClgsy5cvn27cuCFJeu211xQRwV25AAAAAAAA8GIpDqaKFy+u+fPnWyxbsmSJihQpIkk6fPiw8ubNmzrVAQAAAAAAIN1K8VC+kSNHqmvXrlq3bp1y586t33//XQkJCZo3b57OnTun3r17a+bMmWlRKwAAAAAAANKRFAdTb7zxhnbv3q39+/frzp07yps3r+rWrSsnJyeFhYXp4MGDypYtW1rUCgAAAAAAgHQkxcHU+PHj1apVKzVt2jRJm6ura2rUBAAAAAAAgFdAiueYCgkJUevWrdWiRQutWrVKDx8+TIu6AAAAAAAAkM6lOJgKCAjQ0aNH5ePjo40bN6pGjRoaMmSITp8+nRb1AQAAAAAAIJ1KcTAlSZkzZ1bbtm21du1azZs3T6dPn9aHH36Y2rUBAAAAAAAgHUvxHFOSFBUVpV27dmnTpk26ePGiateurfHjx6d2bQAAAAAAAEjHUhxMffLJJ9q/f79y5cqlVq1aaebMmcqaNasePHiQFvUBAAAAAAAgnUpxMGVnZ6eFCxeqfPnykqQbN24oICBAW7Zs0XfffZfa9QEAAAAAACCdSnEwNXnyZEnSmTNntHjxYh06dEhFixaVr69vqhcHAAAAAACA9CtFwVRCQoJ27dqlL774QteuXVNcXJzmz5+vGjVqpFV9AAAAAAAASKeSfVe+ZcuWycvLS1OmTJGXl5cOHjyoTJkyycPDIy3rAwAAAAAAQDqV7CumJk2apLZt22ro0KFycHBIy5oAAAAAAADwCkj2FVOjRo3SyZMnVatWLc2YMUN3796VyWRKy9oAAAAAAACQjiU7mGrXrp22b9+u6dOn6/r16/Ly8lJERISOHz+u+Pj4tKwRAAAAAAAA6VCyg6lEVapU0Zw5c7Rz50517NhR/v7+qlGjhvz9/dOiPgAAAAAAAKRTKQ6mEuXNm1e+vr46fPiwPv74Y506dSo16wIAAAAAAEA699LBVCIHBwf5+Pjo66+/To16AAAAAAAA8Ir428EUAAAAAAAA8DIIpgAAAAAAAGAVBFMAAAAAAACwCoIpAAAAAAAAWAXBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQAAAAAAAKsgmAIAAAAAAIBVEEwBAAAAAADAKgimAAAAAAAAYBUEUwAAAAAAALAKgikAAAAAAABYBcEUAAAAAAAArIJgCgAAAAAAAFZBMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVBFMAAAAAAACwCoIpAAAAAAAAWAXBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQAAAAAAAKsgmAIAAAAAAIBVEEwBAAAAAADAKgimAAAAAAAAYBVWD6YePHggLy8vnTx50rzswoULatWqlTw9PVW3bl2tW7fOYpuNGzfKy8tLZcqUUYsWLXT+/HlzW3x8vCZPnqyqVavK09NTPXv21L1798ztISEh6tWrl8qXL69KlSpp4sSJiouLS/snCgAAAAAAAAtWDabOnj2r1q1b67fffjMvCw8PV7du3dS8eXOdPn1aEydO1KRJk3Tx4kVJ0smTJzV+/Hj5+/vr9OnTatq0qXr27KlHjx5JkubNm6djx45pw4YNOnLkiBwdHTVy5Ejz/gcMGCBnZ2cdOXJE69ev1/Hjx7V06dJ/9HkDAAAAAADAisHUxo0bNWjQIA0cONBi+Z49e+Tq6qp27drJzs5OVapUUZMmTbRixQpJ0rp169S4cWOVK1dO9vb26tixo9zc3LRjxw5ze9euXZU7d25lypRJI0aM0OHDhxUUFKRff/1Vp06dkq+vr5ycnJQvXz716tXLvG8AAAAAAAD8c6wWTFWvXl179+5Vo0aNLJZfu3ZNHh4eFsuKFCmiK1euSJKuX7/+3PaHDx/qzp07Fu3u7u5ycXHR1atXde3aNbm6uipnzpzm9sKFC+v27duKiIhI7acIAAAAAACAF7Cz1oGzZ8/+zOVRUVFycnKyWObo6Kjo6Oi/bI+KipIkOTs7J2lPbPvztomPo6OjlSVLlmTXbzIle1XAKuijSE30J6QW+hJSC30JqYn+hNRCX0Jq+i/3p5TUbrVg6nmcnJz08OFDi2UxMTHKmDGjuT0mJiZJu5ubmzlkSpxv6s/bG4aRpC3xceL+kytbtswpWh/4J7m5paw/Ay9Cf0JqoS8htdCXkJroT0gt9CWkplepP/3rgikPDw8dO3bMYtn169dVtGhRSVLRokV17dq1JO01a9aUi4uLcubMaTHc7/79+woLC5OHh4cSEhIUFham4OBgubu7S5J++ukn5cqVS5kzpyxoCgl5KMN42Wdpfba2Nq9UR3/VhIZGKT4+4R87Hv0pffsn+xN9KX3jswmphb6E1MT3HFILn01ITf90f0ptJlPyL+ix6l35nsXLy0vBwcFaunSpYmNjdeLECW3dulUtW7aUJPn4+Gjr1q06ceKEYmNjtXTpUoWEhMjLy0uS1KJFC82bN09BQUGKjIyUn5+fKlasqPz586tAgQIqV66c/Pz8FBkZqaCgIM2dO1c+Pj4prtMw/tv/If2jPyE10ZeQWvhsQmqhLyE10ZeQWvhsQmr6J/uTNfvov+6KKTc3Ny1ZskQTJ05UYGCgsmbNqpEjR6py5cqSpCpVqmjMmDEaO3as7t69qyJFimjhwoVydXWVJPXu3VtxcXFq166doqKiVKlSJQUEBJj3HxgYqE8//VT16tWTjY2Nmjdvrl69elnhmQIAAAAAALza/hXB1NWrVy0elypVSqtXr37u+s2aNVOzZs2e2WZvb69BgwZp0KBBz2x3d3dXYGDgyxcLAAAAAACAVPGvG8oHAAAAAACAVwPBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQAAAAAAAKsgmAIAAAAAAIBVEEwBAAAAAADAKgimAAAAAAAAYBUEUwAAAAAAALAKgikAAAAAAABYBcEUAAAAAAAArIJgCgAAAAAAAFZBMAUAAAAAAACrIJgCAAAAAACAVRBMAQAAAAAAwCoIpgAAAAAAAGAVBFMAAAAAAACwCoIpAAAAAAAAWAXBFAAAAAAAAKyCYAoAAAAAAABWQTAFAAAAAAAAqyCYAgAAAAAAgFUQTAEAAAAAAMAqCKYAAAAAAABgFQRTAAAAAAAAsAqCKQAAAAAAAFgFwRQAAAAAAACsgmAKAAAAAAAAVkEwBQDA/2vvPsOjqtY2jv9nJoUkNIMQEkiCFKkinQPqARFB0ENNIp0gLfQWmvQekF6lJ9I7UlSKiIICShMRQg2915CezMz7wWvmTQTP8RzLDnD/PpHJ7Lme6L72XnPvtZ4lIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGUDAlIiIiIiIiIiKGeC6Dqbt379K5c2cqVKhA5cqVGTNmDGlpaUaXJSIiIiIiIiLyXHkug6mePXvi6enJnj17WLt2Lfv27SMyMtLoskREREREREREnivPXTB18eJFvv/+e/r27YuHhwf+/v507tyZZcuWGV2aiIiIiIiIiMhz5bkLps6cOUPOnDnx8fFxvlaoUCGuXbtGbGysgZWJiIiIiIiIiDxfXIwu4O8WHx+Ph4dHhtccPyckJJA9e/bf9TlmM9jtf3p5f7uSftnxcLMYXYb8SQq+6OX8t9mA2Fnn07PFyPNJ59KzRdcm+bPoXJI/k+5z8mfRtUn+TEafT38Wk+m/eK/d/izEK7/fjh07GDx4MAcOHHC+durUKerVq8fBgwfJli2bgdWJiIiIiIiIiDw/nuL87X9TpEgRHjx4wJ07d5yvnTt3jrx58yqUEhERERERERH5Gz13wVSBAgUoX748Y8eOJS4ujsuXLzN79myCgoKMLk1ERERERERE5Lny3C3lA7hz5w4jR47kwIEDmM1mGjRoQHh4OBaL1uWKiIiIiIiIiPxdnstgSkREREREREREjPfcLeUTEREREREREZHMQcGUiIiIiIiIiIgYQsGUiIiIiIiIiIgYQsGUiIiIiIiIiIgYQsGUiIiIiIiIiIgYQsGUiIiIiIiIiIgYQsGUiAhgt9uNLkFERETkqfCkcZPGUvK/0HkjoGBKnmI2m83oEuQZYbVaMZlMgM4r+WOedP5owCX/K6vVanQJ8ozQuSR/Jse4KT4+njt37vDgwQPS0tIwmUwaR8l/xXHeADx69Ii4uDhSU1MBjcmfNya7RszyFLJarVgsFi5dusSePXvIkiULjRs3NroseQo5ziWbzcbIkSO5c+cOVquVf/7znzRq1Ah3d3ejS5SnRFpaGi4uLtjtdk6dOoXVasXb2xtfX1/sdrtz4CXyezjOJ5vNxqZNm/Dz8yMwMBAfHx+jS5OnjOM+FxMTw9q1awkICKB8+fIULlzY6NLkKWSz2TCbzZw6dYqRI0eSkJCA2WymaNGiDBgwgOzZs+ueJ79L+jF4z549efToEXfv3qVMmTKEhYXh5+fnPN/k2adgSp46jgtUdHQ0rVq1onTp0uzdu5eQkBCGDRuGxWIxukR5ythsNho3bkxgYCC1atViz549XL16lYIFC/Lhhx/i5uZmdImSyTmuSzabjdDQUNLS0rh79y7x8fGMHDmSGjVqaHAlv1v686lRo0ZYrVZu3rxJ/fr1adKkCYUKFTK6RHlK/HrMVK5cOY4cOcKbb75Js2bNKF26tNElylPo4sWLNG3alA4dOvDGG29w6NAhPv/8c0wmEzNmzMDLy8voEiWTc4SXdrudoKAgChQoQIcOHdi/fz8HDhzgzp07zJgxQw9jniMaIctTx2w2c/XqVXr16kV4eDgLFiygd+/erF69muHDhxtdnjyFli1bhq+vL1OnTqVu3bqMHj2a2rVrc+rUKX766Sejy5NMzvHFz263Exoaiq+vL1FRUcyePZvg4GC6du3KgQMHFErJ7+Y4n1q1akXhwoXZvHkzTZs2Zc+ePaxYsYLz588bXaI8JcxmMzdv3qRnz5507dqVjz/+mDZt2nDo0CGWL1/O8ePHjS5RnkK7du2idu3ahIaGUqhQIYKDg/nggw+Ii4tj//79RpcnTwHHss9du3bh7e3NpEmTKFq0KK1bt+aDDz7Aw8ODHTt2AGqJ8LzQKFmeSocPHyYgIICQkBDu3LnD+fPn6dmzJ1u2bGHMmDHExMQYXaI8Re7cuUNaWhrw/9OKGzVqxPXr1zl06JDB1UlmZrfbnYHT5cuXMZlMDBo0CFdXVwoVKkSPHj0ICgpi1qxZJCQkaHAlv9v+/ftxcXFh4sSJAKSmplKkSBH27NnD8uXLOXLkiMEVSmbnuN789NNP5M2bl1atWnH37l3OnTtH7dq1OXToEAsXLuSzzz4zuFJ52ly9epXTp087ewCZTCYqVapEXFwcly9fNrg6ycwWLFjAokWLgF+C81u3bnH+/Hni4uKc76lQoQIuLi5ER0cDaFnoc0LBlDwVfv1l7tq1a/j4+JCUlET79u3JmjUrYWFhvPLKKyxZsoS1a9caVKlkdk9qAOvl5UVsbCxXr151LgX18PCgYsWK5M2b9+8uUZ4SY8eOZdasWc6fb9y4wYEDB7h+/TqAM+wsWLAgFosFT09PDa7kN/36PpeQkMCdO3cA6NOnD2fOnGHGjBmULl2aTZs2MX/+fOLj440oVTK59GGBg5eXF3FxcXzwwQdkzZqV8PBwypQpw48//sjBgwcVmstvcoyb0jeiLl68OFarle+//975mru7O/7+/rz44ot/e43ydIiNjeXkyZPOByzwyxgpe/bsfP/99xnG6IUKFXKOwXV9ej64GF2AyH/imMESFxdHWloaOXPmpGnTplitVrZu3Yq3tzeDBw8GIF++fEyePJnatWsbXLVkRumbLK5evRpvb2/Kly9PcHAwy5cvZ+zYsbRp04aiRYuyefNmvv32W7p162Z02ZIJWa1W6tWrR6lSpZg9ezZhYWFUqlSJKlWqEBUVRZ8+fciVKxcAycnJZMuWjeTkZNzc3BROyWMcjc7hly9/NpuNqlWrUqhQIfbs2cPJkyeds1py5MhBo0aNaNu2rfq4yGMc97krV65w9OhREhMTKV++PBMmTGD37t1ky5aNYcOGAb+ca82bN+eDDz5w9nrR9UnSs9lsWCwWzp8/z6JFi8idOzdVq1blvffeY8uWLcydO5djx47xj3/8gyVLlnDjxg3eeecdo8uWTCp79uz069ePuXPnsm3bNtzc3AgKCiIwMJB58+Zx7do1ypYtyw8//MCnn37qDK90XXo+KJiSTM1xQzx16hSjR4/m1q1b1K5dmyZNmuDn58fdu3dJSEjg2rVrTJo0ifPnzzNmzBjMZrNzcCYC/38u2Ww26tevj8Vi4eLFi1SvXp2ePXuyevVqunfvzqBBg/Dy8iItLY358+cTEBBgdOmSydjtdiwWC6VKleLnn39m1apVHD9+nFmzZhESEsLy5csJDw/nrbfe4vbt26xcuZKoqCjt8ChPZLPZnLvv9enTh4SEBPz9/Wnfvj0FChQgJiaG7Nmzc+nSJb777jt27dpFVFQUuXPnNrp0yWQc16bo6GhCQ0OpUKECN2/e5I033sDLywsXFxcSExP55ptv2LJlCxcvXmTChAnOXi/qgyfpOc6Jc+fOERwczOuvv86RI0c4cuQIbdu2Zfbs2UydOpXPP/+cb775Bm9vb9auXYuLi4vG4JJB+l6cPj4+dOzYkblz57J+/Xo8PT2ZPHkyEyZMYOPGjaxatYocOXKwePFibfTxnNGufJJpOS5i165do0mTJgQFBeHh4cEnn3xC7dq1CQsLIz4+nnr16lG0aFHsdjvLly/H1dVVAyzJIP35MG/ePGJiYhg3bhwHDhxg1qxZeHt706NHD/Lly8fFixdJTk7Gz88Pb29vgyuXzOZJg+19+/bx0UcfkT9/fqZPn87hw4dZt24dFy5cwN/f3zkLT+TXHDOl7HY79evXJyAggLx583L69Gk8PT0ZPnw4Dx48IDw8HE9PT65fv86cOXMoVaqU0aVLJvXo0SNatWrFe++9R9u2bUlISMDT05ObN2/y9ddfs3XrVlJSUjCbzURGRuLq6qoQQR7jmD13+/ZtNm/ejMVioXXr1pw7d47Fixdz+fJl2rRpQ/Xq1UlNTSUuLo6cOXNiMpkyzAAVSX+fO3z4MCkpKeTPnx8fHx8mTJjAzz//TLNmzfjXv/5FcnIy9+/fJ2vWrGTNmtXo0uVvpmBKMiXHDfHu3bvMmjWLXLly0aVLFwD27t3LkCFDePPNN+nTpw+pqancv3+fwMBAzGazboiSwdmzZylcuDAAEyZM4JtvvmHgwIG89tprABw6dIjJkyfj6+vL+++/T8WKFY0sVzIxx7XFZrOxZs0a5xe+4OBgvvvuO6ZOnUrevHmZMWMGJpOJpKQkXF1d9YVP/i2bzcaePXvYv38//fv3B+Crr75ixYoVuLq6Mn78eB49esTNmzfx8fHB19fX4IolM7t27Ro9e/Zk1qxZ5M6d29nrbsGCBZjNZurXr4/JZOLFF1/UmEkeExcXx6FDh6hWrRqJiYl07NiRkydPOncrBjh//jzz5893rmIICQlxHq/loJKe48GwzWajWbNmZMmShQsXLuDh4UFISAitW7dm7NixnDlzhjfffJPQ0FCjSxYDaUqJZCqXL1/mwoULmEwm4uLiWLNmDZ999hmnTp1yvuf1119n+PDhfP3114wYMYK0tDReeukl54VPAyxxWLBgAevXrwd+memSM2dOrl69yq5du5zvKV++POHh4Zw+fZrNmzeTmJhoVLmSidntdmcoFRQUxM6dOzlw4ABTp07lgw8+ICAggN69e3Pz5k2aN2+OzWYjS5YsCqXkiSIiIpz/XrRoER07duT48eMkJSUB8OabbxISEoLVaqVTp04AlClTRqGUPCZ9Q2qALFmycOnSJb744gsAXFxccHFxIVeuXBw+fJjcuXOTJ08ejZnkiZYsWcKFCxewWq14eHjQqlUrPDw82LZtm/M9BQsWpEOHDmTJkoVz585laEytUEoc0u9a3K5dO/Lly0dkZCSRkZF07NiRadOmsW7dOnr16kXevHn54YcfePjwocFVi5F0N5JMZdmyZWzYsIGxY8dy8uRJXnvtNR48eMD27dtZt24djRs3BqBatWoMGDCATZs2ZVhupeV7kl716tUpXLgwkydPplq1anTo0AE3Nzfmzp1L7ty5CQsLA6Bs2bKMHj2aXLly4eHhYXDVkpkNGjSIwMBApkyZAvzydLlx48aMHz+eWbNmkZKSQlRUFDdv3lSIIE905coVYmNjnT+3a9eOu3fvsnTpUo4fP06FChUAqFmzJikpKWzfvt2oUiWTcyzBu3nzJufOnSMpKYkaNWoQHBzMl19+Sa5cuahbty4ABw8exMfHJ8M4SWMmcUhJSSE+Pp5OnTqRkJBAcHAwbdu25d1338XV1ZWePXsyePBgRo8eDcBLL73E4MGD8fHxURglj7l69Sr58uUD4Pr166SlpfHhhx8CUKBAAfz8/Lh+/TqbNm0iODiY3r17YzabyZEjh5Fli8EUTEmmMmDAAH788Ue6dOlChw4dKFu2LLly5cJkMrFq1SrsdjtBQUEAvP3227z99tsA6iklGTiWJhQuXJiLFy9y/Phxjhw5Qt++fQkNDcVkMhEZGYnZbKZDhw4AlC5d2uCqJbO5e/cuKSkp+Pr6Ogfe9+/fp1GjRgAkJiaSNWtWpk+fTosWLTh58iRVq1alUqVKeHp6Glm6ZEKxsbHEx8eTP39+xo4dS0REBNu3b2fXrl3079+f2NhY2rdvz9y5c6lUqRIAdevWpVq1atp9Tx7j2NAjOjqarl274uPjQ/bs2alRowYhISE8fPiQOXPmEBkZibe3Nzdv3mT16tWAlltJRlarlfHjx3Py5EkmTZqEt7c3JUqUYPLkybi7u1OzZk2mTJniDA9GjhwJ4Hz4ojG4pDdnzhySkpLo1asX8MtY6ejRoxw8eJDatWtjt9txc3MjICCAHTt2EB8fj4+Pj8FVS2agq4hkGqmpqdjtdhISEsiXLx+bN2/m3LlzBAQEEBISQvny5Vm9ejVRUVGPHasbojikb7J448YNXFxc6NGjB76+vowfP55jx47RunVrPvjgA+bMmcPixYuNLlkyqfXr17Ny5UouX77M5s2bsdlsnD17lh9++AEADw8PrFYrWbNmxd/fH09PT9zc3BRKyRMtWrTIeT6tW7eOWrVq4erqStOmTQEYM2YMdevWpWvXrnz33XfO4xRKyZOYzWZu3rxJWFgYYWFhLFu2jNmzZ/PVV19x/vx5GjduzOjRo3nrrbd47733WLNmDa6urqSlpSmUkgwsFgvlypUjR44cjBo1itjYWAYNGkTNmjUZNWoUO3fupHr16kyZMoXVq1czb968DMdrDC7pVatWjV69ejF9+nSOHz9OwYIFqV69Ort37yY6Otp5/bl16xYvvviirkfipObnYrhfP2lJSUnBzc2Ntm3bcvr0aSIjIylUqBDXrl1j7ty52O12RowYoQuZPCZ9k0VHn5/r16+zbt06Ll++zIoVK7h27RoDBgzglVdeYcWKFVSpUoUCBQoYXbpkQmvWrGHVqlVcv36dN954g4iICFauXElUVBStWrVyBgpr1qzhk08+ISoqSjs5ym/atWsXI0aMIDExkbp16zJ8+HBOnTpF9+7deeGFF1i5ciUAPXv25MiRI2zbto0sWbIYXLVkZt999x1RUVHMmTOHgwcPMnjwYLy8vDh58iQhISHOmS0O2n1Pfi39GHzHjh2sWrUKV1dXRo4ciZeXF9OmTWPbtm0MHjyYmjVrcuTIEV555RX1JpPHpD+XTpw4wejRo/Hw8GDUqFFcv36diRMnOh/kZcuWjZUrVxIZGUnx4sUNrlwyCwVTYijHIOnSpUvs3LmTtLQ0smfPTpMmTbBarXTp0oUTJ06wdOlSjhw5gre3N6+//jomk0lT0eWJ7HY7LVu2xMfHh7Fjx3LhwgWKFi1KWloa33zzDTt27OD48eNERERQsmRJo8uVTCj9taVhw4ZcunSJdu3a0bRpU2w2G5988gnr1q3Dx8cHPz8/jh49ypw5c3Q+yROlP5/q16/PxYsXadeuHc2aNcPb25vo6Gi6d+9Onjx5WLp0KfDLk+Q8efIYWbZkQr9+kHfx4kWaNm2Ku7s7uXLlokiRIowbN44tW7awZcsWpk6dqnBTfpPjfEofWO7bt4958+aRJUsWZzg1Y8YMPvnkEyIjI507F2s3R0nvSefD4cOHWbBgAUlJSYwbN464uDi+/PJLDhw4wMsvv0yjRo0oUqSIQRVLZqRgSgx3+vRp2rRpwz//+U9cXFz4+uuvKVmyJLNnz8ZqtRIWFsahQ4fw9/dnw4YNWCwWhVLym86fP8+wYcNYuHAhbm5uwC+z8FavXk3evHnJlSsX69evp2PHjuTPn9/gaiWzcQzQbTYbaWlp7N27l1u3brFu3Tr+8Y9/EBoaSo4cOThx4gS7d+8mb968VK5cmcDAQKNLl0zIcT457lkHDhzg0aNHjBkzhnfeeYdWrVrh6+vLmTNnaNOmDYULFyYyMtLosiUTcpxL165d48SJE3h6elK1alV+/vlnLl68iJ+fH2XKlAEgPDwcu93OpEmTjC1aMi3H+RQTE8PGjRt58OABL7zwAt26deP7779nwYIFuLu7M2LECDw9PVm/fj3NmjXTjDt5TPpx09ChQzGZTLzyyisEBQXx448/MnfuXFJSUhgyZAgvvfQSVqsVs9ms73HyGAVTYhir1UpqaipdunShQoUKdOrUiZSUFP71r39RuXJlOnfuTN68eQE4cuQIpUuXdl74tJ5dHH69NOHcuXM0btyYadOmUa1aNecXwkmTJhEdHc38+fNJTk7G3d3dwKolM0ofImzfvh2LxULNmjUBiIyMZPPmzbz++uuEhYVx//59/Pz8DK5YMjPHE2SbzcbatWsxmUzUr18fNzc3Nm7cyNSpU3nvvffo0qUL58+fx2azkTNnTvz9/Y0uXTIZx7gnOjqa0NBQChQowNGjR+nfvz9t2rQBYOfOnezYsYOEhARiYmLYsGEDrq6uepAnv+n06dO0bt2a+vXr8+jRI06cOEFKSgpLlizh7NmzzJs3j4SEBGbPnk3OnDkBLQeVjBzXF5vNRsOGDfHx8XH2eH333Xdp3749x44dY9GiRVy/fp1x48ZplpT8Js3BlL9VQkIC+/fvp0aNGlgsFqxWKykpKbz77rsAhISEULZsWQYMGECzZs3o378/VapUoWzZsoBuiJJR+kbnR48eJSEhgYCAAGrUqMGuXbvw8/Nz3gCzZMlCQEAAgEIpeYzdbncG340aNcJqtXLp0iVeffVVFixYQGhoKBaLhQ0bNrBv3z6uXr3Khg0btNxKnshmszlDqfr16+Pi4sLdu3edy0AbNGjgDMx/+OEH7t69y7Jly7QzkTyR2Wzm0qVLdOvWjZ49e/LWW28xffp0xo8fT1paGu3bt8dkMmE2mylatChTpkzBxcVFy63kiRwPhsePH0+rVq3o1KkT8MvOoWFhYfTq1YuoqCju3r3LsWPHyJ49u/NYjcElPUfo3bdvX4oXL05ERARnz55l6NCh7NixA4COHTsSGhrK8uXLtZmH/Fu6W8nfauvWrQwZMoSIiAgaNGgA/NJLY+3atRw8eJAiRYoQERHBzZs3sdlsFCxYMMPxuiGKg91ud37xCwoKwsPDg0uXLrF8+XJq167N0qVLmTFjBgULFsTd3d3ZnFrk19LPwhw9ejSlSpVi6NChxMTE0L17d9q2bcuiRYto2bIlvr6+nD9/nho1aiiUkt9kNpux2+20b9+eMmXKMGrUKD799FNGjRpF48aNWbduHfXr1ydPnjz8/PPPvPnmmwqlJIOUlBQA55L0Xbt2Ub58eZo0acKNGzdISUmhadOmTJo0iRw5chAcHMxbb73lPN5qtSqUEqfExES2bNlCcHAwFouFR48e8fDhQypVqgT8sjN29uzZ6dy5M8OGDePGjRvUqVOHOnXqAI/3N5Pn269D75iYGKZNmwbA0qVLKVWqFDabjaVLl3LlyhWGDBnCuHHjnNczkSfRFUb+FklJSdy8eZPg4GB69erFgAEDWLt2LW5ubrRr1441a9aQlJTERx99BMDUqVPJmTMnuXPnNrhyyawcT2nCwsIIDAxk2bJlrFq1Cn9/f2rXrk3dunUpWbIkhw8f5saNG3zyyScUK1bM4KolM3KECDNnziQmJoYmTZrg5uZG0aJFWbBgAdevX6d9+/YkJydTs2ZN2rdvT+HChY0uWzIhq9Xq/HdMTAzJyckMHToUgKNHj/L+++9jMplo3rw5ly5dokqVKrRt25ZChQoZVbJkQqmpqbzzzjucPHnS+dqpU6d44YUXSEtLo3PnzuTJk4c+ffqQL18+hg4dyuzZszN8hh7kSXo7d+5k1KhRzJ07F4AcOXKQmJjIF198AYCrqysA+fPnx9vbG5vNluF4hVLi4JgRbLVaGTp0KNevXydfvnykpKQwcuRIjh07xocffkj9+vXx8vLi1q1b3LlzR6GU/Ed6lCJ/ObvdzpQpU9i6dSsrV66kY8eO2Gw2Bg8eTJYsWQgODubWrVts2rSJJk2a4OXlRVxcHEuXLsVsNuspjfymhw8fkpqaSo8ePQDIkycPaWlpbN26ldjYWDp27Ejbtm0xmUwapMtj0l9bUlNTOXv2LAcPHuSLL76gaNGiuLq64u/vT1RUFA0aNKBnz57MmTNH/VrkidI3gN23bx8JCQnExcXh4uLCgAEDuH79OvPnz8dms7F48WK6dOnC6tWr8fDwMLp0yWRcXV2ZPn06BQoUYOXKlTRp0oRu3bphNptZtGgRPj4+9OnTB4BKlSpRvXp1Zz88kSd55513uH//PpGRkbi7uxMaGkpwcDDbtm1jwYIFtGnTBovFwty5c8mePTu+vr5GlyyZUPpxU79+/bBarfj6+jJ+/HiSkpKIjo52zpzat28fJUuWZNiwYeTIkcPIsuUpoWBK/nImk4k6depw/fp1unTpwsyZM+nUqRN2u53w8HDMZjNdunThX//6FwcOHMDPz49//OMfWCwW9UeQDH7dxNVqtXL8+HG+/vprChQo4DxXbDYb27dvp02bNnpCI0+U/tpy+/ZtcufOzcSJExk3bhyHDx9m48aN1KtXD3d3d/Lly8enn35KamqqwVVLZmWz2ZyN85s1a0bJkiUZMmQIBQsW5OTJk5w+fZpPPvkENzc33NzcGDNmDK+99ppCKXlMamoqrq6ulCpVii1btjB8+HASExNp1aoVFouFW7duOXv+hIeHc+XKFcaMGYPZbNaYSR7jCMyvXr3KTz/9hKurK5MmTcJisdC6dWtiY2PZtGkTixcv5uWXXyYuLo7ly5c7G1rrwbCk5zgf+vbty7Vr1xgxYgQAnp6eWK1WbDYb06ZNo2DBgkRGRrJs2TKFUvK76e4lfylHkFCmTBnat2/PnDlz6NKlC7NmzaJz584A9O7dm6SkJBo1auRsTg3qjyAZ/brxfUJCAt7e3jRt2pSvv/6awMBAqlevDsCjR4/Ily+fQZVKZue4tthsNjp37szVq1cpWbIkvXr1YuDAgYwcOZKNGzdiMpn417/+hbu7u3bgk3/LMVifMmUKXl5eDBkyBIBChQqxd+9ebt++zYMHD1i7di2rV69mxYoVzl1nRRzsdjuurq5cu3aNS5cu8d5775GUlMTgwYMBaNOmDVWrVqVz587ExMSQlJTEunXrnLPLNWaSX7NYLFy4cIH333+frl27UqdOHU6dOkVkZCQ2m43u3bvTtGlT9uzZQ758+ahQoYIeDMtjfv1g2N3dnWPHjrF161Z8fX3Jli0bbm5u1KhRg59++olvv/2WqKgo7cAn/xVdceQv43jS4ggUXnnlFcLDwxk/fnyGcMpsNvPhhx+SK1cuqlWr5jxeS6/EIf0SmWHDhhEbG8ujR49o1qwZb7/9Njdu3GDGjBls2LABX19fPv30UxYtWqTZUvJEjnOpcePGBAQE0LZtW8aNG4fVaqVXr14MGTKEsWPHEhUVhYuLi3OjBpEncQzYf/jhB44cOcKxY8f4+eefKVmyJAAVK1YkZ86chIWFkZCQwIIFCyhQoICxRUum47jPPXjwgAkTJnDw4EEiIiIICgrCbrc7w842bdqwefNm7t+/T/ny5RUiyH/07bffUrZsWVq2bAlAlSpV8Pf3JyIiAhcXF5o3b06jRo2c79eDYUkv/fUlJSUFNzc3Ro8eTe7cudm0aRMvvfQSb731FtmyZSM0NBQ3NzcSEhLw9PQ0uHJ52uiqI38JxwArJiaGjRs3kpiYyAsvvECnTp3o378/EydOpGvXrsycOZOwsDB8fHx47bXXjC5bMilHkBASEkJgYCB169bl1q1bdO3alQULFtClSxd+/vlnvvzyS7Jnz86SJUvUnFoek/6J38SJEylWrJgzkNq7dy/ffPMNiYmJDB06lEGDBjFp0iQqVKhgcNWSWTnuc45zqmLFivTt25cJEyYQERHB8OHDKVSoEO7u7qxcuZLLly+TO3ducuXKZXDlktnY7XYsFgsnT55k0KBBzh53vXv3ZtKkSQQHBwMwfPhw4uPj6dq1q/NYhQjyn9y7d4979+45f/bw8KB8+fK4u7szatQoPD09adiwofP3ejAsDulnmA8dOpR79+7x6NEj3nvvPWd/11mzZmEymahRowbZsmUDUCgl/xMtHJa/hMVi4ezZszRr1ozExEQ8PDzYsWMH7733Hnny5KF79+7ky5ePpk2bcuvWLRo2bIiLiwtpaWlGly6ZyM6dO53//uKLL8iSJQuTJk2idu3aXLx4kRIlSuDn50dsbCx169Zl0qRJdO7cWaGUPMZqtWaYhn7z5k3n0uGBAwfi5+fH/Pnz2bVrF+Hh4ezdu5f+/fuTP39+o0qWTCz9LM4lS5YwY8YM5s2bR7FixQgPDydr1qyMHTuW8+fPA+Dl5UWxYsUUSskTmUwm7t+/T9++fWncuDHjxo3jq6++omHDhgwaNIhvvvmG4OBg+vXrx969e7Hb7c5jFSJIeo6dQVNSUkhKSgKgZs2anDp1iqioKOf7fH19eeWVVxg5ciT16tUzpFbJ/NLPMI+LiyMoKIiXXnqJLVu2MHLkSHr06MHbb7/NuHHj2LNnT4Zrk8h/S49Y5E/naBA8Y8YMQkJC6NWrF2lpaezevZsyZcoQGxtLsWLF6Nq1K1988UWGgbqe+onD8ePH6dq1K506daJHjx7Ex8eTNWtWAPr06cPp06fZsGEDH3/8MT/88EOGAZdIevfu3XNuf92hQwdCQkJ45ZVXeO2115g5cyYnT55k7NixpKWlUbp0afLkyUPRokWNLlsyKcfsFsdgPV++fJjNZq5cucKqVatYsmQJYWFhzJ07l4EDBzJhwgQCAwONLlsyubi4OMxmM1WrVnW+NnDgQK5fv86QIUMYM2YMrVu3plWrVphMpsd6vog4NmE4c+YMH3/8MQ8ePKBRo0a8++679OzZk1mzZhETE0P58uX58ssvuXDhgrMR+q/7eIo4rjGrVq3Cx8eHqVOnAlCjRg3WrFnD6tWrOXr0KP369QOgVKlSuibJH6IZU/KnSEhIYPHixcAv2xybzWbi4uJ44403AGjcuDEvv/wyw4cPp0uXLuzcuZMSJUrQu3dv5w1RJL1SpUoxffp0Fi5cyMcff0xAQADffvstbdu25erVq6xZswYXFxcuXbpEmTJljC5XMqlOnTrx008/YbVaWbJkCTly5KBWrVo0a9aMIkWKcPXqVVq0aIGLiwtr167F29ubgQMHaqts+U2OgfeIESPInz8/M2fOZPr06SxZsoSCBQvSsWNHSpUqxfvvv4+/vz+urq4GVyyZkc1mAyA2NpakpCRcXFxITk7mxo0bwC8zXgAqV66M1Wqlf//+REdHYzKZSEtL0xdAycBut2M2m4mJiaFly5a4ubnxwgsvEB4eztq1a2nevDljxozhxx9/5PPPP8dkMrFmzRpnyK5QShwc38kc15iHDx8SHx/v3HUPoGHDhjx48ICvvvoKgH79+mXYwErkf6HpKfKnOHr0KOPHj+fWrVv079/f2Yzzk08+YeLEiZQoUYJx48aRmpqK1Wp9bHmMbojyJLVq1eKjjz5y7pbWrl075s6dy7x58zCbzSxbtoyvv/6a5cuXG12qZEKLFy/m5MmTVKtWjSZNmnD27Fm6desG/LKLWnJyMg8fPmT9+vUcPHiQ3bt3ExUVpeVW8kS/nlFw9+5d3n77beCXEMHLy4v+/fvTrl07fvrpJ6pVq0aFChXw8vIyqmTJpBybw9y9e5eZM2dSpEgRmjVrRrly5Rg0aBCLFy92huOnTp1i8ODBbN++nYEDB7JhwwbNLpfHmEwmHjx4wIYNGwgLCyM0NBSAsmXLMmTIEGefzjfffDPD+aPG+ZKe4z5nt9vZuXMn+fPnJzk5GTc3Ny5evEjBggWBX1a4VKhQwRlGaQan/Bl0JZI/zG63U7VqVSZPnky/fv1wd3enZ8+edOjQgREjRmAymVi5ciUAQ4cOxdPTk5dfftngquVpUbt2baZMmUKfPn2oW7cugwYNok+fPhQtWpTk5GQiIyMpVKiQ0WVKJpOamoqHhwcBAQHUrVsXb29vChYsyKeffkpwcDCenp64uLjQsWNHtmzZgtVqZdmyZbo2yRM5vrzZ7Xa+//57smfPzq1bt9i9ezf169d37gCaN29evL29MZt/mZCuUEp+zRFKnT9/nsWLF7Nz50727NlDtmzZGDx4MP369aNFixbOe9zVq1cZOXIkPj4+TJ8+ndTUVM3CkwzsdjtJSUkMGDCAH3/8kSZNmjh/17x5c+x2OyNHjiQ2NpZ27dplOE6hlKSXfpn6nTt3yJ07N0WLFuXw4cPMmDGDxo0bU7x4cbZt28bu3bsJCwsDUCglfwqTXV3K5A9wJOunT59m4cKFnDx5ktOnT9OhQwd69+7NunXrWL58OQ8fPiQgIMAZJLi6ujoHZyK/x86dO+nRowdDhgzh9ddfx9PTE7PZTM6cOY0uTTKpS5cuUa9ePXLmzMm0adPImzcvzZs356WXXmLmzJm4u7sDOJt1amAlT+J4Emyz2QgKCnIupapatSqHDh2ievXqdO7cGYBVq1axaNEili5dSu7cuQ2uXDKrmJgYgoOD6dKlCwUKFOCzzz7j4cOH1K1blwYNGvDZZ59x//59UlNTad68Oa6ursyePZuDBw8ya9YsPDw8jP4TJBP49SyVffv2MW3aNLJly0aXLl0ytDmYN28eu3fvZtmyZbrXyWPSzwhesWIFx44dY9y4ccyZM4cLFy6QmprKyZMnyZEjB/Hx8bi4uDB69GhKlixpcOXyLFEwJX/Y5cuXCQkJoWvXrpQoUYKYmBhGjRpFixYt6NOnDykpKXzzzTf4+flRtGhR5zI/PaWR/9b27dvp3r07PXv2dD6lEfkt58+fZ9asWSQlJWGz2WjWrBkBAQG0bduWwoULM23aNGc4JfKfhIWF4enpyeTJk7l37x5ZsmRh0aJF7N+/nytXrlC2bFkOHz7M7NmzNViXf2v27NncunWL4cOHA7/Mopo0aRLffvst7dq1o3bt2ri6unLs2DGio6OJiYlh7dq1LFmyhGLFihlbvGQKjiDh4cOHPHr0CDc3N/LkyUN0dDTDhw8nMDCQJk2aULZsWecxjiBLy64kvfS7zH7xxRccPXqUMmXKULduXQDmz5/PiRMnyJYtG3Xq1KFAgQK4u7vj7e1tcOXyrFEwJX/Ypk2bWLduXYZd0X744Qdat25N586d6dq1a4b3a6aU/BG7du0iMDBQy/fkd7t58yaDBw/GYrHQqlUr8ufPT+PGjalatSrTpk0zujx5CiQkJNC1a1f69OlDyZIlSUlJwc3NjR07dnDhwgXsdjsBAQGULFkSf39/o8uVTG7cuHGcOHGCyMhI5yyF2NhY6tati5+fH02bNqVhw4asWbOGPXv24O7uTvv27bXUWID/H0dHR0fTt29fsmXLxq1bt6hUqRIdO3bk4cOHREREEBgYSMOGDalUqZLzWIVSkp7jXLLZbNSpUwc3NzfOnDnjnHCQJ08eACIjI9m6dStVq1alV69eBlctzyqlA/KHJSQkcP/+fefPaWlpFC9enGLFijFz5kyWLl2a4f0KpeSPqFGjhkIp+a/4+PgwdOhQbDYby5YtIyYmhvXr19O7d2+jS5OnRFJSEseOHePYsWMAzhm/Dx484JtvvqF9+/a88847CqXkMY4drtLS0pyvvfrqqwB8//33zqXE2bNnp3Llynh7e7N582bu3btHcHAw06dPJyIiQqGUOJnNZm7cuEFYWBj169dn+fLl9O7dmy1btrB3715Kly5N//79OXLkCIcOHcpwrEIpSc/xnWzXrl2UK1eOzZs3M2jQIPbu3cvGjRu5efMmAKGhoTRs2JCQkBAjy5VnnBIC+cNef/11Ll++zPTp04FfBuxZs2alaNGijB07NkMTRhERI/j7+zNkyBDu3bvHp59+yosvvkhgYKDRZclTwtvbm9DQUFasWMGePXucg/mUlBSyZs1KcnKywRVKZuRYInP27FkGDBjA+PHj2bNnDzVr1sTd3Z158+YRGRnJ2bNn6dOnD8nJyUyZMoUzZ87w6aefOj9HOxeLg81mA+DcuXOUKFGCdu3aYbfbiYqKokGDBlSqVInIyEheffVVPvroIzp06GBwxZLZtW7dmmnTplG5cmUAWrZsSZs2bVi+fDmbN2/mxo0bADRr1ox8+fIZWao849TkR/4Qm81G/vz5GTNmDP369ePChQsUK1aMn3/+mTNnzjB69Gj1lBKRTMHf35+PPvoIi8Wi5sHyX2vSpAm3b9/mww8/pHLlynh5ebFjxw4WLlxIlixZjC5PMhlHKHXq1ClatmzJW2+9xb59+zh69CgAM2fOZNq0aXz++eds2bKFbNmy8fHHH5MlSxaqVq1K3rx5jf0DJFNxLLlyhOKpqalcuHCBixcv0qtXLwoUKMDIkSOZPHkyJ06cIDQ0lFdeeQXI2Nha5Nfef/99hg4dyoEDB2jQoAHwSzhlNpuZOHEiLi4utGzZUueQ/OXUY0r+ND/++COzZ88me/bsuLu7M2zYMO2+JyIiz4y4uDj27t3L119/jb+/P7Vr19bSYsngzp07vPjiiwDcv3+f1q1bExQURKtWrdi4cSOLFy8ma9asdOjQgWrVqgFw/fp1ZzPhlStXMmPGDFasWEFAQICRf4pkEo5g6eLFi3z++edYLBYSEhKIiYnhxx9/5NVXX2Xq1KkAdOvWjcDAQMLDw40tWp4qO3fupGfPnrRr146ePXs6X1+1ahWVK1emQIEChtUmzw8FU/KnSL+ddvoQSjOlRERE5HkQFxfH3LlzadKkCe7u7hw7doyPP/6Y1atXExsby6BBgyhZsiQ//PADt27dombNmvTo0YMLFy4wZ84cTpw4QWJiIlOnTqVUqVJG/zmSCTjG16dPnyYkJITXXnuNxMRETp48SWxsLC+//DI1a9bE39+fr7/+mjNnzrB+/XqNveW/tn37dnr37k1YWNhjG1eJ/B101ZI/haOZ4q9zTt0YRURE5Hlw//59tm/fzokTJ7h27RotWrQgb9683Lt3j/bt21O0aFHCwsIA2Lp1K1evXgXAz8+P5s2bY7PZ8PX1xcfHx8g/QzIRk8nEvXv3+O677+jcuTMdOnQgPj6eo0eP0qdPHxITE0lOTmb79u34+vqybt06XFxctHxP/mu1atVi6tSpdO3aFVdXVzp27Gh0SfKc0Ywp+U3/7RK89FvQXrt2jdy5c+Pq6vpXlSciIiKSqXz11Vd069aNggULMn/+fF544QWOHz/OhAkTWLlyJQDh4eEULFiQTp06aZc0+bfi4+OpXbs2SUlJDBo0iIYNGzpDp4ULF7Jv3z6mTZuGu7u782GwQin5I3bt2kVgYKCWqcvfTo1/5ImsVitms5nLly+zZMkS9u7dy507d37z/elDqcjISIYOHapdikREROS54u/vT7du3bDb7URERHD58mXMZjP3799n7ty59OnTh7Nnz9KhQwdnCwSR3+Ll5cXQoUMxm82cOnUK+P9VCrlz58ZkMuHh4ZFhhYJCKfkjatSooVBKDKF1VvIYm82GxWIhOjqa0NBQAgICuHz5MiEhIQQHB5M/f/4M708fSi1btoxZs2axcOFCsmbNakT5IiIiIoYoXLgwhQsXpkaNGvTo0YPZs2dTr1493nnnHXbs2EFgYCBr1qzRciv53WrVqoXJZKJnz57kzZuX4OBgvLy82Lt3L9myZdMGQyLyTNBSPnmiK1eu0Lp1a1q3bk2rVq0YMmQIhw4dombNmjRt2hRfX18g43ThZcuWMW3aNCIjIylRooSR5YuIiIgY6syZM3Tt2pWKFSty+vRpypUrR79+/TCbzdocRv5r27Zto0+fPnh7e/P6669z/vx5PvnkE9zc3DI8JBYReRopYhen9NPJv/vuO8qUKUOrVq24ffs2qamplCpVii1btrB8+XKOHz8O8FgotXjxYoVSIiIi8twrUqQIM2fOxGq14uvrS3h4OGazGZvNplBK/mu1a9dm5syZPHr0iKSkJFauXImbmxtpaWkKpUTkqadgSoD/b3R+4cIFfv75Z9LS0khJSSE5OZm2bdvi7e3NhAkTyJMnD5s3b+bTTz91Hrts2TKmTJlCZGQkJUuWNPCvEBEREck8ihQpwogRI5g2bRouLi6kpaVp6ZX8z6pXr85HH33E9u3bmT17NqAdsEXk2aArmTiX4924cYP333+ffv36Ub16dd59911WrlxJ7ty56devHwA+Pj7UqVOHli1bAnDixAlWrFhBVFSUZkqJiIiI/IqbmxvwS09OhQjyR9WsWZMpU6bQrVs3LBYLHTt2NLokEZE/THdHwWKxcP78eRYvXkzDhg1p3Lix83eOKeeXL19m1qxZ3Lt3jxYtWjif9pUoUYKoqChy5cplVPkiIiIimZ6WW8mf5e2332b27NkEBgYaXYqIyJ9CwZQAcPr0adasWUOJEiW4desWefLkASB79uzcv3+f7t27Y7FYWLFiBRaLxdmPymw2K5QSEREREfkb1ahRw+gSRET+NNqV7znlWL7n6HVgNpv5/PPP6dWrFz169CA0NBQPDw/gl11lbDYbhQsXdh6jqegiIiIiIiIi8kcpXXgOOUKpc+fOsWzZMmJjY+nRowd16tQhOTmZAQMGYDabadGiBV5eXhQpUiTDsQqlREREREREROTPoG1BnjM2mw2LxcKpU6d4//33SUhI4OTJk7Ro0YLo6GgaNGhAREQE06dP5+OPPyYlJSXD8RaLxaDKRURERERERORZo6V8z6Hbt2/TsWNHmjVrRlBQELt372bo0KHY7Xbmz59PsWLFWLNmDevWrWPFihVq1ikiIiIiIiIifwnNmHoOJCUlceTIEdLS0gC4e/cubm5uBAUFERcXx6pVq+jduzeFChWie/fufPbZZwQHB7Ny5UpMJhPKLkVERERERETkr6Bg6jkwceJE+vXrx/79+0lNTeX+/fvky5ePuLg42rRpw4svvkiDBg0oVaoUd+/eZdu2bRnCKM2YEhEREREREZG/gpbyPcNSUlJwdXXFarXSrVs37t69S69evahSpQopKSmcOHGCGTNmsHDhQgDCw8N58803qVOnDmazGbvdrlBKRERERERERP4ymjH1jLLb7bRs2ZKwsDAsFgszZ84kZ86cTJw4kb1792I2m4mPj+fAgQN8/vnndO/enejoaGrXro3ZbMZmsymUEhEREREREZG/lGZMPcOOHTtGmzZtqFGjBhMmTMBms9G5c2fu3btH7969qVKlCr169eLOnTt4eHgwa9Ys5wwr7b4nIiIiIiIiIn81BVPPqLS0NFxcXDhx4gRNmzbl7bff5qOPPsJms9GpUyfu3r3LgAEDqFixIvHx8Xh6emIymZzHiYiIiIiIiIj81bSU7xljs9kAcHFxwWazUaJECZYvX86XX35JeHg4ZrOZOXPmkDt3bvr378+xY8fw8vJy7r6nUEpERERERERE/i6aMfUMcSzBu3DhArt37+batWtUqVKFN998k3PnzhEUFETNmjWZMGECVquVSZMmER4ermV7IiIiIiIiImIIBVPPmNOnT/PBBx/w+uuv4+7uzpdffsk//vEPJk6cyMmTJ2nevDkVKlRg7ty5zubm6iklIiIiIiIiIkbQUr5nSGJiIlOnTqVt27ZEREQwYsQIAPz8/Lh9+zbFixdn8eLFJCcnkz6PVCglIiIiIiIiIkZQMPUMMZvN3Lt3jzJlymCz2WjQoAFVq1alQ4cOBAUFcfDgQV599VWioqIwm83OflQiIiIiIiIiIkZQMPUUs1qtGX52c3PDZDJx4sQJmjRpQqFChZgwYQIAuXLlwtfXF8A5W8ps1v9+ERERERERETGOkomnlKMv1Llz55g4cSJhYWHExMRQp04dRo0ahYeHB5MmTQJg2LBheHp6OoMpR28pEREREREREREjuRhdgPxvLBYLp0+fpmXLltSpU4fAwEASEhJo1aoVcXFxREVF0bp1a0wmE/Hx8Sxfvty5fE8zpUREREREREQkM9CufE+p5ORk+vbtS6lSpejQoYPz9ejoaGcz80uXLmGxWHjjjTewWCykpaXh4qIsUkREREREREQyB6UUTyl3d3fu37+Pu7t7htfv3LnDwIEDWb9+PUWKFHG+brVaFUqJiIiIiIiISKaiNV1PiV/voJeSkkKOHDm4fPkycXFxztf9/PwoUqQIWbNmzfB+xywqEREREREREZHMQlNongKORue3bt3i/PnzWK1WihQpQocOHWjWrBkvvPACNWrUoHjx4syfPx+TyUSWLFmMLltERERERERE5N9Sj6lMztGsPDo6mm7dupE/f36uXr2KzWZj3LhxmEwmhg4dSmpqKj4+PqSmprJ06VJcXV3V6FxEREREREREMjUFU0+BW7du0bRpU1q3bk2rVq24cOECW7duZe7cuaxYsQIfHx+uXbuG1Wrl1VdfxWw2q9G5iIiIiIiIiGR6CqYyMbvdjslk4uDBg8yZM4eFCxc6f/fo0SOGDx+Op6cnI0eOxGQyOX+nmVIiIiIiIiIi8jRQepEJWa3WDD8nJydz+PBhTp065fx9tmzZ8PHxISEhIUMoBSiUEhEREREREZGngtZ6ZTKORufnz59n+fLleHt74+3tTbVq1di8eTNZs2YlX758AFy/fh0/Pz+DKxYRERERERER+d9oKV8m4li6d+bMGZo0aUK5cuW4f/8+WbNmJS0tjZw5c5KQkEDx4sW5fPkyMTExbNiwQb2kREREREREROSppGAqk7l37x7bt28nKSmJ0NBQjh07xmeffcapU6fIly8fRYoU4aeffiJfvnx069YNFxcX5ywrEREREREREZGniabaZCLx8fHUq1cPs9nMwIEDAShdurRzl70TJ07wxhtv0Lp1a+cxCqVERERERERE5GmlLtmZiJeXF0OGDCExMZFDhw45Xy9VqhRBQUH4+vqyZ88e4Jdlf4BCKRERERERERF5amkpXya0Y8cOevXqRfv27enRo4fz9YsXL+Lv769d90RERERERETkmaBgKpPavn07vXv3pmPHjnTr1i3D72w2m8IpEREREREREXnqKd3IpGrVqsWUKVOYNWsWa9asyfA7hVIiIiIiIiIi8izQjKlM7vvvv6dcuXK4uKhPvYiIiIiIiIg8WxRMPSXS0tIUTomIiIiIiIjIM0XBlIiIiIiIiIiIGELNikRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERESeIxcuXDC6BBEREREnBVMiIiIif6MPPviArl27PvF3q1evpmrVqqSkpPzuz/v4449p167d73rvrl27aNu27e/+bBEREZG/movRBYiIiIg8T1q2bEnXrl25ffs2uXPnzvC7FStW0KRJE9zc3H7354WFhf3u9z548AC73f673y8iIiLyV9OMKREREZG/UbVq1fDz82PDhg0ZXj969ChnzpzhjTfeoGPHjlSvXp3SpUtTt25dvvrqKwCuXLlC0aJFiYiIoGLFiowYMYIZM2bQsmVL5+d89913BAUFUaFCBd599102bdoEwIEDBxg2bBjXrl2jbNmyHD58mOLFi3Pjxg3nsT/99BNlypQhLi7ub/gvISIiIqJgSkRERORvZTabadasGWvWrMkwe2nFihW88847DBo0iJdffpkdO3Zw8OBBXn/9dYYPH57hM+Lj4/n222/p1atXhtejo6Pp1KkTHTp04MCBA4waNYqxY8eyZ88eKleuzIgRI/Dz8+PIkSOUK1eOggULOoMrgI0bN1K7dm2yZs36l/43EBEREXFQMCUiIiLyNwsKCuLOnTvs378f+GWJ3eeff06rVq2YO3cu3bp1w263c/XqVbJnz87NmzczHN+gQQPc3NzInj17htdXrlzJW2+9Ra1atbBYLJQrV46QkBCWLVv2xDoaNWrkDKZSU1PZsmULjRs3/gv+YhEREZEnU48pERERkb9ZtmzZqFevHmvWrKFKlSqsW7eOEiVKULp0aXbs2EHnzp25ffs2hQoVwtvb+7G+UHny5Hni5169epX9+/dToUIF52tWq5WAgIAnvr9+/fpMnjyZEydOcOXKFbJly0bFihX/vD9URERE5D9QMCUiIiJigJYtW9KwYUPu37/P6tWr6d69Ozdv3qRHjx7MnDmTGjVqALBt2za2b9+e4ViTyfTEz8ybNy8NGzZk5MiRztdu3br1mw3PX3zxRf75z3+ydetWrly5QqNGjX7zs0VERET+ClrKJyIiImKAwoULU758eSIiIkhMTKRWrVrEx8djtVrx8PAA4OzZs8yaNQuAlJSU//iZQUFBbNmyhb1792Kz2bhw4QItWrRg0aJFALi7u5OYmEhaWprzmMaNG7Njxw6+++47GjZs+Bf8pSIiIiK/TcGUiIiIiEFatGjBxo0badq0Ka6urhQsWJB+/frRt29fypcvT48ePWjcuDGurq6cPn36P37eq6++yuTJk5k8eTIVK1akRYsW1KhRgz59+gBQsWJFcuXKRcWKFTl16hQA1atXJz4+ntKlS+Pr6/uX/r0iIiIiv2ay/9bcbhERERF5LjRs2JD27dtTt25do0sRERGR54x6TImIiIg8p2JiYjhw4AC3b9+mZs2aRpcjIiIizyEFUyIiIiLPqSFDhnDu3DkiIiJwc3MzuhwRERF5Dmkpn4iIiIiIiIiIGELNz0VERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBAKpkRERERERERExBD/B7AAQeMYqxp0AAAAAElFTkSuQmCC"
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACejElEQVR4nOzdd1RUV//24XuGImBDQMFuLDE2gt0Ye8NYEyyPLYq9o7HEFmvsxt57r7FFTY8mahIjUTFVYy8RRUFUFAGBef/wZX4SQIcEBoHPtZZrOefsOfM9M5vDzM3eewwmk8kkAAAAAAAAwIqMaV0AAAAAAAAAMh9CKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAABeKiaTKa1LAABYAaEUAMDqfvvtNw0fPlx16tSRp6en6tevrw8++EDXr19P69JSzO7du1WyZEn9/fffaV2Kxc6dO6d33nlHZcuWVZMmTZ7b9q+//tL777+vWrVqqWzZsqpTp46GDBmiX375JUHbevXqaeTIkZKkv//+WyVLltTu3buTPPbChQtVsmTJ5/579OiRJCk6OlqjRo1ShQoVVKFCBf3000/67LPPVLduXZUrV07jxo3TyJEjVa9ePYufh+S2f1n06dNHH3/8saT/ew4t8eeff6p8+fKKiorSu+++q3ffffc/1REVFSVvb2+dPn36Px0nvXv06JGWLFmiFi1ayMvLS1WqVFG7du20fft2RUdHx2v7z9crJV6HF/nggw9UunRp3blzJ8k2/fr1U40aNRQTE/OvH6dkyZJauHBhsu7z8ccfa8aMGebb6fF6CgCwjG1aFwAAyFw2b96sqVOnqmrVqho6dKjy5Mmja9euadWqVfrqq6+0du1alSlTJq3L/M/q1Kmj7du3K0+ePGldisUWLVqkGzduaNGiRXJ1dU2y3SeffKIxY8aoVKlSGjx4sAoUKKBbt25p586dat++vYYPH66uXbvGO262bNmSXc/27duT3Ofo6ChJOnr0qHbv3q1+/fqpevXqKl26tOrVq6ciRYpo+vTpcnd3l9FoVOfOnS1+3H79+iWr/ctg9+7dunnzplq1apXs+x4+fFjVqlWTvb19itRib2+voUOHauTIkfrkk0+UJUuWFDluenLz5k117dpVoaGhevfdd1WxYkVFRkbqxx9/1JQpU3TgwAEtWbJE2bNnT/T+48ePT/UaW7durY8//liffvqpfH19E+wPDQ3VkSNH1K1bN9nY2Pzrx9m+fbs8PDySdZ+lS5eqSpUq5tvp8XoKALAMoRQAwGpOnjypKVOmqGPHjhozZox5e9WqVVW/fn35+Pho1KhR2rdvXxpWmTJcXFzk4uKS1mUkS2hoqF599VXVqVMnyTZ//vmnxowZo+bNm2vy5MnxPqy2aNFCU6ZM0YwZM1SyZElVr15dklS6dOl/VY+Xl9cL29y7d0+S5OPjo4IFC5q3vfnmm6pateq/etxChQr9q/ullcjISM2ePVtjxoyR0Zj8QfCHDx9Wy5YtU7SmRo0aaf78+dq6dWuigUdGZjKZ5Ofnp8ePH2vPnj3Kly+feV+dOnX01ltvqXPnzpo0aZJmzZqV6DGKFy+e6nV6eXmpePHi2rdvX6Kv0YEDBxQdHa3WrVv/58f5r9Lj9RQAYBmm7wEArGb16tXKnj27hgwZkmCfi4uLRo4cqUaNGunhw4fm7Z999pl8fHxUvnx5vfnmmxo3bpzu379v3r9w4UI1btxY33zzjZo1a6Zy5cqpZcuWCggI0OnTp9WmTRt5enqqWbNmOnbsWLz71atXT99++60aN26s119/XW3atInXRpLOnj2rAQMGqFq1aipTpoxq1qypyZMnKyIiwtymZMmSWrRokVq1aqWKFStqyZIlCaab3L17V8OGDdObb75prnHv3r3xHuvKlSvy8/PTm2++KS8vL7377rs6efKkeX/c1LfPP/9cfn5+Kl++vCpXrqwxY8aYp7Ml5fbt2xo1apRq164tT09PtW7dWgcPHox3Dv7+/vr555+fO71u2bJlcnJy0tixYxMdPTF8+HDlzZtXixcvNm97dvpeSho5cqT5uA0aNNC7775rngK1ePFi8/P/z+l4JpNJmzdvVtOmTeXp6amGDRtq5cqV5jVsEpu+9/HHH6tp06bmqYoLFy6MNwVr5MiR8vX11a5du+Tt7a2yZcuqRYsWOnz4cLzjXLt2TX5+fqpSpYoqV66snj176vz585KkVq1aqV27dgnOs3v37s+dyrVz5049fvz4X005vH//vn799VfVqlUr0f1Hjx5V2bJlNWrUKPPzExAQoI4dO8rLy0t16tTR+vXr5evrm+A1bt68udasWaOoqKgkHz8iIkKzZ89Wo0aNVLZsWVWoUEFdu3bVmTNn4rX74Ycf1LFjR5UvX141atSIdx3YvXu3SpcurY8//lg1atRQrVq1zM/pi64fkZGRmjhxonkaauPGjbVmzZp4j71x40Y1btxY5cqVU82aNTVhwoR416h/Onz4sH799VcNGzYsXiAVp3z58urSpYv27duna9euJXqMZ6fvdevWTW+//XaCNoMHD1bTpk3Nt0+cOKFOnTrp9ddfV5UqVTRixAjdvXs3yTqlp33ujz/+0KVLlxLs27Nnj6pUqaJChQpZ9DqNHDlSXbp00fjx41WpUiW98847io6OTjB97969exo3bpyqV6+ucuXKqW3btvGuu/Xq1dONGze0Z88e889wYtP3XnS+sbGxmj9/vurVq6eyZcuqXr16mjNnjp48efLc5wQAYF2EUgAAqzCZTPr+++/1xhtvmKde/VPjxo01YMAA81SvJUuW6L333tPrr7+uBQsWqH///vryyy/17rvvxguFbt26pWnTpqlPnz6aN2+e7t+/Lz8/Pw0ZMkRt27bVnDlzFBsbq/feey/e/e7evasRI0aoQ4cOmj9/vhwdHdWzZ0/9/vvvkp4GOR07dtTjx481ffp0rVy5Um+99ZY2btyodevWxat96dKl8vb21pw5c1S/fv0E5zZ8+HBduHBBEydO1IoVK1S6dGmNGDFCx48flyRduHBBPj4+un79uj744AN99NFHMhgM6tKli/z9/eMda/z48cqfP7+WLFmiHj16aNeuXVq2bFmSz31wcLBat24tf39/vffee1q4cKHy58+v/v37m0elbd++XaVLl1bp0qW1ffv2REdLxcbG6ocfflC1atXk5OSU6GPZ29urQYMGOnnypEJDQ5OsyRLR0dGJ/ouNjZX0dJpd3759JT2dIjhmzBjzlL/WrVsnOd1nzpw5mjJlimrXrq2lS5eqTZs2mjt3rpYsWZJoHcuXL9fYsWP1xhtvaNmyZerYsaNWrlypcePGxWv3+++/a/Xq1fLz89PixYtla2srPz8/cwhy+/ZttWnTRpcuXdL48eP10Ucf6f79+/L19dXdu3fVunVrBQQE6OrVq+ZjBgUF6dixY8+dlrdv3z7VrVtXDg4OyXh2n/r+++/1yiuvKH/+/An2/fzzzxowYICaNm2qKVOmyGAw6OLFi+ZRNXPmzNHAgQO1YsWKeOFpnLfeektBQUEJ+u+z3n//fe3cuVO9evXSmjVrNHLkSJ07d07vvfeeOQQ7fPiwevToIWdnZ82dO1fDhw/XoUOH5OfnZz5OTEyMli1bpsmTJ2vw4MEqXry4RdePKVOm6PDhwxoxYoRWr16t+vXra8aMGeZQ9tNPP9WMGTPUsWNHrV69Wv3799cnn3yiyZMnJ3lOR48eldFoVN26dZNsExcmHTp0KMk2cVq2bKkzZ87EC44ePXqkb7/91jzC7eeff5avr68cHBw0b948jR49Wv7+/urcuXO8a94/vf3227Kzs0swOvXChQv6448/zKOkLHmdpKdB0dWrV7Vw4UL1799ftrbxJ2VERkaqS5cuOnjwoN577z0tWrRIHh4e6tGjhzmYWrRokXLnzq3atWsn+TNsyfmuXLlSmzdvVv/+/bVmzRq1b99eq1ateu61EgBgfUzfAwBYRWhoqCIjI1WgQAGL2t+/f98cGDy7vsqrr76qjh07avfu3erQoYMk6fHjxxo/frx5tMfFixc1e/ZsTZkyxfyhKiYmRn5+frp8+bJKlSplvt+ECRPMoxCqVaumBg0aaMWKFVqwYIHOnTunUqVKaf78+eagrHr16jp27Jh+/vln9enTx1yXp6enevXqZb79xx9/xDsff39/9evXTw0aNJD0dMqis7OzebTRokWLZGdnpw0bNpjXmalTp46aNWumWbNmmRewlqTatWtrxIgRkqQ33nhDP/zwg7777jsNHTo00edy7dq1unv3rj7//HPzFLfatWvL19dXM2fOVLNmzeTl5WU+x6Sm29y7d08PHz584WtYuHBhmUwm3bx5U7ly5Xpu2+dJam2x1q1ba8qUKSpUqJB5ql2pUqXi1eXh4ZHoeTx48EBr167Vu+++q/fff1+S9Oabb+ru3buJBithYWFaunSp/ve//+mDDz6QJNWoUUPOzs764IMP1LVrV5UoUcLcdvfu3eaanJyc1KlTJ/3000/y9vbW2rVrFRERobVr1yp37tzmuv/3v//p9OnTatasmaZPn65PPvnEHLjs27dPDg4OatSoUaLPxcOHD/Xbb7/prbfeeuHzmZjDhw8nOkrq119/Ve/evdWoUSNNmzbNPC1w+fLlypYtm1atWmUOl4sWLZroCK/ChQsrZ86cOnbsmGrUqJFgf1RUlB49eqSxY8eaF9avUqWKHj16pOnTp+vOnTvKkyePFixYoNdeey3e6DsHBwfNmTNHQUFB5m19+vQxh6mWXj/8/f1VvXp1c0hUtWpVOTk5mfvt8ePHlT9/fnXs2FFGo1FVqlSRk5PTcwPXv//+W87Ozs9dRy2uj1iycHfDhg3l5OSkzz77TAMGDJAkff3114qMjFTz5s0lSbNnz9Yrr7yi5cuXm68pr7/+upo2bapdu3apY8eOiR7bxcVFderU0YEDBzR48GDz9j179ihnzpzy9va2+HWSngbJEydOVOHChRN9vE8++URnz57Vjh079Prrr0uSatWqpXfffVcfffSRdu3apdKlS8ve3l4uLi5JXossOV9/f3+VKVPGHOhWqVJFjo6O/2p9OwBA6iGUAgBYRdyHWku/xen06dOKiooyf+iKU6lSJeXPn1/Hjx83h1KSVKFCBfP/3dzcJMUPV5ydnSU9DSXi2NjYxJv+4uDgoFq1apmnXNWoUUM1atTQkydPdPnyZV25ckV//fWX7t69az5enFdfffW551O1alUtXLhQZ8+eVe3atVWrVi1zsCQ9Da3q1q0bb+FjW1tbNW3aVIsXL443Pe+fH9Q8PDx048aNJB/b399f5cuXNwdScVq0aKFRo0bp0qVLyVrDxs7O7rn74z4k/tevdN+5c2ei2//L2jKnT5/WkydP1LBhw3jbk5peGBAQYJ4a9+x0vbipcj/88IM5lHJxcYm3HlXc4s6PHz+W9HRNNS8vL3MgJUl58uTRt99+a77dqFEj7du3zxxK7d27V40bN05yZNrNmzcVExNjcdj7rLjRi7Nnz463PTAwUD179pTJZNL48ePjrVP1008/qXbt2vFGO5YvXz7RkVaSlC9fviSDF3t7e61evVrS01FkV69e1aVLl8zPx5MnTxQREaE//vhDAwcOjHdfb29veXt7x9v27M+gpdePqlWratu2bQoKClLdunVVu3Zt9e/f39y+WrVq2r59u3x8fNSoUSPVqVNHzZs3l8FgSPScpKfP6z9HCP3Ti/Y/y8nJSQ0bNowXSn366aeqUqWK8ubNq8ePH+uXX35R9+7dZTKZzP20YMGCKlasmHnqY1Jat26t3r1769SpU6pQoYJiY2O1f/9+NW/e3LxI/YtepzgODg7PXZPt2LFjyp07t8qUKRPv56lu3bqaOXOm7t+/r5w5cz73+bD0fKtWrarZs2erQ4cOatiwoWrVqqVOnTo999gAAOsjlAIAWIWzs7OyZs2qwMDAJNuEh4crKipKzs7O5ilPcQHTs9zc3BQWFhZvW2J//X7RdCYXF5cEAYurq6v5sWNjYzVnzhxt3rxZ4eHhyps3rzw9PRP9NrHE6nzW3LlztWzZMn3++ef64osvZDQaVb16dU2YMEEFCxbU/fv3kzxXk8kUbw2bf05/NBqNzw2A7t+/n2hoEfd4zwZ1z5MrVy45OTm9cHTH9evXJUl58+a16LhJKVeu3H+6f2LiFka3NNiKa//sKLhn3b592/z/f74uccFF3HTDe/fuvTA8at26tfbt26cTJ07I3t7ePOUzKXE/B0mFVs/z22+/6fHjx6pYsWK87X///bdq1Kih48ePa+HChRo1apR53927dxP9ZsZng7ZnOTo6Pnf9paNHj2rq1Km6dOmSsmbNqpIlSypr1qySnoY79+/fl8lkeu63QcZ5to2l148xY8bIw8ND+/btMz/P5cuX17hx41S6dGk1adJEsbGx2rJlixYtWqT58+crf/78Gjp0aLxA+1n58+fXDz/8oIiIiCSvQXE/I4mtOZWYt99+2zzKKE+ePPrxxx81adIkSU9/fmNjY7Vy5UqtXLkywX1f9O2HNWvWlLu7u/bv368KFSroxx9/VFBQULwFzl/0OsVxdXV9bmB379493blzJ8lRkHfu3HlhKGXp+fbo0UNZs2bVrl27NGPGDE2fPl2vvvqqRo8erTfeeOO5jwEAsB5CKQCA1cR90I2MjEz0g9Lu3bs1ZcoUbdmyxfzBJDg4WMWKFYvX7s6dOwlG/fwb9+7dk8lkivchKjg42PzhdsWKFVq3bp0mTJggb29v8yimf/NtVNmzZ9fw4cM1fPhwXbp0SQcPHtSSJUs0ceJErVq1Sjlz5lRwcHCC+925c0fS00Do2QAkOSw5tiUMBoPq1q2r77//XuHh4YkGITExMfrmm29UoUKFl/LbsnLkyCHpabhStGhR8/abN2/q6tWrCQKauPYfffSRihQpkuB4Lwojn5U9e/ZEF54+duyYChQooIIFC5oXlv7iiy9kZ2enwoULq1KlSkkeM+61szRYfNaRI0f0xhtvyN7ePt72EiVKaPny5Vq4cKFWrlxpXhBeejr6KyQkJMGxQkJC9MorryTY/uDBgySDl2vXrql///6qX7++li9fbh5hs3nzZh09elTS07DZYDAkeN6ioqJ07Ngxc13/ZOn1w97eXn379lXfvn0VGBiob7/9VkuWLNHQoUP1+eefS5KaNWumZs2aKSwsTN9//71Wrlyp4cOHq1KlSnJ3d0/w2PXq1dOWLVvMX76QmC+++MLc1hLVqlWTu7u7Pv/8c7m7u8vW1tY8Uixr1qwyGAzy9fVNNChLag2/ODY2Nnr77be1Y8cOjRkzRnv37lWZMmXM05wteZ0slT17dhUpUkQfffRRovstGfFn6fkajUZ17NhRHTt2VEhIiA4fPqxly5Zp4MCB+vHHHxP0ewBA2mChcwCA1XTr1k337t3T3LlzE+wLCQnRqlWrVLhwYXl5een111+Xvb299u/fH6/diRMnFBgYGG+63r/15MmTeB+qIiIizB/UpafTrYoXL67WrVubA6mgoCCdO3fOPPrFEjdu3FDt2rXNH0SLFi2qnj17qnr16rp165YkqXLlyvr222/jjQCLiYnRp59+qnLlyv2nD1CVK1dWQECAeXRGnH379il37txJrv+SmN69eys8PFwTJkxI9DmYM2eOrl69Gm+9rZeJp6en7Ozs4n3zoCStX79egwYNSjDK4/XXX5ednZ2CgoJUrlw58z87OzvNnj3bojWB4lSqVEmnT5+OF+rcvXtXPXv2NNdjMBjk4+Ojb775Rt98843eeeed5x7T3d1dNjY25n6UHEeOHFHt2rUTbM+VK5dsbW3Vt29f5cuXT2PGjDFP0apcubKOHDmiyMhIc/szZ84k+jyYTCYFBQUlObXv999/V2RkpHr37h1vylfcz6TJZFLWrFlVqlSpBK/X999/r169eiV53pZcPyIiIuTt7W3+tr18+fKpY8eOatq0qfm4gwcPNk+Zy549u9566y3169dPMTExSYbEb775pipWrKgZM2YkOq32t99+06pVq9SkSZNEg87EGI1GNWvWTAcPHtQXX3yh+vXrm0eHZsuWTaVLl9alS5fi9dESJUpo0aJF5i9TeJ5WrVrp3r17+v7773Xo0CG1adPGvM+S18lSVapU0c2bN+Xq6hqv1mPHjmnVqlXmqb/PThn9J0vPt127duYF6V1dXeXj46OOHTsqLCzsuaP3AADWxUgpAIDVeHl5adCgQZo3b54uXryod955R7ly5dL58+e1Zs0aPXr0SCtWrJDBYJCzs7N69eplXgC8fv36+vvvvzV//nwVL15cPj4+KVLT6NGjNXjwYLm6umr16tUKDw83f6Obp6enlixZohUrVsjLy0tXr17V8uXLFRUVZV4nyBL58+eXh4eHJk+erIcPH6pQoUL6/fffdfjwYfXu3VuSNGDAAB05ckSdO3dWr169ZG9vr02bNun69etatWrVfzrHrl27at++feratasGDBigXLlyae/evfrpp580derU534A/KeSJUtq+vTpGjVqlK5du6Z27dqpQIECun37tnbv3q0ffvhBw4YNSzTsSK7Tp08nua9IkSIJ1vWyhIuLizp37qz169fL3t5e1apV02+//aZNmzZpyJAhCdb6yZUrl3r06KH58+fr4cOHqlq1qoKCgjR//nwZDAa99tprFj+2r6+v9u7dq+7du6tPnz7KkiWLli9frjx58pgX25ckHx8fLVy4UCaTKd72xDg5OalChQo6deqU+VvxnvXPb4mUnn6or1evnn777TfNmzcvyWM7ODho7Nix6tWrl1auXKl+/fqpT58++uyzz9SjRw9169ZNDx48MD8X/wz0/vrrL4WFhalmzZqJHr9MmTKytbXVrFmz1K1bN0VFRWn37t367rvvJD2dzitJfn5+6tu3rwYPHiwfHx/dvXtXs2fPVt26dVWqVCmdOXMmwbEtuX44ODioTJky5jYlS5bU5cuXtWfPHvMopGrVqmn8+PGaMWOGatWqpQcPHmjRokUqUqRIkq+90WjU7Nmz1atXL/n4+KhLly4qX768YmNj9eOPP2rz5s0qXbr0c6dlJubtt9/W6tWrZWNjo6VLl8bbN2TIEPXq1UtDhw5VixYtFBMTozVr1uiXX34xX8+ep3DhwqpcubKmTZummJiYeCO8LH2dLOHj46NNmzapa9eu6tOnj/Lmzasff/xRK1euVKdOnczTqXPkyKE///xT/v7+iY6Gs+R8K1eurDVr1sjNzU3ly5dXUFCQ1q5dqypVqryUozgBILMilAIAWFXfvn1VunRpbd68WdOmTdO9e/fk4eGhWrVqqU+fPvGm+gwcOFBubm7atGmTPv74Yzk7O6tx48YaPHjwC6ekWGrChAmaOnWq7t69qwoVKmjr1q3mkUO9e/dWaGioNmzYoMWLFytv3rxq2bKlDAaDli9fbtGivHEWLVqkOXPmaP78+QoNDVXevHk1YMAA81pFJUqU0JYtWzRnzhyNHj1aBoNBnp6e2rBhw3Onb1kid+7c2rp1q/kbCZ88eaLXXntNS5YsUf369ZN9vKZNm6pkyZJat26dFixYoDt37sjFxUWVKlXS1q1bk/zGrOT63//+l+S++fPnq3Hjxv/quMOHD5ebm5u2bt2qNWvWqECBAho9enS8hfOfNXjwYOXOnVtbtmwxT7V84403NGTIkHgL079I3rx5tWXLFs2aNUujRo2Svb29qlSpolmzZsUL2Nzd3fXaa68pV65cFq3L5e3trYULFyY6LXbatGkJ2ufPn1/29vYqVqzYC9c0ql27try9vbV06VJ5e3urWLFiWr16tWbOnCk/Pz+5urqqd+/eWrp0qXmNoThHjhxR7ty5kxzVWLhwYc2ePVuLFi1S3759lTNnTnl5eWnjxo169913deLECZUsWVJ169Y1Tyfs37+/cuXKpbfeekuDBg16bu2WXD8mTZqkefPmac2aNbpz545cXV3VunVr87HbtWunJ0+eaNu2bdqyZYscHBz0xhtvaPjw4c9d8D9v3rzavn27tm7dqgMHDphHARUrVkwjR45U69atk7XYufR0IfdSpUopKChIb775Zrx9NWrU0OrVq7Vo0SL5+fnJzs5OZcqU0dq1ay3+eWzVqpVGjBiht99+O16/tvR1soSTk5M2b96s2bNna9asWQoLCzOv0dWtWzdzu27dumnq1Knq3r271q5dm+A4lpzvoEGDZG9vr127dmnx4sXKnj276tWrl+S3lAIA0obB9F+/GgcAgHRo4cKFWrRokf7666+0LgWIJygoSPXq1dOcOXMSfMNcYh4/fqwGDRpo+PDhLxxZ9V8dO3ZMdnZ28YLS+/fv680339T777+vzp07S3o6patRo0bq2LFjoiO4AAAAJEZKAQAAvBTOnDmjgwcP6ssvv1SBAgXUoEEDi+7n6OiogQMHavXq1WrevLl5XZ7U8Mcff2jBggUaMmSIypQpo9DQUK1Zs0bZs2ePN+Xr888/V2xsrNq1a5dqtQAAgPSPUAoAAOAlEBkZqbVr18rd3V3z5s1LVrjUrl07HTx4UB9//HGqBkFxawpt3bpVN2/elJOTk6pUqaIZM2aY1+mJiorS3LlzNWPGDDk4OKRaLQAAIP1j+h4AAAAAAACszvKv2wEAAAAAAABSCKEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1dmmdQEvg5CQMPEdhOmLwSC5umbntUOKoU8hpdGnkNLoU0hp9CmkNPoUUgP9Kn2Ke91ehFBKkskkOnc6xWuHlEafQkqjTyGl0aeQ0uhTSGn0KaQG+lXGxPQ9AAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqbNO6AAAAgMwqNPSuZs6cooCAk7KxsVGjRk3Uv/8g2domfIu2Z89O7dy5TUFBt+Xq6qa2bdvLx6dNvP3btm3S3bshyps3n3r3HqA336xpzdMBAABIFkZKAQAApJFx40bJ0dFJe/d+oRUr1uvEiePasWNLgnZHjnyn5csXa8aMGfr668P64IMJWrFiib777qAk6fPPD2jt2pUaP36yvvrqiN59t6s++OB9BQffsfYpAQAAWIxQCgAAIA38/fd1BQScVL9+fnJwcFD+/AXk69tDu3btSNA2OPiOOnXqIi8vLxkMBpUt66kKFSrp9OkASdLWrRvVo0cflS5dVgaDQQ0bNtayZWvl5JTV2qcFAABgMabvAQAApIHLly8qR46ccnPLbd5WpEhRBQXdUlhYmLJnz27e7uPTRgbD/903NPSufvnllAYMeE8RERG6fPmSjEaj+vfvqcuXL6lQocLq23egnJycrHlKAAAAycJIKQAAgDQQHh4uBweHeNvibj9+HJ7k/UJCgjV0qJ9Kliylhg0bKyzsgUwmk7Zt26ShQ0fqk0++UMOG3ho2zE83bwam6jkAAAD8F4RSAAAAacDBwVGRkRHxtkVEPL2d1LS706dPq0ePLipUqLCmT58jW1tb2dnZS5L+97+OKlq0mOzs7NSq1f/k7p5Xx479kLonAQAA8B8QSgEAAKSBokWL6f79+7p7N8S87cqVS8qTx13ZsmVL0P7AgU/k6+urtm3ba8KEKbK3fxpGOTs7K1cuF0VFRcVrHxsbI5PJlLonAQAA8B8QSgEAAKSBggULydPTS/Pnz1Z4+CMFBt7QunWr1LRpiwRtv/vuoD76aLoWLlyo9u07Jdj/9tuttG7dKp0//5eio6P18cfbdOfOHdWqVccKZwIAAPDvsNA5AABAGpk8eYbmzJmpNm1ayGAwqnHjpvL17SFJatiwpoYPH61Gjd7S2rUrFRMTIz8/v3ijnxo1ekvDh49W16495eSUVePGjVJw8B0VLvyKPvpovnLnzpNWpwYAAPBCBhPjuhUcHCaehfTFYJDc3LLz2iHF0KeQ0uhTSGn0KaQ0+hRSGn0KqYF+lT7FvW4vwvQ9AAAAAAAAWB3T9wAAQLpmNBpkNBrSugyrsbHJPH9TjI01KTaWP4sDAJBREUoBAIB0y2g0KKezk2wzUVCTK1fWtC7BaqJjYnX/XjjBFAAAGRShFAAASLeMRoNsbYwatC1AF24/TOtykIKK58mm+e3Ky2g0EEoBAJBBEUoBAIB078Lth/oj8EFalwEAAIBkIJQCAMBCoaF3NXPmFAUEnJSNjY0aNWqi/v0HydY24a/TPXt2aufObQoKui1XVze1bdtePj5tJEmxsbHy9q4tk8kkg+H/1kLat+8rOTo6Wu18AAAAgLSUJqFUSEiIxo4dK39/f9nY2KhFixYaMWJEom/qt27dqnXr1un27dvKkyePOnfurI4dO0p6+qa+YsWKCd7U//DDD3JycrLa+QAAModx40Ypd+482rv3C4WEBGvkyCHasWOLOnToHK/dkSPfafnyxVq1apXy5y+q33//TcOGDZKLi4vq1KmvK1cuKTo6Wl99dUR2dnZpdDYAAABA2kqTVUEHDx4sJycnHT16VDt37tSxY8e0bt26BO2++eYbzZkzRzNmzNCpU6c0ffp0zZs3T19++aUk6cKFC3ry5In8/f0VEBBg/kcgBQBIaX//fV0BASfVr5+fHBwclD9/Afn69tCuXTsStA0OvqNOnbrIy8tLBoNBZct6qkKFSjp9OkCSdObMnypWrASBFAAAADI1q4dSV69elb+/v4YPHy5HR0cVLFhQ/fr10+bNmxO0DQoKUs+ePc1v6suXL6+qVavq559/liT99ttvKlmypOzt7a19GgCATOby5YvKkSOn3Nxym7cVKVJUQUG3FBYWFq+tj08bderka74dGnpXv/xySiVLvibpaSgVGRmhHj06q1mzBurfv6d+++0Xq5wHAAAA8LKw+vS98+fPy9nZWe7u7uZtxYoVU2BgoB48eKAcOXKYt8dN04sTEhKin3/+WaNGjZL0NJSKjIxUq1atdOPGDRUrVkxDhw5VhQoVklXTMzP/kE7EvWa8dkgp9Cm8yOPH4XJ0dIjXRxwcHCRJERHhypEje7z2ce3u3g3WsGGDVbJkKTVq1FgGg+TgkEVlypRVjx59lCNHDu3a9bGGDBmoDRu2Kl++/NY6JSDd4NqcOvjdh5RGn0JqoF+lT5a+XlYPpR49epRgEde42+Hh4fFCqWfduXNHvXv3VtmyZdWsWTNJTz8MeHp6atCgQcqZM6c2b96s7t27a9++fSpYsKDFNbm6Zn9xI7yUeO2Q0uhTSEqePC6KjIyUm9v/9ZGQkKcDjgsWdFf27An7zunTpzVo0CBVqlRJ06ZNM4/snThxXLx2fn799OWXn+rXX0/I0/O1VDwLIP3JlStrWpeQ4fG7DymNPoXUQL/KmKweSjk5Oenx48fxtsXdzpo18Tcd/3xTH7cg+siRI+O16969u3bv3q3Dhw+rU6dOFtcUEhImkyk5Z4G0ZjA8vSjx2iGl0KfwIm5u+XTv3j2dO3dFLi6ukqSAgN+VJ4+7IiOlyMj4U/g+/fQTzZ37kbp376327TvpwYNISZGSpOXLF6tu3fp69dX/C6AeP47QkycmBQfHPw6ez8bGSGiRwYWGPlJMTGxal5Eh8bsPKY0+hdRAv0qf4l63F7F6KFWiRAndu3dPwcHBcnNzkyRdvHhRHh4eif6VeefOnZo8ebL8/PzUrVu3ePvmzp0rb29vlS5d2rwtKipKWbJkSVZNJpPo3OkUrx1SGn0KSSlQoJA8Pb00b95sjRgxRvfu3dO6davUtGmLBH3mu+8Oatas6Vq6dKlKlfJKsP/SpYv65ZfTmjRpmrJnz6HNm9fr0aNHqlWrLv0PSAQ/F6mL331IafQppAb6VcZk9YXOixQpoooVK2rq1Kl6+PChrl+/riVLlqh169YJ2n755ZeaMGGCFi5cmCCQkqRz585pypQpunPnjqKiorRo0SI9fPhQDRs2tMapAAAymcmTZygmJkZt2rRQr16+qlq1unx9e0iSGjasqa+++lyStHbtSsXExMjPz08NGtRUw4ZP/82aNVWSNHr0+P//7X0d1LRpfQUEnNS8eUuUI0fONDs3AAAAwNoMJpP1s8bg4GBNmjRJx48fl9Fo1Ntvv61hw4bJxsZG5cuX18SJE9WiRQs1b95cFy5cMC8kG6d58+aaNGmS7t27pxkzZujw4cN6/PixypUrp9GjR+u115K3HkdwMMMA0xuDQXJzy85rhxRDn0JKo09Zh63t0+l7TRcc1R+BD9K6HKSgMvly6FO/mgoNfaToaKbvpQauU0hp9CmkBvpV+hT3ur2I1afvSZKbm5sWLFiQ6L6AgADz//fv3//c4zg7O2vatGkpWhsAAAAAAABSX5qEUgCAzMloNMhozFzf52tjY/WZ8mkmNtak2Fj+hAkAAADLEEoBAKzCaDQop7OTbDNRSCNlrq+zj46J1f174QRTAAAAsAihFADAKoxGg2xtjBq0LUAXbj9M63KQwornyab57crLaDQQSgEAAMAihFIAAKu6cPshC1IDAAAAUOaaQwEAAAAAAICXAqEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZnm9YFAHFCQ+9q5swpCgg4KRsbGzVq1ET9+w+SrW3Cbrpnz07t3LlNQUG35erqprZt28vHp40kKTIyUsuWLdJ33x1UePgjFSpURH37DlSFCpWsfUoAAAAAACAJjJTCS2PcuFFydHTS3r1faMWK9Tpx4rh27NiSoN2RI99p+fLFmjFjhr7++rA++GCCVqxYou++OyhJWrZskX777RctW7ZGn312SM2bv6333x+sW7duWfuUAAAAAABAEgil8FL4++/rCgg4qX79/OTg4KD8+QvI17eHdu3akaBtcPAdderURV5eXjIYDCpb1lMVKlTS6dMBkqTIyAh1795b7u4esrGxUYsW78jOzl5//XXG2qcFAAAAAACSwPQ9vBQuX76oHDlyys0tt3lbkSJFFRR0S2FhYcqePbt5u49PGxkM/3ff0NC7+uWXUxow4D1J0vvvj4l37JMnf9ajRw9VosSrqXsSAAAAAADAYoRSeCmEh4fLwcEh3ra4248fh8cLpZ4VEhKsYcMGq2TJUmrYsHGC/b///pvGjh2pbt16KV++/ClfOAAAAAAgWVhPGHGYvoeXgoODoyIjI+Jti4h4etvJKWui9zl9+rR69OiiQoUKa/r0OQkuYPv379V77/VT585d5evbI3UKBwAAAAAkC+sJIw6hFF4KRYsW0/3793X3boh525Url5Qnj7uyZcuWoP2BA5/I19dXbdu214QJU2Rvb2/eFxMTo5kzp2j58kWaOvUjtWvXySrnAAAAAAB4PtYTxrOYvoeXQsGCheTp6aX582drxIgxunfvntatW6WmTVskaPvddwf10UfTtXTpUpUq5SWTKf7+hQvn6KefftSqVRvl4ZHXSmcAAAAAAHgR1hPGswil8NKYPHmG5syZqTZtWshgMKpx46bmaXcNG9bU8OGj1ajRW1q7dqViYmLk5+cn0zOJVKNGb6lnz37avftjGY1Gvftu23jHj7s/AAAAACBtsJ4wnkUohZeGi4urJk+ekei+r78+av7/+vXbZDBIbm7ZFRwclmCk1JEj/qlZJgAAAADgX/q36wkPHOgnT08vjR49PtH1hBcsmK3u3XuzfEs6QygFAAAAAACs4tn1hF1cXCW9eD3hefM+SjRwiomJ0ezZ03XkyLeaOvUjVa5c1SrngJRDKJWBGI0GGY2GFzfMQGxsMsda/bGxJsXGml7cEAAAAABeYqwnjGcRSmUQRqNBOZ2dZJtJQpo4uXIlPrwzo4mOidX9e+EEUwAAAADSPdYTRhxCqQzCaDTI1saoQdsCdOH2w7QuBymoeJ5smt+uvIxGA6EUAAAAgHSP9YQRh1Aqg7lw+6H+CHyQ1mUAAAAAAAA8F6EUAAAAAADpCOsJZ1yZbT1hQikAAAAAANIJ1hPO2DLbesKEUgAAAAAApBOsJ5xxZcb1hAmlAAAAAABIZ1hPGBlB5hrvBwAAAAAAgJcCoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYnW1aFwAAAAAgZYSG3tXMmVMUEHBSNjY2atSoifr3HyRb24Rv+/fs2amdO7cpKOi2XF3d1LZte/n4tDHv37x5vXbu3K6wsAd67bXSev/90SpUqIgVzwYAkNExUgoAAADIIMaNGyVHRyft3fuFVqxYrxMnjmvHji0J2h058p2WL1+sGTNm6OuvD+uDDyZoxYol+u67g5Kkzz8/oJ07t2v27IX69NODKlmylMaMeV8mk8napwQAyMAIpQAAAIAM4O+/rysg4KT69fOTg4OD8ucvIF/fHtq1a0eCtsHBd9SpUxd5eXnJYDCobFlPVahQSadPB0iS9u3bo3feaa2iRYspS5Ys6tt3oIKCghQQcNLapwUAyMAIpQAAAIAM4PLli8qRI6fc3HKbtxUpUlRBQbcUFhYWr62PTxt16uRrvh0aele//HJKJUu+9v+PdUlFixY377e1tVWBAgV14cK51D0JAECmQigFAAAAZADh4eFycHCIty3u9uPH4UneLyQkWEOH+qlkyVJq2LCxub2jo2OCY4WHJ30cAACSi1AKAAAAyAAcHBwVGRkRb1tExNPbTk5ZE73P6dOn1aNHFxUqVFjTp88xL4ju4OBgvu+zx0rqOAAA/BuEUgAAAEAGULRoMd2/f19374aYt125ckl58rgrW7ZsCdofOPCJfH191bZte02YMEX29vbxjnX58kXz7ejoaP3993UVLVosdU8CAJCpEEoBAAAAGUDBgoXk6eml+fNnKzz8kQIDb2jdulVq2rRFgrbffXdQH300XQsXLlT79p0S7G/atIV27dqh8+fPKTIyUkuXLpSLi4u8vCpY41QAAJmEbVoXAAAAACBlTJ48Q3PmzFSbNi1kMBjVuHFT+fr2kCQ1bFhTw4ePVqNGb2nt2pWKiYmRn5+fTCaT+f6NGr2l4cNHq2nTlgoLe6jRo4fr3r1QlSpVWjNnzjNP7wMAICXwWwUAAADIIFxcXDV58oxE93399VHz/9ev3yaDQXJzy67g4DA9k0tJkgwGg9q375ToKCoAAFIKoRSADCs09K5mzpyigICTsrGxUaNGTdS//6BE/8q7Z89O7dy5TUFBt+Xq6qa2bdvLx6eNef/mzeu1c+d2hYU90Guvldb7749WoUJFrHg2AAAAAJCxEEoByLDGjRul3LnzaO/eLxQSEqyRI4dox44t6tChc7x2R458p+XLF2vVqlXKn7+ofv/9Nw0bNkguLi6qU6e+Pv/8gHbu3K7Zsxcqf/4CWrFiicaMeV8bNmyXwWBIo7MDAKQWo9EgozHzXN9tbDLPMrOxsSbFxppe3BAAYBVpEkqFhIRo7Nix8vf3l42NjVq0aKERI0YkOnph69atWrdunW7fvq08efKoc+fO6tixo3n/ypUrtXHjRj148EDlypXTxIkTVbRoUWueDoCX0N9/X1dAwEnt3fu5HBwclD9/Afn69tCSJQsShFLBwXfUqVMXeXl5KTg4TGXLeqpChUo6fTpAderU1759e/TOO63N3zjUt+9A7d+/VwEBJ1WhQqW0OD0AQCoxGg3K6ewk20wU1OTKlTWtS7Ca6JhY3b8XTjAFAC+JNAmlBg8eLHd3dx09elTBwcHq27ev1q1bpx49esRr980332jOnDlauXKlXn/9dZ0+fVq9evWSm5ubvL29tWfPHm3cuFGrV69WoUKFNHfuXPn5+Wn//v2MXgAyucuXLypHjpxyc8tt3lakSFEFBd1SWFiYsmfPbt7u49NGz14yQkPv6pdfTmnAgPf+/7EuqWPHLub9tra2KlCgoC5cOEcoBQAZjNFokK2NUYO2BejC7YdpXQ5SUPE82TS/XXkZjQZCKQB4SVg9lLp69ar8/f115MgROTo6qmDBgurXr59mzZqVIJQKCgpSz5495eXlJUkqX768qlatqp9//lne3t7asWOHOnTooBIlSkiShg4dqh07duj48eOqVq2atU8NwEskPDxcDg4O8bbF3X78ODxeKPWskJBgDRs2WCVLllLDho3N7R0dHRMcKzw8PBUqBwC8DC7cfqg/Ah+kdRkAAGRoVg+lzp8/L2dnZ7m7u5u3FStWTIGBgXrw4IFy5Mhh3v7sND3p6bS/n3/+WaNGjZIkXbhwQT179jTvt7OzU5EiRXT27NlkhVIMqkJ6QV+1nKOjoyIjI+I9Z5GREZKkrFmzJnguDQbp9OnTGjjQT6+/7qXRo8fLzu7pJdLBwSHRYyV2HABcq5Dy6FNIafSp1BH3vPL8Av9dev85srR+q4dSjx49SjDiIO52eHh4vFDqWXfu3FHv3r1VtmxZNWvWLMlj/ZvRC66uiY+YAF4mmWm9h5RQsaKn7t+/LylSbm5ukiR//5vy8PBQkSJ5E7TfuXOnJk+eLD8/P3Xr1i3evldffVVBQX/Lze3pteLJkyf6++/rKl++nHkbgKe4ViGl0aeQ0uhTqY/PV8B/k5muU1YPpZycnPT48eN42+JuZ82a+BN/+vRpDRo0SJUqVdK0adPMC6I7OjoqIiIiXtuIiIgkj5OUkJAwmdL5tHIbG2Om6riZUWjoI8XExKZ1GelGtmyu8vT00vjxE/X++2N0//49LViwUE2aNFdwcFi8tt9+e1ATJ07Q0qVLVbq0V4L93t5NtXr1CpUrV1GFChXWihVLlCuXi1555bUEbZE0rlOZg7WvVfSrjI8+hZTGe6rUYzA8DaQywuerlxnXqYwvI1yn4q4HL2L1UKpEiRK6d++egoODzaMXLl68KA8Pj0TXeHne6IUSJUro/Pnzqlu3rqSnoxeuXLmiV199NVk1mUziool0gX6aPJMnz9CcOTPVpk0LGQxGNW7cVF269JDJJDVsWFPDh49Wo0Zvae3alYqJiZGfn59MzzzJjRq9peHDR6tp05YKC3uoUaOG6969UJUqVVozZ86TjY0trwmQCH4ukNLoU0hp9KnUxecr4L/LLD9DVg+lihQpoooVK2rq1KmaNGmSQkNDtWTJErVu3TpB2y+//FITJjwdvVCzZs0E+1u1aqWFCxeqVq1aeuWVVzR37ly5ubmpUiW+DQuA5OLiqsmTZyS67+uvj5r/v379NhkMkptbdgUHJ/zLnsFgUPv2ndS+fafULBcAAAAAMhWrh1KStGDBAk2aNEn169eX0WjU22+/rX79+kl6+g17EydOVIsWLbRo0SLz6IVnNW/eXJMmTVLr1q0VFham/v376+7duypXrpyWL18uOzu7tDgtAAAAAAAAWChNQik3NzctWLAg0X0BAQHm/+/fv/+5xzEYDOrWrVuCaX0AUobRaJDRmM6/9iGZbGyMaV2C1cTGmhQbm0nGBQMAAAB46aRJKAXg5Wc0GpTT2Um2mSikkTLXN11Ex8Tq/r1wgikAAAAAaYJQCkCijEaDbG2MGrQtQBduP0zrcpDCiufJpvntystoNBBKAQAAAEgThFIAnuvC7Yf6I/BBWpcBAAAAAMhgMte8HAAAAAAAALwUCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAACBJoaF3NWrUUDVuXEdNm9bX/PmzFR0d/dz7fPfdQbVp0zLetsjICM2aNVUtWnirceO6GjSory5cOJ+apQN4yRFKAQAAAACSNG7cKDk6Omnv3i+0YsV6nThxXDt2bEm07ZMnT7R583qNHz9aJlNsvH2rV6/Q9evXtGnTDu3f/5WKFy+h0aOHWeMUALykCKUAAAAAAIn6++/rCgg4qX79/OTg4KD8+QvI17eHdu3akWj7bt266dSpk+rUyTfBvqtXLys2NlYmk0kmk0lGo40cHBxS+QwAvMxs07oAAAAAAMDL6fLli8qRI6fc3HKbtxUpUlRBQbcUFham7Nmzx2s/a9Ys2dpm1aef7k9wrHbtOumDD95X06YNZGNjo5w5nbVgwbJUPwcALy9GSgEAAAAAEhUeHp5gNFPc7cePwxO09/DwSPJYMTExql27nvbs+Uyff35INWvW1siRQxUZGZmyRQNINwilAAAAAACJcnBwVGRkRLxtERFPbzs5ZbX4ONHR0Ro7dqSaNGmh3LnzyMkpq957730FB9/Wzz8fT9GaAaQfhFIAAAAAgEQVLVpM9+/f1927IeZtV65cUp487sqWLZvFxwkPD1dY2AM9eRJl3mY0GmUwGGVnZ5eiNQNIPwilAAAAAACJKliwkDw9vTR//myFhz9SYOANrVu3Sk2btkjWcXLkyCFPTy8tXbpQoaF3FRkZqaVLF8rZ2Vmenl6pUzyAlx6hFAAAAAAgSZMnz1BMTIzatGmhXr18VbVqdfn69pAkNWxYU1999bnFxylYsJC6dGmvd95poitXLmn27IVydHRMzfIBvMT49j0AAAAAQJJcXFw1efKMRPd9/fXRRLc3adJcTZo0T3CcsWMnpXh9ANIvRkoBAAAAAADA6hgpBQAAAACpyGg0yGg0pHUZVmNjk3nGPsTGmhQba0rrMoB0i1AKAAAAAFKJ0WhQTmcn2WaioCZXrqxpXYLVRMfE6v69cIIp4F8ilAIAAACAVGI0GmRrY9SgbQG6cPthWpeDFFQ8TzbNb1deRqOBUAr4lwilAAAAACCVXbj9UH8EPkjrMgDgpZJ5xpACAAAAAADgpUEoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOr+dSh17949hYWFpWQtAAAAAAAAyCRsk9P4yJEj2rJli44fP66IiAhJkpOTk2rWrKk2bdrozTffTJUiAQAAAAAAkLFYFEoFBgbq/fffV2hoqJo0aaIuXbrI3d1dMTExun37tk6ePKkpU6bI1dVV06dPV/78+VO7bgAAAAAAAKRjFoVSQ4YM0aBBg/TGG28k2FeiRAm9+eab8vPz0+HDhzVkyBBt3749xQsFAAAAAABAxmFRKLVp0ybZ2r64ae3atZnCBwAAAAAAgBeyKJSKC6QCAwMT3W9nZ6ecOXPK3t7eovAKAAAAAAAAmVuyEqSGDRsqNjZWkmQymWQwGMz7jEajqlevrhkzZsjFxSVlqwQAAAAAAECGYkxO41GjRql69eo6cOCAfv31V3366aeqXbu2+vfvrz179ihbtmyaNm1aatUKAAAAAACADCJZodT69es1e/ZsFStWTPb29ipatKhmzJihvXv36tVXX9WHH36oI0eOpFatAAAAAAAAyCCSFUqFhobKxsYm3jaDwaCQkBBJkqOjo3l6HwAAAAAAAJCUZIVSNWvW1NChQ3X16lU9efJEV69e1ejRo1WjRg1FRUVpwYIFKlOmTGrVCgAAAAAAgAwiWaHU+PHjFRMTI29vb3l6eqpx48aKiYnRxIkTdeLECX333XcaO3ZsatUKAAAAAACADCJZ377n7Oys1atXKygoSLdu3VK+fPmUO3duRUREqHr16vrkk09Sq04AAAAAAABkIMkaKbVhwwZJkru7u15//XXlzp1bp0+fVsuWLVOlOAAAAAAAAGRMyQqlli5dqt27d0uSoqOjNWfOHHXq1EnVq1dPleIAAAAAAACQMSVr+t7q1avVvXt3hYaG6sCBA3rw4IFWrVqlatWqpVZ9AAAAAAAAyICSFUqVLl1aq1atUteuXVWmTBlt2bJFjo6OqVUbAAAAAAAAMiiLQqlFixbFu12hQgX99NNPWr58uWxtnx5iwIABKV8dAAAAAAAAMiSLQqnjx48n2FauXDmdPHlSkmQwGFK2KgAAAAAAAGRoFoVSo0ePVqlSpVK7FgAAAAAAAGQSFoVSEydOVEhIiOrXr6+GDRuqYsWKqV0XAAAAAAAAMjCLQqlt27bpzp07+vrrr7Vo0SJdvnxZtWrVUqNGjfTGG2/IxsYmtesEAAAAAABABmK0tGHu3LnVoUMHrV27Vp988om8vLy0adMm1a5dW++//35q1ggAAAAAAIAMxqKRUv+UM2dO+fj4yMfHR+Hh4frqq69Sui4AAAAAAABkYBaPlEpKWFiYRo0alRK1AAAAAAAAIJP4z6GUJJlMppQ4DAAAAAAAADKJFAmlDAZDShwGAAAAAAAAmUSKhFIAAAAAAABAcli00HlgYGCS++7cuZPsBw0JCdHYsWPl7+8vGxsbtWjRQiNGjJCtbdLlfPnll5o5c6YOHjxo3hYbG6uKFSvKZDLFG631ww8/yMnJKdl1AQAAAAAAwDosCqXq1auX5BS9fwZClhg8eLDc3d119OhRBQcHq2/fvlq3bp169OiRoO2TJ0+0bt06zZs3T+7u7vH2XbhwQU+ePNGpU6dkb2+frBoAAAAAAACQdiwKpZ4dnfRfXb16Vf7+/jpy5IgcHR1VsGBB9evXT7NmzUo0lOrWrZuyZMminj17at++ffH2/fbbbypZsiSBFAAAAAAAQDpjUShlMplUoEABiw54/fp1FSxYMMn958+fl7Ozc7xRT8WKFVNgYKAePHigHDlyxGs/a9YseXh4aPfu3QmO9dtvvykyMlKtWrXSjRs3VKxYMQ0dOlQVKlSwqFYAAAAAAACkDYtCqffff1+VK1dWp06dlDt37kTb3L59Wxs2bNCJEye0bdu2JI/16NEjOTo6xtsWdzs8PDxBKOXh4ZHksRwcHOTp6alBgwYpZ86c2rx5s7p37659+/Y9Nxj7J748EOkFfRWpgX6FlEafQkqjTyGl0aeQ0uhTSGnpvU9ZWr9FodSGDRu0aNEiNW7cWJ6enipfvrzc3d0VGxuroKAgnTx5UmfPnlWnTp20YcOG5x7LyclJjx8/jrct7nbWrFktq/r/GzlyZLzb3bt31+7du3X48GF16tTJ4uO4umZP1uMCaSFXruT9fACWoF8hpdGnkNLoU0hp9CmkNPoUUlpm6lMWhVK2trYaPHiwOnfurD179uinn37SV199JYPBoPz586tRo0aaN2+eXF1dX3isEiVK6N69ewoODpabm5sk6eLFi/Lw8FD27MkLh+bOnStvb2+VLl3avC0qKkpZsmRJ1nFCQsJkMiXrLi8dGxtjpuq4mVFo6CPFxMRa7fHoU5mDNfsVfSpz4FqFlEafQkqjTyGl0aeQ0qzdp1KDwWDZACCLQqk4Li4u6t69u7p37/6vCytSpIgqVqyoqVOnatKkSQoNDdWSJUvUunXrZB/r3LlzOnHihObNm6ecOXNqxYoVevjwoRo2bJis45hMSvehFDIH+ilSA/0KKY0+hZRGn0JKo08hpdGnkNIyS58ypsWDLliwQNHR0apfv77atm2rmjVrql+/fpKk8uXLJ/iWvaRMmzZNhQoVUsuWLVW1alX5+/tr7dq1cnZ2TsXqAQAAAAAA8F8la6RUSnFzc9OCBQsS3RcQEJDodh8fH/n4+MTb5uzsrGnTpqV4fQAAAAAAAEhdaTJSCgAAAAAAAJlbskKp8PDw1KoDAAAAAAAAmUiyQqk333xTo0aN0okTJ1KrHgAAAAAAAGQCyQqlNmzYoKxZs2rAgAFq1KiRli1bpqCgoNSqDQAAAAAAABlUshY6L1eunMqVK6eRI0fq0KFD+uyzz9SiRQt5enqqVatWql+/vuzs7FKrVgAAAAAAAGQQ/2qhc1tbWxUqVEgFChSQs7Ozzpw5oxUrVqhevXo6evRoStcIAAAAAACADCZZI6WCgoK0f/9+ffLJJ7p8+bJq166t999/X3Xq1JGNjY22bdumkSNH6ocffkitegEAAAAAAJABJCuUqlu3rooWLSofHx+1bNlSrq6u8fZXq1ZNn376aYoWCAAAAAAAgIwnWaHU1q1b5enpqdjYWNnY2Cg4OFi5cuWSjY2NJKlIkSLauHFjqhQKAAAAAACAjCNZa0plyZJF9erV0x9//CFJWrlypRo1aqTLly+nSnEAAAAAAADImJIVSk2ZMkXvvPOOSpcuLUkaPny43nnnHX344YepUhwAAAAAAAAypmRN3ztz5ow2bNggg8Hw9M62turbt6+qVauWKsUBAAAAAAAgY0rWSKls2bIlmKp3/fp15ciRI0WLAgAAAAAAQMaWrJFS77zzjvr27asePXooX758CgwM1OrVq+Xj45Na9QEAAAAAACADSlYoNWDAABmNRi1btkx37txR3rx55ePjox49eqRWfQAAAAAAAMiAkhVK2djYaODAgRo4cGBq1QMAAAAAAIBMIFmhVExMjL788ktduXJFsbGx8fYNGDAgRQsDAAAAAABAxpWsUGr8+PH69NNP9dprr8nW9v/uGvdtfAAAAAAAAIAlkhVKffvtt9qwYYPKlSuXWvUAAAAAAAAgEzAmp3FsbKxKly6dWrUAAAAAAAAgk0hWKNWsWTOtXr06tWoBAAAAAABAJpGs6Xt//PGHTp06paVLl8rFxSXevoMHD6ZoYQAAAAAAAMi4khVKtWnTRm3atEmtWgAAAAAAAJBJJCuUeuedd8z/v3v3boLRUgAAAAAAAIAlkrWmVHR0tObOnauKFSuqXr16un79ulq1aqU7d+6kVn0AAAAAAADIgJIVSi1cuFA//fST5s+fLzs7O7m6usrDw0OTJ09OrfoAAAAAAACQASVr+t7+/fu1detWubu7y2AwyMnJSdOmTVPDhg1Tqz4AAAAAAABkQMkaKRUeHm5eR8pkMkmSHBwcZDQm6zAAAAAAAADI5JKVJnl5eWnRokWSJIPBIEnauHGjypUrl/KVAQAAAAAAIMNK1vS9MWPGqEuXLtqzZ48ePXqkJk2a6NGjR1q7dm1q1QcAAAAAAIAMKFmhVMGCBfXpp5/q22+/VWBgoDw8PFSnTh1ly5YtteoDAAAAAABABpSsUEqSHB0d1aRJk9SoBQAAAAAAAJmERaFUhQoVdOrUKb322mvmtaTimEwmGQwGnTlzJlUKBAAAAAAAQMZjUSi1YsUKSdL69esThFIAAAAAAABAcln07XuVKlWSJFWtWlVXrlxR4cKFVaVKFd28eVNXr15VlSpVUrVIAAAAAAAAZCwWhVJxFixYoKVLl+rx48eSpGzZsmnZsmVatWpVqhQHAAAAAACAjClZodTOnTu1YcMGFSlSRJJUv359rV27Vps3b06N2gAAAAAAAJBBJSuUevjwofLmzRtvW968eRUeHp6iRQEAAAAAACBjS1YoVaZMGfOi53HWrFmj1157LUWLAgAAAAAAQMZm0bfvxRk5cqS6deumHTt2yMPDQ7du3VJ0dDRrSgEAAAAAACBZkhVKlSlTRl999ZUOHTqkO3fuKG/evKpTp46yZ8+eWvUBAAAAAAAgA0pWKCVJOXPm1DvvvJMatQAAAAAAACCTsCiUqlChgk6dOqXXXntNBoMh0TZnzpxJ0cIAAAAAAACQcVkUSi1fvlyStGHDhlQtBgAAAAAAAJmDRaHUgAEDdPz4cS1ZskTr1q1L5ZIAAAAAAACQ0VkUSplMJq1bt04BAQHau3dvom3efvvtFCwLAAAAAAAAGZlFoVT//v21ZcsWRUVFacGCBQn2GwwGQikAAAAAAABYzKJQKkuWLPryyy9VpUoVHTp0KLVrAgAAAAAAQAZntKTRrFmzJElPnjxJ1WIAAAAAAACQOVg0UipHjhzq37+/njx5olGjRiXaZtq0aSlaGAAAAAAAADIui0dK5cqVK7VrAQAAAAAAQCZh0UipSpUqqVKlSgoLC2NEFAAAAAAAAP4zi0ZK3bp1S5I0f/78RPd//vnnKVcRAAAAAAAAMjyLQqkmTZrEu92nT594t8eMGZNyFQEAAAAAACDDsyiUMplM8W6fOnXqufsBAAAAAACA57EolDIYDP9pPwAAAAAAAPAsi0IpAAAAAAAAICURSgEAAAAAAMDqbC1pFBsbqxMnTpjXjoqOjo53OzY2NvUqBAAAAAAAQIZjUSgVERGhTp06xdv27G3WlAIAAAAAAEByWBRKnT17NrXrAAAAAAAAQCbCmlIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAq7Po2/dee+01GQyG57Y5c+ZMihQEAAAAAACAjM+iUGr9+vUvDKUAAAAAAAAAS1kUSlWtWjW16wAAAAAAAEAmYlEo1bx5c+3fv1/16tVLcsTUwYMHU7QwAAAAAAAAZFwWhVK9evWSJA0YMIBpfAAAAAAAAPjPLB4pJUk+Pj6KjY1VaGiocuXKJaPx3315X0hIiMaOHSt/f3/Z2NioRYsWGjFihGxtky7nyy+/1MyZMxOMyFq5cqU2btyoBw8eqFy5cpo4caKKFi36r+oCAAAAAACAdVicKt25c0dDhgzR66+/rho1auj111/X4MGDFRQUlOwHHTx4sJycnHT06FHt3LlTx44d07p16xJt++TJE61cuVJDhgyRyWSKt2/Pnj3auHGjVq9erePHj6tMmTLy8/NL0A4AAAAAAAAvF4tCqfv376tt27a6efOmJkyYoBUrVmjUqFG6ceOG2rRpo3v37ln8gFevXpW/v7+GDx8uR0dHFSxYUP369dPmzZsTbd+tWzcdP35cPXv2TLBvx44d6tChg0qUKKEsWbJo6NChCgwM1PHjxy2uBwAAAAAAANZnUSi1bNkylS1bVlu2bFGrVq1Us2ZNdejQQdu3b1fZsmW1fPlyix/w/PnzcnZ2lru7u3lbsWLFFBgYqAcPHiRoP2vWLK1atUqFChVKsO/ChQt69dVXzbft7OxUpEgRnT171uJ6AAAAAAAAYH0WrSl16NAhLVu2LMEi50ajUUOGDFG/fv00YsQIix7w0aNHcnR0jLct7nZ4eLhy5MgRb5+Hh0eyjuXg4KDw8HCLaonD2u1IL+irSA30K6Q0+hRSGn0KKY0+hZRGn0JKS+99ytL6LQql7ty5o1deeSXRfcWKFdOdO3csLszJyUmPHz+Oty3udtasWS0+jvQ0zIqIiIi3LSIiItnHcXXNnqz2QFrIlSt5/RqwBP0KKY0+hZRGn0JKo08hpdGnkNIyU5+yKJTKkiWL7ty5o9y5cyfYd+fOnWSFQCVKlNC9e/cUHBwsNzc3SdLFixfl4eGh7NmTFw6VKFFC58+fV926dSU9XRT9ypUr8ab0WSIkJEzpfW10Gxtjpuq4mVFo6CPFxMRa7fHoU5mDNfsVfSpz4FqFlEafQkqjTyGl0aeQ0qzdp1KDwWDZACCL1pSqXLmytmzZkui+rVu3qkqVKhYXVqRIEVWsWFFTp07Vw4cPdf36dS1ZskStW7e2+BhxWrVqpU2bNuns2bOKjIzU7Nmz5ebmpkqVKiXrOCZT+v+HzIE+hdRAn0JK41qFlEafQkqjTyGl0aeQ0qzZp9Kyr1o0Uqp3797q2LGjHBwc1LJlS7m5uSkwMFA7d+7Uxo0btW3btmQ9uQsWLNCkSZNUv359GY1Gvf322+rXr58kqXz58po4caJatGjxwuO0bt1aYWFh6t+/v+7evaty5cpp+fLlsrOzS1Y9AAAAAAAAsC6LQqkyZcpo7ty5Gjt2rObNm2fe7ubmpoULF6pkyZLJelA3NzctWLAg0X0BAQGJbvfx8ZGPj0+8bQaDQd26dVO3bt2S9fgAAAAAAABIWxaFUpJUt25dHTp0SKdPn9bt27eVO3duVaxYUba2Fh8CAAAAAAAAkJSMUEqS7O3tk7V+FAAAAAAAAJAYixY6BwAAAAAAAFISoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNWlSSgVEhKifv36qVKlSqpataqmTJmi6OjoRNsePnxYzZs3l5eXl9566y19++235n2xsbEqX768vLy8VL58efO/8PBwa50KAAAAAAAA/gXbtHjQwYMHy93dXUePHlVwcLD69u2rdevWqUePHvHaXblyRQMHDtScOXNUp04dffXVVxo8eLC++uorubu768KFC3ry5IlOnTole3v7tDgVAAAAAAAA/AtWHyl19epV+fv7a/jw4XJ0dFTBggXVr18/bd68OUHbPXv2qFKlSmrQoIFsbW3VpEkTVa5cWdu3b5ck/fbbbypZsiSBFAAAAAAAQDpj9VDq/PnzcnZ2lru7u3lbsWLFFBgYqAcPHsRre+HCBb366qvxthUvXlxnz56V9DSUioyMVKtWrVStWjV17NhRp06dSv2TAAAAAAAAwH9i9el7jx49kqOjY7xtcbfDw8OVI0eO57Z1cHAwrxnl4OAgT09PDRo0SDlz5tTmzZvVvXt37du3TwULFrS4JoPh354NYF30VaQG+hVSGn0KKY0+hZRGn0JKo08hpaX3PmVp/VYPpZycnPT48eN42+JuZ82aNd52R0dHRURExNsWERFhbjdy5Mh4+7p3767du3fr8OHD6tSpk8U1ubpmt7gtkFZy5cr64kZAMtGvkNLoU0hp9CmkNPoUUhp9CiktM/Upq4dSJUqU0L179xQcHCw3NzdJ0sWLF+Xh4aHs2eOHQ6+++qr++OOPeNsuXLigsmXLSpLmzp0rb29vlS5d2rw/KipKWbJkSVZNISFhMpn+zdm8PGxsjJmq42ZGoaGPFBMTa7XHo09lDtbsV/SpzIFrFVIafQopjT6FlEafQkqzdp9KDQaDZQOArL6mVJEiRVSxYkVNnTpVDx8+1PXr17VkyRK1bt06QdsWLVrI399fn332maKjo/XZZ5/J399fLVu2lCSdO3dOU6ZM0Z07dxQVFaVFixbp4cOHatiwYbJqMpnS/z9kDvQppAb6FFIa1yqkNPoUUhp9CimNPoWUZs0+lZZ91eqhlCQtWLBA0dHRql+/vtq2bauaNWuqX79+kqTy5ctr3759kp4ugL548WItX75clStX1pIlS7Rw4UK98sorkqRp06apUKFCatmypapWrSp/f3+tXbtWzs7OaXFaAAAAAAAAsJDVp+9JkpubmxYsWJDovoCAgHi3a9asqZo1ayba1tnZWdOmTUvx+gAAAAAAAJC60mSkFAAAAAAAADI3QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6gilAAAAAAAAYHWEUgAAAAAAALA6QikAAAAAAABYHaEUAAAAAAAArI5QCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAAAAAAACwOkIpAAAAAAAAWB2hFAAAAAAAAKyOUAoAAAAAAABWRygFAAAAAAAAqyOUAgAAAAAAgNURSgEAAAAAAMDqCKUAAAAAAABgdYRSAAAAAAAAsDpCKQAAAAAAAFgdoRQAAAAAAACsjlAKAAAAAAAAVkcoBQAAAAAAAKsjlAIAAAAAAIDVEUoBAAAAAADA6tIklAoJCVG/fv1UqVIlVa1aVVOmTFF0dHSibQ8fPqzmzZvLy8tLb731lr799tt4+1euXKlatWrJy8tL7777ri5dumSNUwAAAAAAAMB/kCah1ODBg+Xk5KSjR49q586dOnbsmNatW5eg3ZUrVzRw4EANGjRIJ06c0MCBAzV48GAFBQVJkvbs2aONGzdq9erVOn78uMqUKSM/Pz+ZTCYrnxEAAAAAAACSw+qh1NWrV+Xv76/hw4fL0dFRBQsWVL9+/bR58+YEbffs2aNKlSqpQYMGsrW1VZMmTVS5cmVt375dkrRjxw516NBBJUqUUJYsWTR06FAFBgbq+PHj1j4tAAAAAAAAJIPVQ6nz58/L2dlZ7u7u5m3FihVTYGCgHjx4EK/thQsX9Oqrr8bbVrx4cZ09ezbR/XZ2dipSpIh5PwAAAAAAAF5OttZ+wEePHsnR0THetrjb4eHhypEjx3PbOjg4KDw83KL9ljIapYwy469MvhxytLdJ6zKQgoq6ZTX/35gGE27pUxlTWvYr+lTGxLUKKY0+hZRGn0JKo08hpaV1n0pJBoNl7aweSjk5Oenx48fxtsXdzpo1a7ztjo6OioiIiLctIiLC3O5F+y3l4pI9We1fZjNbv57WJSCV5MqVvH6dUuhTGVta9Cv6VMbGtQopjT6FlEafQkqjTyGlpVWfSgtWz95KlCihe/fuKTg42Lzt4sWL8vDwUPbs8cOhV199VefPn4+37cKFCypRooT5WM/uf/Lkia5cuZJgyh8AAAAAAABeLlYPpYoUKaKKFStq6tSpevjwoa5fv64lS5aodevWCdq2aNFC/v7++uyzzxQdHa3PPvtM/v7+atmypSSpVatW2rRpk86ePavIyEjNnj1bbm5uqlSpkrVPCwAAAAAAAMlgMJmsv5pScHCwJk2apOPHj8toNOrtt9/WsGHDZGNjo/Lly2vixIlq0aKFJOno0aP66KOPdO3aNeXPn1/Dhw9X7dq1JUkmk0lr167V5s2bdffuXZUrV04TJ07UK6+8Yu1TAgAAAAAAQDKkSSgFAAAAAACAzC2dr+cOAAAAAACA9IhQCgAAAAAAAFZHKAUAAAAAAACrI5QCAAAAAACA1RFKAQAAAAAAwOoIpQAAAAAAAGB1hFIAMjSTyZTWJQAAAKR7ib2n4n0W/gv6DyRCKbxkYmNj07oEZCAxMTEyGAyS6FtIGYn1I95Q4b+KiYlJ6xKQwdCnkNLi3lM9evRIwcHBunfvnqKjo2UwGHiPhX8lrv9IUlhYmB4+fKgnT55I4n17ZmMw8W4aL4mYmBjZ2Njo2rVrOnr0qBwcHNSqVau0LgvpVFx/io2N1aRJkxQcHKyYmBjVqlVLPj4+ypIlS1qXiHQmOjpatra2MplM+uuvvxQTEyMXFxflzZtXJpPJ/MYKSI64fhUbG6t9+/YpX758Kly4sNzd3dO6NKRTcb//Ll++rJ07d6pQoUKqWLGiihcvntalIZ2KjY2V0WjUX3/9pUmTJik8PFxGo1ElS5bUyJEjlSNHDn4PIlmefZ8+ePBghYWFKSQkRF5eXurTp4/y5ctn7nfI+Ail8FKIu+icPXtWnTt3lqenp77//nu1bdtW48ePl42NTVqXiHQoNjZWrVq1UuHChdWoUSMdPXpUN27cUNGiRTV69GjZ29undYlIJ+KuUbGxsfL19VV0dLRCQkL06NEjTZo0SfXq1ePNE5Lt2X7l4+OjmJgYBQUFqWXLlmrXrp2KFSuW1iUinfnn+6kKFSooICBAdevWVYcOHeTp6ZnWJSKdunr1qtq3b69evXqpZs2aOnnypD7//HMZDAYtXLhQWbNmTesSkU7EBZgmk0mtW7dWkSJF1KtXL/300086fvy4goODtXDhQv44k4nw7hkvBaPRqBs3bui9997TsGHDtGrVKg0ZMkQ7duzQhAkT0ro8pFObN29W3rx5NW/ePDVp0kSTJ0+Wt7e3/vrrL/32229pXR7SibgPeSaTSb6+vsqbN6/Wr1+vJUuWqE2bNhowYICOHz9OIIVki+tXnTt3VvHixbV//361b99eR48e1datW3Xp0qW0LhHpjNFoVFBQkAYPHqwBAwZo2bJl6tq1q06ePKktW7bo999/T+sSkU4dOnRI3t7e8vX1VbFixdSmTRt169ZNDx8+1E8//ZTW5SEdiZvyeejQIbm4uGj27NkqWbKkunTpom7dusnR0VFff/21JJZIyCx4B42XxqlTp1SoUCG1bdtWwcHBunTpkgYPHqwDBw5oypQpunz5clqXiHQmODhY0dHRkv5vmLCPj49u3rypkydPpnF1SA9MJpM5bLp+/boMBoPGjBkjOzs7FStWTIMGDVLr1q21ePFihYeH8+YJyfbTTz/J1tZWH330kSTpyZMnKlGihI4ePaotW7YoICAgjStEehF3/fntt9/k4eGhzp07KyQkRBcvXpS3t7dOnjyp1atX67PPPkvjSpEe3bhxQ+fOnTOv9WMwGFSlShU9fPhQ169fT+PqkB6sWrVKa9askfQ0QL99+7YuXbqkhw8fmttUqlRJtra2Onv2rCQxJTSTIJRCmvnnh7fAwEC5u7srIiJCPXv2VLZs2dSnTx+VK1dOGzdu1M6dO9OoUqQHiS3qmjVrVj148EA3btwwTwF1dHRU5cqV5eHhYe0Skc5MnTpVixcvNt++deuWjh8/rps3b0qSOfAsWrSobGxs5OTkxJsnvNA/f/eFh4crODhYkjR06FCdP39eCxculKenp/bt26eVK1fq0aNHaVEq0olnQ4I4WbNm1cOHD9WtWzdly5ZNw4YNk5eXl3755RedOHGCAB3PFfee6tnFpkuVKqWYmBj5+/ubt2XJkkUFCxaUm5ub1WtE+vLgwQOdOXPG/AcX6en7pxw5csjf3z/e+/hixYqZ36dzrcocbNO6AGROcaNWHj58qOjoaDk7O6t9+/aKiYnRp59+KhcXF33wwQeSpPz582vOnDny9vZO46rxsnp2scQdO3bIxcVFFStWVJs2bbRlyxZNnTpVXbt2VcmSJbV//3798MMPGjhwYFqXjZdYTEyMWrRoobJly2rJkiXq06ePqlSpojfeeEPr16/X0KFD5erqKkmKjIxU9uzZFRkZKXt7e4IpJCluUXPp6Ye92NhYVa9eXcWKFdPRo0d15swZ8yiWnDlzysfHR927d2etFiQp7vff33//rdOnT+vx48eqWLGiZs6cqe+++07Zs2fX+PHjJT3tcx07dlS3bt3M67lwvcI/xcbGysbGRpcuXdKaNWuUO3duVa9eXc2aNdOBAwe0fPly/frrr6pWrZo2btyoW7duqXHjxmldNl5yOXLk0Pvvv6/ly5fryy+/lL29vVq3bq3ChQtrxYoVCgwMVPny5fXzzz/rk08+MQdXXKMyB0IpWF3cL7u//vpLkydP1u3bt+Xt7a127dopX758CgkJUXh4uAIDAzV79mxdunRJU6ZMkdFoNL/5AuLE9afY2Fi1bNlSNjY2unr1qurUqaPBgwdrx44d8vPz05gxY5Q1a1ZFR0dr5cqVKlSoUFqXjpeUyWSSjY2NypYtqz/++EPbt2/X77//rsWLF6tt27basmWLhg0bpvr16+vOnTvatm2b1q9fzzc64rliY2PN37I3dOhQhYeHq2DBgurZs6eKFCmiy5cvK0eOHLp27Zp+/PFHHTp0SOvXr1fu3LnTunS8pOKuVWfPnpWvr68qVaqkoKAg1axZU1mzZpWtra0eP36sI0eO6MCBA7p69apmzpxpXs+FdfDwT3H94uLFi2rTpo1q1KihgIAABQQEqHv37lqyZInmzZunzz//XEeOHJGLi4t27twpW1tb3qMjUc+uy+nu7q7evXtr+fLl2r17t5ycnDRnzhzNnDlTe/fu1fbt25UzZ06tXbuWL/rIZPj2PVhV3IUpMDBQ7dq1U+vWreXo6KgNGzbI29tbffr00aNHj9SiRQuVLFlSJpNJW7ZskZ2dHW+gkMCzfWLFihW6fPmypk2bpuPHj2vx4sVycXHRoEGDlD9/fl29elWRkZHKly+fXFxc0rhyvKwSe1N97NgxzZo1SwUKFNCCBQt06tQp7dq1S1euXFHBggXNo/CApMSNkDKZTGrZsqUKFSokDw8PnTt3Tk5OTpowYYLu3bunYcOGycnJSTdv3tTSpUtVtmzZtC4dL7mwsDB17txZzZo1U/fu3RUeHi4nJycFBQXp8OHD+vTTTxUVFSWj0ah169bJzs6O8ACJihs5d+fOHe3fv182Njbq0qWLLl68qLVr1+r69evq2rWr6tSpoydPnujhw4dydnaWwWCINwoUiPPs775Tp04pKipKBQoUkLu7u2bOnKk//vhDHTp0UPPmzRUZGanQ0FBly5ZN2bJlS+vSYWWEUrCauF92ISEhWrx4sVxdXdW/f39J0vfff6+xY8eqbt26Gjp0qJ48eaLQ0FAVLlxYRqORX3ZI4MKFCypevLgkaebMmTpy5IhGjRqlN998U5J08uRJzZkzR3nz5tX//vc/Va5cOS3LRToQd52JjY3Vxx9/bP5w16ZNG/3444+aN2+ePDw8tHDhQhkMBkVERMjOzo4Pd7BIbGysjh49qp9++kkjRoyQJH377bfaunWr7OzsNGPGDIWFhSkoKEju7u7KmzdvGleM9CAwMFCDBw/W4sWLlTt3bvNad6tWrZLRaFTLli1lMBjk5ubG+ykk6uHDhzp58qRq166tx48fq3fv3jpz5oz5G4sl6dKlS1q5cqV5dkPbtm3N92caKBIT94fj2NhYdejQQQ4ODrpy5YocHR3Vtm1bdenSRVOnTtX58+dVt25d+fr6pnXJSEMMO0Gqu379uq5cuSKDwaCHDx/q448/1meffaa//vrL3KZGjRqaMGGCDh8+rIkTJyo6OlqvvPKK+WLGGyg8a9WqVdq9e7ekpyNbnJ2ddePGDR06dMjcpmLFiho2bJjOnTun/fv36/Hjx2lVLtIBk8lkDqRat26tb775RsePH9e8efPUrVs3FSpUSEOGDFFQUJA6duyo2NhYOTg4EEjhuaZPn27+/5o1a9S7d2/9/vvvioiIkCTVrVtXbdu2VUxMjPr27StJ8vLyIpBCkp5deFqSHBwcdO3aNX3xxReSJFtbW9na2srV1VWnTp1S7ty5lSdPHt5PIUkbN27UlStXFBMTI0dHR3Xu3FmOjo768ssvzW2KFi2qXr16ycHBQRcvXoy3+DSBFP7p2W8u7tGjh/Lnz69169Zp3bp16t27t+bPn69du3bpvffek4eHh37++Wfdv38/jatGWuI3E1Ld5s2btWfPHk2dOlVnzpzRm2++qXv37umrr77Srl271KpVK0lS7dq1NXLkSO3bty/e9Cqm7OGf6tSpo+LFi2vOnDmqXbu2evXqJXt7ey1fvly5c+dWnz59JEnly5fX5MmT5erqKkdHxzSuGunBmDFjVLhwYc2dO1fS078gt2rVSjNmzNDixYsVFRWl9evXKygoiOAAz/X333/rwYMH5ts9evRQSEiINm3apN9//12VKlWSJDVo0EBRUVH66quv0qpUpBNx0+6CgoJ08eJFRUREqF69emrTpo0OHjwoV1dXNWnSRJJ04sQJubu7x3sPxfspPCsqKkqPHj1S3759FR4erjZt2qh79+5q2rSp7OzsNHjwYH3wwQeaPHmyJOmVV17RBx98IHd3d4IoJOnGjRvKnz+/JOnmzZuKjo7W6NGjJUlFihRRvnz5dPPmTe3bt09t2rTRkCFDZDQalTNnzrQsG2mMUAqpbuTIkfrll1/Uv39/9erVS+XLl5erq6sMBoO2b98uk8mk1q1bS5IaNmyohg0bShJrSCGBuGkHxYsX19WrV/X7778rICBAw4cPl6+vrwwGg9atWyej0ahevXpJkjw9PdO4arysQkJCFBUVpbx585rfYIeGhsrHx0eS9PjxY2XLlk0LFixQp06ddObMGVWvXl1VqlSRk5NTWpaOl9iDBw/06NEjFShQQFOnTtX06dP11Vdf6dChQxoxYoQePHignj17avny5apSpYokqUmTJqpduzbfsockxX2px9mzZzVgwAC5u7srR44cqlevntq2bav79+9r6dKlWrdunVxcXBQUFKQdO3ZIYnoVEoqJidGMGTN05swZzZ49Wy4uLipdurTmzJmjLFmyqEGDBpo7d645MJg0aZIkmf8Yw3t0JGbp0qWKiIjQe++9J+np+6jTp0/rxIkT8vb2lslkkr29vQoVKqSvv/5ajx49kru7expXjZcBVxOkqidPnshkMik8PFz58+fX/v37dfHiRRUqVEht27ZVxYoVtWPHDq1fvz7Bffllh2c9u1jirVu3ZGtrq0GDBilv3ryaMWOGfv31V3Xp0kXdunXT0qVLtXbt2rQuGS+53bt3a9u2bbp+/br279+v2NhYXbhwQT///LMkydHRUTExMcqWLZsKFiwoJycn2dvbE0jhudasWWPuV7t27VKjRo1kZ2en9u3bS5KmTJmiJk2aaMCAAfrxxx/N9yOQwvMYjUYFBQWpT58+6tOnjzZv3qwlS5bo22+/1aVLl9SqVStNnjxZ9evXV7NmzfTxxx/Lzs5O0dHRBFJIwMbGRhUqVFDOnDn14Ycf6sGDBxozZowaNGigDz/8UN98843q1KmjuXPnaseOHVqxYkW8+/MeHYmpXbu23nvvPS1YsEC///67ihYtqjp16ui7777T2bNnzdei27dvy83NjWsTzFjoHKnin39BiYqKkr29vbp3765z585p3bp1KlasmAIDA7V8+XKZTCZNnDiRixMS9exiiXHr+dy8eVO7du3S9evXtXXrVgUGBmrkyJEqV66ctm7dqjfeeENFihRJ69LxEvv444+1fft23bx5UzVr1tT06dO1bds2rV+/Xp07dzaHCB9//LE2bNig9evX882NeKFDhw5p4sSJevz4sZo0aaIJEybor7/+kp+fn3LlyqVt27ZJkgYPHqyAgAB9+eWXcnBwSOOqkR78+OOPWr9+vZYuXaoTJ07ogw8+UNasWXXmzBm1bdvWPJolDt+yh8Q8+x7966+/1vbt22VnZ6dJkyYpa9asmj9/vr788kt98MEHatCggQICAlSuXDnWI0OSnu1Tf/75pyZPnixHR0d9+OGHunnzpj766CPzH/iyZ8+ubdu2ad26dSpVqlQaV46XBaEUUlzcm6Br167pm2++UXR0tHLkyKF27dopJiZG/fv3159//qlNmzYpICBALi4uqlGjhgwGA0PMkSSTyaR3331X7u7umjp1qq5cuaKSJUsqOjpaR44c0ddff63ff/9d06dPV5kyZdK6XLzEnr3OvPPOO7p27Zp69Oih9u3bKzY2Vhs2bNCuXbvk7u6ufPny6fTp01q6dCn9Cs/1bL9q2bKlrl69qh49eqhDhw5ycXHR2bNn5efnpzx58mjTpk2Snv61OE+ePGlZNl5i//wD39WrV9W+fXtlyZJFrq6uKlGihKZNm6YDBw7owIEDmjdvHgEnniuuTz0bWB47dkwrVqyQg4ODOZhauHChNmzYoHXr1pm/vZhvbkRiEusXp06d0qpVqxQREaFp06bp4cOHOnjwoI4fP65XX31VPj4+KlGiRBpVjJcRoRRSxblz59S1a1fVqlVLtra2Onz4sMqUKaMlS5YoJiZGffr00cmTJ1WwYEHt2bNHNjY2BFJ4rkuXLmn8+PFavXq17O3tJT0dgbdjxw55eHjI1dVVu3fvVu/evVWgQIE0rhYvq7g34rGxsYqOjtb333+v27dva9euXapWrZp8fX2VM2dO/fnnn/ruu+/k4eGhqlWrqnDhwmldOl5icf0q7vfY8ePHFRYWpilTpqhx48bq3Lmz8ubNq/Pnz6tr164qXry41q1bl9Zl4yUW16cCAwP1559/ysnJSdWrV9cff/yhq1evKl++fPLy8pIkDRs2TCaTSbNnz07bovFSi+tTly9f1t69e3Xv3j3lypVLAwcOlL+/v1atWqUsWbJo4sSJcnJy0u7du9WhQwdG2yFJz76nGjdunAwGg8qVK6fWrVvrl19+0fLlyxUVFaWxY8fqlVdeUUxMjIxGI5/3kAChFFJUTEyMnjx5ov79+6tSpUrq27evoqKi1Lx5c1WtWlX9+vWTh4eHJCkgIECenp7mixnz0/Gsf047uHjxolq1aqX58+erdu3a5g9/s2fP1tmzZ7Vy5UpFRkYqS5YsaVg1XmbPBgdfffWVbGxs1KBBA0nSunXrtH//ftWoUUN9+vRRaGio8uXLl8YVIz2I+ytxbGysdu7cKYPBoJYtW8re3l579+7VvHnz1KxZM/Xv31+XLl1SbGysnJ2dVbBgwbQuHS+puPdEZ8+ela+vr4oUKaLTp09rxIgR6tq1qyTpm2++0ddff63w8HBdvnxZe/bskZ2dHX/gw3OdO3dOXbp0UcuWLRUWFqY///xTUVFR2rhxoy5cuKAVK1YoPDxcS5YskbOzsySmgSJxcdea2NhYvfPOO3J3dzev+9q0aVP17NlTv/76q9asWaObN29q2rRpjI5CkhiDif8sPDxcP/30k+rVqycbGxvFxMQoKipKTZs2lSS1bdtW5cuX18iRI9WhQweNGDFCb7zxhsqXLy+JX3ZI6NlFzU+fPq3w8HAVKlRI9erV06FDh5QvXz7zLzYHBwcVKlRIkgikkCSTyWQOwH18fBQTE6Nr167p9ddf16pVq+Tr6ysbGxvt2bNHx44d040bN7Rnzx6mVuG5YmNjzYFUy5YtZWtrq5CQEPMU0Lffftscnv/8888KCQnR5s2b+bYhPJfRaNS1a9c0cOBADR48WPXr19eCBQs0Y8YMRUdHq2fPnjIYDDIajSpZsqTmzp0rW1tbplchSXF/NJ4xY4Y6d+6svn37Snr6baF9+vTRe++9p/Xr1yskJES//vqrcuTIYb4v79GRmLjwe/jw4SpVqpSmT5+uCxcuaNy4cfr6668lSb1795avr6+2bNnCl3ngufjNhf/s008/1dixYzV9+nS9/fbbkp6uk7Fz506dOHFCJUqU0PTp0xUUFKTY2FgVLVo03v35ZYdnmUwm84e81q1by9HRUdeuXdOWLVvk7e2tTZs2aeHChSpatKiyZMliXoAaSMqzIzEnT56ssmXLaty4cbp8+bL8/PzUvXt3rVmzRu+++67y5s2rS5cuqV69egRSeCGj0SiTyaSePXvKy8tLH374oT755BN9+OGHatWqlXbt2qWWLVsqT548+uOPP1S3bl0CKSQqKipKkszT0w8dOqSKFSuqXbt2unXrlqKiotS+fXvNnj1bOXPmVJs2bVS/fn3z/WNiYgikEM/jx4914MABtWnTRjY2NgoLC9P9+/dVpUoVSU+/ITtHjhzq16+fxo8fr1u3bumtt97SW2+9JSnhmmaAlHANqcuXL2v+/PmSpE2bNqls2bKKjY3Vpk2b9Pfff2vs2LGaNm2a+doGJIYrDf61iIgIBQUFqU2bNnrvvfc0cuRI7dy5U/b29urRo4c+/vhjRUREaNasWZKkefPmydnZWblz507jyvEyi/vLS58+fVS4cGFt3rxZ27dvV8GCBeXt7a0mTZqoTJkyOnXqlG7duqUNGzbotddeS+Oq8TKLCw4WLVqky5cvq127drK3t1fJkiW1atUq3bx5Uz179lRkZKQaNGignj17qnjx4mldNl5iMTEx5v9fvnxZkZGRGjdunCTp9OnT+t///ieDwaCOHTvq2rVreuONN9S9e3cVK1YsrUrGS+zJkydq3Lixzpw5Y972119/KVeuXIqOjla/fv2UJ08eDR06VPnz59e4ceO0ZMmSeMfgD3z4p2+++UYffvihli9f/v/au9P4GO+2/+OfmcmCCBq1JEHUvhW11EX1pqmltJcKsYvlQgSJIBFUrW1J7UtsVUTVXkVRtVSpaKtV1Wgjlkpae5AQ2ZOZ+T/oP3NLSy/tXSbS7/tRc86c8zpG85o58z2P3/EDoHjx4qSnp/PJJ58A4OjoCEC5cuVwc3PDYrHkOV+BlPxWbnew2Wxm4sSJXLlyBU9PT7Kyspg6dSrR0dG89tprvPrqq7i4uJCQkMCNGzcUSMl/pVsq8pdYrVbmzp3Lrl272LBhA4MHD8ZisfD6669TqFAhunTpQkJCAh999BHdu3fHxcWFlJQU3n//fYxGo+6+yB+6ffs22dnZBAcHA1C6dGlycnLYtWsXycnJDB48mAEDBmAwGHQhLvd19+dMdnY2586d49ixY3zyySdUr14dR0dHypcvz+rVq+nYsSMjRoxgyZIlmscif+juwa5ffvklaWlppKSk4ODgwNixY7ly5QrLly/HYrGwatUqhg0bxqZNmyhcuLC9S5d8ytHRkQULFlCxYkU2bNhA9+7dCQoKwmg0snLlSsqUKUNISAgAzz77LC1btrTNwxO5n5deeomkpCQiIyNxdnamX79+dOnShT179vDuu+/Sv39/TCYTy5Yto1ixYri7u9u7ZMnH7r6mCgsLw2w24+7uzttvv01GRgaxsbG2jqkvv/yS2rVrM2nSJIoXL27PsuUxoVBK/hKDwUC7du24cuUKw4YNIyIigiFDhmC1WgkNDcVoNDJs2DD+/e9/c/ToUTw8PPjXv/6FyWTSzAP5nd8OZjWbzfzwww8cOnSIihUr2n5fLBYLe/fupX///rrrIn/o7s+Z69evU6pUKWbNmsX06dM5fvw427Zto0OHDjg7O+Pp6cn27dvJzs62c9WS31ksFtuw/J49e1K7dm0mTJhApUqVOHXqFGfOnOG9997DyckJJycn3nrrLZ577jkFUnJf2dnZODo6UqdOHXbu3MnkyZNJT0+nT58+mEwmEhISbPN9QkNDuXjxIm+99RZGo1HXU3JPucH5pUuXOHnyJI6OjsyePRuTyUTfvn1JTk7mo48+YtWqVVSrVo2UlBTWrVtnG1qtm8ZyL7m/F6NHj+by5ctMmTIFgCJFimA2m7FYLMyfP59KlSoRGRnJ2rVrFUjJA9M3mfxpuQFC/fr1GTRoEEuWLGHYsGEsWrSIoUOHAjBq1CgyMjLo1KmTbQg1aOaB/N5vB92npaXh5uZGjx49OHToEF5eXrRs2RKAO3fu4OnpaadK5XGR+zljsVgYOnQoly5donbt2owcOZJx48YxdepUtm3bhsFg4N///jfOzs7aaU8eSO5F+dy5c3FxcWHChAkAVK5cmaioKK5fv86tW7f44IMP2LRpE+vXr7ftOCvyW1arFUdHRy5fvswvv/zCK6+8QkZGBq+//joA/fv3p1mzZgwdOpS4uDgyMjLYsmWLreNc11NyLyaTifj4eLp160ZgYCDt2rXj9OnTREZGYrFYGD58OD169ODw4cN4enrSqFEj3TSW+/rtjWNnZ2eio6PZtWsX7u7uuLq64uTkhLe3NydPnuTIkSOsXr1aO+3Jn6JPHvlTcu+g5AYJTz/9NKGhobz99tt5gimj0chrr71GyZIladGihe18LbWSu929DGbSpEkkJydz584devbsSevWrbl69SoLFy5k69atuLu7s337dlauXKkuKflDub9TnTt3pkKFCgwYMIDp06djNpsZOXIkEyZMYNq0aaxevRoHBwfbBg0ifyT3wvybb77hu+++Izo6mh9//JHatWsD0LhxY0qUKEFAQABpaWm8++67VKxY0b5FS76V+/1369YtZsyYwbFjxwgPD8fX1xer1WoLPPv378+OHTtISkqiYcOGCg/kgRw5coRnnnkGPz8/AJo2bUr58uUJDw/HwcGBXr160alTJ9vzddNY7uXuz5qsrCycnJx48803KVWqFB999BFPPfUUL774Iq6urvTr1w8nJyfS0tIoUqSInSuXx40+feSB5V5AxcXFsW3bNtLT03niiScYMmQIY8aMYdasWQQGBhIREUFAQABlypThueees3fZko/lhgddu3bFy8uL9u3bk5CQQGBgIO+++y7Dhg3jxx9/5NNPP6VYsWKsWbNGA6jlvu6+mzdr1ixq1KhhC6OioqL4/PPPSU9PZ+LEiYwfP57Zs2fTqFEjO1ct+V3ud1/u71bjxo0ZPXo0M2bMIDw8nMmTJ1O5cmWcnZ3ZsGEDFy5coFSpUpQsWdLOlUt+ZbVaMZlMnDp1ivHjx9tm3I0aNYrZs2fTpUsXACZPnkxqaiqBgYG2cxUeyINITEwkMTHR9nPhwoVp2LAhzs7OvPHGGxQpUgQfHx/b47ppLL91d9f5xIkTSUxM5M6dO7zyyiu2ma+LFi3CYDDg7e2Nq6srgAIp+Uu0aFgemMlk4ty5c/Ts2ZP09HQKFy7Mvn37eOWVVyhdujTDhw/H09OTHj16kJCQgI+PDw4ODuTk5Ni7dMln9u/fb/vvTz75hEKFCjF79mzatm3Lzz//TK1atfDw8CA5OZn27dsze/Zshg4dqkBK7stsNudpL7927Zpt6fC4cePw8PBg+fLlHDhwgNDQUKKiohgzZgzlypWzV8nyGLi7m3PNmjUsXLiQd955hxo1ahAaGkrRokWZNm0a58+fB8DFxYUaNWookJI/ZDAYSEpKYvTo0XTu3Jnp06fz2Wef4ePjw/jx4/n888/p0qULYWFhREVFYbVabecqPJDfyt0NNCsri4yMDABatWrF6dOnWb16te157u7uPP3000ydOpUOHTrYpVZ5fNzddZ6SkoKvry9PPfUUO3fuZOrUqQQHB9O6dWumT5/O4cOH83xOifxZutUiDyR3APDChQvp2rUrI0eOJCcnh4MHD1K/fn2Sk5OpUaMGgYGBfPLJJ3kuyHVHT+72ww8/EBgYyJAhQwgODiY1NZWiRYsCEBISwpkzZ9i6dStLly7lm2++yXNBJXIviYmJtu2s/f396dq1K08//TTPPfccERERnDp1imnTppGTk0PdunUpXbo01atXt3fZks/ldrPkXpR7enpiNBq5ePEiGzduZM2aNQQEBLBs2TLGjRvHjBkz8PLysnfZ8phISUnBaDTSrFkz27Fx48Zx5coVJkyYwFtvvUXfvn3p06cPBoPhd3NdROB/N184e/YsS5cu5datW3Tq1ImXX36ZESNGsGjRIuLi4mjYsCGffvop8fHxtqHnv53pKZIr9/Nm48aNlClThnnz5gHg7e3N5s2b2bRpEydOnCAsLAyAOnXq6PNJ/k/UKSX3lZaWxqpVq4Bftys2Go2kpKTw/PPPA9C5c2eqVavG5MmTGTZsGPv376dWrVqMGjXK9mUn8lt16tRhwYIFrFixgqVLl1KhQgWOHDnCgAEDuHTpEps3b8bBwYFffvmF+vXr27tcyeeGDBnCyZMnMZvNrFmzhuLFi9OmTRt69uxJ1apVuXTpEr1798bBwYEPPvgANzc3xo0bp62v5b/KvcCeMmUK5cqVIyIiggULFrBmzRoqVarE4MGDqVOnDt26daN8+fI4OjrauWLJzywWCwDJyclkZGTg4OBAZmYmV69eBX7tcgFo0qQJZrOZMWPGEBsbi8FgICcnR3/wye9YrVaMRiNxcXH4+fnh5OTEE088QWhoKB988AG9evXirbfe4vvvv2f37t0YDAY2b95sC9sVSMlv5f7tlvt5c/v2bVJTU2276wH4+Phw69YtPvvsMwDCwsLybGol8leohUXu68SJE7z99tskJCQwZswY23DN9957j1mzZlGrVi2mT59OdnY2ZrP5d8tg9GUn99OmTRtmzpxp2w1t4MCBLFu2jHfeeQej0cjatWs5dOgQ69ats3epko+tWrWKU6dO0aJFC7p37865c+cICgoCft0lLTMzk9u3b/Phhx9y7NgxDh48yOrVq7W0Sv7Qb7sHbt68SevWrYFfgwMXFxfGjBnDwIEDOXnyJC1atKBRo0a4uLjYq2TJ53I3ibl58yYRERFUrVqVnj170qBBA8aPH8+qVatsQfnp06d5/fXX2bt3L+PGjWPr1q3qOJd7MhgM3Lp1i61btxIQEEC/fv0AeOaZZ5gwYYJtZucLL7yQ53dIg/LlXnK/+6xWK/v376dcuXJkZmbi5OTEzz//TKVKlYBfV8A0atTIFkSpi1P+DvpEknuyWq00a9aMOXPmEBYWhrOzMyNGjMDf358pU6ZgMBjYsGEDABMnTqRIkSJUq1bNzlXL46Rt27bMnTuXkJAQ2rdvz/jx4wkJCaF69epkZmYSGRlJ5cqV7V2m5FPZ2dkULlyYChUq0L59e9zc3KhUqRLbt2+nS5cuFClSBAcHBwYPHszOnTsxm82sXbtWn1Pyh3L/WLNarXz99dcUK1aMhIQEDh48yKuvvmrb+bNs2bK4ublhNP7acK5ASu4nN5A6f/48q1atYv/+/Rw+fBhXV1def/11wsLC6N27t+2779KlS0ydOpUyZcqwYMECsrOz1YUnv2O1WsnIyGDs2LF8//33dO/e3fZYr169sFqtTJ06leTkZAYOHJjnPAVSci93L1e/ceMGpUqVonr16hw/fpyFCxfSuXNnatasyZ49ezh48CABAQEACqTkb2GwaiqZ/EZuUn7mzBlWrFjBqVOnOHPmDP7+/owaNYotW7awbt06bt++TYUKFWwBgqOjo+3iS+RB7d+/n+DgYCZMmEDz5s0pUqQIRqOREiVK2Ls0yed++eUXOnToQIkSJZg/fz5ly5alV69ePPXUU0RERODs7AxgG76pCyf5I7l3ey0WC76+vrZlU82aNePbb7+lZcuWDB06FICNGzeycuVK3n//fUqVKmXnyiW/i4uLo0uXLgwbNoyKFSvy8ccfc/v2bdq3b0/Hjh35+OOPSUpKIjs7m169euHo6MjixYs5duwYixYtonDhwvZ+C5JP/LYr5csvv2T+/Pm4uroybNiwPGMP3nnnHQ4ePMjatWv1/Sf3dXd38Pr164mOjmb69OksWbKE+Ph4srOzOXXqFMWLFyc1NRUHBwfefPNNateubefKpSBRKCX3dOHCBbp27UpgYCC1atUiLi6ON954g969exMSEkJWVhaff/45Hh4eVK9e3ba0T3df5K/Yu3cvw4cPZ8SIEbY7LyL/zfnz51m0aBEZGRlYLBZ69uxJhQoVGDBgAFWqVGH+/Pm2YErkQQUEBFCkSBHmzJlDYmIihQoVYuXKlXz11VdcvHiRZ555huPHj7N48WJdlMsDWbx4MQkJCUyePBn4tXtq9uzZHDlyhIEDB9K2bVscHR2Jjo4mNjaWuLg4PvjgA9asWUONGjXsW7zkG7nhwe3bt7lz5w5OTk6ULl2a2NhYJk+ejJeXF927d+eZZ56xnZMbYmmJldzL3TvMfvLJJ5w4cYL69evTvn17AJYvX05MTAyurq60a9eOihUr4uzsjJubm50rl4JGoZTc00cffcSWLVvy7Hz2zTff0LdvX4YOHUpgYGCe56tDSv6vDhw4gJeXl5bsyZ927do1Xn/9dUwmE3369KFcuXJ07tyZZs2aMX/+fHuXJ4+RtLQ0AgMDCQkJoXbt2mRlZeHk5MS+ffuIj4/HarVSoUIFateuTfny5e1drjwmpk+fTkxMDJGRkbaOhOTkZNq3b4+Hhwc9evTAx8eHzZs3c/jwYZydnRk0aJCWG4tN7nV2bGwso0ePxtXVlYSEBJ599lkGDx7M7du3CQ8Px8vLCx8fH5599lnbuQqk5F5yf6csFgvt2rXDycmJs2fP2poSSpcuDUBkZCS7du2iWbNmjBw50s5VS0GlFEHuKS0tjaSkJNvPOTk51KxZkxo1ahAREcH777+f5/kKpOT/ytvbW4GU/CVlypRh4sSJWCwW1q5dS1xcHB9++CGjRo2yd2nymMnIyCA6Opro6GgAW/fvrVu3+Pzzzxk0aBAvvfSSAim5r9zdq3JycmzH6tWrB8DXX39tW05crFgxmjRpgpubGzt27CAxMZEuXbqwYMECwsPDFUhJHkajkatXrxIQEMCrr77KunXrGDVqFDt37iQqKoq6desyZswYvvvuO7799ts85yqQknvJ/dvtwIEDNGjQgB07djB+/HiioqLYtm0b165dA6Bfv374+PjQtWtXe5YrBZySBLmn5s2bc+HCBRYsWAD8emFetGhRqlevzrRp0/IMVBQRsbfy5cszYcIEEhMT2b59O08++SReXl72LkseM25ubvTr14/169dz+PBh20V7VlYWRYsWJTMz084VSn6WuxTm3LlzjB07lrfffpvDhw/TqlUrnJ2deeedd4iMjOTcuXOEhISQmZnJ3LlzOXv2LNu3b7e9jnYvlrtZLBYAfvrpJ2rVqsXAgQOxWq2sXr2ajh078uyzzxIZGUm9evWYOXMm/v7+dq5YHhd9+/Zl/vz5NGnSBAA/Pz/69+/PunXr2LFjB1evXgWgZ8+eeHp62rNUKeA0AEh+x2KxUK5cOd566y3CwsKIj4+nRo0a/Pjjj5w9e5Y333xTM6REJN8pX748M2fOxGQyaTCw/GXdu3fn+vXrvPbaazRp0gQXFxf27dvHihUrKFSokL3Lk3wqN5A6ffo0fn5+vPjii3z55ZecOHECgIiICObPn8/u3bvZuXMnrq6uLF26lEKFCtGsWTPKli1r3zcg+U7u8qrccDw7O5v4+Hh+/vlnRo4cScWKFZk6dSpz5swhJiaGfv368fTTTwN5h1eL3E+3bt2YOHEiR48epWPHjsCvwZTRaGTWrFk4ODjg5+en3yV56DRTSv7Q999/z+LFiylWrBjOzs5MmjRJu+yJiEiBlpKSQlRUFIcOHaJ8+fK0bdtWy4vlnm7cuMGTTz4JQFJSEn379sXX15c+ffqwbds2Vq1aRdGiRfH396dFixYAXLlyxTYseMOGDSxcuJD169dToUIFe74VyUdyQ6Wff/6Z3bt3YzKZSEtLIy4uju+//5569eoxb948AIKCgvDy8iI0NNS+Rctjaf/+/YwYMYKBAwcyYsQI2/GNGzfSpEkTKlasaLfa5J9DoZTc193bY98dQKlDSkRERP7pUlJSWLZsGd27d8fZ2Zno6GiWLl3Kpk2bSE5OZvz48dSuXZtvvvmGhIQEWrVqRXBwMPHx8SxZsoSYmBjS09OZN28ederUsffbkXwi9/r7zJkzdO3aleeee4709HROnTpFcnIy1apVo1WrVpQvX55Dhw5x9uxZPvzwQ12by1+2d+9eRo0aRUBAwO82sxJ5FPTpJfeVOxjxt7mlvvRERETkny4pKYm9e/cSExPD5cuX6d27N2XLliUxMZFBgwZRvXp1AgICANi1axeXLl0CwMPDg169emGxWHB3d6dMmTL2fBuSzxgMBhITE/niiy8YOnQo/v7+pKamcuLECUJCQkhPTyczM5O9e/fi7u7Oli1bcHBw0JI9+cvatGnDvHnzCAwMxNHRkcGDB9u7JPmHUafUP8yfXXZ39zayly9fplSpUjg6Oj6s8kREREQeG5999hlBQUFUqlSJ5cuX88QTT/DDDz8wY8YMNmzYAEBoaCiVKlViyJAh2glN/qvU1FTatm1LRkYG48ePx8fHxxY4rVixgi+//JL58+fj7Oxsu1GsQEr+DgcOHMDLy0vL1eWR01CgfxCz2YzRaOTChQusWbOGqKgobty4cd/n3x1IRUZGMnHiRO08JCIiIvL/lS9fnqCgIKxWK+Hh4Vy4cAGj0UhSUhLLli0jJCSEc+fO4e/vbxuJIPJHXFxcmDhxIkajkdOnTwP/u3qhVKlSGAwGChcunGflggIp+Tt4e3srkBK70DqsfwiLxYLJZCI2NpZ+/fpRoUIFLly4QNeuXenSpQvlypXL8/y7A6m1a9eyaNEiVqxYQdGiRe1RvoiIiEi+U6VKFapUqYK3tzfBwcEsXryYDh068NJLL7Fv3z68vLzYvHmzllfJn9KmTRsMBgMjRoygbNmydOnSBRcXF6KionB1ddVmQyJSoGj53j/IxYsX6du3L3379qVPnz5MmDCBb7/9llatWtGjRw/c3d2BvC3Aa9euZf78+URGRlKrVi17li8iIiKSb509e5bAwEAaN27MmTNnaNCgAWFhYRiNRm0SI3/Jnj17CAkJwc3NjebNm3P+/Hnee+89nJyc8txAFhF5nClmL+DubhP/4osvqF+/Pn369OH69etkZ2dTp04ddu7cybp16/jhhx8AfhdIrVq1SoGUiIiIyB+oWrUqERERmM1m3N3dCQ0NxWg0YrFYFEjJX9K2bVsiIiK4c+cOGRkZbNiwAScnJ3JychRIiUiBoVCqAMsdah4fH8+PP/5ITk4OWVlZZGZmMmDAANzc3JgxYwalS5dmx44dbN++3Xbu2rVrmTt3LpGRkdSuXduO70JERETk8VC1alWmTJnC/PnzcXBwICcnR0ut5P+kZcuWzJw5k71797J48WJAO2GLSMGiT7QCKncJ3tWrV+nWrRthYWG0bNmSl19+mQ0bNlCqVCnCwsIAKFOmDO3atcPPzw+AmJgY1q9fz+rVq9UhJSIiIvInODk5Ab/O51R4IH+HVq1aMXfuXIKCgjCZTAwePNjeJYmI/G30TVlAmUwmzp8/z6pVq/Dx8aFz5862x3JbyS9cuMCiRYtITEykd+/etjt5tWrVYvXq1ZQsWdJe5YuIiIg81rS8Sv5OrVu3ZvHixXh5edm7FBGRv5VCqQLszJkzbN68mVq1apGQkEDp0qUBKFasGElJSQwfPhyTycT69esxmUy2+VNGo1GBlIiIiIhIPuLt7W3vEkRE/nbafa8AyV2ylzu/wGg0snv3bkaOHElwcDD9+vWjcOHCwK87xFgsFqpUqWI7Ry3mIiIiIiIiIvKoKIUoIHIDqZ9++om1a9eSnJxMcHAw7dq1IzMzk7Fjx2I0GunduzcuLi5UrVo1z7kKpERERERERETkUdJ2IAWAxWLBZDJx+vRpunXrRlpaGqdOnaJ3797ExsbSsWNHwsPDWbBgAUuXLiUrKyvP+SaTyU6Vi4iIiIiIiMg/lZbvFRDXr19n8ODB9OzZE19fXw4ePMjEiROxWq0sX76cGjVqsHnzZrZs2cL69es1fFNERERERERE7EqdUo+pjIwMvvvuO3JycgC4efMmTk5O+Pr6kpKSwsaNGxk1ahSVK1dm+PDhfPzxx3Tp0oUNGzZgMBhQFikiIiIiIiIi9qRQ6jE1a9YswsLC+Oqrr8jOziYpKQlPT09SUlLo378/Tz75JB07dqROnTrcvHmTPXv25Ami1CklIiIiIiIiIvak5XuPmaysLBwdHTGbzQQFBXHz5k1GjhxJ06ZNycrKIiYmhoULF7JixQoAQkNDeeGFF2jXrh1GoxGr1apASkRERERERETsTp1SjxGr1Yqfnx8BAQGYTCYiIiIoUaIEs2bNIioqCqPRSGpqKkePHmX37t0MHz6c2NhY2rZti9FoxGKxKJASERERERERkXxBnVKPmejoaPr374+3tzczZszAYrEwdOhQEhMTGTVqFE2bNmXkyJHcuHGDwoULs2jRIltnlXbZExEREREREZH8QqHUYyQnJwcHBwdiYmLo0aMHrVu3ZubMmVgsFoYMGcLNmzcZO3YsjRs3JjU1lSJFimAwGGzniYiIiIiIiIjkF1q+9xiwWCwAODg4YLFYqFWrFuvWrePTTz8lNDQUo9HIkiVLKFWqFGPGjCE6OhoXFxfbLnsKpEREREREREQkv1GnVD6Xu+wuPj6egwcPcvnyZZo2bcoLL7zATz/9hK+vL61atWLGjBmYzWZmz55NaGioluqJiIiIiIiISL6mUOoxcObMGf7zn//QvHlznJ2d+fTTT/nXv/7FrFmzOHXqFL169aJRo0YsW7bMNshcM6REREREREREJD/T8r18Lj09nXnz5jFgwADCw8OZMmUKAB4eHly/fp2aNWuyatUqMjMzuTtfVCAlIiIiIiIiIvmZQql8zmg0kpiYSP369bFYLHTs2JFmzZrh7++Pr68vx44do169eqxevRqj0WibPyUiIiIiIiIikp8plMpnzGZznp+dnJwwGAzExMTQvXt3KleuzIwZMwAoWbIk7u7uALYuKaNR/0tFREREREREJP9TgpGP5M6B+umnn5g1axYBAQHExcXRrl073njjDQoXLszs2bMBmDRpEkWKFLGFUrmzpEREREREREREHgcO9i5A/pfJZOLMmTP4+fnRrl07vLy8SEtLo0+fPqSkpLB69Wr69u2LwWAgNTWVdevW2ZbsqUNKRERERERERB4n2n0vH8nMzGT06NHUqVMHf39/2/HY2Fjb4PJffvkFk8nE888/j8lkIicnBwcHZYsiIiIiIiIi8nhRmpGPODs7k5SUhLOzc57jN27cYNy4cXz44YdUrVrVdtxsNiuQEhEREREREZHHktZ82dFvd8rLysqiePHiXLhwgZSUFNtxDw8PqlatStGiRfM8P7d7SkRERERERETkcaM2GzvJHWqekJDA+fPnMZvNVK1aFX9/f3r27MkTTzyBt7c3NWvWZPny5RgMBgoVKmTvskVERERERERE/haaKWUHuYPJY2NjCQoKoly5cly6dAmLxcL06dMxGAxMnDiR7OxsypQpQ3Z2Nu+//z6Ojo4aai4iIiIiIiIiBYJCKTtJSEigR48e9O3blz59+hAfH8+uXbtYtmwZ69evp0yZMly+fBmz2Uy9evUwGo0aai4iIiIiIiIiBYZCqUfMarViMBg4duwYS5YsYcWKFbbH7ty5w+TJkylSpAhTp07FYDDYHlOHlIiIiIiIiIgUJEo5HhGz2Zzn58zMTI4fP87p06dtj7u6ulKmTBnS0tLyBFKAAikRERERERERKVC0FuwRyB1qfv78edatW4ebmxtubm60aNGCHTt2ULRoUTw9PQG4cuUKHh4edq5YREREREREROTh0vK9hyx3ud7Zs2fp3r07DRo0ICkpiaJFi5KTk0OJEiVIS0ujZs2aXLhwgbi4OLZu3arZUSIiIiIiIiJSoCmUegQSExPZu3cvGRkZ9OvXj+joaD7++GNOnz6Np6cnVatW5eTJk3h6ehIUFISDg4Otu0pEREREREREpCBSO85DlpqaSocOHTAajYwbNw6AunXr2nbTi4mJ4fnnn6dv3762cxRIiYiIiIiIiEhBp+nZD5mLiwsTJkwgPT2db7/91na8Tp06+Pr64u7uzuHDh4Ffl/oBCqREREREREREpMDT8r1HZN++fYwcOZJBgwYRHBxsO/7zzz9Tvnx57a4nIiIiIiIiIv8oCqUeob179zJq1CgGDx5MUFBQnscsFouCKRERERERERH5x1AK8gi1adOGuXPnsmjRIjZv3pznMQVSIiIiIiIiIvJPok4pO/j6669p0KABDg6aMy8iIiIiIiIi/0wKpewoJydHwZSIiIiIiIiI/CMplBIRERERERERkUdOg4xEREREREREROSRUyglIiIiIiIiIiKPnEIpERERERERERF55BRKiYiIiIiIiIjII6dQSkREREREREREHjmFUiIiIiIFUHx8vL1LEBEREflDCqVEREREHoL//Oc/BAYG3vOxTZs20axZM7Kysh749ZYuXcrAgQMf6LkHDhxgwIABD/zaIiIiIvbgYO8CRERERAoiPz8/AgMDuX79OqVKlcrz2Pr16+nevTtOTk4P/HoBAQEP/Nxbt25htVof+PkiIiIi9qBOKREREZGHoEWLFnh4eLB169Y8x0+cOMHZs2d5/vnnGTx4MC1btqRu3bq0b9+ezz77DICLFy9SvXp1wsPDady4MVOmTGHhwoX4+fnZXueLL77A19eXRo0a8fLLL/PRRx8BcPToUSZNmsTly5d55plnOH78ODVr1uTq1au2c0+ePEn9+vVJSUl5BP8SIiIiIvemUEpERETkITAajfTs2ZPNmzfn6Vpav349L730EuPHj6datWrs27ePY8eO0bx5cyZPnpznNVJTUzly5AgjR47Mczw2NpYhQ4bg7+/P0aNHeeONN5g2bRqHDx+mSZMmTJkyBQ8PD7777jsaNGhApUqVbKEVwLZt22jbti1FixZ9qP8GIiIiIn9EoZSIiIjIQ+Lr68uNGzf46quvgF+X1e3evZs+ffqwbNkygoKCsFqtXLp0iWLFinHt2rU853fs2BEnJyeKFSuW5/iGDRt48cUXadOmDSaTiQYNGtC1a1fWrl17zzo6depkC6Wys7PZuXMnnTt3fgjvWEREROTBaaaUiIiIyEPi6upKhw4d2Lx5M02bNmXLli3UqlWLunXrsm/fPoYOHcr169epXLkybm5uv5sDVbp06Xu+7qVLl/jqq69o1KiR7ZjZbKZChQr3fP6rr77KnDlziImJ4eLFi7i6utK4ceO/742KiIiI/AUKpUREREQeIj8/P3x8fEhKSmLTpk0MHz6ca9euERwcTEREBN7e3gDs2bOHvXv35jnXYDDc8zXLli2Lj48PU6dOtR1LSEi473DzJ598kv/5n/9h165dXLx4kU6dOt33tUVEREQeFS3fExEREXmIqlSpQsOGDQkPDyc9PZ02bdqQmpqK2WymcOHCAJw7d45FixYBkJWV9V9f09fXl507dxIVFYXFYiE+Pp7evXuzcuVKAJydnUlPTycnJ8d2TufOndm3bx9ffPEFPj4+D+GdioiIiPw5CqVEREREHrLevXuzbds2evTogaOjI5UqVSIsLIzRo0fTsGFDgoOD6dy5M46Ojpw5c+a/vl69evWYM2cOc+bMoXHjxvTu3Rtvb29CQkIAaNy4MSVLlqRx48acPn0agJYtW5KamkrdunVxd3d/qO9XRERE5EEYrPfr8xYRERGRAsXHx4dBgwbRvn17e5ciIiIioplSIiIiIgVdXFwcR48e5fr167Rq1cre5YiIiIgACqVERERECrwJEybw008/ER4ejpOTk73LEREREQG0fE9EREREREREROxAg85FREREREREROSRUyglIiIiIiIiIiKPnEIpERERERERERF55BRKiYiIiIiIiIjII6dQSkREREREREREHjmFUiIiIiIiIiIi8sgplBIRERERERERkUdOoZSIiIiIiIiIiDxyCqVEREREREREROSR+3+Hmffa2eJEMgAAAABJRU5ErkJggg=="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyc0lEQVR4nOzdeXhM5///8ddkIQkhiIi11thDCGrfWnvtVOmiqFZsqdZWH/tWrX2tpW260FJFKUoXVdqS0vRT9aUVW1OxJQTZt/P7wy/z6TTBjE4mEs/Hdbkuc84957zPnHuO5OU+9zEZhmEIAAAAAAAAcCCnnC4AAAAAAAAADx9CKQAAAAAAADgcoRQAAAAAAAAcjlAKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAPEQMw8jpEoBsRR/Hg4T+CAB3RygFAHnIsWPHNHbsWLVq1Ur+/v5q27at/vOf/ygiIiKnS7ObLVu2qGrVqvrrr79yuhSr/fHHH+rRo4dq1aqlTp06ZVo/b948VatWTTExMRbLY2JiVL16dVWtWlUXLlywWBcbG6saNWpo/vz5VtVw8+ZNjR8/XkeOHLnv47iXqlWr3vXPvHnzzG0PHz6s9u3bq1atWho8eLBiY2M1bNgw1alTRw0aNNC5c+dUtWpVbdmyxap9//XXXza1f1D8+uuvat++vZKTkyXd/gyXLVtm9/1MmDBBbdq0Mb9u06aNJkyYYNEmLS1NjRo10s8//3zf+1myZIlat26t1q1bq3///oqKirrvbd2PVatW6e2337bLtjZt2qQXX3zRLtvKzY4ePaqRI0eqadOmql27tvnfldOnT2dq+/f+e/jwYVWtWlWHDx/OttouXryo6tWra/r06Xdsc/LkSVWtWlUbNmy47/0sW7ZMVatWtek9ly5d0osvvmhx7c7qewcADzuXnC4AAGAf69ev15w5c9SoUSO98sor8vHx0Z9//ql169Zp7969evfdd1WzZs2cLvNfa9WqlTZu3CgfH5+cLsVqy5cv14ULF7R8+XIVK1Ys0/omTZronXfe0S+//KJWrVqZl3///fdyc3NTamqqDhw4oH79+pnXHT16VGlpaWratKlVNZw4cULbtm1Tz549//Xx3E3v3r3Vp0+fLNf9/ZzNmzdP6enpWrNmjYoVK6Zt27bpm2++0ZQpU1SlShWVKlVKGzduVLly5azar4+Pj03tHwRJSUkaP368XnnlFeXLly9b9xUUFKRnn332rm1++eUXGYahOnXq3Nc+UlJSVKpUKX3yySdKTk5Whw4d9Pvvv8vb2/u+tnc/Fi9erBEjRthlW71799aGDRv06aefqlevXnbZZm6zZs0aLVy4UE2bNtXEiRPl4+Oj8+fP66OPPlKPHj00d+5cde7cOcv31qxZUxs3blTlypWzrb6SJUuqSZMm2r17t1577TW5urpmarN161a5ubnpiSeeuO/99OnTR82bN7fpPT/88IO+/fZbTZ482bxs+fLlKliw4H3XAQB5EaEUAOQBR48e1ezZszVgwABNmjTJvLxRo0Zq27atevbsqYkTJ2r79u05WKV9FC1aVEWLFs3pMmxy/fp1+fn5WQROfxcYGChXV1f9/PPPFm0OHjyogIAApaWlZQqlfvrpJ7m7u6t+/frZXL1tfH19Vbdu3Xu2i4mJUYMGDdSkSRNJ0pdffilJ6t+/v0wmkyRZtZ0M+fLls6n9g2DDhg0ymUxq165dtu/LmrDuu+++U9OmTeXs7Hxf+3B1dVWfPn10/Phx86i3+w24HgROTk4aOnSoZs+erS5duih//vw5XZJD7du3TwsWLFBQUJBGjx5tXt6wYUN1795dr7zyiiZMmCA/Pz9VqVIl0/sLFizokO9kr169dPDgQR08eFCtW7e2WJeamqrPP/9c7du3l6en533vw9fXV76+vv+2VNWoUeNfbwMA8hpu3wOAPODtt9+Wp6enxowZk2ld0aJFNWHCBLVr106xsbHm5bt27VLPnj0VEBCgpk2basqUKbpx44Z5/bJly9ShQwd99dVX6tKli2rXrq1u3bopLCxMv/zyi/r06SN/f3916dJFP/74o8X72rRpo3379qlDhw6qU6eO+vTpY9FGun1LxYgRI/Too4+qZs2aat68uWbNmqXExERzm6pVq2r58uXq1auX6tevr5UrV2a6fe/atWt69dVXzbeWdOvWTdu2bbPY17lz5zRq1Cg1bdpUdevW1TPPPKOjR4+a12fc+rV7926NGjVKAQEBatCggSZNmqS4uLi7fvZXrlzRxIkT1bJlS/n7+6t37976+uuvLY4hNDRUP/300x1vL3N3d1dAQECm26YOHjyoxo0bq2nTpjp06JBSU1PN644cOaIGDRqYR9h88skn6tmzp+rWrSt/f39169ZNu3btknT7NpqMUTLPPvusnnnmGfN2vvrqK/Xs2VO1a9dW06ZNNWvWLMXHx5vXL1u2TI8//riWL1+uRo0a6bHHHtP169fv+pncTcZnfeHCBW3btk1Vq1bVM888Y77lp1q1apowYUKWt+P9+eefGjVqlBo2bKgGDRrohRde0KlTpyy2+/f2kZGRGjNmjBo2bKg6deroueee0//93/9lquVe590wDK1fv16dO3eWv7+/Hn/8ca1du1aGYejbb79V1apVdfDgQYvj/OWXX8znPivJycl69913/9XojQxpaWlav369nnjiCfn7+6tVq1aaP3++kpKSzG3+efteVr777ju1bNlS0v1//6XbI2T2798vJycnrV27NtN+vvrqK1WtWtXiXOzYsUNVq1bVxx9/bF52+vRpVa1aVYcOHZJ0O4gdPHiwGjRooFq1aqlNmzZatmyZ0tPTJcl8e9Xy5cstbrX6448/9OKLL6pevXqqV6+ehg8fbnFLc8ZtZh9//LFat26tJk2amM9n27ZtlZiYqM2bN9/1s7tXbZIUFxenuXPnqkWLFqpbt6569uypb775xry+TZs2mjNnjp577jnVq1dPU6ZMkXTva4x0e1TOk08+ae7DQUFBOnPmjHl9RESEhg0bpkaNGqlOnTp68skntX///rse0/Lly1WhQgWNGjUq0zpXV1dNnz5dzs7OWZ7jv3+uhw8f1s8//6yqVavqq6++smiTcY53794t6fbowTfeeEMtW7ZUrVq19MQTT5ivY3fy2GOPycvLSzt27Mi07sCBA4qKijKP3rzXecq4Jrz77rvq2LGjGjZsqC1btmR5+97drp1btmzRxIkTJd3uQxm37P3z9j1rjvf48eN67rnnVL9+fQUEBGjgwIH673//e9fPBAByE0IpAMjlDMMwhxfu7u5ZtunQoYNGjBhhvm1g5cqVevnll1WnTh0tXbpUw4cP1549e/TMM89YhEKXLl3S3Llz9dJLL2nx4sW6ceOGRo0apTFjxqhv375auHCh0tPT9fLLL1u879q1axo/frz69++vJUuWyN3dXS+88IJ+++03Sbd/yRowYIASEhL0+uuva+3aterYsaM++OADhYSEWNS+atUqtW/fXgsXLlTbtm0zHdvYsWMVHh6u6dOna82aNapRo4bGjx9vnsckPDxcPXv2VEREhP7zn/9o/vz5MplMeu655zIFBlOnTlXp0qW1cuVKDRkyRJ9++qneeuutO372UVFR6t27t0JDQ/Xyyy9r2bJlKl26tIYPH24elbZx40bVqFFDNWrU0MaNG+84Wqpx48Y6duyYUlJSJN0O7a5cuaLmzZurWbNmio2NVVhYmCQpMTFRv/32m/nWvfXr12vKlClq27atVq9erTfffFOurq4aO3asIiMjVbNmTfMvuFOmTNHUqVMl3Q4Chg8frooVK2rFihUaMWKEtm/frqCgIIvJeSMjI/Xll19q4cKFCg4OVpEiRe74maSnpys1NTXLP9L/brMrXry4WrZsqY0bN2rSpEnq3bu3+fMKCgrKtN0rV66oT58+OnPmjKZOnar58+frxo0bGjhwoK5du5ap/bVr19SvXz8dP35ckydP1oIFC5Senq4BAwZkmgvnXud94cKFmj17tlq2bKlVq1apT58+WrRokVauXKnmzZurRIkS+uyzzyy2uXXrVpUtW1YNGjTI8nM6fPiwLl++rA4dOtzxs7TWlClTNGfOHLVp00arVq3SgAED9OGHH2Y6j3dz9epVnTx5Us2aNTMvs/X7HxkZqRYtWujs2bNKSEhQdHS03NzcMu2rSZMmypcvn3744Qfzsr8HTxm+++47FSpUSIGBgTp58qQGDhwoLy8vLVq0SKtWrVK9evW0fPly7dy5U9LtviPdvu0u4+9nz55Vv379FB0drddff12zZ89WRESEnnrqKUVHR1vUtWjRIo0fP17jx483j/DJnz+/WrdunWXgkcGa2tLT0zVkyBBt3bpVQ4cO1apVq+Tn56cRI0ZYzLm0fv1687xM3bp1s+oakxE41axZU6tWrdKsWbN05swZDR06VOnp6UpPT9eLL76o+Ph4vfHGG1q5cqW8vLwUFBSk8+fPZ3lM165d02+//abWrVubRy7+U5EiRdSkSZNMAVlW6tWrp0ceeSRT4LJjxw55enqqTZs2MgxDw4cP18cff6znn39eq1atUkBAgF5++eVM/9Hwd/ny5VPXrl319ddfW/zHiyRt27ZN5cuXV4MGDaw6TxkWLVqkwYMHa9asWXr00Ucz7fNe185WrVpp2LBhkm6He1ld06w53tjYWA0ZMkRFihTR0qVLtWjRIiUkJGjw4MG6devWPT93AMgVDABArhYdHW34+fkZb775plXtY2JijFq1ahmTJk2yWP7TTz8Zfn5+xvr16w3DMIylS5cafn5+xv79+81tVq9ebfj5+RmffPKJedkXX3xh+Pn5Gf/3f/9n8b6tW7ea2yQkJBhNmzY1Ro4caRiGYRw4cMAYMGCAcevWLYsaunTpYgwaNMj82s/Pz+jXr59Fm08//dTw8/MzIiIiDMMwjFq1ahkrV640r09LSzNef/1146effjIMwzBGjx5tNGzY0Lh586a5TUpKitG+fXujd+/ehmEYRkREhOHn52e8+uqrFvt65plnjC5dutzxs3zjjTeMmjVrGn/++afF8ueee85o2rSpkZaWZhiGYTz99NPG008/fcftGIZhhIWFGX5+fsYvv/xiGIZhrFmzxmjatKmRnp5upKenG02aNDEWLFhgGIZh/PDDD4afn59x6tQpwzAMY+7cucYbb7xhsb3ffvvN8PPzM3bs2GEYhmEcOnTI8PPzMw4dOmQYhmGkp6cbLVq0MAYPHmzxvoxt79u3zzCM/53P77///q71G8bt83W3PxcvXjS3bd26tTF+/Hjz64z9ZMg4J59++qlhGIbx+uuvG/7+/saVK1fMbS5fvmy0atXK+PrrrzO1X7hwoVG7dm3jr7/+MrdPSkoy2rZta+6H1pz3GzduGDVr1jTmzJlj0Wbu3LnG888/bxiGYSxYsMCoW7euERsba95PgwYNjOXLl9/xs3rjjTeMwMDALD/DpUuX3vF9/3Tq1CnDz8/P4jtgGIaxbds2w8/Pz/j2228NwzCM8ePHG61btzav/+fn/8knnxg9evQwv77f7//GjRuNHj16GF26dDGmTJliJCQkZFn3oEGDLL7rrVu3Nnr06GE0a9bMvGzgwIHGyy+/bBiGYWzdutUYMmSI+TtlGLe/6/Xr1zcmT55sXvbPz2/MmDFG48aNLa41169fN+rXr2+8/vrrhmH877uxcOHCLGsNCQkxqlevnul6lcGa2vbt22f4+fkZX331lblNenq60a9fP2Px4sXmz6BVq1YW27HmGvP5558bfn5+xqVLl8zr//vf/xoLFy40bt26ZVy5csXw8/MzPvvsM/P6mzdvGnPmzDF+//33LI/p119/Nfz8/IwPP/wwy/UZXn/9dcPPz8+IiYkxDMPy8//nNWfZsmVG3bp1jfj4ePP7H3vsMfO/RQcPHjT8/PyMnTt3Wuzj1VdfNZo2bWqkpKTcsY6TJ09m+nfnxo0bRq1atYzVq1cbhmHdecq4JrzyyisW2//79cnaa+c//60yDMvvnTXHm/HvwpEjR8zrz58/b8ybN8+IjIy84+cBALkJc0oBQC7n5HR70GtaWppV7X/55RclJydnum0oMDBQpUuX1uHDh9W/f3/z8nr16pn/njFh8d/nCfHy8pJ0++luGZydnS0mv3Vzc1OLFi3Mt4s0a9ZMzZo1U0pKis6ePatz587p999/17Vr18zby+Dn53fX42nUqJGWLVumkydPqmXLlmrRooXGjx9vXh8aGqrWrVtbzCfi4uKizp07a8WKFRa3af1z/hNfX99MT737u9DQUAUEBKhs2bIWy7t27aqJEyfqzJkzVk/yW7t2bXl6eurnn39WnTp1dPDgQTVt2tQ8SqFx48b64YcfNGbMGP30008qUaKEedsZt4PcunVL586d07lz58y3VGWMvPqnM2fOmJ8O9ffbAhs0aKCCBQvq+++/txjVda/zkKFv377q27dvluuymuTdWkePHlXdunVVvHhx8zIfHx/t27dPkjI9jfHHH39U9erVVaJECfPxOTk5qUWLFpnmVrvbef/ll1+UkpKixx9/3KLN32/B6dWrl9asWaMvv/xS3bt311dffaWbN2+qe/fudzyeiIgIlS5d2rqDv4uM0X7//D537txZEydO1OHDh8235N3N32/d+ztbv/93O/9/l3GLYXJysi5fvqwLFy5owoQJGjlypM6dOycfHx8dOXJEc+bMkSR1795d3bt3V1JSkv7880+dP39ex48fV1pa2h37uHR7BFajRo3MDwyQbs91FBgYaDFSS9Idn65WunRppaWl6dKlS1l+n62p7ciRI3J1dbWY88hkMumjjz6y2FalSpXM13TJumtMnTp1lD9/fvXu3VudOnVSy5YtFRgYKH9/f0lSgQIFVLlyZU2ePFk//PCDWrRooWbNmplvL8uK8f9H2GU1cfjfZcw/ZlgxIq9bt25atmyZ9u3bp06dOunXX3/Vn3/+aT7HP/74o0wmk1q2bGlxTWrTpo22b9+uU6dOqXr16lluu2rVqqpVq5a2b99u/t7t3LlT6enp6tGjhyTb+tDdrne2XjvvxJrjrVKliooWLaphw4apY8eOatmypRo3bqxx48bdc/sAkFsQSgFALufl5aUCBQooMjLyjm3i4+OVnJwsLy8v87xRWT0Ry9vbO9MtAVk9KSirW3L+rmjRopl+mSlWrJh53+np6Vq4cKHWr1+v+Ph4lSxZUv7+/llOJHyvJ3ctWrRIb731lnbv3q0vvvhCTk5OatKkiaZNm6ayZcvqxo0bdzxWwzAsbvf45+2PTk5Od/1l68aNGypTpswda/57UHcvzs7OatCggX7++Wc9+eSTOnr0qObOnWte36xZM+3atUuxsbE6cuSIxVP3/vzzT02ZMkWHDh2Si4uLKlasaP4F+071x8TESJKmT5+e5ePUr1y5kuUx3YuPj49q165tVVtbxMTEZPlZ3639+fPn7/jEyYSEBPPf73beMz6nu02u/8gjj6hBgwbatm2bunfvrm3btunRRx+9a+gUGxt7x9ttbZHxnfp7WCfdDl6LFCli1S0+qamp+uGHH/T8889nWnc/339rtGrVSrNmzdLPP/+sP//8U+XLl1fbtm1VoEABhYaGqlixYkpLS1OLFi0k3b5ldebMmfrss8+UmpqqMmXKKCAgQC4uLnf9jsbExGjXrl1Zzkv0z3N6p9DUw8NDku74WVpTW0xMjLy8vCwCp6z883tmzTWmcuXK+vDDD7VmzRpt2rRJISEhKlSokPr376/Ro0fLyclJ77zzjlatWqUvv/xSW7dulaurqx577DFNmzYt038ESDL33buF8tLtcNXDwyPLbfxT2bJlVa9ePe3cuVOdOnXSjh07VLp0aQUGBkq6/RkZhmERhP7dlStX7hhKSbdv25w5c6auXr2q4sWL67PPPlPLli3N3w1b+tDdrne2Xjvvth1rjnf9+vVatWqVdu3apY8//lju7u7q2rWrJk2a9NBNvg8gbyKUAoA8oFmzZjp8+LCSkpKy/CF1y5Ytmj17tjZs2KDChQtLuj0fUqVKlSzaXb16NdP/yN+PjB+2/z4XSVRUlPmXvjVr1igkJETTpk2zeCpSxrxCtvD09NTYsWM1duxYnTlzRl9//bVWrlyp6dOna926dSpcuLCioqIyve/q1auSbs+LYu0vEf9kzbZt0aRJE61du1Y//fSTUlNTLYKnZs2aKT09XT/99JN+/fVXPfnkk5JuB3xDhw6Vq6urNm3apBo1asjFxUXh4eF3fdpioUKFJEnjxo1Tw4YNszy2B4mnp2eWc0f9+OOPKlOmTKZ5bzw9PdWwYcM7jijImCD+XjI+p2vXrqlixYrm5RcvXtT58+dVv359ubq6qlevXpo4caLOnj2r77//3iJQzMq/6Xd/l3Gerl69ahFepKSk6Pr161b1wZ9//lnOzs7mkTWOULZsWVWsWFE//vijIiIi1LBhQzk7OyswMFChoaEqUKCA6tevbz6+2bNna8+ePVq8eLGaNGliDooaN2581/14enqqSZMmWQZuLi7W/RicEfzd6bO0pjZPT0/FxMQoPT3dIpg6ceKEUlNT7xjkWnuN8ff31/Lly5WcnKyjR49q48aNeuutt1S1alV16tRJJUqU0LRp0zR16lSdPHlSX3zxhdauXavChQtnGawUK1ZMdevW1d69exUcHJzlvFKxsbH6/vvvs5zr7066deum2bNn69atW9q9e7d69epl3ranp6c8PDz0/vvvZ/neRx555K7b7tKli15//XXt3LlTrVu3VlhYmMXccPfbh/7JXtdOa4+3YsWKevPNN5WWlqZff/1Vn332mT766COVKVNGQ4cOtal2AHgQMdE5AOQBgwYNUkxMjBYtWpRpXXR0tNatW6dHHnlEdevWVZ06dZQvX75ME/ceOXJEkZGRd/xfW1ukpKTowIED5teJiYn67rvvzD/8Hz16VJUrV1bv3r3NgdTly5f1xx9/WDyt6l4uXLigli1b6osvvpB0+4f3F154QU2aNNGlS5ck3b6lYt++fRajHNLS0rRz507Vrl3b6nAiKw0aNFBYWJjFk7wkafv27SpevPg9f4n6p8aNG+vy5cvauXOnatSoYTGSw9vbW1WrVtW2bduUmJho/iyvX7+us2fPqnfv3vL39zf/ov3dd99JkvnzzLjNJkPFihVVrFgx/fXXX6pdu7b5j6+vrxYsWGDxZLQHQWBgoH755ReLyamvXbumF154IcuJlhs2bKizZ8+qQoUKFse3fft2ffLJJ5k+jzvx9/eXq6trpn289957Gj16tPkX6vbt28vDw0NTpkyRm5ub2rVrd9ftlipVSpcuXbJ6IvI7yfil+J/f5507dyotLU3169e/5za+++47NWvWzOrPxF5atWqlH374QT/99JMaNWokSXr00Uf1008/6cCBAxa3uh09etT89MeMMOG3337TtWvXLK4Z/xyJ1LBhQ4WHh6t69ermPlCrVi2FhIToyy+/tKrOS5cuydnZWSVKlMhyvTW1BQYGKiUlxeKJd4ZhaNKkSVq1atUd923NNSYkJERt2rRRcnKy8uXLp8aNG2vmzJmSboenYWFhatKkiX799VeZTCZVr15dL7/8svz8/MzXyayMGDFCZ86c0eLFizOtS0tL09SpU5WYmKghQ4bccRv/1LFjR0nSkiVLdPXqVXXt2tW8rmHDhoqPj5dhGBbf2VOnTmnFihUWt7hlxdPTU+3atdPevXu1e/du+fj4mEfaSdb3oXux9tp5r1Fx1hzvF198oUcffVRXr16Vs7OzAgICNG3aNBUqVOiu5w4AchNGSgFAHlC3bl2NHj1aixcv1unTp9WjRw8VKVJEp06d0jvvvKO4uDitWbNGJpNJXl5eGjp0qJYvXy5XV1e1bdtWf/31l5YsWaLKlSurZ8+edqnptddeU3BwsIoVK6a3335b8fHx5qcR+fv7a+XKlVqzZo3q1q2r8+fPa/Xq1UpOTra4repeSpcuLV9fX82aNUuxsbEqV66cfvvtN+3fv18vvviipNu/WH333Xd69tlnNXToUOXLl08ffvihIiIitG7dun91jM8//7y2b9+u559/XiNGjFCRIkW0bds2HTp0SHPmzLnnLyX/VLlyZfn4+GjXrl0aPHhwpvVNmzbV+++/bxFYFStWTKVLl9b69evl6+urQoUK6eDBg3rvvfck/e82tYzw79tvv1XhwoVVrVo1vfzyy5oyZYqcnZ3VunVr3bx5UytXrtTly5fveNvbvVy6dEm//PJLluvc3NxUrVq1+9ruwIEDtW3bNg0ePFgvvfSS8ufPr9WrV8vHx0fdu3fP9NStgQMH6rPPPtPAgQM1aNAgFSlSRLt27dKmTZvuOpfOPxUtWlTPPvus3nvvPeXLl0+PPvqojh07pg8//FBjxowxh4Du7u7q3LmzNm7cqL59+97zFremTZtqzZo1OnXqVKb5a3755ZdMT6GUbo+W++ecRpUrV1aPHj20fPlyJSYmqlGjRjpx4oSWL1+uRo0aqXnz5vc8xv3792fZ37Jby5Yt9c4770j6X7jWqFEjzZs3T5IsQil/f3/t3r1bH330kSpVqqSTJ09q1apVMplMFteMQoUKKSwsTD/99JMCAwMVFBSkfv366cUXX9RTTz2l/Pnza+PGjfrqq6+0dOlSq+o8evSoAgMD73i7pTW1tWrVSgEBAZo4caJGjx6tRx55RDt27NAff/yhyZMn33Hf1lxjHn30Uc2fP1/Dhw/X008/LWdnZ3388cfKly+fWrdurdKlS8vNzU3jxo3TyJEj5e3trR9++EEnTpzQs88+e8d9N2/eXBMmTNAbb7yh//u//1OPHj3k4+Ojv/76Sx999JFOnDih2bNn2/SdLly4sFq3bq0NGzaodu3aFqN1W7ZsqQYNGigoKEhBQUGqVKmSfv31Vy1btkzNmjW76y20GXr37q2BAwfq6tWr6tmzp0XQam0fuhdnZ2errp0ZI6q+/PJLtWjRItPIZGuOt169ekpPT9fw4cM1dOhQFShQQLt379atW7fuGXwDQG5BKAUAecSwYcNUo0YNrV+/XnPnzlVMTIx8fX3VokULvfTSSypVqpS5bcYvJh9++KE++eQTeXl5qUOHDgoODrbLPDeSNG3aNM2ZM0fXrl1TvXr19NFHH5lHDr344ou6fv263n//fa1YsUIlS5ZUt27dZDKZtHr1at24ccPqWyCWL1+uhQsXasmSJbp+/bpKliypESNGmG9rqFKlijZs2KCFCxfqtddek8lkkr+/v95//33zXCb3q3jx4vroo4+0YMECzZ49WykpKapWrZpWrlxp0y0tf9e4cWN99tlnFrfuZWjevLnefvttNWvWzGL5ypUrNXv2bE2YMEH58uVT5cqVtWrVKs2ZM0dHjhzRM888oypVqqhLly5av369Dhw4oM8//1x9+vRRgQIFtG7dOm3cuFEeHh6qV6+e5s+ff9+3cW7evFmbN2/Ocl2VKlX0+eef39d2S5YsqQ0bNujNN9/UxIkTlS9fPjVs2FBvvvmmvLy8MoVSJUqU0Mcff6wFCxZo2rRpSkpKUvny5TV79mybbxMdO3asvL299dFHH+mdd95RmTJl9Nprr1k8EEC6HaJs3LjRqmA3MDBQxYoV0/79+zOFUgcPHtTBgwczvWfu3LlZTrQ9e/ZsPfLII/r000/19ttvy8fHR88884yGDx9+z2D08uXLCg8Ptyq8srf69evL09NT3t7e8vHxkSRVr15dhQsXVpEiRVShQgVz2wkTJiglJUWLFy9WcnKyypQpo2HDhik8PFzffPON0tLS5OzsrJdeekkrV67UCy+8oF27dqlatWpav369Fi1apHHjxskwDPn5+WnFihVWfUeTkpIUGhqq4ODgO7axtra1a9dqwYIFWrZsmeLj41WtWjWtW7dOAQEBd9y2NdeYatWq6a233tKKFSs0ZswYpaWlqVatWnrnnXfMt5y+88475m3cvHlT5cuX14wZM+7ZV59//nkFBATovffe07x583Tt2jUVL15cTZs21ezZs61+kMPfde3aVXv27LEYJSXdHlm0Zs0aLVmyRKtXr1Z0dLRKlCihgQMHavjw4VZtu2HDhipTpowiIiIyfc+tOU/Wsuba2ahRIzVp0kQLFizQjz/+qDVr1th8vD4+Plq3bp2WLFmiSZMmKSEhQVWqVNGyZcv06KOPWl0vADzITMa/HTcOAMDfLFu2TMuXL9fvv/+e06UADjVt2jQdPXo00610d/LOO+/o448/1p49e7Kcswc5b+vWrVqwYIG++uoru0zwDgAALDGnFAAAwL/w/vvva9q0adq4caNNt8H1799faWlp5jnR8GBJS0vTO++8oxEjRhBIAQCQTQilAAAA/oUjR47os88+0zPPPKPu3btb/T43Nze9+eabWrRokZKTk7OvQNyXTz75RD4+PurXr19OlwIAQJ7F7XsAAAAAAABwOEZKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAABzOJacLyC2io2+J5xTmHiaTVKyYJ+cNdkF/gj3Rn2BP9CfYE/0J9kR/gr3Ql3KnjPN2L4RSVjIM8QXIhThvsCf6E+yJ/gR7oj/BnuhPsCf6E+yFvpQ3cfseAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAPxL169f08SJr6hDh1bq3LmtlixZoNTU1Lu+Z9++r9WnTzeLZUlJiXrzzTnq2rW9OnRordGjhyk8/FR2lg4AAADkGEIpAAD+pSlTJsrd3UPbtn2hNWve05Ejh7Vp04Ys26ampmrt2rWaOvU1GUa6xbq3316jiIg/9eGHm7Rjx15VrlxFr732qiMOAQAAAHA4QikAAP6Fv/6KUFjYUQUFjZKbm5tKly6jgQOH6NNPN2XZPjh4uA4fPqynnx6Yad3582eVnp4uwzBkGIacnJzl5uaWzUcAAAAA5AyXnC4AAIDc7OzZ0ypUqLC8vYubl5UvX1GXL1/SrVu35OnpadF+ypQZqlGjst57L/NIqn79ntZ//jNOnTs/JmdnZxUu7KWlS9/K9mMAAAAAcgIjpQAA+Bfi4+MzjWbKeJ2QEJ+pvY9PiTtuKy0tTS1bttHWrbu0e/c3at68pSZMeEVJSUn2LRoAAAB4ABBKAQDwL7i5uSspKdFiWWLi7dceHgWs3k5qaqomT56gTp26qnhxH3l4FNDLL49TVNQV/fTTYbvWDAAAADwICKUAAPgXKlaspBs3bujatWjzsnPnzsjHp4QKFixo9Xbi4+N169ZNpaQkm5c5OTnJZHKSq6urXWsGAAAAHgSEUgAA/Atly5aTv39dLVmyQPHxcYqMvKCQkHXq3LmrTdspVKiQ/P3ratWqZbp+/ZqSkpK0atUyeXl5yd+/bvYUDwAAAOQgQikAAP6lWbPmKS0tTX36dNXQoQPVqFETDRw4RJL0+OPNtXfvbqu3U7ZsOT333FPq0aOTzp07owULlsnd3T07ywcAAAByhMkwDCOni8gNoqJuiU8q9zCZJG9vT84b7IL+BHuiP8Ge6E+wJ/oT7In+BHuhL+VOGeftXhgpBQAAAAAAAIdzyekCAABwcjLJycmU02U4lLPzw/H/QunphtLT+W9NAAAAZEYoBQDIUU5OJhX28pDLQxLSZChSpEBOl+AQqWnpuhETTzAFAACATAilAAA5ysnJJBdnJ43+OEzhV2JzuhzYUWWfglrSL0BOTiZCKQAAAGRCKAUAeCCEX4nV8cibOV0GAAAAAAd5uO6VAAAAAAAAwAOBUAoAAAAAAAAOl2OhVHR0tIKCghQYGKhGjRpp9uzZSk1Nvet79uzZo7Zt21osCwgIsPhTp04dVa1aVZ9//rkk6b///a+qVatm0WbAgAHZdlwAAAAAAAC4txybUyo4OFglSpTQgQMHFBUVpWHDhikkJERDhgzJ1DYlJUUhISFavHixSpQoYbEuLCzM4vW4ceMUHR2tDh06SJKOHTumBg0a6IMPPsi+gwEAAAAAAIBNcmSk1Pnz5xUaGqqxY8fK3d1dZcuWVVBQkNavX59l+0GDBunw4cN64YUX7rrdLVu26IcfftD8+fPl4nI7bzt27Jhq1apl92MAAAAAAADA/cuRkVKnTp2Sl5eXxainSpUqKTIyUjdv3lShQoUs2r/55pvy9fXVli1b7rjNW7duad68eZo6daqKFCliXn7s2DF5e3urXbt2io2NVcOGDTVhwgT5+vraVLPJZFNz5LCM88V5gz3Qn4B/j+9P9uD6BHuiP8Ge6E+wF/pS7mTt+cqRUCouLk7u7u4WyzJex8fHZwqlrAmQ3n//fZUuXVodO3Y0L0tLS5OPj4+aNGmip556SikpKZo5c6aGDh2qrVu3ytnZ2eqaixXztLotHhycN9gT/Qm4P0WKFMjpEvI8rk+wJ/oT7In+BHuhL+VNORJKeXh4KCEhwWJZxusCBWz/wdUwDG3evFmjRo2S6W9xnLOzs0JCQizaTp48WY0bN9bp06fl5+dn9T6io2/JMGwuDTnEZLp90eK8wR7oT9nL2dmJ0CKPu349Tmlp6TldRp7E9Qn2RH+CPdGfYC/0pdwp47zdS46EUlWqVFFMTIyioqLk7e0tSTp9+rR8fX3l6Wl7+nns2DGLyc0zXLx4USEhIRo1apQ57EpOTpYkubm52bQPwxBfgFyI8wZ7oj8B94/vTvbi+gR7oj/BnuhPsBf6Ut6UIxOdly9fXvXr19ecOXMUGxuriIgIrVy5Ur17976v7R09elQ1a9bMdEtgkSJFtHPnTi1atEhJSUm6du2apk+frsaNG6tcuXL2OBQAAAAAAADchxwJpSRp6dKlSk1NVdu2bdW3b181b95cQUFBkqSAgABt377d6m1FRERYTJqewc3NTevWrdPp06fVrFkztW/fXgULFtTixYvtdRgAAAAAAAC4DybDYACcNaKiuH81NzGZJG9vT84b7IL+lL1cXG7PKdV56QEdj7yZ0+XAjmqWKqSdo5rr+vU4paYyp1R24PoEe6I/wZ7oT7AX+lLulHHe7iXHRkoBAAAAAADg4UUoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcDhCKQAAAAAAADgcoRQAAAAAAAAcjlAKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcDhCKQAAAAAAADhcjoVS0dHRCgoKUmBgoBo1aqTZs2crNTX1ru/Zs2eP2rZta7EsPT1dAQEBqlu3rgICAsx/4uPjJUnx8fGaOHGiGjVqpPr162vcuHGKi4vLtuMCAAAAAADAveVYKBUcHCwPDw8dOHBAmzdv1o8//qiQkJAs26akpGjt2rUaM2aMDMOwWBceHq6UlBSFhoYqLCzM/MfDw0OSNHPmTF28eFF79uzR3r17dfHiRc2fPz+7Dw8AAAAAAAB3kSOh1Pnz5xUaGqqxY8fK3d1dZcuWVVBQkNavX59l+0GDBunw4cN64YUXMq07duyYqlatqnz58mVal5CQoB07dmjUqFHy8vJSsWLF9Oqrr2rLli1KSEiw+3EBAAAAAADAOjkSSp06dUpeXl4qUaKEeVmlSpUUGRmpmzdvZmr/5ptvat26dSpXrlymdceOHVNSUpJ69eqlRx99VAMGDNDPP/8s6Xb4lZKSIj8/P4v9JCYm6ty5c/Y/MAAAAAAAAFjFJSd2GhcXJ3d3d4tlGa/j4+NVqFAhi3W+vr533Jabm5v8/f01evRoFS5cWOvXr9fgwYO1fft2xcbGSpL5Vr6/78fWeaVMJpuaI4dlnC/OG+yB/gT8e3x/sgfXJ9gT/Qn2RH+CvdCXcidrz1eOhFIeHh6Zbp/LeF2gQAGbtjVhwgSL14MHD9aWLVu0f/9+1atXz7ztjO1m7KdgwYI27adYMU+b2uPBwHmDPdGfgPtTpIht/7bDdlyfYE/0J9gT/Qn2Ql/Km3IklKpSpYpiYmIUFRUlb29vSdLp06fl6+srT0/bOtqiRYvUvn171ahRw7wsOTlZ+fPnV4UKFeTq6qrw8HDVqVPHvB9XV1eVL1/epv1ER9/SP+ZYxwPMZLp90eK8wR7oT9nL2dmJ0CKPu349Tmlp6TldRp7E9Qn2RH+CPdGfYC/0pdwp47zdS46EUuXLl1f9+vU1Z84czZgxQ9evX9fKlSvVu3dvm7f1xx9/6MiRI1q8eLEKFy6sNWvWKDY2Vo8//rjc3d3VsWNHzZ8/X0uWLJEkzZ8/X126dJGbm5tN+zEM8QXIhThvsCf6E3D/+O5kL65PsCf6E+yJ/gR7oS/lTTky0bkkLV26VKmpqWrbtq369u2r5s2bKygoSJIUEBCg7du3W7WduXPnqly5curWrZsaNWqk0NBQvfvuu/Ly8pIkTZ06VeXLl9cTTzyhDh06qEyZMpoyZUp2HRYAAAAAAACsYDIMskZrREUxVDA3MZkkb29Pzhvsgv6UvVxcbt++13npAR2PzPwEVuReNUsV0s5RzXX9epxSU7l9LztwfYI90Z9gT/Qn2At9KXfKOG/3kmMjpQAAAAAAAPDwIpQCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcDhCKQAAAAAAADgcoRQAAAAAAAAcjlAKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOFc7udN165d0+HDh3Xp0iU5OTmpVKlSaty4sQoWLGjv+gAAAAAAAJAH2RRKnTlzRkuXLtXevXtVvHhx+fr6KjU1VVeuXFFMTIzatWunUaNG6ZFHHsmuegEAAAAAAJAHWB1KhYSEaNOmTerRo4fGjx+vkiVLWqyPiIjQrl279MILL6hfv34aNGiQ3YsFAAAAAABA3mB1KJWUlKTPPvtMrq6uWa4vW7asXnzxRT3//PN6++237VYgAAAAAAAA8h6rJzp/8cUX5erqqp07dyo5OfmO7fLly6dhw4bZpTgAAAAAAADkTTY/fW/69OkymUzZUQsAAAAAAAAeEjaHUrVr19auXbuyoxYAAAAAAAA8JGx6+p4kxcTEaPz48Zo8ebK8vb0tRk19/fXXdi0OAAAAAAAAeZPNodTTTz+dHXUAgENdv35Nb7wxW2FhR+Xs7Kx27Tpp+PDRcnG582Vx376vtWLFUn3yyWfmZTdv3tTixW/q8OEflJKSqurVa2jEiGBVqVLVEYcBAAAAALmWzaFUjx49zH+/du2aihYtateCAMARpkyZqOLFfbRt2xeKjo7ShAljtGnTBvXv/2ymtqmpqVq7dq0WLVqk4sV9LNbNmzdTqamp+vjjbXJ3d9e6dW9pwoRX9OmnnzvqUAAAAAAgV7J5TqnU1FQtWrRI9evXV5s2bRQREaFevXrp6tWr2VEfANjdX39FKCzsqIKCRsnNzU2lS5fRwIFD9Omnm7JsHxw8XIcPH9bTTw/MtG769LmaMeN1eXp6Kj4+XrGxt+TlVSSbjwAAAAAAcj+bQ6lly5bp0KFDWrJkiVxdXVWsWDH5+vpq1qxZ2VEfANjd2bOnVahQYXl7FzcvK1++oi5fvqRbt25laj9lygytW7dOpUuXybTOxcVF+fPn1+rVK9S5c1t9+eUXGjXqlWytHwAAAADyAptDqR07dmjp0qVq1qyZTCaTPDw8NHfuXB06dCg76gMAu4uPj5ebm5vFsozXCQnxmdr7+JS45zYHDhysr7/+Xs8//4JefXWkLlz4yz7FAgAAAEAeZXMoFR8fb55HyjAMSbd/mXNysnlTAJAj3NzclZSUaLEsMfH2aw+PAve1zfz53ZQvXz716/e0SpTw1cGD+/91nQAAAACQl9mcJNWtW1fLly+XJJlMJknSBx98oNq1a9u3MgDIJhUrVtKNGzd07Vq0edm5c2fk41NCBQsWtGlbL700SPv2fWWxLDk5WYUKFbZLrQAAAACQV9kcSr322mvasWOHWrRoobi4OHXq1Envv/++JkyYkB31AYDdlS1bTv7+dbVkyQLFx8cpMvKCQkLWqXPnrjZvq0aNmnr77TW6dOmikpOT9fbbq5WSkqKmTVtkQ+UAAAAAkHe42PqGcuXKaefOndq3b58iIyPl6+urVq1a2Ty6AABy0qxZ87Rw4Rvq06erTCYndejQWQMHDpEkPf54c40d+5ratet4z+289NJIOTk568UXn1dqaopq1qytJUtWqVChQtl9CAAAAACQq5mMjImhrDRs2DCtWrUq0/Knn35aH374od0Ke9BERd2SbZ8UcpLJJHl7e3LeYBf0p+zl4uKkIkUKqPPSAzoeeTOny4Ed1SxVSDtHNdf163FKTU3P6XLyJK5PsCf6E+yJ/gR7oS/lThnn7V6sGin1119/adu2bZKkgwcPmueUyhAbG6vff//d9ioBAAAAAADwULIqlCpVqpROnTqla9euKS0tTYcPH7ZYnz9/fk2dOjVbCgTwYHJyMsnJyZTTZTiUs/PD8ZTR9HRD6en8NxQAAACA7GVVKOXk5KQlS5ZIkv7zn/9o1qxZ2VoUgAebk5NJhb085PKQhDQZihQpkNMlOERqWrpuxMQTTAEAAADIVjZPdD5r1iwlJCToxo0bSk+/PT9ESkqK/vjjDz3++ONWbyc6OlqTJ09WaGionJ2d1bVrV40fP14uLncuac+ePXrjjTf09ddfm5clJSVp/vz52rNnj+Li4lSxYkW98sorevTRRyVJ//3vf/Xkk0/K3d3d/J4aNWpo/fr1th46gP/PyckkF2cnjf44TOFXYnO6HNhRZZ+CWtIvQE5OJkIpAAAAANnK5lBqy5YtmjFjhpKSkiyWFytWzKZQKjg4WCVKlNCBAwcUFRWlYcOGKSQkREOGDMnUNiUlRSEhIVq8eLFKlChhsW7+/Pn6+eeftXHjRvn4+OjTTz/VSy+9pF27dqlUqVI6duyYGjRooA8++MDWQwVwD+FXYpmYGgAAAABwX2y+92bVqlUKDg7WjBkz9MQTT2jz5s1q1KiRnnvuOau3cf78eYWGhmrs2LFyd3dX2bJlFRQUdMfRS4MGDdLhw4f1wgsvZFqXlJSkUaNGqWTJknJ2dlbfvn2VL18+HT9+XJJ07Ngx1apVy9bDBAAAAAAAQDayeaTU1atX9dxzz+nChQv69NNPVbNmTc2ZM0cDBw7MMjTKyqlTp+Tl5WUx6qlSpUqKjIzUzZs3VahQIYv2b775pnx9fbVly5ZM25oxY4bF6x9//FG3bt1StWrVJN0Opby9vdWuXTvFxsaqYcOGmjBhgnx9fW06btPDNZ9zrpdxvjhvwP3j+wN7oj9lD/69gz3Rn2BP9CfYC30pd7L2fNkcShUrVkwpKSkqWbKkzp49K+n20/mio6Ot3kZcXJzFHE+SzK/j4+MzhVLWBki//PKLgoODNWLECJUtW1ZpaWny8fFRkyZN9NRTTyklJUUzZ87U0KFDtXXrVjk7O1tdc7Finla3xYOD8wbcn4dlUnc4Bv0p+/HvHeyJ/gR7oj/BXuhLeZPNoZS/v7+mTJmiyZMnq3z58vroo4/k5uYmLy8vq7fh4eGhhIQEi2UZrwsUuL8fXD/55BPNmTNHo0aN0vPPPy9JcnZ2VkhIiEW7yZMnq3Hjxjp9+rT8/Pys3n509C0ZzPmba5hMty9anLfs4ezsxC+Zedz163FKS0t3yL7oT3mfI/vTw4Z/72BP9CfYE/0J9kJfyp0yztu92BxKTZw4Uf/5z38UFxensWPH6qWXXlJiYqLmzp1r9TaqVKmimJgYRUVFydvbW5J0+vRp+fr6ytPTtvQzLS1N06dP1969e7VixQo1adLEvO7ixYsKCQnRqFGjzGFXcnKyJMnNzc2m/RiG+ALkQpw34P7x3YE90Z+yF//ewZ7oT7An+hPshb6UN9kcSiUnJ2vNmjWSJB8fHx06dEgpKSmZbse7m/Lly6t+/fqaM2eOZsyYoevXr2vlypXq3bu3reVo7ty5+u677/Tpp5+qdOnSFuuKFCminTt3Ki0tTWPHjlVcXJymT5+uxo0bq1y5cjbvCwAAAAAAAPZh89P3OnTooB49emjlypU6ffq0XFxcbAqkMixdulSpqalq27at+vbtq+bNmysoKEiSFBAQoO3bt99zG9euXdP69esVFRWlLl26KCAgwPxn+/btcnNz07p163T69Gk1a9ZM7du3V8GCBbV48WKb6wUAAAAAAID92DxS6scff9S3336rffv26Z133lHx4sXVrl07Pf7446pVq5bV2/H29tbSpUuzXBcWFpbl8p49e6pnz57m10WLFtWJEyfuup9q1arp3XfftbouAAAAAAAAZD+bR0p5enrqiSee0MKFC/X999+rc+fOev/999WnT5/sqA8AAAAAAAB5kM0jpc6cOaMffvhBP/zwg3766Sflz59f7dq1U7NmzbKjPgAAAAAAAORBNodSnTp1kru7u/r166fRo0eratWq2VEXAAAAAAAA8jCbQ6k5c+bo+++/17Zt27R//341bdpUzZo1U8OGDe9rwnMAAAAAAAA8fGwOpTImGzcMQ8eOHdOBAwc0YcIExcXF6ddff82OGgEAAAAAAJDH2BxKSdLVq1d14MABfffdd/r+++9VrFgx9e7d2961AQAAAAAAII+yOZTq3r27/vjjD9WoUUOPP/64Ro4cqUqVKmVHbQAAAAAAAMijbA6l+vTpo8cee0wlSpTIjnoAAAAAAADwELA5lBowYEB21AEAAAAAAICHiFNOFwAAAAAAAICHD6EUAAAAAAAAHM6mUMowDJ08eTK7agEAAAAAAMBDwqo5pSZNmqRvv/1WjRs31n//+1917NhRY8aMye7aAAAAAAAAkEdZNVLq+PHjevvtt3Xu3Dnt3r1bhw4dyu66AAAAAAAAkIdZFUqlpqbK3d1db731ls6cOSMXF5sf2gcAAAAAAACYWRVKTZo0STdu3JC3t7f++OMPjRw5MrvrAgAAAAAAQB5m1ZCnxo0bm//epUuXbCsGAAAAAAAADweb78Pbv3+/Zs2apQsXLsgwDIt1J06csFthAAAAAAAAyLtsDqVmzJihdu3aqWXLlnJysuruPwAAAAAAAMCCzaFUTEyMXn31VTk7O2dHPQAAAAAAAHgI2DzUqXXr1tq/f3921AIAAAAAAICHhM0jpZ599ln1799flStXVqFChSzWvf/++3YrDAAAAAAAAHmXzaHUlClTFBAQoMDAQG7hAwAAAAAAwH2xOZQ6f/68QkND5erqmh31AAAAAAAA4CFg85xS1atXV0RERHbUAgAA8NC7fv2aJk58RR06tFLnzm21ZMkCpaam3vU9+/Z9rT59umW5bvHi+Zo9e1o2VAoAAPDv2DxSqnHjxnr22WfVoUMHeXl5WawbMWKEveoCAAB4KE2ZMlHFi/to27YvFB0dpQkTxmjTpg3q3//ZTG1TU1O1du1aLVq0SMWL+1isu3EjRkuWLNDevbvVsWMXR5UPAABgNZtDqdDQUFWoUEG///67xXKTyWS3ogAAAB5Gf/0VobCwo9q2bbfc3NxUunQZDRw4RCtXLs0ylAoOHq6CBT309NMDtWfPLvPy+Ph49e/fS23btlOrVm0ceQgAAABWszqUOnHihKpXr64PPvggO+sBAAB4aJ09e1qFChWWt3dx87Ly5Svq8uVLunXrljw9PS3aT5kyQzVqVNZ7722wWJ4vXz598MEmFS1ajFv3AADAA8vqOaWmT5+uxx9/XK+//rqOHj2anTUBWWKODQBAXhcfHy83NzeLZRmvExLiM7X38SmR5XZcXFxUtGgx+xcIAABgR1aHUh9//LE2bNigcuXKafny5WrVqpWmTJmigwcPKi0tLTtrBCTdnmPD3d1D27Z9oTVr3tORI4e1adOGLNtmzLExdeprMox0i3U3bsRoxozJ2rz5Y0eUDQCA1dzc3JWUlGixLDHx9msPjwI5URIAAEC2senpe8WLF1f//v317rvv6rPPPlPdunX14YcfqmXLlho3blx21QiY59gIChplMcfGp59uyrJ9cPBwHT58WE8/PdBiecYcGwULFmSODQDAA6dixUq6ceOGrl2LNi87d+6MfHxKqGDBgjlYGQAAgP3ZFEr9XeHChdWzZ0+99dZb2rt3r1q1amXHsgBL95pj45+mTJmhdevWqXTpMhbLM+bYGDNmvNzdPbK9bgAAbFG2bDn5+9fVkiULFB8fp8jICwoJWafOnbvmdGkAAAB2Z/VE58uXL8/OOoC7utccG/+c+JU5NgAAudWsWfO0cOEb6tOnq0wmJ3Xo0FkDBw6RJD3+eHONHfua2rXrmMNVAgAA/HtWh1KHDx++63qTyfSviwHuhDk2AAAPi6JFi2nWrHlZrvvyywNZLu/c+Ql16vRElusmTZpmr9IAPOSuX7+mN96YrbCwo3J2dla7dp00fPhoubjc+dfKffu+1ooVS/XJJ59ZLF+//j1t3rxRt27dVLVqNTRu3GsqV658Nh8BgAeN1aHUBx98kJ11AHf19zk2MkY6MccGAAAA4DhTpkxU8eI+2rbtC0VHR2nChDHatGmD+vd/NlPbjAcPLVq0SMWL+1is2737c23evFELFixT6dJltGbNSk2aNE7vv7+RwQ7AQ8bqUOrzzz9Xly5dtG3btju26d69ux1KAjL7+xwb48dPUkxMDHNsAACy5ORkkpPTw/VLjbPzfU8TmqukpxtKTzdyugzgoZTx4KFt23ZbPHho5cqlWYZSwcHDVbCgh55+eqD27NllsW779q3q0aO3KlasJEkaNmykduzYprCwo6pXL9AhxwPgwWB1KPXWW2+pS5cuWrp0aZbrTSYToRSyFXNsAADuxcnJpMJeHnJ5SEKaDEWKPBy3sqempetGTDzBFJAD7vXgoX/O8TplygzVqFFZ7723IYttndGAAc+ZX7u4uKhMmbIKD/+DUAp4yNg0UkqSvvnmm2wrBrgb5tgAANyLk5NJLs5OGv1xmMKvxOZ0ObCjyj4FtaRfgJycTIRSQA6w14OHMtq7u7tn2lZ8fLydqgWQW1gdSv3db7/9ps2bN+vChQsqXry4evbsqcBAEm0AAPBgCL8Sq+ORN3O6DADIM+z54CE3Nzfze/++LR5gBDx8bA6lDh48qKCgILVp00ZVq1bVn3/+qeeff16LFi3SY489lh01wk6YYyPvYo4NAAAAZCd7PnioYsVKOnv2tJo2bS7p9qTof/0VYZ5jCsDDw+ZQaunSpZo3b546dvzf3D27d+/WypUrCaUeYMyxkbcxxwYAAACykz0fPNS5c1e9/fYaNWrUROXKPaI1a1aqaNGiqlu3XjZUDuBBZnModfbsWbVv395iWfv27TVp0iS7FQX7Y46NvIs5NgAAAOAI9nrwUOfO3XTrVqxee22sYmKuq3r1GnrjjcVycbmv2WUA5GI2f+u9vLz0xx9/qFq1auZlJ0+eVPHixe/yLjwomGMDAAAAwP2w14OHTCaTnnrqaT311NN2rxFA7mJzKNWnTx8NGzZML774osqUKaM///xTa9euVf/+/bOjPgAAAAAAAORBNodSL7zwgpKSkrR69WpFRUWpdOnSevrpp/X8889nR30AAAAAkCfw4KG8iwcPAffH5lDKZDJp5MiRGjlyZHbUAwAAAAB5Dg8eytt48BBwf5hJDgAAAACyGQ8eyrt48BBw/wilAAAAAMBBePAQAPxPjo0djY6OVlBQkAIDA9WoUSPNnj1bqampd33Pnj171LZt20zL165dqxYtWqhu3bp65plndObMGfO6+Ph4TZw4UY0aNVL9+vU1btw4xcXF2f14AAAAAAAAYD27hFI3btzQK6+8YtN7goOD5eHhoQMHDmjz5s368ccfFRISkmXblJQUrV27VmPGjJFhWA6H3Lp1qz744AO9/fbbOnz4sGrWrKlRo0aZ282cOVMXL17Unj17tHfvXl28eFHz58+/r+MEAAAAAACAfdgllEpMTNSuXbusbn/+/HmFhoZq7Nixcnd3V9myZRUUFKT169dn2X7QoEE6fPiwXnjhhUzrNm3apP79+6tKlSrKnz+/XnnlFUVGRurw4cNKSEjQjh07NGrUKHl5ealYsWJ69dVXtWXLFiUkJNz38QIAAAAAAODfyZE5pU6dOiUvLy+VKFHCvKxSpUqKjIzUzZs3VahQIYv2b775pnx9fbVly5ZM2woPD7cIq1xdXVW+fHmdPHlSXl5eSklJkZ+fn8V+EhMTde7cOVWvXt3qmk0P15NbkUvRT2FP9CfYE/0J9kR/yh4ZnyufL3D/+P7YH9em3Mna85UjoVRcXJzc3d0tlmW8jo+PzxRK+fr62rQtNzc3xcfHKzb29lMtPDw8Mu3H1nmlihXztKk94GgPy+N24Rj0J9gT/Qn2RH/KfvzcC9wfrk/Zi2tT3pQjoZSHh0em2+cyXhcoYNsX2d3dXYmJiRbLEhMTVaBAAXMYlZCQYN5uxn4KFixo036io2/JyMVP93R2duIimcddvx6ntLR0h+yL/pT30Z9gT/Qn2JMj+9PDxmS6/Utfbv+590HF9Snv4/qUPbg25U4Z5+1erA6lnnnmGZnuMP4qOTnZ+sokValSRTExMYqKipK3t7ck6fTp0/L19ZWnp23pZ5UqVXTq1Cm1bt1a0u1J0c+dOyc/Pz9VqFBBrq6uCg8PV506dcz7ybjFzxaGIb4AeODRR2FP9CfYE/0J9kR/yl783AvcP7472YdrU95kdSjVqFGju65v1qyZ1TstX7686tevrzlz5mjGjBm6fv26Vq5cqd69e1u9jQy9evXSsmXL1KJFC1WoUEGLFi2St7e3AgMD5erqqo4dO2r+/PlasmSJJGn+/Pnq0qWL3NzcbN4XAAAAAAAA7MPqUGrEiBF23fHSpUs1Y8YMtW3bVk5OTurevbuCgoIkSQEBAZo+fbq6du16z+307t1bt27d0vDhw3Xt2jXVrl1bq1evlqurqyRp6tSpmjdvnp544gmlpKSobdu2mjx5sl2PBQAAAAAAALaxOpR66aWXNH78eFWoUOGu7U6fPq033nhDq1evvms7b29vLV26NMt1YWFhWS7v2bOnevbsabHMZDJp0KBBGjRoUJbvKViwoGbOnKmZM2fetR4AAAAAAOAY169f0xtvzFZY2FE5OzurXbtOGj58tFxcMscU+/fv1+uvz1Nk5AWVKOGroKDRatq0uaTb0wmtW/eWvvzyCyUkJCggoL6Cg19ViRJ3fmAaHhxO1jYcNmyYgoKCNHToUG3fvl0RERFKTk5WUlKS/vzzT23dulUvvPCCgoKC9NJLL2VnzQAAAAAAIBebMmWi3N09tG3bF1qz5j0dOXJYmzZtyNQuIuJPjRw5Ui+8MExffPGtBg16UVOmTNDVq1ckSatXL9f+/d9owYJl2rFjr8qWLauXXx6ulJQURx8S7oPVoVSdOnX02WefqWXLllqzZo0ef/xx1alTR3Xr1lX79u31wQcfqFWrVvr8888VEBCQnTUDAAAAAIBc6q+/IhQWdlRBQaPk5uam0qXLaODAIfr0002Z2u7e/bkCAwPVokUrubi4qG3bx1W3bn1t375VkvTll3s0cOAQVaxYSa6urnrxxRG6evWKjhwJdfRh4T5YffueJOXLl08DBgzQgAEDFB0drcjISDk5OalkyZIqWrRodtUIAAAAAADyiLNnT6tQocLy9i5uXla+fEVdvnxJt27dkqen59/anpGfn5/F+8uXr6Dw8D8kSenpaXJ3dzevM5lMkkz6889zaty4afYeCP41m0KpvytWrJiKFStmz1oAAAAAAEAeFx8fLzc3N4tlGa8TEuItQqn4+HiL0CmjbXx8giSpZcs2ev/9d1SlSlV5exdXSMg6JScnKSkpKZuPAvZg9e17AAAAAAAA/5abm7uSkhItliUm3n7t4VHgH23dzOv+3tbDw0OSNGLEy6pVy1/Dh7+g/v17KX/+/KpYsZI8PQtl4xHAXu57pBQAAAAAAICtKlaspBs3bujatWgVLXr7Dqxz587Ix6eEChYsmKntqVOnLJadO3dW1apVlyRdvXpFzz03WGPGjJck3bx5U++//655PR5sjJQCAAAAAAAOU7ZsOfn719WSJQsUHx+nyMgLCglZp86du2Zq26FDZ4WGhurrr79Uamqqvv76S4WFHVX79p0kSZs2bdDs2dMVHx+vmzdvasGC11W1ajVVr17T0YeF+2BzKDVhwgT99NNP2VELAAAAADu6fv2aJk58RR06tFLnzm21ZMkCpaamZtn2hx8O6oknnlDbts00YEBvff/9AfO65ORkrVy5VD16dFKHDq01ceKrunz5kqMOA0AeNGvWPKWlpalPn64aOnSgGjVqooEDh0iSHn+8ufbu3S1JeuSR8lqxYoXef/9ddezYRiEhazV79jyVK/eIJGnYsJEqVKiQevd+Qv369ZCTk5Nef31Bjh0XbGPz7XseHh4aOXKkPD091aNHD/Xs2VO+vr7ZURsAAACAf2HKlIkqXtxH27Z9oejoKE2YMEabNm1Q//7PWrSLiPhTkyaN16JFC1WrVn19++0+TZkyQR9/vFXFi/to9erlOnjwOy1YsExly5bT2rUr9fLLw/Xeex/L1dU1h44OQG5WtGgxzZo1L8t1X355wOJ18+bNVb16XRlG5rYFChTUtGmzs6NEOIDNI6WmTJmiAwcOaOzYsTp27JjatWunwYMHa9euXUpOTs6OGgEAAADY6K+/IhQWdlRBQaPk5uam0qXLaODAIfr0002Z2u7e/bnq1Kmrxx57TC4uLmrb9nHVrVtf27dvlSR9+eUeDRw4RBUrVpKrq6tefHGErl69oiNHQh19WACAPOS+Jjp3dXVVu3bt1K5dO/3yyy+aMWOGxowZo8KFC6tnz54KCgqyeIQjAAAAAMc6e/a0ChUqLG/v4uZl5ctX1OXLl3Tr1i2Ln9fPnj2jSpUqW7y/fPkKCg//Q5KUnp5m8Uh2k8kkyaQ//zynxo2bZu+BAMiSk5NJTk6mnC7DYZydH54psdPTDaWnZzEsLA+6r1Dq6tWr+vzzz/XZZ5/p9OnTatmypUaMGKFSpUpp8eLFGjZsmD788EN71woAAADASvHx8XJzc7NYlvE6ISHeIpS63dY9U9v4+ARJUsuWbfT++++oSpWq8vYurpCQdUpOTlJSUlI2HwWArDg5mVTYy0MuD1FQU6RIgZwuwWFS09J1Iyb+oQimbA6lBg8erEOHDqlixYrq2bOnunXrpqJFi5rXjxkzRk8++aRdiwQAAABgGzc3dyUlJVosS0y8/drDw/KXO3d3tyzbenh4SJJGjHhZq1Yt1fDhL8jZ2VlPPNFdFStWkqdnoWw8AgB34uRkkouzk0Z/HKbwK7E5XQ7sqLJPQS3pFyAnJxOhVFbKlCmjjz76SP7+/lmuL126tDZv3vyvCwMAAABw/ypWrKQbN27o2rVoFS1aTJJ07twZ+fiUUMGCBS3aVqhQSadO/W6x7Ny5s6pWrbok6erVK3ruucEaM2a8JOnmzZt6//13zesB5IzwK7E6Hnkzp8sA7pvNY/0mTZqkr7/+WhEREZKk9957T4sWLVJ6erokqUCBAqpUqZJ9qwQAAABgk7Jly8nfv66WLFmg+Pg4RUZeUEjIOnXu3DVT2w4dOuvnn49q165dSk1N1ddff6mwsKNq376TJGnTpg2aPXu64uPjdfPmTS1Y8LqqVq2m6tVrOvqwAAB5iM2h1Ouvv64DBw7I2dlZklSzZk19//33mj9/vt2LAwAAAHD/Zs2ap7S0NPXp01VDhw5Uo0ZNNHDgEEnS44831969uyVJjzxSXq+/Pl+rV69Whw5tFBKyVrNnz1O5co9IkoYNG6lChQqpd+8n1K9fDzk5Oen11xfk2HEBAPIGm2/f27Nnj3bs2GGeRyowMFBvvfWWunfvrnHjxtm9QAAAAAD3p2jRYpo1a16W67788oDF60aNGqtz53aKirol4x/TmBQoUFDTps3OrjIBAA8pm0dKJSUlmSc8zFCwYEGlpqbarSgAAAAAAADkbTaPlAoMDNTcuXM1adIk5cuXT0lJSXrjjTdUr1697KgPAAAAyDFOTiY5OZlyugyHcn5IHjGfnm48FE+2AoAHmc2h1KRJkzRkyBDVq1dPRYoU0fXr11WhQgW99dZb2VEfAAAAkCOcnEwq7OUhl4ckpMlQpEiBnC7BIVLT0nUjJp5gCgBykM2hVNmyZbVr1y4dPXpUUVFR8vX1lb+/v1xcbN4UAAAA8MBycjLJxdlJoz8OU/iV2JwuB3ZU2aeglvQLkJOTiVAKAHLQfSVJaWlpKleunMqUKSNJunLliiSpVKlS9qsMAAAAeACEX4nV8cibOV0GAAB5js2h1O7duzVlyhTFxv7vf4sMw5DJZNKJEyfsWhwAAAAAAADyJptDqWXLlmnAgAHq0aMHt+wBAAAAAADgvticKl28eFEjRowgkAIAAAAAAMB9s/lRIjVr1lR4eHh21AIAAAAAAICHhM3DnerVq6eBAweqQ4cO8vb2tlg3YsQIuxUGAAAAAACAvMvmUCosLExVqlTR6dOndfr0afNyk8lk18IAAAAAAACQd9kcSn3wwQfZUQcAAAAAAAAeIjbPKSVJp0+f1qxZszRixAhdv35dH374ob3rAgAAAAAAQB5mcyj1/fffq0+fPrp+/bp++OEHJSYmasWKFVqzZk121AcAAAAAAIA8yOZQauHChVq0aJEWLFggZ2dnlSxZUmvWrNHGjRuzoz4AAAAAAADkQTaHUufPn1eLFi0k/W9y89q1a+vGjRv2rQwAAAAAAAB5ls2hVKlSpfTzzz9bLDt27JhKlixpt6IAAAAAAACQt9n89L0XX3xRw4YN01NPPaWUlBStXbtWH3zwgcaMGZMd9QEAAAAAACAPsjmU6ty5swoWLKj169erVKlSOnTokCZNmqT27dtnR30AAAAAAADIg2wOpSSpZcuWatmypb1rAQAAAAAAwEPC6lBq2rRpmjZtmiZOnHjHNnPnzrVLUQAAAAAAAMjbrJ7o3DCM7KwDAAAAAAAADxGrR0pNnz5d0u3RUDdv3lT+/PmVP39+nT59WkWLFlWRIkWyrUgAAAAAAADkLVaPlMpw6NAhtWzZUidOnJAk7dixQ+3bt9evv/5q9+IAAAAAAACQN9k80fmbb76p1157TXXr1pUkBQcHq2zZspozZ44+/vhje9cHAAAAAACAPMjmkVLnzp1Tnz59LJb17NlT4eHhdisKAAAAAAAAeZvNoVSxYsUy3ar322+/ydvb225FAQAAAAAAIG+z+fa9AQMGaOjQoXryySdVunRpRUZGatOmTRoxYkR21AcAAAAAAIA8yOZQ6rnnnpOnp6e2bdumvXv3qmTJknrttdfUpUuX7KgPAAAAAAAAeZDNoZR0ew6pnj172rsWAAAAAAAAPCSsDqWmTZumadOmaeLEiXdsM3fuXKt3HB0drcmTJys0NFTOzs7q2rWrxo8fLxeXzCXt379f8+fPV0REhEqWLKlx48apdevWkqSAgACLtunp6UpMTNSCBQvUpUsX/fe//9WTTz4pd3d3c5saNWpo/fr1VtcKAAAAAAAA+7qvkVL2EBwcrBIlSujAgQOKiorSsGHDFBISoiFDhli0O3funEaOHKmFCxeqVatW2rt3r4KDg7V3716VKFFCYWFhFu3HjRun6OhodejQQZJ07NgxNWjQQB988IHDjg0AAAAAAAB3Z3Uodfr0aUlSYGCgevXq9a92ev78eYWGhuq7776Tu7u7ypYtq6CgIL355puZQqmtW7cqMDBQjz32mCSpU6dO2rJlizZu3KhRo0ZZtN2yZYt++OEH7dixwzzi6tixY6pVq9a/qhcAAAAAAAD25WRtw99++003b97U7Nmz//VOT506JS8vL5UoUcK8rFKlSoqMjNTNmzct2oaHh8vPz89iWeXKlXXy5EmLZbdu3dK8efP02muvqUiRIublx44d0/Hjx9WuXTs1adJEwcHBunTp0r8+BgAAAAAAANw/q0dK1atXT40aNZJhGKpevXqWbU6cOGHVtuLi4izmeJJkfh0fH69ChQrdta2bm5vi4+Mtlr3//vsqXbq0OnbsaF6WlpYmHx8fNWnSRE899ZRSUlI0c+ZMDR06VFu3bpWzs7NV9UqSyWR1UyDH0E9hT/Qn2BP9CfZEf4I90Z9gT/Qn2FNu7k/W1m51KDV37lxFRERo0KBBWrt27f3WJUny8PBQQkKCxbKM1wUKFLBY7u7ursTERItliYmJFu0Mw9DmzZs1atQomf525M7OzgoJCbF47+TJk9W4cWOdPn060wisuylWzNPqtkBOKFKkwL0bAVaiP8Ge6E+wJ/oT7In+BHuiP8GeHpb+ZHUo1bVrVx06dEj58uVTw4YN/9VOq1SpopiYGEVFRcnb21vS7TmrfH195elpGf74+fnp+PHjFsvCw8Mt5ok6duyYxeTmGS5evKiQkBCNGjXKHGIlJydLuj3ayhbR0bdkGDa95YHi7Oz00HTqh9X163FKS0t3yL7oT3kf/Qn2RH+CPdGfYE/0J9gT/Qn25Mj+lB1MJusG91gdSiUnJ+urr75SSkqKjhw5IiOLhKZBgwZWbat8+fKqX7++5syZoxkzZuj69etauXKlevfunalt165d9e6772rXrl1q166d9u7dq9DQUE2aNMnc5ujRo6pZs2am2/yKFCminTt3Ki0tTWPHjlVcXJymT5+uxo0bq1y5ctYeuiTJMJSrQyk8HOijsCf6E+yJ/gR7oj/BnuhPsCf6E+zpYehPVodSTz75pIKDg5WWlqann34603qTyWT1nFKStHTpUs2YMUNt27aVk5OTunfvrqCgIElSQECApk+frq5du6pSpUpasWKF5s+fr0mTJql06dJatmyZKlSoYN5WRESExaTpGdzc3LRu3TrNmzdPzZo1kyS1atVKc+fOtbpOAAAAAAAA2J/VodT48eM1fvx4BQQEKCws7F/v2NvbW0uXLs1y3T+337x5czVv3vyO25oyZcod11WrVk3vvvvu/RUJAAAAAACAbOFk6xv27duXHXUAAAAAAADgIWJ1KDV06FBJkpeXlyRp586dFuv/7eTnAAAAAAAAeHhYHUodOXLE4vX06dMtXqekpNinIgAAAAAAAOR5Nt++l+GfT98zmUz/uhgAAAAAAAA8HO47lCKEAgAAAAAAwP2671AKAAAAAAAAuF+EUgAAAAAAAHA4F2sbJiQkqG3btubXt27dsnidmJho38oAAAAAAACQZ1kdSs2ZMyc76wAAAAAAAMBDxOpQqkePHtlZBwAAAAAAAB4izCkFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhbA6lZs6cqdjY2OyoBQAAAAAAAA8Jm0OpHTt2yM3NLTtqAQAAAAAAwEPC6qfvZejVq5dmzJihnj17qnjx4jKZTOZ1pUqVsmtxAAAAAAAAyJtsDqXeffddSdKmTZskSSaTSYZhyGQy6cSJE/atDgAAAAAAAHmSzaHU119/nR11AAAAAAAA4CFi85xSpUuXVunSpXXjxg0dP35cxYsXl5ubm0qXLp0d9QEAAAAAACAPsjmUio6OVr9+/dS3b1+NHz9eEREReuyxxxQWFpYd9QEAAAAAACAPsjmUmjNnjvz8/PTTTz/JxcVFlSpV0tChQ/XGG29kR30AAAAAAADIg2wOpQ4dOqSJEyfK3d3d/OS9IUOGKDw83O7FAQAAAAAAIG+yOZRydXVVYmKiJMkwDElSXFycChQoYN/KAAAAAAAAkGfZHEq1adNGY8eO1blz52QymRQdHa3p06erRYsW2VEfAAAAAAAA8iCbQ6lXXnlFHh4e6tChg27evKlmzZopISFBr776anbUBwAAAAAAgDzIxdY3FChQQEuXLlV0dLQuXLggX19f+fj4KDY2NjvqAwAAAAAAQB5k80iphg0bSpKKFSsmf39/+fj4SJJatWpl18IAAAAAAACQd1k1Uur8+fOaMmWKDMNQbGysnn32WYv1sbGxKlSoULYUCAAAAAAAgLzHqlDqkUceUbt27XT9+nX9/PPP5tFSGfLly6c2bdpkS4EAAAAAAADIe6yeU2rAgAGSpDJlyqh79+7ZVQ8AAAAAAAAeAjZPdN69e3cdOnRIly9flmEYkqSUlBT9/vvv+s9//mP3AgEAAAAAAJD32BxKzZo1Sx9//LEKFCggSUpLS1NcXJyaN29u9+IAAAAAAACQN9kcSu3evVsffvihEhIStH37ds2ZM0fz5s1TfHx8dtQHAAAAAACAPMjmUCohIUF169bV1atXdfz4cZlMJo0YMUKdOnXKjvoAAAAAAACQBznZ+gZfX19FR0erePHiunTpklJSUuTm5qbY2NjsqA8AAAAAAAB5kM0jpVq2bKmBAwfqvffeU4MGDfTaa68pf/78Kl++fDaUBwAAAAAAgLzI5pFSY8aMUbdu3eTq6qopU6YoJiZG4eHhmjVrVnbUBwAAAAAAgDzI6pFSvXv3Vps2bdSmTRsNGTJEkuTp6am1a9dmW3EAAAAAAADIm6wOpZo1a6bvvvtOK1asUPHixdW6dWu1bt1ajz76qPLly5edNQIAAAAAACCPsTqUCg4OliTFxsbq0KFD+vHHHzVnzhxduXJFTZs2VZs2bdSjR4/sqhMAAAAAAAB5iM0TnRcsWFCPPfaYHnvsMcXExOizzz7Te++9p6+++opQCgAAAAAAAFaxOZQ6e/asvvrqK3399df67bffVKVKFXXv3l1t27bNjvoAAAAAAACQB1kdSi1atEhffvmlIiIi1KBBA3Xp0kULFy5UqVKlsrM+AAAAAAAA5EFWh1KrV69WvXr19Prrr8vf3z87awIAAAAAAEAe52Rtw3nz5snb21sDBw5Ux44dNX/+fIWFhWVnbQAAAAAAAMijrB4p1a1bN3Xr1k3Jycn6/vvv9fXXX2vEiBGSpNatW6tt27Zq3bp1thUKAAAAAACAvMPmic7z5cun1q1bq3Xr1kpLS9O2bdv01ltv6dNPP9WJEyeyo0YAAAAAAADkMff19L1Dhw7p0KFDCg0NlZOTk5o3b64xY8ZkR30AAAAAAADIg6wOpcaOHavQ0FBdvXpV1apVU6tWrTR48GDVrl1bJpPJ5h1HR0dr8uTJCg0NlbOzs7p27arx48fLxSVzSfv379f8+fMVERGhkiVLaty4ceZbBdPT01W/fn0ZhmFRx/fffy8PDw/Fx8dr5syZ+uabb5Samqq2bdtq6tSpKlCggM01AwAAAAAAwD6sDqUSEhI0cuRItWzZUsWLF//XOw4ODlaJEiV04MABRUVFadiwYQoJCdGQIUMs2p07d04jR47UwoUL1apVK+3du1fBwcHau3evSpQoofDwcKWkpOjnn39Wvnz5Mu1n5syZunjxovbs2aO0tDQFBwdr/vz5mjp16r8+BgAAAAAAANwfq5++t3z5cvXu3dsugdT58+cVGhqqsWPHyt3dXWXLllVQUJDWr1+fqe3WrVsVGBioxx57TC4uLurUqZMaNGigjRs3SpKOHTumqlWrZhlIJSQkaMeOHRo1apS8vLxUrFgxvfrqq9qyZYsSEhL+9XEAAAAAAADg/tg8p5Q9nDp1Sl5eXipRooR5WaVKlRQZGambN2+qUKFC5uXh4eHy8/OzeH/lypV18uRJSbdDqaSkJPXq1UsXLlxQpUqV9Morr6hevXo6f/68UlJSLN5fqVIlJSYm6ty5c6pevbrVNd/HHYqAw9FPYU/0J9gT/Qn2RH+CPdGfYE/0J9hTbu5P1taeI6FUXFyc3N3dLZZlvI6Pj7cIpbJq6+bmpvj4ePPf/f39NXr0aBUuXFjr16/X4MGDtX37dsXGxkqSPDw8Mu0nLi7OppqLFfO0qT3gaEWKME8a7If+BHuiP8Ge6E+wJ/oT7In+BHt6WPpTjoRSHh4emW6fy3j9zwnI3d3dlZiYaLEsMTHR3G7ChAkW6wYPHqwtW7Zo//79qlevnnnbGe0z9lOwYEGbao6OviXDsOktDxRnZ6eHplM/rK5fj1NaWrpD9kV/yvvoT7An+hPsif4Ee6I/wZ7oT7AnR/an7GAyWTe4J0dCqSpVqigmJkZRUVHy9vaWJJ0+fVq+vr7y9LQs2s/PT8ePH7dYFh4erlq1akmSFi1apPbt26tGjRrm9cnJycqfP78qVKggV1dXhYeHq06dOub9uLq6qnz58jbVbBjK1aEUHg70UdgT/Qn2RH+CPdGfYE/0J9gT/Qn29DD0J6snOren8uXLq379+pozZ45iY2MVERGhlStXqnfv3pnadu3aVaGhodq1a5dSU1O1a9cuhYaGqlu3bpKkP/74Q7Nnz9bVq1eVnJys5cuXKzY2Vo8//rjc3d3VsWNHzZ8/X9euXdO1a9c0f/58denSRW5ubo4+bAAAAAAAAPx/ORJKSdLSpUuVmpqqtm3bqm/fvmrevLmCgoIkSQEBAdq+fbuk2xOTr1ixQqtXr1aDBg20cuVKLVu2TBUqVJAkzZ07V+XKlVO3bt3UqFEjhYaG6t1335WXl5ckaerUqSpfvryeeOIJdejQQWXKlNGUKVNy5JgBAAAAAABwW47cvidJ3t7eWrp0aZbrwsLCLF43b95czZs3z7Ktl5eX5s6de8f9FCxYUDNnztTMmTPvv1gAAAAAAADYVY6NlAIAAAAAAMDDi1AKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcDhCKQAAAAAAADgcoRQAAAAAAAAcjlAKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcLgcC6Wio6MVFBSkwMBANWrUSLNnz1ZqamqWbffv368nnnhCdevWVceOHbVv3z7zuqSkJM2ePVstWrRQ/fr11adPHx06dMi8/r///a+qVaumgIAA858BAwZk+/EBAAAAAADgznIslAoODpaHh4cOHDigzZs368cff1RISEimdufOndPIkSM1evRoHTlyRCNHjlRwcLAuX74sSZo/f75+/vlnbdy4UaGhoerTp49eeuklRUZGSpKOHTumBg0aKCwszPxn/fr1jjxUAAAAAAAA/EOOhFLnz59XaGioxo4dK3d3d5UtW1ZBQUFZhkVbt25VYGCgHnvsMbm4uKhTp05q0KCBNm7cKOn2SKlRo0apZMmScnZ2Vt++fZUvXz4dP35c0u1QqlatWg49PgAAAAAAANydS07s9NSpU/Ly8lKJEiXMyypVqqTIyEjdvHlThQoVMi8PDw+Xn5+fxfsrV66skydPSpJmzJhhse7HH3/UrVu3VK1aNUm3Qylvb2+1a9dOsbGxatiwoSZMmCBfX9/sOjwAAAAAAADcQ46EUnFxcXJ3d7dYlvE6Pj7eIpTKqq2bm5vi4+MzbfeXX35RcHCwRowYobJlyyotLU0+Pj5q0qSJnnrqKaWkpGjmzJkaOnSotm7dKmdnZ6trNplsOUIgZ9BPYU/0J9gT/Qn2RH+CPdGfYE/0J9hTbu5P1taeI6GUh4eHEhISLJZlvC5QoIDFcnd3dyUmJlosS0xMzNTuk08+0Zw5czRq1Cg9//zzkiRnZ+dM81RNnjxZjRs31unTpzONwLqbYsU8rW4L5IQiRQrcuxFgJfoT7In+BHuiP8Ge6E+wJ/oT7Olh6U85EkpVqVJFMTExioqKkre3tyTp9OnT8vX1laenZfjj5+dnnh8qQ3h4uHmeqLS0NE2fPl179+7VihUr1KRJE3O7ixcvKiQkRKNGjTKHWMnJyZJuj7ayRXT0LRmGbcf5IHF2dnpoOvXD6vr1OKWlpTtkX/SnvI/+BHuiP8Ge6E+wJ/oT7In+BHtyZH/KDiaTdYN7cmSi8/Lly6t+/fqaM2eOYmNjFRERoZUrV6p3796Z2nbt2lWhoaHatWuXUlNTtWvXLoWGhqpbt26SpLlz5+q7777Tp59+ahFISVKRIkW0c+dOLVq0SElJSbp27ZqmT5+uxo0bq1y5cjbVbBi5+w8eDvQn2BP9CfZEf4I90Z9gT/Qn2BP9CfbkqP6Uk/00R0IpSVq6dKlSU1PVtm1b9e3bV82bN1dQUJAkKSAgQNu3b5d0ewL0FStWaPXq1WrQoIFWrlypZcuWqUKFCrp27ZrWr1+vqKgodenSRQEBAeY/27dvl5ubm9atW6fTp0+rWbNmat++vQoWLKjFixfn1GEDAAAAAABAOXT7niR5e3tr6dKlWa4LCwuzeN28eXM1b948U7uiRYvqxIkTd91PtWrV9O67795/oQAAAAAAALC7HBspBQAAAAAAgIcXoRQAAAAAAAAcjlAKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcDhCKQAAAAAAADgcoRQAAAAAAAAcjlAKAAAAAAAADkcoBQAAAAAAAIcjlAIAAAAAAIDDEUoBAAAAAADA4QilAAAAAAAA4HCEUgAAAAAAAHA4QikAAAAAAAA4HKEUAAAAAAAAHI5QCgAAAAAAAA5HKAUAAAAAAACHI5QCAAAAAACAwxFKAQAAAAAAwOEIpQAAAAAAAOBwhFIAAAAAAABwOEIpAAAAAAAAOByhFAAAAAAAAByOUAoAAAAAAAAORygFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcLgcC6Wio6MVFBSkwMBANWrUSLNnz1ZqamqWbffv368nnnhCdevWVceOHbVv3z6L9WvXrlWLFi1Ut25dPfPMMzpz5ox5XXx8vCZOnKhGjRqpfv36GjdunOLi4rL12AAAAAAAAHB3ORZKBQcHy8PDQwcOHNDmzZv1448/KiQkJFO7c+fOaeTIkRo9erSOHDmikSNHKjg4WJcvX5Ykbd26VR988IHefvttHT58WDVr1tSoUaNkGIYkaebMmbp48aL27NmjvXv36uLFi5o/f74jDxUAAAAAAAD/kCOh1Pnz5xUaGqqxY8fK3d1dZcuWVVBQkNavX5+p7datWxUYGKjHHntMLi4u6tSpkxo0aKCNGzdKkjZt2qT+/furSpUqyp8/v1555RVFRkbq8OHDSkhI0I4dOzRq1Ch5eXmpWLFievXVV7VlyxYlJCQ4+rABAAAAAADw/+VIKHXq1Cl5eXmpRIkS5mWVKlVSZGSkbt68adE2PDxcfn5+FssqV66skydPZrne1dVV5cuX18mTJ3X+/HmlpKRYrK9UqZISExN17ty5bDgyAAAAAAAAWMMlJ3YaFxcnd3d3i2UZr+Pj41WoUKG7tnVzc1N8fPw918fGxkqSPDw8Mu3H1nmlnJyk/39HYK5Ws1QhuedzzukyYEcVvQuY/+7k4JiZ/pT30J9gT/Qn2BP9CfZEf4I90Z9gTznZn+zJZLKuXY6EUh4eHplun8t4XaBAAYvl7u7uSkxMtFiWmJhobne39RlhVEJCgrl9xn4KFixoU81Fi3ra1P5B9UbvOjldArJJkSIF7t3IzuhPeRf9CfZEf4I90Z9gT/Qn2BP9CfaUE/0pJ+RI7lalShXFxMQoKirKvOz06dPy9fWVp6dl+OPn56dTp05ZLAsPD1eVKlXM2/r7+pSUFJ07d05+fn6qUKGCXF1dFR4ebrGfjFv8AAAAAAAAkDNyJJQqX7686tevrzlz5ig2NlYRERFauXKlevfunalt165dFRoaql27dik1NVW7du1SaGiounXrJknq1auXPvzwQ508eVJJSUlasGCBvL29FRgYKHd3d3Xs2FHz58/XtWvXdO3aNc2fP19dunSRm5ubow8bAAAAAAAA/5/JMHJmpqSoqCjNmDFDhw8flpOTk7p3765XX31Vzs7OCggI0PTp09W1a1dJ0oEDBzR//nz9+eefKl26tMaOHauWLVtKkgzD0Lvvvqv169fr2rVrql27tqZPn64KFSpIkmJjYzVv3jx98803SklJUdu2bTV58mSLeaYAAAAAAADgWDkWSgEAAAAAAODhlYvncgcAAAAAAEBuRSgFAAAAAAAAhyOUAgAAAAAAgMMRSgEAAAAAAMDhCKUAAAAAAADgcIRSAAAAAAAAcDhCKQAPLcMwcroEAACAXCWrn5/4mQr3i74DQinkKunp6TldAvKItLQ0mUwmSfQr/HtZ9SF+yML9SktLy+kSkIfQn2BPGT8/xcXFKSoqSjExMUpNTZXJZOLnKdgso+9I0q1btxQbG6uUlBRJ/Hz+MDEZ/NSMXCItLU3Ozs76888/deDAAbm5ualXr145XRZyoYy+lJ6erhkzZigqKkppaWlq0aKFevbsqfz58+d0ichFUlNT5eLiIsMw9PvvvystLU1FixZVyZIlZRiG+YctwBoZ/Sk9PV3bt29XqVKl9Mgjj6hEiRI5XRpyoYx/786ePavNmzerXLlyql+/vipXrpzTpSEXSk9Pl5OTk37//XfNmDFD8fHxcnJyUtWqVTVhwgQVKlSIf/dgtb//PB4cHKxbt24pOjpadevW1UsvvaRSpUqZ+xzyNkIp5AoZF6STJ0/q2Weflb+/vw4ePKi+fftq6tSpcnZ2zukSkcukp6erV69eeuSRR9SuXTsdOHBAFy5cUMWKFfXaa68pX758OV0icoGMa1N6eroGDhyo1NRURUdHKy4uTjNmzFCbNm34gQpW+3t/6tmzp9LS0nT58mV169ZN/fr1U6VKlXK6ROQi//zZqV69egoLC1Pr1q3Vv39/+fv753SJyIXOnz+vp556SkOHDlXz5s119OhR7d69WyaTScuWLVOBAgVyukTkAhnhpWEY6t27t8qXL6+hQ4fq0KFDOnz4sKKiorRs2TL+Q+YhwU/JyBWcnJx04cIFvfzyy3r11Ve1bt06jRkzRps2bdK0adNyujzkQuvXr1fJkiW1ePFiderUSbNmzVL79u31+++/69ixYzldHnKBjF/4DMPQwIEDVbJkSb333ntauXKl+vTpoxEjRujw4cMEUrBaRn969tlnVblyZe3YsUNPPfWUDhw4oI8++khnzpzJ6RKRizg5Oeny5csKDg7WiBEj9NZbb+n555/X0aNHtWHDBv322285XSJyoW+++Ubt27fXwIEDValSJfXp00eDBg1SbGysDh06lNPlIZfIuN3zm2++UdGiRbVgwQJVrVpVzz33nAYNGiR3d3d9+eWXkpgO4WHAT8rINX7++WeVK1dOffv2VVRUlM6cOaPg4GB9/vnnmj17ts6ePZvTJSIXiYqKUmpqqqT/DR/u2bOnLl68qKNHj+ZwdXjQGYZhDpsiIiJkMpk0adIkubq6qlKlSho9erR69+6tFStWKD4+nh+oYLVDhw7JxcVF8+fPlySlpKSoSpUqOnDggDZs2KCwsLAcrhC5QcY159ixY/L19dWzzz6r6OhonT59Wu3bt9fRo0f19ttva9euXTlcKXKbCxcu6I8//jDP92MymdSwYUPFxsYqIiIih6vDg27dunV65513JN0Ozq9cuaIzZ84oNjbW3CYwMFAuLi46efKkJHE76EOAUAoPrH/+EhcZGakSJUooMTFRL7zwggoWLKiXXnpJtWvX1gcffKDNmzfnUKV40GU1yWuBAgV08+ZNXbhwwXz7p7u7uxo0aCBfX19Hl4hcZM6cOVqxYoX59aVLl3T48GFdvHhRksxhZ8WKFeXs7CwPDw9+oMId/fPfuvj4eEVFRUmSXnnlFZ06dUrLli2Tv7+/tm/frrVr1youLi4nSkUu8PegIEOBAgUUGxurQYMGqWDBgnr11VdVt25d/fe//9WRI0cIzXFHGT8//X3C6erVqystLU2hoaHmZfnz51fZsmXl7e3t8BqRe9y8eVMnTpww/yeLdPtnpUKFCik0NNTi5/VKlSqZfx7nGpX3ueR0AUBWMkauxMbGKjU1VV5eXnrqqaeUlpamnTt3qmjRovrPf/4jSSpdurQWLlyo9u3b53DVeBD9fRLFTZs2qWjRoqpfv7769OmjDRs2aM6cOXr++edVtWpV7dixQ99//71GjhyZ02XjAZWWlqauXbuqVq1aWrlypV566SU1bNhQjRs31nvvvadXXnlFxYoVkyQlJSXJ09NTSUlJypcvH8EUMsmY1Fy6/Utfenq6mjRpokqVKunAgQM6ceKEeSRL4cKF1bNnTw0ePJg5W5CljH/v/vrrL/3yyy9KSEhQ/fr19cYbb+jbb7+Vp6enpk6dKul2fxswYIAGDRpknteFaxT+Lj09Xc7Ozjpz5ozeeecdFS9eXE2aNFGXLl30+eefa/Xq1fr111/16KOP6oMPPtClS5fUoUOHnC4bD7BChQpp3LhxWr16tfbs2aN8+fKpd+/eeuSRR7RmzRpFRkYqICBAP/30kz777DNzcMW1Ke8jlMIDJ+Mfwd9//12zZs3SlStX1L59e/Xr10+lSpVSdHS04uPjFRkZqQULFujMmTOaPXu2nJyczD+QAdL/+lJ6erq6desmZ2dnnT9/Xq1atVJwcLA2bdqkUaNGadKkSSpQoIBSU1O1du1alStXLqdLxwPIMAw5OzurVq1aOn78uDZu3KjffvtNK1asUN++fbVhwwa9+uqratu2ra5evaqPP/5Y7733Hk9zRJbS09PNT9l75f+1d+dxUdb7//8fM2yCaxgiIGIuuWaueTT7aGSatrgBKW6YCrjvWy65pWjua+7grriVWrlkbmmWqZkhruAumKLIDjPz+8Mf8wWzc6pzctCe979kZq65vabmdl3veV7v9+s9cCApKSl4e3vTrVs3SpUqRUxMDIUKFeLKlSscPnyYvXv3EhERgZubm61Llzwo+/wUHR1NUFAQtWrVIi4ujtdee438+fNjb29PamoqBw4cYPv27Vy+fJkpU6ZY+7qo953klP2duHjxIv7+/tSvX58TJ05w4sQJunTpwvz585k5cyZffvklBw4cwNXVlY0bN2Jvb6+xuPxGzh6c7u7uhISEsHDhQjZv3oyLiwvTp09nypQpbN26lfXr11O4cGGWL1+uzT3+QbT7nuQp2SetGzdu0KZNG/z8/HB2dmbFihU0adKE0NBQkpOTee+99yhfvjwWi4U1a9bg4OCgQZXkkvP7sGjRImJiYpg0aRJHjx5l3rx5uLq60rdvX7y8vLh8+TLp6el4enri6upq48olL3rcIPvIkSN88sknlChRgtmzZ3P8+HE2bdpEbGws3t7e1hl4Io/KniFlsVho3rw5JUuWpHjx4pw7dw4XFxfGjBnDvXv3GDRoEC4uLty8eZMFCxZQpUoVW5cuediDBw/o2LEj77zzDl26dCElJQUXFxfi4uLYv38/O3bsICMjA6PRSHh4OA4ODgoQ5DeyZ83dvn2bbdu2YWdnR6dOnbh48SLLly/n6tWrdO7cmYYNG5KZmUlSUhJFihTBYDDkmv0pArmvd8ePHycjI4MSJUrg7u7OlClT+OWXXwgMDOTdd98lPT2dhIQEChQoQIECBWxdujxBCqUkz8i+CN65c4d58+ZRtGhRevbsCcChQ4cYNWoUr7/+OgMHDiQzM5OEhAR8fHwwGo26CEouFy5coGzZsgBMmTKFAwcOMHz4cF599VUAfvzxR6ZPn46Hhwfvv/8+tWvXtmW5ksdln1/MZjORkZHWH3r+/v4cPnyYmTNnUrx4cebMmYPBYCAtLQ0HBwf90JN/y2w2c/DgQb777juGDh0KwDfffMPatWtxcHBg8uTJPHjwgLi4ONzd3fHw8LBxxZLX3bhxg379+jFv3jzc3Nys/e2WLFmC0WikefPmGAwGnn/+eY2d5DeSkpL48ccfadCgAampqYSEhHDmzBnr7sQAly5dYvHixdZVDAEBAdbjtQRUHpV9g9hsNhMYGEi+fPmIjY3F2dmZgIAAOnXqxMSJEzl//jyvv/46QUFBti5ZbETTSsTmrl69SmxsLAaDgaSkJCIjI/niiy84e/as9TX169dnzJgx7N+/n7Fjx5KVlcULL7xgPdFpUCXZlixZwubNm4GHs1uKFCnC9evX2bt3r/U1NWvWZNCgQZw7d45t27aRmppqq3Ilj7NYLNZAys/Pjz179nD06FFmzpzJBx98QMmSJRkwYABxcXG0a9cOs9lMvnz5FEjJY4WFhVn/vWzZMkJCQjh9+jRpaWkAvP766wQEBGAymejevTsA1apVUyAlj5Wz+TRAvnz5uHLlCl999RUA9vb22NvbU7RoUY4fP46bmxvFihXT2Ekea+XKlcTGxmIymXB2dqZjx444Ozuzc+dO62tKly5NcHAw+fLl4+LFi7kaUCuQkpxy7lLctWtXvLy8CA8PJzw8nJCQEGbNmsWmTZvo378/xYsX54cffuD+/fs2rlpsRVcjsbnVq1ezZcsWJk6cyJkzZ3j11Ve5d+8eu3btYtOmTbRu3RqABg0aMGzYMD7//PNcS6y0ZE9yatiwIWXLlmX69Ok0aNCA4OBgHB0dWbhwIW5uboSGhgJQvXp1JkyYQNGiRXF2drZx1ZLXjRgxAh8fH2bMmAE8vKPcunVrJk+ezLx588jIyCAiIoK4uDgFCPJY165dIzEx0fp3165duXPnDqtWreL06dPUqlULgEaNGpGRkcGuXbtsVao8BbKX3cXFxXHx4kXS0tLw9fXF39+fr7/+mqJFi9KsWTMAjh07hru7e67xksZOki0jI4Pk5GS6d+9OSkoK/v7+dOnShbfffhsHBwf69evHyJEjmTBhAgAvvPACI0eOxN3dXUGUPNb169fx8vIC4ObNm2RlZfHhhx8CUKpUKTw9Pbl58yaff/45/v7+DBgwAKPRSOHChW1ZttiQQimxuWHDhvHTTz/Rs2dPgoODqV69OkWLFsVgMLB+/XosFgt+fn4AvPnmm7z55psA6iEluWQvQyhbtiyXL1/m9OnTnDhxgsGDBxMUFITBYCA8PByj0UhwcDAAVatWtXHVkhfduXOHjIwMPDw8rAPuhIQEWrVqBUBqaioFChRg9uzZtG/fnjNnzlCvXj1eeeUVXFxcbFm65EGJiYkkJydTokQJJk6cSFhYGLt27WLv3r0MHTqUxMREunXrxsKFC3nllVcAaNasGQ0aNNAue/JY2Zt4REdH06tXL9zd3SlUqBC+vr4EBARw//59FixYQHh4OK6ursTFxbFhwwZAS6wkN5PJxOTJkzlz5gzTpk3D1dWVSpUqMX36dJycnGjUqBEzZsywhgbjxo0DsN580VhcHrVgwQLS0tLo378/8HDMdPLkSY4dO0aTJk2wWCw4OjpSsmRJdu/eTXJyMu7u7jauWmxNZxGxqczMTCwWCykpKXh5ebFt2zYuXrxIyZIlCQgIoGbNmmzYsIGIiIjfHKuLoGTL2UTx1q1b2Nvb07dvXzw8PJg8eTKnTp2iU6dOfPDBByxYsIDly5fbumTJwzZv3sy6deu4evUq27Ztw2w2c+HCBX744QcAnJ2dMZlMFChQAG9vb1xcXHB0dFQgJY+1bNky6/dp06ZNNG7cGAcHB9q2bQvAxx9/TLNmzejVqxeHDx+2HqdASn6P0WgkLi6O0NBQQkNDWb16NfPnz+ebb77h0qVLtG7dmgkTJvDGG2/wzjvvEBkZiYODA1lZWQqkJBc7Oztq1KhB4cKFGT9+PImJiYwYMYJGjRoxfvx49uzZQ8OGDZkxYwYbNmxg0aJFuY7XWFwe1aBBA/r378/s2bM5ffo0pUuXpmHDhuzbt4/o6GjrOSg+Pp7nn39e5yQB1OhcbOTROysZGRk4OjrSpUsXzp07R3h4OGXKlOHGjRssXLgQi8XC2LFjdeKS38jZRDG7p8/NmzfZtGkTV69eZe3atdy4cYNhw4bx0ksvsXbtWurWrUupUqVsXbrkUZGRkaxfv56bN2/y2muvERYWxrp164iIiKBjx47WMCEyMpIVK1YQERGhXRvld+3du5exY8eSmppKs2bNGDNmDGfPnqVPnz4899xzrFu3DoB+/fpx4sQJdu7cSb58+WxcteR1hw8fJiIiggULFnDs2DFGjhxJ/vz5OXPmDAEBAdYZLdm0y548KudYfPfu3axfvx4HBwfGjRtH/vz5mTVrFjt37mTkyJE0atSIEydO8NJLL6kXmTxWzu9TVFQUEyZMwNnZmfHjx3Pz5k2mTp1qvZlXsGBB1q1bR3h4OBUrVrRx5ZIXKJSSJy57YHTlyhX27NlDVlYWhQoVok2bNphMJnr27ElUVBSrVq3ixIkTuLq6Ur9+fQwGg6ady2NZLBY6dOiAu7s7EydOJDY2lvLly5OVlcWBAwfYvXs3p0+fJiwsjMqVK9u6XMmjcp5fWrZsyZUrV+jatStt27bFbDazYsUKNm3ahLu7O56enpw8eZIFCxboOyWPlfP71Lx5cy5fvkzXrl0JDAzE1dWV6Oho+vTpQ7FixVi1ahXw8M5xsWLFbFm25FGP3sy7fPkybdu2xcnJiaJFi1KuXDkmTZrE9u3b2b59OzNnzlS4Kb8r+/uUM6w8cuQIixYtIl++fNZgas6cOaxYsYLw8HDrTsXatVEe9bjvxPHjx1myZAlpaWlMmjSJpKQkvv76a44ePcqLL75Iq1atKFeunI0qlrxGoZTYxLlz5+jcuTP/93//h729Pfv376dy5crMnz8fk8lEaGgoP/74I97e3mzZsgU7OzsFUvK7Ll26xEcffcTSpUtxdHQEHs6+27BhA8WLF6do0aJs3ryZkJAQSpQoYeNqJS/KHpibzWaysrI4dOgQ8fHxbNq0iX/9618EBQVRuHBhoqKi2LdvH8WLF6dOnTr4+PjYunTJg7K/T9nXraNHj/LgwQM+/vhj3nrrLTp27IiHhwfnz5+nc+fOlC1blvDwcFuXLXlU9vfpxo0bREVF4eLiQr169fjll1+4fPkynp6eVKtWDYBBgwZhsViYNm2abYuWPCv7+xQTE8PWrVu5d+8ezz33HL179+b7779nyZIlODk5MXbsWFxcXNi8eTOBgYGaaSePlXP8NHr0aAwGAy+99BJ+fn789NNPLFy4kIyMDEaNGsULL7yAyWTCaDTqN53kolBKniiTyURmZiY9e/akVq1adO/enYyMDN59913q1KlDjx49KF68OAAnTpygatWq1hOd1q1LtkeXIVy8eJHWrVsza9YsGjRoYP0hOG3aNKKjo1m8eDHp6ek4OTnZsGrJq3IGCLt27cLOzo5GjRoBEB4ezrZt26hfvz6hoaEkJCTg6elp44olL8u+Y2w2m9m4cSMGg4HmzZvj6OjI1q1bmTlzJu+88w49e/bk0qVLmM1mihQpgre3t61Llzwoe/wTHR1NUFAQpUqV4uTJkwwdOpTOnTsDsGfPHnbv3k1KSgoxMTFs2bIFBwcH3cyT33Xu3Dk6depE8+bNefDgAVFRUWRkZLBy5UouXLjAokWLSElJYf78+RQpUgTQElD5rexzjNlspmXLlri7u1v7u7799tt069aNU6dOsWzZMm7evMmkSZM0O0oeS3Mv5W+XkpLCd999h6+vL3Z2dphMJjIyMnj77bcBCAgIoHr16gwbNozAwECGDh1K3bp1qV69OqCLoOSWs6n5yZMnSUlJoWTJkvj6+rJ37148PT2tF7x8+fJRsmRJAAVS8lgWi8UafLdq1QqTycSVK1d4+eWXWbJkCUFBQdjZ2bFlyxaOHDnC9evX2bJli5ZYyWOZzWZrINW8eXPs7e25c+eOdelnixYtrIH5Dz/8wJ07d1i9erV2HpLfZTQauXLlCr1796Zfv3688cYbzJ49m8mTJ5OVlUW3bt0wGAwYjUbKly/PjBkzsLe31xIreazsm8OTJ0+mY8eOdO/eHXi4S2hoaCj9+/cnIiKCO3fucOrUKQoVKmQ9VmNxeVR26D148GAqVqxIWFgYFy5cYPTo0ezevRuAkJAQgoKCWLNmjTbwkN+lq5X87Xbs2MGoUaMICwujRYsWwMO+GRs3buTYsWOUK1eOsLAw4uLiMJvNlC5dOtfxughKNovFYv3B5+fnh7OzM1euXGHNmjU0adKEVatWMWfOHEqXLo2Tk5O1CbXI4+ScgTlhwgSqVKnC6NGjiYmJoU+fPnTp0oVly5bRoUMHPDw8uHTpEr6+vgqk5HcZjUYsFgvdunWjWrVqjB8/ns8++4zx48fTunVrNm3aRPPmzSlWrBi//PILr7/+ugIp+Y2MjAwA63L0vXv3UrNmTdq0acOtW7fIyMigbdu2TJs2jcKFC+Pv788bb7xhPd5kMimQEqvU1FS2b9+Ov78/dnZ2PHjwgPv37/PKK68AD3fCLlSoED169OCjjz7i1q1bNG3alKZNmwK/7Wcm8mjoHRMTw6xZswBYtWoVVapUwWw2s2rVKq5du8aoUaOYNGmS9Zwm8iidYeRvk5aWRlxcHP7+/vTv359hw4axceNGHB0d6dq1K5GRkaSlpfHJJ58AMHPmTIoUKYKbm5uNK5e8KvuOTGhoKD4+PqxevZr169fj7e1NkyZNaNasGZUrV+b48ePcunWLFStWUKFCBRtXLXlVdoAwd+5cYmJiaNOmDY6OjpQvX54lS5Zw8+ZNunXrRnp6Oo0aNaJbt26ULVvW1mVLHmQymaz/jomJIT09ndGjRwNw8uRJ3n//fQwGA+3atePKlSvUrVuXLl26UKZMGVuVLHlUZmYmb731FmfOnLE+dvbsWZ577jmysrLo0aMHxYoVY+DAgXh5eTF69Gjmz5+f6z10M09y2rNnD+PHj2fhwoUAFC5cmNTUVL766isAHBwcAChRogSurq6YzeZcxyuQkpyyZwSbTCZGjx7NzZs38fLyIiMjg3HjxnHq1Ck+/PBDmjdvTv78+YmPj+fXX39VICX/lm6jyN/CYrEwY8YMduzYwbp16wgJCcFsNjNy5Ejy5cuHv78/8fHxfP7557Rp04b8+fOTlJTEqlWrMBqNuisjv+v+/ftkZmbSt29fAIoVK0ZWVhY7duwgMTGRkJAQunTpgsFg0MBcHivn+SUzM5MLFy5w7NgxvvrqK8qXL4+DgwPe3t5ERETQokUL+vXrx4IFC9SbRR4rZ5PXI0eOkJKSQlJSEvb29gwbNoybN2+yePFizGYzy5cvp2fPnmzYsAFnZ2dbly55kIODA7Nnz6ZUqVKsW7eONm3a0Lt3b4xGI8uWLcPd3Z2BAwcC8Morr9CwYUNrDzyRx3nrrbdISEggPDwcJycngoKC8Pf3Z+fOnSxZsoTOnTtjZ2fHwoULKVSoEB4eHrYuWfKonOOnIUOGYDKZ8PDwYPLkyaSlpREdHW2dMXXkyBEqV67MRx99ROHChW1ZtjwFFErJ38JgMNC0aVNu3rxJz549mTt3Lt27d8disTBo0CCMRiM9e/bk3Xff5ejRo3h6evKvf/0LOzs79UGQXB5t1GoymTh9+jT79++nVKlS1u+K2Wxm165ddO7cWXdj5HflPL/cvn0bNzc3pk6dyqRJkzh+/Dhbt27lvffew8nJCS8vLz777DMyMzNtXLXkVWaz2dokPzAwkMqVKzNq1ChKly7NmTNnOHfuHCtWrMDR0RFHR0c+/vhjXn31VQVS8liZmZk4ODhQpUoVtm/fzpgxY0hNTaVjx47Y2dkRHx9v7fEzaNAgrl27xscff4zRaNTYSX4jOzC/fv06P//8Mw4ODkybNg07Ozs6depEYmIin3/+OcuXL+fFF18kKSmJNWvWWBtX6+awPCr7OzF48GBu3LjB2LFjAXBxccFkMmE2m5k1axalS5cmPDyc1atXK5CSP0RXL/mfyw4RqlWrRrdu3ViwYAE9e/Zk3rx59OjRA4ABAwaQlpZGq1atrI2oQX0QJLdHm9ynpKTg6upK27Zt2b9/Pz4+PjRs2BCABw8e4OXlZaNK5WmQfX4xm8306NGD69evU7lyZfr378/w4cMZN24cW7duxWAw8O677+Lk5KSd9uTfyh6gz5gxg/z58zNq1CgAypQpw6FDh7h9+zb37t1j48aNbNiwgbVr11p3mBXJyWKx4ODgwI0bN7hy5QrvvPMOaWlpjBw5EoDOnTtTr149evToQUxMDGlpaWzatMk6u1xjJ3mUnZ0dsbGxvP/++/Tq1YumTZty9uxZwsPDMZvN9OnTh7Zt23Lw4EG8vLyoVauWbg7LYz16g9jJyYlTp06xY8cOPDw8KFiwII6Ojvj6+vLzzz/z7bffEhERoZ325A/TGUf+p7LvrGSHCS+99BKDBg1i8uTJuYIpo9HIhx9+SNGiRWnQoIH1eC23kmw5l8R89NFHJCYm8uDBAwIDA3nzzTe5desWc+bMYcuWLXh4ePDZZ5+xbNkyzZKS35X9fWrdujUlS5akS5cuTJo0CZPJRP/+/Rk1ahQTJ04kIiICe3t768YMIo+TPUj/4YcfOHHiBKdOneKXX36hcuXKANSuXZsiRYoQGhpKSkoKS5YsoVSpUrYtWvKk7OvdvXv3mDJlCseOHSMsLAw/Pz8sFos17OzcuTPbtm0jISGBmjVrKkCQ/+jbb7+levXqdOjQAYC6devi7e1NWFgY9vb2tGvXjlatWllfr5vD8qic55iMjAwcHR2ZMGECbm5ufP7557zwwgu88cYbFCxYkKCgIBwdHUlJScHFxcXGlcvTRGcd+Z/JHlTFxMSwdetWUlNTee655+jevTtDhw5l6tSp9OrVi7lz5xIaGoq7uzuvvvqqrcuWPCo7QAgICMDHx4dmzZoRHx9Pr169WLJkCT179uSXX37h66+/plChQqxcuVJNqOWxct7hmzp1KhUqVLCGUYcOHeLAgQOkpqYyevRoRowYwbRp06hVq5aNq5a8Kvtal/2dql27NoMHD2bKlCmEhYUxZswYypQpg5OTE+vWrePq1au4ublRtGhRG1cueZHFYsHOzo4zZ84wYsQIa1+7AQMGMG3aNPz9/QEYM2YMycnJ9OrVy3qsAgT5T+7evcvdu3etfzs7O1OzZk2cnJwYP348Li4utGzZ0vq8bg5LTjlnmI8ePZq7d+/y4MED3nnnHWtv13nz5mEwGPD19aVgwYIACqTkT9NiYfmfsbOz48KFCwQGBpKamoqzszO7d+/mnXfeoVixYvTp0wcvLy/atm1LfHw8LVu2xN7enqysLFuXLnnInj17rP/+6quvyJcvH9OmTaNJkyZcvnyZSpUq4enpSWJiIs2aNWPatGn06NFDgZQ8lslkyjXlPC4uzrpkePjw4Xh6erJ48WL27t3LoEGDOHToEEOHDqVEiRK2KlnysJwzOFeuXMmcOXNYtGgRFSpUYNCgQRQoUICJEydy6dIlAPLnz0+FChUUSMnvMhgMJCQkMHjwYFq3bs2kSZP45ptvaNmyJSNGjODAgQP4+/szZMgQDh06hMVisR6rAEFyyt4FNCMjg7S0NAAaNWrE2bNniYiIsL7Ow8ODl156iXHjxvHee+/ZpFZ5OuScYZ6UlISfnx8vvPAC27dvZ9y4cfTt25c333yTSZMmcfDgwVznJ5E/Q7dX5H8iuxHwnDlzCAgIoH///mRlZbFv3z6qVatGYmIiFSpUoFevXnz11Ve5Bui6yyfZTp8+Ta9evejevTt9+/YlOTmZAgUKADBw4EDOnTvHli1b+PTTT/nhhx9yDbJEHnX37l3r9tbBwcEEBATw0ksv8eqrrzJ37lzOnDnDxIkTycrKomrVqhQrVozy5cvbumzJo7JntGQP0L28vDAajVy7do3169ezcuVKQkNDWbhwIcOHD2fKlCn4+PjYumx5CiQlJWE0GqlXr571seHDh3Pz5k1GjRrFxx9/TKdOnejYsSMGg+E3/V1EsjddOH/+PJ9++in37t2jVatWvP322/Tr14958+YRExNDzZo1+frrr4mNjbU2PX+0f6cI/L9Z5uvXr8fd3Z2ZM2cC4OvrS2RkJBs2bODkyZMMGTIEgCpVqui8JH+ZZkrJX5aSksLy5cuBh1sYG41GkpKSeO211wBo3bo1L774ImPGjKFnz57s2bOHSpUqMWDAAOtFUCSnKlWqMHv2bJYuXcqnn35KyZIl+fbbb+nSpQvXr18nMjISe3t7rly5QrVq1WxdruRh3bt35+eff8ZkMrFy5UoKFy5M48aNCQwMpFy5cly/fp327dtjb2/Pxo0bcXV1Zfjw4doKW35X9mB77NixlChRgrlz5zJ79mxWrlxJ6dKlCQkJoUqVKrz//vt4e3vj4OBg44olrzKbzQAkJiaSlpaGvb096enp3Lp1C3g40wWgTp06mEwmhg4dSnR0NAaDgaysLP3wk1wsFgtGo5GYmBg6dOiAo6Mjzz33HIMGDWLjxo20a9eOjz/+mJ9++okvv/wSg8FAZGSkNWRXICU5Zf8+yz7P3L9/n+TkZOvuegAtW7bk3r17fPPNNwAMGTIk18ZVIn+WpqjIX3by5EkmT55MfHw8Q4cOtTbcXLFiBVOnTqVSpUpMmjSJzMxMTCbTb5bD6CIoj9O4cWM++eQT645oXbt2ZeHChSxatAij0cjq1avZv38/a9assXWpkkctX76cM2fO0KBBA9q0acOFCxfo3bs38HC3tPT0dO7fv8/mzZs5duwY+/btIyIiQkus5LEenUVw584d3nzzTeBheJA/f36GDh1K165d+fnnn2nQoAG1atUif/78tipZ8rDsDWHu3LnD3LlzKVeuHIGBgdSoUYMRI0awfPlyazh+9uxZRo4cya5duxg+fDhbtmzR7HL5DYPBwL1799iyZQuhoaEEBQUBUL16dUaNGmXtz/n666/n+v6oSb48Kvt6Z7FY2LNnDyVKlCA9PR1HR0cuX75M6dKlgYerXGrVqmUNojR7U/5bOhPJX2KxWKhXrx7Tp09nyJAhODk50a9fP4KDgxk7diwGg4F169YBMHr0aFxcXHjxxRdtXLU8LZo0acKMGTMYOHAgzZo1Y8SIEQwcOJDy5cuTnp5OeHg4ZcqUsXWZkgdlZmbi7OxMyZIladasGa6urpQuXZrPPvsMf39/XFxcsLe3JyQkhO3bt2MymVi9erXOT/JY2T/aLBYL33//PYUKFSI+Pp59+/bRvHlz626fxYsXx9XVFaPx4QR0BVLyONmB1KVLl1i+fDl79uzh4MGDFCxYkJEjRzJkyBDat29vvdZdv36dcePG4e7uzuzZs8nMzNQMPMnFYrGQlpbGsGHD+Omnn2jTpo31uXbt2mGxWBg3bhyJiYl07do113EKpORROZeo//rrr7i5uVG+fHmOHz/OnDlzaN26NRUrVmTnzp3s27eP0NBQAAVS8l8zWNSRTP6k7BT93LlzLF26lDNnznDu3DmCg4MZMGAAmzZtYs2aNdy/f5+SJUtaQwQHBwfrgEzkj9izZw99+/Zl1KhR1K9fHxcXF4xGI0WKFLF1aZKHXblyhffee48iRYowa9YsihcvTrt27XjhhReYO3cuTk5OANaGnBpMyeNk3/k1m834+flZl07Vq1ePH3/8kYYNG9KjRw8A1q9fz7Jly1i1ahVubm42rlzyspiYGPz9/enZsyelSpXiiy++4P79+zRr1owWLVrwxRdfkJCQQGZmJu3atcPBwYH58+dz7Ngx5s2bh7Ozs60/guQBj85MOXLkCLNmzaJgwYL07NkzV4uDRYsWsW/fPlavXq3rnTxWzhnBa9eu5dSpU0yaNIkFCxYQGxtLZmYmZ86coXDhwiQnJ2Nvb8+ECROoXLmyjSuXZ4VCKflLrl69SkBAAL169aJSpUrExMQwfvx42rdvz8CBA8nIyODAgQN4enpSvnx569I+3ZWRP2vXrl306dOHfv36We/IiPw7ly5dYt68eaSlpWE2mwkMDKRkyZJ06dKFsmXLMmvWLGswJfKfhIaG4uLiwvTp07l79y758uVj2bJlfPfdd1y7do3q1atz/Phx5s+frwG6/Efz588nPj6eMWPGAA9nT02bNo1vv/2Wrl270qRJExwcHDh16hTR0dHExMSwceNGVq5cSYUKFWxbvOQJ2QHC/fv3efDgAY6OjhQrVozo6GjGjBmDj48Pbdq0oXr16tZjskMsLbOSR+XcVfarr77i5MmTVKtWjWbNmgGwePFioqKiKFiwIE2bNqVUqVI4OTnh6upq48rlWaJQSv6Szz//nE2bNuXa/eyHH36gU6dO9OjRg169euV6vWZIyX9j7969+Pj4aMme/ClxcXGMHDkSOzs7OnbsSIkSJWjdujX16tVj1qxZti5PngIpKSn06tWLgQMHUrlyZTIyMnB0dGT37t3ExsZisVgoWbIklStXxtvb29blylNg0qRJREVFER4ebp2ZkJiYSLNmzfD09KRt27a0bNmSyMhIDh48iJOTE926ddMSYwH+33g6OjqawYMHU7BgQeLj43nllVcICQnh/v37hIWF4ePjQ8uWLXnllVesxyqQkkdlf5/MZjNNmzbF0dGR8+fPWyceFCtWDIDw8HB27NhBvXr16N+/v42rlmeRUgL5S1JSUkhISLD+nZWVRcWKFalQoQJz585l1apVuV6vQEr+G76+vgqk5E9zd3dn9OjRmM1mVq9eTUxMDJs3b2bAgAG2Lk2eEmlpaZw6dYpTp04BWGf73rt3jwMHDtCtWzfeeustBVLyWNm7WGVlZVkfe/nllwH4/vvvrUuICxUqRJ06dXB1dWXbtm3cvXsXf39/Zs+eTVhYmAIpsTIajdy6dYvQ0FCaN2/OmjVrGDBgANu3b+fQoUNUrVqVoUOHcuLECX788cdcxyqQkkdl/z7bu3cvNWrUYNu2bYwYMYJDhw6xdetW4uLiAAgKCqJly5YEBATYslx5hikpkL+kfv36XL16ldmzZwMPB+oFChSgfPnyTJw4MVejRRERW/H29mbUqFHcvXuXzz77jOeffx4fHx9blyVPCVdXV4KCgli7di0HDx60DuAzMjIoUKAA6enpNq5Q8qrsJTEXLlxg2LBhTJ48mYMHD9KoUSOcnJxYtGgR4eHhXLhwgYEDB5Kens6MGTM4f/48n332mfV9tFOxZDObzQBcvHiRSpUq0bVrVywWCxEREbRo0YJXXnmF8PBwXn75ZT755BOCg4NtXLE8DTp16sSsWbOoU6cOAB06dKBz586sWbOGbdu2cevWLQACAwPx8vKyZanyDFODH/nTzGYzJUqU4OOPP2bIkCHExsZSoUIFfvnlF86fP8+ECRPUQ0pE8gxvb28++eQT7Ozs1CRY/rQ2bdpw+/ZtPvzwQ+rUqUP+/PnZvXs3S5cuJV++fLYuT/Kg7EDq7NmzdOjQgTfeeIMjR45w8uRJAObOncusWbP48ssv2b59OwULFuTTTz8lX7581KtXj+LFi9v2A0iekr3EKjsUz8zMJDY2lsuXL9O/f39KlSrFuHHjmD59OlFRUQQFBfHSSy8BuRtYizzO+++/z+jRozl69CgtWrQAHgZTRqORqVOnYm9vT4cOHfQ9kr+VekrJf+Wnn35i/vz5FCpUCCcnJz766CPtsiciIs+UpKQkDh06xP79+/H29qZJkyZaUiy/8euvv/L8888DkJCQQKdOnfDz86Njx45s3bqV5cuXU6BAAYKDg2nQoAEAN2/etDYNXrduHXPmzGHt2rWULFnSlh9F8ojsUOny5ct8+eWX2NnZkZKSQkxMDD/99BMvv/wyM2fOBKB37974+PgwaNAg2xYtT509e/bQr18/unbtSr9+/ayPr1+/njp16lCqVCmb1Sb/DAql5C/LuV12zgBKM6RERETknyQpKYmFCxfSpk0bnJycOHXqFJ9++ikbNmwgMTGRESNGULlyZX744Qfi4+Np1KgRffv2JTY2lgULFhAVFUVqaiozZ86kSpUqtv44kgdkj7PPnTtHQEAAr776KqmpqZw5c4bExERefPFFGjVqhLe3N/v37+f8+fNs3rxZY3D5S3bt2sWAAQMIDQ39zYZVIn83nbXkL8tumPhorqmLoYiIiPyTJCQksGvXLqKiorhx4wbt27enePHi3L17l27dulG+fHlCQ0MB2LFjB9evXwfA09OTdu3aYTab8fDwwN3d3ZYfQ/IQg8HA3bt3OXz4MD169CA4OJjk5GROnjzJwIEDSU1NJT09nV27duHh4cGmTZuwt7fXkj35Sxo3bszMmTPp1asXDg4OhISE2Lok+QfRTCnJ5c8uu8u5veyNGzdwc3PDwcHh7ypPREREJE/65ptv6N27N6VLl2bx4sU899xznD59milTprBu3ToABg0aROnSpenevbt2Q5N/Kzk5mSZNmpCWlsaIESNo2bKlNXBaunQpR44cYdasWTg5OVlvCCuQkv/W3r178fHx0RJ1eaLU9EesTCYTRqORq1evsnLlSg4dOsSvv/76u6/PGUiFh4czevRo7UQkIiIi/0je3t707t0bi8VCWFgYV69exWg0kpCQwMKFCxk4cCAXLlwgODjY2v5A5Pfkz5+f0aNHYzQaOXv2LPD/Vim4ublhMBhwdnbOtUJBgZT8t3x9fRVIyROndVYCPJwhZWdnR3R0NEFBQZQsWZKrV68SEBCAv78/JUqUyPX6nIHU6tWrmTdvHkuXLqVAgQK2KF9ERETEpsqWLUvZsmXx9fWlb9++zJ8/n/fee4+33nqL3bt34+PjQ2RkpJZYyR/WuHFjDAYD/fr1o3jx4vj7+5M/f34OHTpEwYIFtamQiDwTtHxPrK5du0anTp3o1KkTHTt2ZNSoUfz44480atSItm3b4uHhAeSeGrx69WpmzZpFeHg4lSpVsmX5IiIiInnC+fPn6dWrF7Vr1+bcuXPUqFGDIUOGYDQatSGM/Gk7d+5k4MCBuLq6Ur9+fS5dusSKFStwdHTMdaNYRORppHj9Hy7n1PHDhw9TrVo1OnbsyO3bt8nMzKRKlSps376dNWvWcPr0aYDfBFLLly9XICUiIiLy/ytXrhxz587FZDLh4eHBoEGDMBqNmM1mBVLypzVp0oS5c+fy4MED0tLSWLduHY6OjmRlZSmQEpGnnkKpf7DspuaxsbH88ssvZGVlkZGRQXp6Ol26dMHV1ZUpU6ZQrFgxtm3bxmeffWY9dvXq1cyYMYPw8HAqV65sw08hIiIikveUK1eOsWPHMmvWLOzt7cnKytJyK/nLGjZsyCeffMKuXbuYP38+oB2vReTZoDPZP1T2Erxbt27x/vvvM2TIEBo2bMjbb7/NunXrcHNzY8iQIQC4u7vTtGlTOnToAEBUVBRr164lIiJCM6REREREfoejoyPwsBenAgT5bzVq1IgZM2bQu3dv7OzsCAkJsXVJIiL/NV0d/6Hs7Oy4dOkSy5cvp2XLlrRu3dr6XPb08qtXrzJv3jzu3r1L+/btrXf3KlWqREREBEWLFrVV+SIiIiJPDS2xkv+VN998k/nz5+Pj42PrUkRE/icUSv2DnTt3jsjISCpVqkR8fDzFihUDoFChQiQkJNCnTx/s7OxYu3YtdnZ21v5TRqNRgZSIiIiIiA34+vraugQRkf8Z7b73D5K9ZC+7p4HRaOTLL7+kf//+9O3bl6CgIJydnYGHu8aYzWbKli1rPUbTzkVERERERETkf0Upwz9EdiB18eJFVq9eTWJiIn379qVp06akp6czbNgwjEYj7du3J3/+/JQrVy7XsQqkREREREREROR/SVuA/AOYzWbs7Ow4e/Ys77//PikpKZw5c4b27dsTHR1NixYtCAsLY/bs2Xz66adkZGTkOt7Ozs5GlYuIiIiIiIjIs0rL9/4hbt++TUhICIGBgfj5+bFv3z5Gjx6NxWJh8eLFVKhQgcjISDZt2sTatWvVkFNERERERERE/laaKfWMSktL48SJE2RlZQFw584dHB0d8fPzIykpifXr1zNgwADKlClDnz59+OKLL/D392fdunUYDAaUVYqIiIiIiIjI30mh1DNq6tSpDBkyhO+++47MzEwSEhLw8vIiKSmJzp078/zzz9OiRQuqVKnCnTt32LlzZ64gSjOlREREREREROTvpOV7z5iMjAwcHBwwmUz07t2bO3fu0L9/f+rWrUtGRgZRUVHMmTOHpUuXAjBo0CBef/11mjZtitFoxGKxKJASERERERERkb+dZko9QywWCx06dCA0NBQ7Ozvmzp1LkSJFmDp1KocOHcJoNJKcnMzRo0f58ssv6dOnD9HR0TRp0gSj0YjZbFYgJSIiIiIiIiJPhGZKPWNOnTpF586d8fX1ZcqUKZjNZnr06MHdu3cZMGAAdevWpX///vz66684Ozszb94868wq7bInIiIiIiIiIk+KQqlnSFZWFvb29kRFRdG2bVvefPNNPvnkE8xmM927d+fOnTsMGzaM2rVrk5ycjIuLCwaDwXqciIiIiIiIiMiTouV7zwCz2QyAvb09ZrOZSpUqsWbNGr7++msGDRqE0WhkwYIFuLm5MXToUE6dOkX+/Pmtu+wpkBIRERERERGRJ00zpZ5y2cvuYmNj2bdvHzdu3KBu3bq8/vrrXLx4ET8/Pxo1asSUKVMwmUxMmzaNQYMGaameiIiIiIiIiNiUQqlnwLlz5/jggw+oX78+Tk5OfP311/zrX/9i6tSpnDlzhnbt2lGrVi0WLlxobWSuHlIiIiIiIiIiYktavveUS01NZebMmXTp0oWwsDDGjh0LgKenJ7dv36ZixYosX76c9PR0cuaPCqRERERERERExJYUSj3ljEYjd+/epVq1apjNZlq0aEG9evUIDg7Gz8+PY8eO8fLLLxMREYHRaLT2nxIRERERERERsSWFUk8Zk8mU629HR0cMBgNRUVG0adOGMmXKMGXKFACKFi2Kh4cHgHWWlNGo/+UiIiIiIiIiYntKKJ4i2X2gLl68yNSpUwkNDSUmJoamTZsyfvx4nJ2dmTZtGgAfffQRLi4u1lAqu5eUiIiIiIiIiEheYG/rAuSPs7Oz49y5c3To0IGmTZvi4+NDSkoKHTt2JCkpiYiICDp16oTBYCA5OZk1a9ZYl+xphpSIiIiIiIiI5CXafe8pkp6ezuDBg6lSpQrBwcHWx6Ojo62Ny69cuYKdnR2vvfYadnZ2ZGVlYW+v7FFERERERERE8halFU8RJycnEhIScHJyyvX4r7/+yvDhw9m8eTPlypWzPm4ymRRIiYiIiIiIiEiepDVdedijO+VlZGRQuHBhrl69SlJSkvVxT09PypUrR4ECBXK9Pnv2lIiIiIiIiIhIXqNpNHlUdlPz+Ph4Ll26hMlkoly5cgQHBxMYGMhzzz2Hr68vFStWZPHixRgMBvLly2frskVERERERERE/hD1lMqDshuTR0dH07t3b0qUKMH169cxm81MmjQJg8HA6NGjyczMxN3dnczMTFatWoWDg4OamouIiIiIiIjIU0GhVB4VHx9P27Zt6dSpEx07diQ2NpYdO3awcOFC1q5di7u7Ozdu3MBkMvHyyy9jNBrV1FxEREREREREnhoKpfIYi8WCwWDg2LFjLFiwgKVLl1qfe/DgAWPGjMHFxYVx48ZhMBisz2mGlIiIiIiIiIg8TZRi5BEmkynX3+np6Rw/fpyzZ89any9YsCDu7u6kpKTkCqQABVIiIiIiIiIi8lTRWq88ILup+aVLl1izZg2urq64urrSoEEDtm3bRoECBfDy8gLg5s2beHp62rhiEREREREREZH/jpbv2Vj2cr3z58/Tpk0batSoQUJCAgUKFCArK4siRYqQkpJCxYoVuXr1KjExMWzZskW9o0RERERERETkqaZQKg+4e/cuu3btIi0tjaCgIE6dOsUXX3zB2bNn8fLyoly5cvz88894eXnRu3dv7O3trbOrRERERERERESeRppuY2PJycm89957GI1Ghg8fDkDVqlWtu+lFRUXx2muv0alTJ+sxCqRERERERERE5Gmn7tg2lj9/fkaNGkVqaio//vij9fEqVarg5+eHh4cHBw8eBB4u9QMUSImIiIiIiIjIU0/L9/KI3bt3079/f7p160bfvn2tj1++fBlvb2/triciIiIiIiIizxSFUnnIrl27GDBgACEhIfTu3TvXc2azWcGUiIiIiIiIiDwzlHLkIY0bN2bGjBnMmzePyMjIXM8pkBIRERERERGRZ4lmSuVB33//PTVq1MDeXn3oRUREREREROTZpFAqD8vKylIwJSIiIiIiIiLPJIVSIiIiIiIiIiLyxKlRkYiIiIiIiIiIPHEKpURERERERERE5IlTKCUiIiIiIiIiIk+cQikREREREREREXniFEqJiIiIiIiIiMgTp1BKRERE5B8gNjbW1iWIiIiI5KJQSkREROQJ+OCDD+jVq9djn9uwYQP16tUjIyPjD7/fp59+SteuXf/Qa/fu3UuXLl3+8HuLiIiIPAn2ti5ARERE5J+gQ4cO9OrVi9u3b+Pm5pbrubVr19KmTRscHR3/8PuFhob+4dfeu3cPi8Xyh18vIiIi8iRoppSIiIjIE9CgQQM8PT3ZsmVLrsdPnjzJ+fPnee211wgJCaFhw4ZUrVqVZs2a8c033wBw7do1ypcvT1hYGLVr12bs2LHMmTOHDh06WN/n8OHD+Pn5UatWLd5++20+//xzAI4ePcpHH33EjRs3qF69OsePH6dixYrcunXLeuzPP/9MtWrVSEpKegL/JUREREQeUiglIiIi8gQYjUYCAwOJjIzMNWtp7dq1vPXWW4wYMYIXX3yR3bt3c+zYMerXr8+YMWNyvUdycjLffvst/fv3z/V4dHQ03bt3Jzg4mKNHjzJ+/HgmTpzIwYMHqVOnDmPHjsXT05MTJ05Qo0YNSpcubQ2tALZu3UqTJk0oUKDA3/rfQERERCQnhVIiIiIiT4ifnx+//vor3333HfBwWd2XX35Jx44dWbhwIb1798ZisXD9+nUKFSpEXFxcruNbtGiBo6MjhQoVyvX4unXreOONN2jcuDF2dnbUqFGDgIAAVq9e/dg6WrVqZQ2lMjMz2b59O61bt/4bPrGIiIjI71NPKREREZEnpGDBgrz33ntERkZSt25dNm3aRKVKlahatSq7d++mR48e3L59mzJlyuDq6vqbPlDFihV77Ptev36d7777jlq1alkfM5lMlCxZ8rGvb968OdOnTycqKopr165RsGBBateu/b/7oCIiIiJ/gEIpERERkSeoQ4cOtGzZkoSEBDZs2ECfPn2Ii4ujb9++zJ07F19fXwB27tzJrl27ch1rMBge+57FixenZcuWjBs3zvpYfHz87zY3f/755/m///s/duzYwbVr12jVqtXvvreIiIjI30XL90RERESeoLJly1KzZk3CwsJITU2lcePGJCcnYzKZcHZ2BuDChQvMmzcPgIyMjP/4nn5+fmzfvp1Dhw5hNpuJjY2lffv2LFu2DAAnJydSU1PJysqyHtO6dWt2797N4cOHadmy5d/wSUVERET+PYVSIiIiIk9Y+/bt2bp1K23btsXBwYHSpUszZMgQBg8eTM2aNenbty+tW7fGwcGBc+fO/cf3e/nll5k+fTrTp0+ndu3atG/fHl9fXwYOHAhA7dq1KVq0KLVr1+bs2bMANGzYkOTkZKpWrYqHh8ff+nlFREREHsdg+b153SIiIiLyTGvZsiXdunWjWbNmti5FRERE/oHUU0pERETkHyYmJoajR49y+/ZtGjVqZOtyRERE5B9KoZSIiIjIP8yoUaO4ePEiYWFhODo62rocERER+YfS8j0REREREREREXni1OhcRERERERERESeOIVSIiIiIiIiIiLyxCmUEhERERERERGRJ06hlIiIiIiIiIiIPHEKpURERERERERE5IlTKCUiIiIiIiIiIk+cQikREREREREREXniFEqJiIiIiIiIiMgTp1BKRERERERERESeuP8PDRyfhya6Re8AAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAJOCAYAAABMYq+bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRKElEQVR4nOzdd3yNd//H8ffJHiIiISEoVaOEilEUtWrUiJXSu4pW0Ypdt6JDVa3WiFWKao1bzdrRpkUHqkZDF3or1RJEthEh4/z+8Mu5pYk6h3NOcvT1fDzah3Nd3+u6PtflE7zPtQxGo9EoAAAAAABwT5wKugAAAAAAAO4HBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAID7ntFoLOgS/jE41gD+yQjYAFAIfP/99xoyZIgaNWqkGjVqqGXLlnr99dd18uTJPGOrVKmiuXPnSpL279+vKlWqaP/+/bdd95gxY1SlSpXb/le/fn3T2CtXrmjgwIF65JFHVK9ePZ0+fVrLli1T48aNVbNmTc2fP1+9evVSr169zN43S8ffz3bt2qV+/fqpfv36qlmzptq0aaMpU6bo/PnzucadPXtWVapU0YYNGyRJGzZsUJUqVXT27Fmb1pfTT7f+V7VqVdWuXVtPP/20du3aZdPtt2jRQmPGjLHqOi9duqTRo0fr0KFDpmn27Elb7NOCBQtUpUoV/fjjj7cdM2nSJNWoUUOpqal3vZ27qX3nzp0aPXr0XW8TABydS0EXAAD/dIsWLdLMmTPVqFEjjR07ViVLltQff/yhVatWqUuXLpoyZYrat29vGr9mzRoFBQVZtI0SJUpo3rx5+c5zcfnfXwWbNm3Srl27NG7cOFWqVEkBAQGaOnWqmjZtqhdeeEFlypRR69atLdr2m2++adH4+9Vbb72ljz/+WO3atdPbb7+tokWL6rffftOKFSu0ceNGzZkzRw0aNMh32WbNmmnNmjUqWbKkXWodN26cqlevLunm2cjU1FR9+OGHioiI0MKFC9W0aVO71GENx44d06ZNm9S1a1fTNEfvya5du2ru3LnaunWratasmWd+ZmamoqKi1Lp1a/n6+t71dubNm6ciRYpYtMzSpUvvensAcD8gYANAAfryyy81Y8YMRUREaNiwYabpjz76qDp37qyRI0dqzJgxqly5sipVqiRJqlWrlsXbcXNzM2u5lJQUSdIzzzwjg8Gg2NhYZWdnq1WrVqpXr57F25Wkhx566K6Wu5+sXLlSH3/8sSZOnKinnnrKNL1Bgwbq3Lmz+vfvr+HDh2vbtm0KCAjIs3zx4sVVvHhxu9X70EMP5emXunXrqlmzZlq+fLlDBez8OHpPBgYGqlGjRtq+fbvGjBkjZ2fnXPO/+eYbJSYmKjw8/J62U61atXtaHgD+ibhEHAAK0Lx581ShQgUNHTo0zzxXV1e99dZbcnZ21uLFi03Tb71E3Jp69eplWm/VqlXVokULtWjRQpL06quvqkqVKqZxt15em5GRoffee09PPPGEatasqfbt2+uTTz7Jtd5bx2dnZ2vRokVq1aqVQkJC1KZNG61YsSJPLa+99poWLVqkZs2aqUaNGnr66af1ww8/5Br3888/q1+/fqpTp44aNGigESNG6Pz588rMzFTjxo01cuTIPPv55JNPauzYsXmmX79+XXXr1tXkyZNzTc/Ozlbjxo311ltvSZJ++eUX9enTR3Xq1FFoaKiee+65PHXdKisrSwsWLFCjRo1yhescRYoU0cSJE5WcnKyVK1fmu45bLxHfunWrqlSpouPHj+ca8/XXX+e6bDglJUXjxo3TY489pho1aqh79+7at2/fbeu8kyJFiqhChQo6d+6cpP9dTr569Wo1b95cjz32mPbs2SNJ2rt3r5555hnVqVNH9evX18iRI/NcBn/8+HE9//zzCg0NVfPmzbVly5Y828yv1+fOnWvqxRx79+5Vz549FRoaqsaNG2vcuHFKTU3V/v371bt3b0lS7969TX341568fv263nvvPbVt21Y1atRQ69attWjRImVnZ5vGmNuT+cnIyNDEiRNVr1491atXT6NHj1ZSUpIk6auvvlKVKlVMxy7HkSNHVKVKFR04cCDfdYaHhyshIUHffvttnnmbNm1S2bJl1aBBA2VlZWnRokXq0KGDatasqVq1aunpp5/O1Qtz585Vq1atNG/ePNWvX19PPPGEkpOT81wifv36db377rtq2rSpQkJC1LFjR23fvj3XMTpw4IAOHDigKlWq6Ntvv7X45xAAHB0BGwAKSFJSkn7++Wc1b95cBoMh3zF+fn567LHHtHPnznveXmZmZr7/5TyQ6M033zSd8VqzZo0iIyNNl5UPHDhQa9asyXe9o0eP1qJFixQeHm66fPjVV1/Vpk2b8h0/fvx4zZkzR2FhYXr//ffVtm1bTZ48We+9916ucdHR0dq5c6def/11zZw5UwkJCRo6dKiysrIk3Qxo//rXv3Tt2jVNnTpVEyZM0NGjR9W3b18ZjUZ17txZO3bs0JUrV0zr/OGHH3Tq1KlclwvncHd3V5s2bfTpp5/mClb79+9XfHy8OnXqpCtXrqhfv37y8/PTnDlzFBkZqWvXrumFF17Q5cuX893fY8eOKT4+Xi1btsx3viRVrFhRVatWNev3uVWrVvL29lZUVFSu6du2bVOFChVUs2ZNXb9+XX369NHOnTs1YsQIzZs3T0FBQerXr99dh+wbN27o7NmzKleuXK7pkZGRGj16tEaPHq1atWpp8+bN6tu3rwIDAzVz5kyNHTtWhw8fVo8ePZSYmChJiouL07PPPqvU1FRNmzZNw4YN0/Tp0xUXF2dxXV9//bX69eunYsWKKTIyUqNGjdKuXbs0dOhQVa9eXePGjZN087L3/C4NNxqNeumll/TBBx8oPDzc1JOzZs3KM/5OPXk7n376qX7++WdNnTpVr7zyir766itFRERIkpo0aaLAwEBt3rw51zIbN25U2bJlb3vlSIsWLVS8ePE8X0ykpqbqyy+/VLdu3WQwGDR9+nS999576tGjhz744ANNmDBBycnJGjZsmNLS0kzLnTt3Tl988YVmzpyp4cOHy8/PL89xGjRokFavXq3nn39eCxYsUGhoqEaMGGH6WX/zzTdVrVo1VatWTWvWrFHNmjUt/jkEAEfHJeIAUEBiY2MlSWXKlPnbcQ888IB27typ1NTUu76fMjY21nRP7V8NGzZMEREReuihh0z3dudcHpzzUK1y5crle4n5iRMnFBUVpddee810prBhw4Y6d+6c9u/fr86dO+ca//vvv2vt2rV6+eWXNWDAAElS48aNZTAYtHDhQj3zzDOmf9hnZmZqyZIlpntAr169qtGjR+vYsWMKCQnR/Pnz5evrqw8//FDu7u6SpKCgIA0fPly//vqrunXrpsWLFys6OlrdunWTdDO0lCtXTnXr1s33WHTq1Enr16/XoUOH9Oijj0qStm7dqgceeEC1atXSkSNHlJSUpF69eqlOnTqSpAcffFCrV6/WlStX5OPjk2edOcfQnN/nvXv3/u0YSfLw8FCbNm20fft205nB9PR07dy5U/3795ckbd68WcePH9fatWv1yCOPSJIef/xx9erVS9OnT891hUF+srOzlZmZKenm70NsbKzmz5+vpKQkPfPMM7nGPv3002rbtq1puWnTpumxxx5TZGSkaUzt2rXVrl07ffjhhxo1apSWLl2qzMxMLV68WP7+/pKkChUqqHv37nfc/7+aM2eOqlatmusLGg8PD82cOVNXr141XQ7+0EMP5Xtp+DfffKNvv/1W06ZNU1hYmCSpUaNG8vDw0OzZs9WnTx/TcnfqydspWrSoPvjgA9Nyfn5+GjRokPbs2aPGjRurc+fOWrFiha5evSpvb2/duHFDn376qfr06XPbL99cXV0VFhamtWvX6tq1a/L09JQkRUVFKSsryxReL168qBEjRuQ6Y+/h4aEhQ4bo119/VWhoqGnfRo8ercceeyzf7X377bfavXu3IiMj1a5dO0k3vxy4du2apk+frg4dOuihhx4y7WPOnxd383MIAI6MM9gAUEByzhy7urr+7bic+yvv5dU3JUqU0Pr16/P9717u08x5MnOrVq1yTZ81a5amTJmSZ/x3330no9GoFi1a5DqL3qJFC12/fl3ff/+9aeyt/1iXbt53KknXrl2TdPPJ648//rgpXEtSzZo1tWvXLoWEhKhChQqqU6eO6czgjRs3tH37dnXu3Pm2oaVevXoKDg42nR2+ceOGvvjiC1PwqlSpkooXL66BAwfqzTff1K5du1SiRAm98sorKlWqVL7rzPl9u/VhcvlxdnY2+/c4LCxMZ8+eNV2evGvXLqWlpaljx46SpH379qlEiRKqXr266RhnZWWpefPm+vnnn+/4ZOnnnntO1atXV/Xq1fXII4+oXbt22rdvn15//fU891/fern277//rvj4eFMdOcqVK6fQ0FDT0+6///571apVyxSuJemRRx5R6dKlzdr/HOnp6frll1/0xBNP5Jrepk0bRUdHm3rm7xw4cEDOzs6m0Jgj5/f81if036knb6dp06a5lmvRooVcXV1Nl3d369ZN165d0xdffCFJ2rFjhy5dupTnC6q/Cg8PV1pamnbs2GGatmnTJj3++OOm2mbMmKHnnntOSUlJOnz4sDZs2GA6652RkZFrfZUrV77ttvbt2yeDwaCmTZvm+dmNj4/XiRMn8l3ubn4OAcCRcQYbAApIcHCwpP+dyb6dM2fOyMvLS8WKFbvrbbm5ualGjRp3vfzt5DwU7dagZM74W5+KfqtbLxHOOSOXw8np5nfCOZdvp6Sk3HG74eHhevXVV3Xu3Dn98MMPunTpkrp06XLb8QaDQR07dtTatWv1xhtv6JtvvtGlS5fUqVMnSZK3t7dWrlypBQsWaPv27Vq9erU8PT0VFham1157LVfYz2HJ73PO2Dtp0KCBSpUqpaioKD3yyCPatm2b6tatazpLnpKSovj4+NtetRAfH/+3V0O89dZbpmWdnZ3l6+ur0qVL5xuIbv09yPn9ze9BbQEBATp69Kikm5cx53dGv0SJEretKT+pqakyGo1m99/t1uHn55fnC5CcWm699P9OPXk7fz0eTk5OKlasmC5duiTp5tUL9erV06ZNm9S5c2dt2rRJDRo0uGM/VKpUSY888oi2bt2qjh076vfff9cPP/yQ62z+Tz/9pLfeeks//fSTPDw89NBDD5nW+9cvdPL7fcuRkpIio9Go2rVr5zv/4sWLevjhh/OdZ+nPIQA4MgI2ABQQf39/1apVS59//rmGDx+eb3i5cuWK9u7d+7f37xakokWLSrp5P/mtrw47deqUkpKS8lwCmjN+2bJl8vb2zrM+S85g+vj4mB4Udauvv/5aVatWVWBgoNq2bauJEycqOjpahw8fVsOGDe+4jU6dOun999/X/v37tW3bNtWuXVtly5Y1zX/wwQc1bdo0ZWVl6ccff9TmzZu1atUqlSlTxnTZ+61CQkJUsmRJRUdH3/YS6DNnzujo0aOmS7zvJOeLgM2bN2vQoEH65ptvct0v7OPjo/Lly2v69On5Ln+ny9UrVKhwV1/I5HwJlJCQkGdefHy86fJ/Pz+/fMfkBPRb/fX+5lvvGy5SpIgMBkOePrhx44b27duX7yus/srX11fJycnKzMzMFbIvXrxoqvVe5QTpHFlZWUpOTs71xUC3bt00duxY/f7779q7d2++V4Dkp1u3bpowYYKSkpK0adMmlShRQs2aNZMk0zMDqlSpom3btqlixYpycnLS119/rejoaIv2wcfHR15eXlq+fHm+8x944IHbLns3P4cA4Ki4RBwACtDgwYN16tQpzZo1K8+8rKwsvfnmm0pPT1e/fv3sX5wZcu5DvvUSVenmg6/efvvtPONzHtiUnJysGjVqmP5LSUnRrFmz8g1Yt1O3bl3t3r1bN27cME379ddfNWDAAP3000+SJC8vL7Vr107btm3T7t27zTpr9uCDD6pGjRqKiorSV199ZTp7LUmfffaZGjRooPj4eDk7Oys0NFTjx49X0aJFdeHChXzX5+TkpMGDB2vPnj1au3Ztnvnp6el69dVX5ePjk+f+5r/TqVMnxcXFae7cuTIYDKb7oKWbr3k7f/68/P39cx3nffv26YMPPsjzWidrqVChgkqUKKGtW7fmmn7mzBkdOXLEdPazQYMGOnz4cK4rFn777TedOXMm13JFihTJc1xjYmJMv/b29tbDDz+c5+Fwe/bs0YABA3ThwoU77uujjz6qrKysXE/DlmS6jDqnx+/Ft99+a7qnXbr5sLTMzEzVr1/fNK1Nmzby8vLSuHHj5OHhYfb75tu3by9XV1ft3LlTn332mTp37mz6ouDUqVNKSUlR7969ValSJdMZ92+++UbSnc+83+rRRx9VWlqajEZjrp46ceKE3nvvPdP+5WzjVnfzcwgAjooz2ABQgJo0aaIxY8bo3Xff1dGjR9WlSxeVLFlSZ8+e1apVq3Ts2DFNmjRJVatWvaft3LhxQ0eOHLnt/MqVK8vLy8vi9VatWlVt27bV9OnTlZ6erurVq2vPnj364osv8v3SoHLlygoLC9Mbb7yh2NhYhYSE6Pfff1dkZKTKlCmj8uXLm73tiIgI9ejRQ/3791efPn1048YNzZ49W9WrV9fjjz9uGhceHq4ePXqoSJEiZoeWzp07a/LkyXJyctKTTz5pml67dm1lZ2dr0KBBGjBggLy9vfXpp5/q8uXLf7vuHj166OTJkxo3bpz279+vJ598Ur6+vjp16pSWLVum+Ph4zZo1y6x7hnM89NBDql69uj7++GO1atUq1wPWunbtqv/85z96/vnn9dJLL6lUqVL69ttvtXjxYj377LN3vO//bjk5Oenll1/W2LFjNWLECHXu3FnJycmaN2+efH199fzzz0uS+vTpo/Xr1+uFF17QkCFDlJWVpVmzZuWpq1mzZoqKilLNmjVVoUIFbdy4UX/88UeuMUOHDtXAgQM1fPhwde3aVUlJSZoxY4aaN2+uhx9+WL/++qukm6/D8vX1zfOz9Pjjj6t+/fp68803dfHiRVWrVk0HDhzQ4sWL1aVLF6u8MzshIUFDhgxRr169dPr0ac2cOVONGjVSw4YNTWM8PT3Vvn17rVmzRt27d5eHh4dZ6y5SpIjatm2rDz74QKdPnzY9SEy6+YVHkSJF9P7778vFxUUuLi6Kjo7W+vXrJd353vFbNW3aVPXq1VNERIQiIiJUsWJF/fjjj5o7d64aN25sek970aJFdfjwYe3bt0/VqlUz3YpwNz+HAOCICNgAUMBy3gW8bNkyvfPOO0pKSlKJEiXUqFEjTZo0ySr/wI+Pj1ePHj1uO3/9+vV3fY/2tGnTNG/ePK1YsULJycmqUKGCZs2aleuM6q2mTJmihQsXavXq1bpw4YL8/f3Vrl07DR8+3KIzq9WqVdOKFSs0Y8YMjRgxQt7e3mratKn+/e9/y83NzTSuVq1a8vPzU+vWrc0OLe3atdPUqVPVrFmzXPcqlyxZUh988IFmz56t1157TdeuXVOlSpU0d+5cNWjQ4G/X+eqrr6pJkyZauXKlxo8fr0uXLqlUqVJq1qyZ+vTpc1eXzHbq1Em//PKL6YFcOby8vLRy5UrNmDFD06ZN0+XLlxUcHKyRI0eqb9++Fm/HEl27dpW3t7cWLlyoQYMGqUiRImrSpIlefvll033Nfn5+WrVqlSZNmqQxY8bI29tb/fr1y3MWeezYscrMzNS0adPk4uKidu3aaeTIkXr99ddNY5o3b66FCxdq7ty5GjRokPz8/PTkk09q2LBhkm7ep9yhQwetXLlSu3fv1rZt23JtI+cJ9nPmzNHy5cuVlJSkMmXKaMSIEaYvBO5V9+7dlZ6erkGDBsnNzU0dO3bUqFGj8twW0rx5c61Zs8bi11eFh4dr48aNqlevnipUqGCa7uPjo/nz5+vdd9/VsGHDTGf8//Of/6h///46dOiQ6V33d+Lk5KRFixZp9uzZWrhwoRITExUYGKjnnntOgwYNMo3r2bOnfv75Z/Xv319TpkwxPfDubn4OAcARGYz38lhaAAAKuR9//FFPPfWUPvnkk799lRJQ0MaPH6/vv/8+zyX29wN+DgH8U3AGGwBwX9q/f7/2799veiIz/6hHYbV8+XKdOnVKa9asMfvhZo6Cn0MA/zQ85AwAcF9KTk7WRx99JH9///sutOD+cujQIW3evFm9evW647uvHQ0/hwD+abhEHAAAAAAAK+AMNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFvAdbUmLiZRX2Z6kbDJK/v49D1ArHRI/BHugz2AN9Blujx2AP9Jnt5BxbWyBgSzIa5TBN60i1wjHRY7AH+gz2QJ/B1ugx2AN95li4RBwAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAANyz69ev6+LFuIIuAyhQBGwAAAAA92zQoP46dOiAJOmHHw6rVasmBVwRYH8EbAAAAAD3LCUl2fTrRx4J1Rdf7C7AaoCCwXuwAQAAgPvYr78e19y5M/Xrr8fl5eWljh0764UXXtSPPx7RokXzdfLkCfn4FFXr1k+qT58X5ObmpiVLFurnn3/U5cuXFRt7VlOmTFexYn6aP3+2fvvthFJSUlS6dGkNHDhUjRo10YgRgxQXd0HTp0/R8eNH1axZSw0d+pL27Dmk8+fP6amnwjRmzOtaunSJLl++pIcfrq5XX31TJUsGymg0auXKZfr880///xJzgxo2bKQxY16Xu7tHQR8+wCKcwQYAAADuU5cupWrEiEGqXbuuoqJ2aP78D7R9+1Zt3rxBI0YMUtOmLbR16xeKjHxPe/Z8o/nz55iW/f77gxo4cIg++WSbQkJq6vXXX9GDDz6ktWs3Kzr6Kz36aAPNmDFVkhQZ+Z4CA4P073+P1csvj863lr179+ijjz7WqlUblJycpGXLlkiSdu3aoXXrVmnSpGn67LOvtHDhR9q/f5+++OIz2x8gwMoI2AAAAMB9au/e3XJ3d9fzz/eXm5ubgoPLaNas93T06M+qWPEhde/+L7m6uqpMmbJ66aVB2rp1o7KzsyVJpUsHq06devLy8pKLi4vefXeW+vYdoOzsbJ0/f04+PkUVH3/R7Fp69uwjHx8fFS/ur8cea6IzZ/6UJDVs+JgWL16usmXLKTk5WSkpKfL19VV8fLxNjglgS1wiDgAAANynEhISVLJkoAwGg2lauXLl5eLiotKlg3ONLVUqWNevX1dycpIkKSCgRK75J078V2PGvKykpEQ98EAFFStWTEaj0exa/P39Tb92cXExBfnsbKMWLZqvvXt3y8/PT5UqVVZGRoZpPuBICNgAAADAfSowMFAXL8bJaDSaQvbu3V+pZMlA7dnza66xsbFn5ebmpqJFffOsJyEhXuPGjdGkSdPUuPHjkqSvvtqpr7/+8p5rfP/9uYqLu6D167fI27uIJKl37x73vF6gIHCJOAAAAHCfatiwsTIzM7V8+YfKyMhQbOxZzZkzU35+xXX69CmtXbvKNH3RovfUqlVbubq65llPWtpVZWVlydPTU5L0+++n9NFHH0iSMjIyJElubm66cuWKxTVeuXJFbm7ucnZ20fXr17Vq1X906tRJZWZm3sOeAwWDM9gAAACAAzIajUq9lqm0jCx5uTrL19Ml16XgkuTj46OZM+dq7txIrV69Up6enurS5Sl16tRV5cs/qIUL5+nDDxfK3d1dTzzRVgMGDMx3W+XKlVdExDBNmPC60tPTVaJEoMLCumj+/Nk6efI3Va36sDp06KRFi97T8eNH1aFDJ7P3o3//gZoyZYI6dmwlT08v1axZS23atNPJk7/d0/EBCoLBaMmNE/ephITLKuxHwWCQAgJ8HKJWOCZ6DPZAn8Ee6DPYWkH32OX0TG07Gqe1MbE6m5puml7G10PdawerQ7VA+XhwHs3RFXSf3c9yjq0t8JMHAAAAOIh9p5M0estRpWfkfQBYbGq6Ir88qQV7ftc7YdXUsHzxAqgQ+GfjHmwAAADAAew7naThG35Weka2jJL+elIzZ1p6RraGb/hZ+04n2b9I4B+OgA0AAAAUcpfTMzV6y1EZjXmD9V8ZJRmN0ugtR3U5nQeFAfZEwAYAAAAKuW1H40xnrs2RcyY76micLcsC8BcEbAAAAKAQMxqNWhsTe1fLromJFc80BuyHgA0AAAAUYqnXMnU2Nd3ss9c5jJLOpqYrlcvEAbshYAMAAACFWFpG1r0tf+PelgdgPgI2AAAAUIh5uTrf2/Ju97Y8APMRsAEAAIBCzNfTRWV8PWSwcDmDpDK+HvL1cLFFWQDyQcAGAAAACjGDwaDutYPvatketYNlMFgazQHcLQI2AAAAUMh1qBYoD1cns89iOxkkD1cnta8WaNO6AORGwAYAAAAKOR8PF70TVk0Gg+4YsnPmvxtWTT5cHg7YFQEbAAAAcAANyxfXrK4hpjPZfw3aOdM8XJ00u2uIGpQvbv8igX84vtICAAAAHETD8sUVNaCBoo7GaU1MrM6mppvmBft6qEftYHWoHqgi7vwzHygI/OQBAAAADsTHw0VP1w5Wj9DSSk3PVNqNLHm5OcvXw4UHmgEFjIANAAAAOCCDwaBinq4q5ula0KUA+H/cgw0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAAAAAKzApSA2mpiYqDfeeEMHDhyQs7OzwsLCNHr0aLm45C1n1apVWrp0qS5evKiSJUuqd+/e6tmzpyQpOztbderUkdFolMFgMC2zd+9eeXl52W1/AAAAAAAokIA9fPhwBQYGavfu3UpISNDAgQO1dOlS9evXL9e4HTt2aObMmVq8eLEeeeQRHTlyRAMGDFBAQIDatGmj3377TRkZGYqJiZGbm1tB7AoAAAAAAJIK4BLxP/74QwcOHNCoUaPk6empsmXLKiIiQitXrswzNi4uTv3791etWrVkMBgUGhqq+vXr6+DBg5Kkn376SVWqVCFcAwAAAAAKnN0D9okTJ1SsWDEFBgaaplWsWFHnzp3TpUuXco3t2bOnBgwYYPqcmJiogwcPKiQkRNLNgH39+nV169ZNDRo0UM+ePRUTE2OfHQEAAAAA4BZ2v0T86tWr8vT0zDUt53NaWpqKFi2a73Lx8fF68cUXFRISog4dOkiSPDw8VLNmTQ0bNky+vr5auXKlXnjhBW3ZskVly5Y1u6Zbbt8utHJqdIRa4ZjoMdgDfQZ7oM9ga/QY7IE+sx1bHlO7B2wvLy9du3Yt17Scz97e3vkuc+TIEQ0bNkx169bVlClTTA9DGzNmTK5xL7zwgjZs2KCvv/5azz77rNk1+fv7WLILBcqRaoVjosdgD/QZ7IE+g63RY7AH+syx2D1gV6pUSSkpKUpISFBAQIAk6eTJkwoKCpKPT97mWb9+vSZOnKihQ4eqb9++ueZFRkaqTZs2qlatmmnajRs35O7ublFNiYmXZTTexc7YkcFw84fLEWqFY6LHYA/0GeyBPoOt0WOwB/rMdnKOrS3YPWCXL19ederU0eTJkzVhwgQlJydr/vz5Cg8PzzM2Ojpa48eP14IFC9SkSZM88//73//q0KFDmjVrlnx9fbVo0SJduXJFrVq1sqgmo1EO07SOVCscEz0Ge6DPYA/0GWyNHoM90GeOxe4POZOkOXPmKDMzUy1btlT37t3VpEkTRURESJJCQ0O1ZcsWSdK8efOUlZWloUOHKjQ01PTfuHHjJElTpkxRuXLl1KlTJ9WvX18HDhzQRx99pGLFihXEbgEAAAAA/sEMRiPfhyQkFP7LLgwGKSDAxyFqhWOix2AP9BnsgT6DrdFjsAf6zHZyjq0tFMgZbAAAAAAA7jcEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAANwXsrKydO5cbIFtn4ANAAAAALCbnTu/UIcOrdSmTVPt3bvbqut+881X9emn28wau2XLFrVv396q23ex6toAAAAAAPgbW7du1BNPtNbw4aOsvu6UlGSzx4aFhSksLMyq2ydgAwAAAADson//3vr11+M6ciRGGzasU3Z2tnr06KmoqC1q1aqthg59WYsWzde33+7WxYsX5e7urpYtW2n48FEyGAwaPHiAQkJq6qefftB//3tcJUsGqm/fF9WyZStNnfq2fvzxiH7++Uf9+utxvftupE6e/E0LFszRL7/8LA8PDzVq9LgGDhysgAAfbdiwQfPmzdOuXbskSYcOHVJkZKR+/fVXFS1aVGFhYYqIiJCbm5vZ+8cl4gAAAAAAu1i8eLlq1qylXr2e15o1myRJaWlp2rr1cw0YEKG1az/Wd9/t1ezZ7+uLL77R1KkztGnTJ/r++4OmdWzZslHDho3U9u271LRpC02bNknXr1/XmDFvmNb97ruRSk1N0ZAhL6p8+Qe1adN2ffDBcp0584fefntcnrpOnTql559/Xq1bt9a3336rjz76SLt27dK7775r0f4RsAEAAAAABebJJ9vL1dVVPj4+6tixi2bPXiB/f38lJCTo+vXr8vLyVnz8RdP45s1bqnLlqnJ1ddWTT3bQlStXlJyc99Lw3bu/lquriwYOHCJ3dw/5+wdo+PBR2rPnG8XHx+cau3XrVlWpUkV9+vSRm5ubHnjgAY0cOVLr1t08y24uLhEHAAAAABSYgIASpl+np19TZOS7Onw4RiVLllTlylVlNBplNBpNY4oX9zf92sXlZqQ1GvOG4OTkJAUGlpKzs7NpWunSpSVJsbG5nzSemJiosmXL5ppWpkwZpaenKzExUSVKlJA5CNgAAAAAgAJjMBhMv37nnUkqWrSoNm/+TO7u7srOztaTTza/q/UGBZVSXNx5ZWVlmUJ2bOxZSVKJEiV06tQp09jg4GB9/vnnuZb/888/5ebmJl9fX7O3ySXiAAAAAIBC4erVK3Jzc5Ozs7PS0q7qvfdm6+rVq8rIyDBreTc3d129ekWS1LBhY0kGLVgwV9evpysxMUGzZ89QnTr1FBwcnGu59u3b6+TJk1q2bJlu3LihP//8UzNnzlTHjh15yBkAAAAAwL6MRqNS0jJ0LjVdKWkZuS7rNtfw4aN04sR/9eSTzfWvf3VTWtpV1a//mE6d+s2s5du2ba+oqC2KiOinIkWKKDLyPZ06dVJdurRX7949FBRUShMnTs2zXJkyZfTBBx8oOjpajz32mJ555hk1atRI48blfSDa3zEY72av7zMJCZdV2I+CwSAFBPg4RK1wTPQY7IE+gz3QZ7A1egz24Eh9djk9U9uOxmltTKzOpqabppfx9VD32sHqUC1QPh6F5+7knGNrC4VnLwEAAAAADmXf6SSN3nJU6Rl5HzIWm5quyC9PasGe3/VOWDU1LF+8ACq0Ly4RBwAAAABYbN/pJA3f8LPSM7JllPTXE+0509IzsjV8w8/adzrJ/kXaGQEbAAAAAGCRy+mZGr3lqIzGvMH6r4ySjEZp9JajupyeaY/yCgwBGwAAAABgkW1H40xnrs2RcyY76micLcsqcARsAAAAAIDZjEaj1sbE3tWya2Ji7+rp4o6CgA0AAAAAMFvqtUydTU03++x1DqOks6npSr2PLxMnYAMAAAAAzJaWkXVvy9+4t+ULMwI2AAAAAMBsXq7O97a8270tX5gRsAEAAAAAZvP1dFEZXw8ZLFzOIKmMr4d8PVxsUVahQMAGAAAAAJjNYDCoe+3gu1q2R+1gGQyWRnPHQcAGAAAAAFikQ7VAebg6mX0W28kgebg6qX21QJvWVdAI2AAAAAAAi/h4uOidsGoyGHTHkJ0z/92wavK5jy8PlwjYAAAAAIC70LB8cc3qGmI6k/3XoJ0zzcPVSbO7hqhB+eL2L9LO7u+vDwAAAAAANtOwfHFFDWigqKNxWhMTq7Op6aZ5wb4e6lE7WB2qB6qI+z8jev4z9hIAAAAAYBM+Hi56unaweoSWVmp6ptJuZMnLzVm+Hi739QPN8kPABgAAAADcM4PBoGKerirm6VrQpRQY7sEGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUFErATExMVERGhunXrqn79+po0aZIyMzPzHbtq1Sq1adNGoaGhatOmjVauXJnvuHXr1qlKlSq2LBsAAAAAgNsqkIA9fPhweXl5affu3Vq/fr327dunpUuX5hm3Y8cOzZw5U++8845iYmI0depUzZo1S9HR0bnGnThxQpMnT7ZT9QAAAAAA5GX3gP3HH3/owIEDGjVqlDw9PVW2bFlFRETke2Y6Li5O/fv3V61atWQwGBQaGqr69evr4MGDpjHXrl3Tyy+/rN69e9tzNwAAAAAAyMXF3hs8ceKEihUrpsDAQNO0ihUr6ty5c7p06ZKKFi1qmt6zZ89cyyYmJurgwYMaO3asadqECRPUrFkzPfbYY3r//ffvqiaD4a4Ws6ucGh2hVjgmegz2QJ/BHugz2Bo9Bnugz2zHlsfU7gH76tWr8vT0zDUt53NaWlqugH2r+Ph4vfjiiwoJCVGHDh0kSZs3b9bJkyf19ttv6/vvv7/rmvz9fe56WXtzpFrhmOgx2AN9Bnugz2Br9BjsgT5zLHYP2F5eXrp27VquaTmfvb29813myJEjGjZsmOrWraspU6bIxcVFp06d0owZM7Ry5Uq5uNzbbiQmXpbReE+rsDmD4eYPlyPUCsdEj8Ee6DPYA30GW6PHYA/0me3kHFtbsHvArlSpklJSUpSQkKCAgABJ0smTJxUUFCQfn7w7uX79ek2cOFFDhw5V3759TdOjo6N16dIldenSRZKUlZUlSapbt67efPNNdezY0eyajEY5TNM6Uq1wTPQY7IE+gz3QZ7A1egz2QJ85FrsH7PLly6tOnTqaPHmyJkyYoOTkZM2fP1/h4eF5xkZHR2v8+PFasGCBmjRpkmvewIEDNXDgQNPn/fv3q3fv3jp06JDN9wEAAAAAgL8qkNd0zZkzR5mZmWrZsqW6d++uJk2aKCIiQpIUGhqqLVu2SJLmzZunrKwsDR06VKGhoab/xo0bVxBlAwAAAABwWwajkQsOEhIK/30NBoMUEODjELXCMdFjsAf6DPZAn8HW6DHYA31mOznH1hYK5Aw2AAAAAAD3GwI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABW4GLJ4MzMTO3atUv79u3T+fPn5ezsrFKlSqlJkyZq1KiRXFwsWh0AAAAAAPcNsxPxJ598orlz58rV1VW1atVSpUqVlJmZqYsXL+qtt96SJA0dOlSdO3e2Va0AAAAAABRaZgXsQYMGydvbW3PmzFHNmjXzHXP48GEtW7ZM0dHRWrBggVWLBAAAAACgsDMrYL/wwguqXbv2344JDQ1VaGioDh06ZJXCAAAAAABwJGY95Ox24frKlSu6ceNGrml169a996oAAAAAAHAwFj1F/OTJkxo0aJAk6YsvvlCDBg3UpEkTff/99zYpDgAAAAAAR2HRY78nT56skiVLymg0aubMmRo6dKi8vb01depUrVu3zlY1AgAAAABQ6FkUsH/99Ve9//77io2N1Z9//qlnnnlG3t7emjFjhq3qAwAAAADAIVh0iXhmZqaMRqP27t2r6tWrq0iRIkpOTpa7u7ut6gMAAAAAwCFYFLAfe+wxDRkyRPPnz1eHDh105swZDRo0SM2aNbNoo4mJiYqIiFDdunVVv359TZo0SZmZmfmOXbVqldq0aaPQ0FC1adNGK1euNM1LTU3Vv//9b9WvX1+1a9dWnz59dOzYMYtqAQAAAADAGiwK2G+//bZCQkLUs2dP9e7dW1evXlX16tU1btw4izY6fPhweXl5affu3Vq/fr327dunpUuX5hm3Y8cOzZw5U++8845iYmI0depUzZo1S9HR0ZKk119/XVeuXNEXX3yh/fv3q2bNmoqIiLCoFgAAAAAArMGie7C9vb01ZMgQSVJSUpKqVq2q119/3aIN/vHHHzpw4IC++eYbeXp6qmzZsoqIiNC0adPUr1+/XGPj4uLUv39/1apVS9LNd23Xr19fBw8eVJs2bTRz5kxlZ2fL3d1dqampunTpkvz8/CyqBwAAAAAAa7DoDHZGRoYiIyNVp04dtWjRQmfOnFG3bt108eJFs9dx4sQJFStWTIGBgaZpFStW1Llz53Tp0qVcY3v27KkBAwaYPicmJurgwYMKCQmRJLm6usrd3V2RkZGqX7++tm3bpldffdWSXQIAAAAAwCosOoM9b948fffdd5o9e7ZGjBghf39/BQUFadKkSZo9e7ZZ67h69ao8PT1zTcv5nJaWpqJFi+a7XHx8vF588UWFhISoQ4cOueYNHDhQgwYN0sqVK9W/f39t2bJFZcuWNXu/DAazhxaYnBodoVY4JnoM9kCfwR7oM9gaPQZ7oM9sx5bH1KKAvXXrVq1atUqBgYEyGAzy8vLSlClT1KpVK7PX4eXlpWvXruWalvPZ29s732WOHDmiYcOGqW7dupoyZYpcXHKX7eHhIUl6/vnntW7dOu3cuVPPPfec2TX5+/uYPbagOVKtcEz0GOyBPoM90GewNXoM9kCfORaLAnZaWpqKFy8uSTIajZJuhlsnJ/OvNK9UqZJSUlKUkJCggIAASdLJkycVFBQkH5+8zbN+/XpNnDhRQ4cOVd++fXPNe/rpp/Xcc8+pbdu2pmk3btyQr6+vJbulxMTL+v/dKbQMhps/XI5QKxwTPQZ7oM9gD/QZbI0egz3QZ7aTc2xtwaKAXatWLc2bN08jRoyQ4f/Pq69YsUI1atQwex3ly5dXnTp1NHnyZE2YMEHJycmaP3++wsPD84yNjo7W+PHjtWDBAjVp0iTP/Jo1a2ru3LmqUaOGSpQooffff183btxQixYtLNktGY1ymKZ1pFrhmOgx2AN9Bnugz2Br9BjsgT5zLAaj0fzfrj///FPPPfecMjMzlZiYqAceeEBXr17VRx99pAcffNDsjSYkJGjChAnav3+/nJyc1LlzZ/373/+Ws7OzQkND9dZbbyksLEwdO3bUb7/9ZroEPEfHjh01YcIE3bhxQ5GRkdq6dasyMjJUq1YtjRkzRhUqVDD/CEhKSCj83woZDFJAgI9D1ArHRI/BHugz2AN9Blujx2AP9Jnt5Bxbm6zbkoAt3bxf+ssvv9S5c+cUFBSkZs2aqUiRIjYpzl4coWn5AYOt0WOwB/oM9kCfwdboMdgDfWY7tgzYFl0i/vbbb+upp55Su3btbFIMAAAAAACOyqL3YCcmJqpHjx7q2rWrVq1apcuXL9uqLgAAAAAAHIpFAXvWrFnas2ePwsPDtXHjRjVp0kSjR4/WwYMHbVUfAAAAAAAOwaKALUk+Pj565plntHbtWi1YsEAHDx5U7969bVEbAAAAAAAOw6J7sCXp6tWr+uyzz7Rp0yb9+OOPatasmd5++21b1AYAAAAAgMOwKGCPHDlSu3btUlBQkJ566inNnj1bxYsXt1VtAAAAAAA4DIsCtouLixYvXqy6devaqh4AAAAAABySRQH7nXfesVUdAAAAAAA4NLMCdu3atRUTE6OqVavKYDDkO+bYsWNWLQwAAAAAAEdiVsBetGiRJGnZsmW3DdgAAAAAAPyTmRWwc+65rl+/vk2LAQAAAADAUZkVsFu0aHHHM9c7d+60SkEAAAAAADgiswL2kCFDbF0HAAAAAAAOzayA3aVLl1yfExMTFRsbqxIlSqhUqVI2KQwAAAAAAEdi0Wu6rly5otGjR2vXrl0yGo0yGAxq2LChZs2apaJFi9qqRgAAAAAACj0nSwbPmDFDV69e1bZt2/TDDz9o8+bNys7O1rRp02xVHwAAAAAADsGigP3ll19qxowZqlixotzd3VW5cmVNmzZNO3bssFV9AAAAAAA4BIsC9rVr1+Tj45NrWtGiRZWdnW3VogAAAAAAcDQWBexHHnlEs2fPltFolCQZjUbNnj1bNWrUsElxAAAAAAA4Cosecvbvf/9bvXr10pYtWxQcHKzY2FgZDAZ99NFHtqoPAAAAAACHYFHArly5sqKjo7Vz504lJiYqODhYTZs2VZEiRWxVHwAAAAAADsGigC1JxYoVU7du3WxRCwAAAAAADsuie7ABAAAAAED+CNgAAAAAAFgBARsAAAAAACuw6B7sgwcP5jvd1dVVxYsXV7ly5axSFAAAAAAAjsaigD1mzBidO3dOTk5O8vPzU3JysrKzs+Xk5KSsrCw9+OCDWrhwocqWLWuregEAAAAAKJQsukQ8LCxMYWFhOnDggPbs2aODBw8qPDxcgwcP1vfff6/GjRtr0qRJtqoVAAAAAIBCy6KAvWnTJo0fP17e3t6SJC8vL7366qtas2aNvL29NXLkSMXExNikUAAAAAAACjOLAnZaWpouXbqUa9rly5d15coV02eDwWCdygAAAAAAcCAWBey2bdtq0KBB+vbbb3X69Gl9++23Gjp0qFq3bq0rV67ozTffVN26dW1VKwAAAAAAhZZFDzl79dVXNWnSJA0aNEjXrl2Th4eHwsPDNXLkSP3yyy+6dOmSxo8fb6NSAQAAAAAovAxGo9Fo6UKZmZlKSUmRv7+/DAaD4uPjVaJECVvUZxcJCZdl+VGwL4NBCgjwcYha4ZjoMdgDfQZ7oM9ga/QY7IE+s52cY2sLFl0iPnXqVEmSi4uLAgICZDAY9Omnn6pjx442KQ4AAAAAAEdh0SXiO3bsUJEiRTR48GBdvnxZ48eP144dOzRkyBBb1QcAAAAAgEOwKGAvW7ZMvXr1UlJSknbu3KmgoCBt2LBBFStWtFV9AAAAAAA4BIsuEQ8ODtby5cv15ZdfqkqVKlq9ejXhGgAAAAAAmXkGe+zYsbk+lylTRnv37tWoUaPk6uoqSZoyZYr1qwMAAAAAwEFYdIl4jjJlyqhMmTLWrgUAAAAAAIdlVsDm7DQAAAAAAH/PonuwAQAAAABA/gjYAAAAcFgJCQm6du1aQZcBAJII2AAAAA6tceO6iok5JEkKD++o7du3FnBFN8XEHFLjxnXNGrt9+1aFh3e0eLmkpET9619dlJKSfNd1AoA1mRWwly5dqtjYWFvXAgAAAJjt+vXrnL0GUKiY9ZCz5ORk9e/fXx4eHmrVqpVat27N+68BAABucf78OT31VJjGjHldS5cu0eXLl/Tww9X16qtvqmTJQH3zzVdauvQDnT17Rv7+/urSJVzh4U/LyclJmZmZWrr0A23fvlVXrlxRpUqVNXz4KFWqVFkZGRlatmyJoqM/1ZUrl1W9eoiGDx+lMmXK/m09CQnxmjNnpo4d+0VJSYkqXjxAffr0VYcOnSTdPPMdHt5DX3zxmapXr6l33pmplSuX6fPPP9XFi3GSDGrYsJHGjHld7u4ed9z/hIQETZs2SYcPx8jXt5ieeKJ1rvmxsWc1e/YM/fLLj/Lw8FTr1k+qb98Bple+3s7tlnNyclKvXt0lSb16ddfYseN0+vTv+v33k3Jzc9e33+6Wp6eX2rRpp5deGmzWMQGAe2XWGewRI0Zo+/btmjZtmiRp1KhRevLJJzVz5kz99NNPNi0QAADAkezdu0cfffSxVq3aoOTkJC1btkQxMYc0btwY9ezZR9u379T48ZO1evVKrVu3SpK0bNkSffHFZ5oxY64+/XSXQkPraPToEcrKytKiRfP17be7NXv2fG3a9KmqV6+hESMG6/r1639bx9Spb8vV1UUrVqzV559/o27dnlJk5LtKS0szjYmNPatPPonSG29M0K5dO7Ru3SpNmjRNn332lRYu/Ej79+/TF198ZtZ+v/nmWDk7u2jTpu2aN2+hvvtur2netWvXNGzYQD34YEVt2LBd8+d/oEOHDmjJkoV/u86/W87Z2VkrVqyVJK1YsVYtW94M9F9//aXq1auvqKideuWVV7Vy5TL9/PNPZh8TALgXFt2DXbFiRQ0cOFAbNmzQBx98ID8/P02ePFktWrSwVX0AAAAOpWfPPvLx8VHx4v567LEmOnPmT0VFbVGTJs3UsmUrubi4qEqVqnr22ee0efMGSdJnn0XpmWd6q0KFB+Xs7Kw+fV7QhAlTZTQatWnTer344mCVLh0sd3d3PfdcP2VmZmjfvj1/W8fo0a9r5MgxcnFxUVzcBXl5eev69eu6dOmSaUyrVm3l4eEhHx8fNWz4mBYvXq6yZcspOTlZKSkp8vX1VXx8/B33+cKF8/rhh8MaOHCIvLy8FRgYpL59B5jmf/vtHmVkZOjFFwfJ3d1dgYFB6t9/oDZsWPe3672b5cqWLacnn+wgZ2dnNWzYWP7+ATpz5g+zjwkA3AuzLhHPT3BwsJ5//nk9//zzSkhIsGZNAAAADsvf39/0axcXF2VnZys5OUmVKlXJNa5UqdK6cOG8JCkxMUFBQaVM81xdXRUSUkPJyUm6du2a3nhjjJycDKb5GRkZOn/+/N/Wce5crN57b7bOnPlTZcuWU9myNy8pNxqzTWMCAkqYfp2dbdSiRfO1d+9u+fn5mS5Pz87OzrPuv4qPvyhJCgwMMk0LDi5j+vWFC+eUkpKsJ59sbppmNBqVmZmh5OSk2673bpYrXtw/12cXFxcZjUZJ5h0TALgXdx2wbxUQEGCN1QAAANyXgoJKKTb2bK5p586dlb//zX9DlSwZqLi4C6Z5mZmZmj9/tv71r15yc3PXzJnzFBJSwzT/zz9PKyCg5G23l5mZqVdeGa4BAwapa9enZDAYdPz4MUVHf3rbZd5/f67i4i5o/fot8vYuIknq3buHWftXokTg/+9TrMqXryBJunjxYq75wcFl9PHHn5impaVdVVJSkooV8/vb9f7dcjlfUJjjbo4JAFiK13QBAADYWPv2nbRnz9fatWuHsrKy9N//HtfKlcvVvn2YJKldu476+OMV+vPPP5SZmanlyz/UN998JT+/4urQIUzvvz9XFy/GKTs7W59+uk29evXQ2bN/3nZ7GRkZSk9Pl4eHhwwGgy5cuKAFC+aY5uXnypUrcnNzl7Ozi65fv65Vq/6jU6dOKjMz8477FxQUpEcfbaC5cyN16dIlJSYm6MMPF5nmN2rUWGlpafr44+W6ceOGLl++rLffflPjxo2VwWC47XrvtJybm5up9ju5m2MCAJYiYAMAANyB0WhUSlqGzqWmKyUtw3TJsbmqVw/RxInv6D//Waq2bZvr1VdHqXPnburV63lJ0jPP9Fbr1m01cuQQtW/fUj/8cETTp8+Ri4uLBg0arurVa2jQoP5q27a51qz5WBMnvqPKlavednuenp569dU3tXTpB2rV6nENHfqi6tatr+LF/XXq1G/5LtO//0Bdv56ujh1b6amnwvTLLz+pTZt2Onky//F/NX78JBUp4q3w8I7q16+36tWrb5rn7V1Es2bNV0zMIXXt2k7du3eSk5NB77wz82/Xeaflihf31+OPN9dLLz2vTZvW/+267uaYAIClDEZL/4a4DyUkXFZhPwoGgxQQ4OMQtcIx0WOwB/oM9mDNPrucnqltR+O0NiZWZ1PTTdPL+Hqoe+1gdagWKB8Pq9xxBwfCn2WwB/rMdnKOrS2Y9TdCixYt/vbyHUnauXOn2RtNTEzUG2+8oQMHDsjZ2VlhYWEaPXq0XFzylrNq1SotXbpUFy9eVMmSJdW7d2/17NlTknT9+nVNnz5d0dHRunr1qh588EGNHDlSDRo0MLsWAACA/Ow7naTRW44qPSPvA7BiU9MV+eVJLdjzu94Jq6aG5YsXQIUAgMLGrIA9ePDgOwZsSwwfPlyBgYHavXu3EhISNHDgQC1dulT9+vXLNW7Hjh2aOXOmFi9erEceeURHjhzRgAEDFBAQoDZt2mj69OmKiYnRmjVrVLJkSX3yySd66aWXtH37dpUuXdpq9QIAgH+WfaeTNHzDzzIapfxOHOVMS8/I1vANP2tW15D7OmSPHftvHTq0/7bzR416Va1bP2nHigCgcDIrYHft2tVqG/zjjz904MABffPNN/L09FTZsmUVERGhadOm5QnYcXFx6t+/v2rVqiVJCg0NVf369XXw4EG1adNG169f19ChQ1Wq1M3XWnTv3l3Tp0/XL7/8QsAGAAB35XJ6pkZvOXrbcH0r4///b/SWo4oa0OC+vVx8ypTpBV0CADgEs/4WGDBggBYtWqRevXrd9kz28uXLzdrgiRMnVKxYMQUGBpqmVaxYUefOndOlS5dUtGhR0/ScS8FzJCYm6uDBgxo7dqwkacKECbnm79u3T5cvX1bVqrd/6Ed+rHhy3mZyanSEWuGY6DHYA30Ge7jXPos6Gqf0jOw7huscRt08k739WJyerh18dxu10LJlH+rHH49oxow5dxw7ceJ4SdLrr4+3bVH/IPxZBnugz2zHlsfUrIBdp04dSVL9+vXvMPLOrl69Kk9Pz1zTcj6npaXlCti3io+P14svvqiQkBB16NAhz/wjR45o+PDhGjx4sMqWLWtRTf7+trnB3RYcqVY4JnoM9kCfwR7ups+MRqPW/2D+u5Vvte7IeQ1qVcWqt9XdzsiRw8we6+HhKsl2D/T5J+PPMtgDfeZYzArYL774oqSb92LnSExMlK+vb74PJvs7Xl5eunbtWq5pOZ+9vb3zXebIkSMaNmyY6tatqylTpuTZ5rp16zR58mQNHTpUzz//vEX1SFJiYuF/Mp/BcPOHyxFqhWOix2AP9Bns4V76LCUtQ38kpZk3+GqS3D+fqIw6/5LL0c90/sZVDT7bSl07ddHMme8oNvasqlUL0YQJU1S0aFGtXLlcW7ZsVGpqisqVe0D9+w9U/foNJUndunVU/foNtXv31/L399eHH/5H27dv1YYN63T+/HllZGQoNLS2Xn31Tfn5+WnJkoU6fPh7zZt3813T33zzlZYu/UBnzpyRv7+/unQJ11NPPS0nJyelp998x3NCwmVJ0pYtm7Rmzce6eDFOQUFBevbZ59SmDfdPW4I/y2AP9Jnt5BxbW7AoHWdkZGjatGlat26d0tPT5ebmprCwML3xxhtyc3Mzax2VKlVSSkqKEhISFBAQIEk6efKkgoKC5OOTdyfXr1+viRMnaujQoerbt2+ueVlZWXrrrbf0+eef67333tNjjz1mye6YGI1ymKZ1pFrhmOgx2AN9Bnu4mz67eiPL4u04XTimG0+MliEtUbu+mKnTJ09o2rTZcnV100svPa8NG9YpOztbUVFbNGXKDFWs+JC+/vpLjRkzUu+9t1gPP1xdknT06M9aufLmu5yPHTuqyMhpmjPnfVWrFqKLF+M0bNhArVu3Wv37DzTtm9EoxcQc0htvjNEbb7ytpk2b6+TJ3zR27EgZjUb16PG/2+2MRmn79q2aNy9SkydPV61atXXkSIxeffXfcnf3UNOmzS3e9386/iyDPdBnjsXJksHz58/X/v37NWvWLG3btk2zZs3SDz/8oFmzZpm9jvLly6tOnTqaPHmyrly5ojNnzmj+/PkKDw/PMzY6Olrjx4/X3Llz84RrSZoyZYq++eYbffLJJ3cdrgEAAHJ4uTpbvExWpeaSi5uMRUupuL+/nnyyvUqUKKlixYqpevUaOn/+nKKitujZZ59TlSpV5eLiopYtW6lRo8e1bdtm03qaNWspHx8f+fj4qGLFh7RixVpVqxaiS5cuKSEhXsWK+Sk+/mKe7UdFbVGTJs3UsmUrubi4qEqVqnr22ee0efOGfMd26tRVderUk7Ozs+rUqadOnbrmOxYAYDmLzmBv3bpVH330keke54oVK6pixYrq2bOnXnnlFbPXM2fOHE2YMEEtW7aUk5OTOnfurIiICEk3nxT+1ltvKSwsTPPmzVNWVpaGDh2aa/mOHTtq+PDhWrlypZydnfPck52zPAAAgCV8PV1UxtdDsanp5j/kzM1LBknBvh5ydnaWj8//nifj5OQko9Go5OQklS6d+wFopUqV1m+/nTB9Dggocctyzlq3bpU+//wzeXp66aGHHlJa2lUZ8zmNlZycpEqVquRZ94ULee8lT0pKzKeOYO3Z842ZewsA+DsWBezU1FTTK7FylCpVSunp6RZtNCAgQHPm5P/Uy8OHD5t+vXXr1r9dz7FjxyzaLgAAwN8xGAzqXjtYkV+etGQpSVKP2sFa/1n+I4KCSik29myuaefOnTXdLpez7Rxr1qzUgQP7tXz5ahUv7i9JeuWVERat298/IM/YUqVKKzY2Nte02Nj8xwIALGfRJeJVqlTR6tWrc01bvXq1KleubNWiAAAACkqHaoHycHWSuc8CdzJIHq5Oal8t8LZjOnbsrJUrl+nXX48rKytLu3bt0J493+jJJ/O+GUW6+dYVFxcXubi4KjMzU9HR27V//7fKyMjIM7Z9+07as+dr7dq1Q1lZWfrvf49r5crlat8+79V8HTp01ubNG/T99weVlZWlmJhD2rJlY75jAQCWs+gM9vDhw9W3b19t2bJFZcuW1Z9//qnffvtNS5YssVV9AAAAduXj4aKpHR/W8A2/mL3Mu2HV5ONx+39W9ejRU1lZ2XrzzbFKTExQmTJl9dZbkxUaWiff8f/617M6efI3hYd3lJubmypXrqquXbvr++8P5BlbvXqIJk58Rx9+uFhTpkyQr6+vOnfupp49++QZ26LFE0pLu6LIyGmKizuvEiVKKiJiqNq2bW/2vgIAbs9gzO9mnr/x+++/a+vWrUpISFCZMmXUvn17BQcH33nBQiwhofA/+t5guPn+SkeoFY6JHoM90Gewh3vps8vpmdp2NE5rY2J1NvX2t8DlnN32cHXSu2HV1KB88bsvGA6HP8tgD/SZ7eQcW1uw7CXWkipUqJDnoWMAAACObt/pJI3eclTpGdl3HBvs66EetYPVoXqgirhb/M8pAMB9ir8RAADAP96+00kavuHnm++b/ZtxBt088zGq5UN6rAJnrQEAuVn0kDMAAID7zeX0TI3ecvSO4Vq6Od9olMZsParL6Zn2KA8A4ECsErBv3LhhjdUAAADY3bajcUrPyDb/vdeS0jOyFXU0zpZlAQAc0D0H7Li4OD3yyCPWqAUAAMCujEaj1sbE3nlgPtbExMrCZ8UCAO5zVjmDzV8uAADAEaVey9TZ1HSzz17nMEo6m5quVC4TBwDcwioB22Aw3HkQAABAIZOWkXVvy9+4t+UBAPcXHnIGAAD+sbxcne9tebd7Wx4AcH8x6zVd586du+28+Ph4qxUDAABgT76eLirj66FYCy8TN+jmu7B9PXjjKQDgf8z6W6FFixa3vQzcaDRyiTgAAHBIBoNB3WsHK/LLkxYv26N2MP8GAgDkYlbA3rlzp63rAAAAKBAdqgVqwZ7fzX5Vl5NBcndxUvtqgTavDQDgWMwK2EajUWXKlDFrhWfOnFHZsmXvqSgAAAB78fFw0Tth1TR8w8+SUX8bsnPOV78bVk0+XB4OAPgLsx5y9sorrygyMvJv77e+ePGipk+frlGjRlmtOAAAAHtoWL64ZnUNkYerkwz6X5DOkTPNw9VJs7uGqEH54vYvEgBQ6Jn11evy5cs1b948tW3bVjVr1lRoaKgCAwOVnZ2tuLg4ff/99zp+/LieffZZLV++3NY1AwAAWF3D8sUVNaCBoo7GaU1MrM6mppvmBft6qEftYHWoHqgi7py5BgDkz2A0Gs1+aGZSUpI2btyo7777TufPn5fBYFBwcLAaNWqkdu3ayd/f35a12kxCwmWZfxQKhsEgBQT4OEStcEz0GOyBPoM9WKPPjEajUtMzlXYjS15uzvL1cOGBZjDhzzLYA31mOznH1hYs+gq2ePHieuGFF/TCCy/YpBgAAIDCwGAwqJinq4p5uhZ0KQAAB2LWPdgAAAAAAODvEbABAAAAALACAjYAAAAAAFZgUcBOS0uzVR0AAAAAADg0iwJ2o0aNNHbsWB06dMhW9QAAAAAA4JAsCtjLly+Xt7e3Bg8erNatW+v9999XXFycrWoDAAAAAMBhWPSarho1aqhGjRoaM2aMdu3ape3btyssLEw1a9ZUt27d1LJlS7m68joLAAAAAMA/z1095MzFxUXlypVTmTJlVKxYMR07dkyLFi1SixYttHv3bmvXCAAAAABAoWfRGey4uDht3bpVmzdv1u+//66mTZvqlVdeUbNmzeTs7KzVq1drzJgx2rt3r63qBQAAAACgULIoYDdv3lwPPvigunbtqk6dOsnf3z/X/AYNGigqKsqqBQIAAAAA4AgsCtirVq1SzZo1lZ2dLWdnZyUkJMjPz0/Ozs6SpPLly2vFihU2KRQAAAAAgMLMonuw3d3d1aJFC/3yyy+SpMWLF6t169b6/fffbVIcAAAAAACOwqKAPWnSJHXp0kXVqlWTJI0aNUpdunTR22+/bZPiAAAAAABwFBZdIn7s2DEtX75cBoPh5sIuLho4cKAaNGhgk+IAAAAAAHAUFp3BLlKkSJ7Lwc+cOaOiRYtatSgAAAAAAByNRWewu3TpooEDB6pfv34qXbq0zp07pyVLlqhr1662qg8AAAAAAIdgUcAePHiwnJyc9P777ys+Pl6lSpVS165d1a9fP1vVBwAAAACAQ7AoYDs7O2vIkCEaMmSIreoBAAAAAMAhWRSws7KyFB0drdOnTys7OzvXvMGDB1u1MAAAAAAAHIlFAfvNN99UVFSUqlatKheX/y2a81RxAAAAAAD+qSwK2F9++aWWL1+uGjVq2KoeAAAAAAAckkWv6crOzla1atVsVQsAAAAAAA7LooDdoUMHLVmyxFa1AAAAAADgsCy6RPyXX35RTEyMFixYoOLFi+eat3PnTqsWBgAAAACAI7EoYD/11FN66qmnbFULAAAAAAAOy6KA3aVLF9Ovk5KS8pzFBgAAAADgn8qie7AzMzMVGRmpOnXqqEWLFjpz5oy6deum+Ph4W9UHAAAAAIBDsChgz507V999951mz54tV1dX+fv7KygoSBMnTrRVfQAAAAAAOASLLhHfunWrVq1apcDAQBkMBnl5eWnKlClq1aqVreoDAAAAAMAhWHQGOy0tzXTftdFolCR5eHjIycmi1QAAAAAAcN+xKBnXqlVL8+bNkyQZDAZJ0ooVK1SjRg3rVwYAAAAAgAOx6BLx1157TX369NHGjRt19epVtWvXTlevXtVHH31kq/oAAAAAAHAIFgXssmXLKioqSl9++aXOnTunoKAgNWvWTEWKFLFVfQAAAAAAOASLArYkeXp6ql27dve00cTERL3xxhs6cOCAnJ2dFRYWptGjR8vFJW85q1at0tKlS3Xx4kWVLFlSvXv3Vs+ePfOMmzhxoq5cuaKpU6feU20AAAAAANwNswJ27dq1FRMTo6pVq5ruvc5hNBplMBh07Ngxszc6fPhwBQYGavfu3UpISNDAgQO1dOlS9evXL9e4HTt2aObMmVq8eLEeeeQRHTlyRAMGDFBAQIDatGkjSUpOTtakSZO0detWdenSxewaAAAAAACwJrMC9qJFiyRJy5YtyxOwLfXHH3/owIED+uabb+Tp6amyZcsqIiJC06ZNyxOw4+Li1L9/f9WqVUuSFBoaqvr16+vgwYNq06aNrl69qrZt26p9+/amwA0AAAAAQEEwK2DXrVtXklS/fn2tXbtWTZs2VWBgoDZv3qwbN27oqaeeMnuDJ06cULFixRQYGGiaVrFiRZ07d06XLl1S0aJFTdP/eil4YmKiDh48qLFjx0qS3N3dFRUVpYCAAI0ZM8bsGv7qHr8zsIucGh2hVjgmegz2QJ/BHugz2Bo9Bnugz2zHlsfUonuw58yZo40bN+rRRx+VJBUpUkSTJ09WampqnrPPt3P16lV5enrmmpbzOS0tLVfAvlV8fLxefPFFhYSEqEOHDjeLd3FRQECAJbuQL39/n3teh704Uq1wTPQY7IE+gz3QZ7A1egz2QJ85FosC9vr167Vy5UqVLVtWktSyZUtVqlRJffr0MTtge3l56dq1a7mm5Xz29vbOd5kjR45o2LBhqlu3rqZMmZLvw9DuRWLiZRmNVl2l1RkMN3+4HKFWOCZ6DPZAn8Ee6DPYGj0Ge6DPbCfn2NqCRUn1ypUrKlWqVK5ppUqVUlpamtnrqFSpklJSUpSQkGA6+3zy5EkFBQXJxyfvTq5fv14TJ07U0KFD1bdvX0vKNZvRKIdpWkeqFY6JHoM90GewB/oMtkaPwR7oM8fiZMng6tWrmx54luPDDz9U1apVzV5H+fLlVadOHU2ePFlXrlzRmTNnNH/+fIWHh+cZGx0drfHjx2vu3Lk2C9cAAAAAAFiDRWewx4wZo759+2rt2rUKCgrShQsXlJmZqQ8++MCijc6ZM0cTJkxQy5Yt5eTkpM6dOysiIkLSzSeFv/XWWwoLC9O8efOUlZWloUOH5lq+Y8eOmjBhgkXbBAAAAADAlgxGo2UXHKSmpmrXrl2Kj49XqVKl1KxZs3wv7XYkCQmF/74Gg0EKCPBxiFrhmOgx2AN9Bnugz2Br9BjsgT6znZxjawsWPy3M19dXXbp0sUUtAAAAAAA4LLMCdu3atRUTE6OqVavKcJuXhh07dsyqhQEAAAAA4EjMCtgLFy6UJC1fvtymxQAAAAAA4KjMCtiDBw/W/v37NX/+fC1dutTGJQEAAAAA4HjMCthGo1FLly7V4cOHtWnTpnzHdO7c2YplAQAAAADgWMwK2IMGDdLHH3+sGzduaM6cOXnmGwwGAjYAAAAA4B/NrIDt7u6u6OhoPfroo9q1a5etawIAAAAAwOE4mTNo2rRpkqSMjAybFgMAAAAAgKMy6wx20aJFNWjQIGVkZGjs2LH5jpkyZYpVCwMAAAAAwJGYfQbbz8/P1rUAAAAAAOCwzDqDXbduXdWtW1eXL1/mTDUAAAAAAPkw6wz2hQsXJEmzZ8/Od/6nn35qvYoAAAAAAHBAZgXsdu3a5fr80ksv5fr82muvWa8iAAAAAAAckFkB22g05vocExPzt/MBAAAAAPinMStgGwyGe5oPAAAAAMD9zqyADQAAAAAA/h4BGwAAAAAAKzDrNV3Z2dk6dOiQ6V7rzMzMXJ+zs7NtVyEAAAAAAA7ArICdnp6uZ599Nte0Wz9zDzYAAAAA4J/OrIB9/PhxW9cBAAAAAIBD4x5sAAAAAACsgIANAAAAAIAVELDvA9evX9fFi3EFXQYAAAAA/KMRsO8Dgwb116FDB2y+nVatmuiHHw7bfDsAAAAA4IjMesgZCreUlGS7bOeLL3bbZTsAAAAA4IjMCthVq1a946u4jh07ZpWCYJkRIwYpLu6Cpk+fouPHj6py5arasGGdLlw4r4yMDIWG1tbYsW/Kz89PkrRu3WqtXv0fXbt2TfXqParMzEw9+OBDeuGFF3X9errmzo3Uzp1fyNPTU08+2UGff/6pxo4dp9q166px47qaM+d91a5dV6dP/67582frt99OKCUlRaVLl9bAgUPVqFETSdKSJQsVFbVF165dU3BwGT333Atq3LipJOngwe+0aNF8nT79u4oV89PTT/dUt249ZDQatXLlMn3++af/f8m7QQ0bNtKYMa/L3d2joA4xAAAAAJjFrIC9bNky3nVdSEVGvqfw8I7q23eAypevoKFDX9KcOe+rWrUQXbwYp2HDBmr9+tXq33+gduyI1ocfLtK770bq4Yera8uWjZo58x09+OBDkqQ5c2bq+PFjWrr0Y/n4FNWMGVN1/vy5fLf7+uuvqHHjppo8ebqMRqMWLJijGTOmqlGjJoqJOaQtWzZqyZL/yN/fX5s3b9DUqW9r06ZGOncuVqNHv6yXXx6ttm3b67ffTmjo0JdUpkw5XblyRevWrdK8eYtVtmw5/fHHaQ0c+IK++OIzdejQ2Y5HFQAAAAAsZ1bArl+/vq3rgBVUrPiQVqxYq1KlSuvSpUtKSIhXsWJ+io+/KEnatm2zOnXqqho1HpEkde36lD79dKskKTMzU9HR2zVp0jQFBgZJkkaOHK0dO6Lz3da7785SQEAJZWdn68KF8/LxKWrajpubmy5fvqQtWzaoUaPH1bFjZ3Xq1FUGg0E7dkSrcuWq6tChkySpatWHNX/+B/L3D5C7u5tq1FiukiUDlZycrJSUFPn6+io+Pt6mxw0AAAAArMGsgN2xY0dt3bpVLVq0uO2Z7J07d1q1MFjOyclZ69at0ueffyZPTy899NBDSku7KqPRKEm6eDFOzZq1zLVM6dLBkqTU1BSlp6erVKlSpnleXt7y9S2W77ZOnPivxox5WUlJiXrggQoqVqyYaTshITU1ceK7Wr9+tT7+eLk8PDwUHv60evfuq8TEBFOAz/HQQ5UkSVeuXNGiRfO1d+9u+fn5qVKlysrIyFB2drZVjg8AAAAA2JJZAXvAgAGSpMGDB3OpeCG2Zs1KHTiwX8uXr1bx4v6SpFdeGWGaHxRUSnFxF3Itc+HCBZUrV15+fsXl7u5u+ixJ165dU2pqSp7tJCTEa9y4MZo0aZoaN35ckvTVVzv19ddfmtZZvHhxzZw5TxkZGTp0aL9ee+0VVa5cVSVLBurUqd9yrS8qaov8/Irr2293Ky7ugtav3yJv7yKSpN69e1jl2AAAAACArZn1mq6OHTtKkrp27apOnTrp8ccfV6dOndSlSxfTfyg4bm5uunLliq5evSoXFxe5uLiaLvnev/9bZWRkSJLCwrpo69aNOnbsF2VmZioqaot++eUnSZKTk5M6dOikJUsWKiEhXunp6ZozZ6aysrLybC8t7aqysrLk6ekpSfr991P66KMPJEkZGRk6fvwXjRw5RCdO/Feurq7y87sZ9n19i+mJJ9ro119/1aefblNWVpaOHz+muXMj5eLioitXrsjNzV3Ozi66fv26Vq36j06dOqnMzEx7HEYAAAAAuCdmv6YrPj5eU6ZM0RdffKHMzEy5uLioZcuWGjt2rAIDA21Z4z+W0WhU6rVMpWVkydvNWf7/fwn2X3Xo0EmLFr2nWrVqq2TJQIWHd5Sbm5sqV66qrl276/vvb74ju1mzloqNPasxY0bqxo0batiwkapWrSZXV1dJ0ksvDVFk5Lvq2TNcXl7e6tSpq5ycnEzzc5QrV14REcM0YcLrSk9PV4kSgQoL66L582fr5Mnf1KxZS50586fGjHlZqakp8vPz19ChL6t69RBJ0vTps7VgwVzNmjVNfn7FNWTICD36aAMFB5fRlCkT1LFjK3l6eqlmzVpq06adTp7MfcYbAAAAAAojg9F4m9R2i9TUVHXu3FlBQUEKDw9XyZIldebMGW3cuFFxcXHasmWLihUrZodybSMh4bLufBTs53J6prYdjdPamFidTU03TX+guJfCHyml9tUC5eNh+SvMT5z4r3x8fBQU9L/7rPv2fVadO3dTWFgXHTkSo4oVK8nHx0fSzTPVrVs31apVG1S2bLl73zEUagaDFBDgU+h+HnB/oc9gD/QZbI0egz3QZ7aTc2xtwaxLxN9//32FhITo448/Vrdu3dSkSRM988wzWrNmjUJCQrRw4UKbFPdPtO90ktov+k6RX55U7C3hWpL+TErTzC9Pqv2i77TvdJLF646JOajRo0coMTFBRqNRO3d+rtOnf1fduo9Kklav/o9mz56u69fTdf36dX3wwfsqV+4BwjUAAAAAmMGsgL1r1y69/PLLeR5w5uTkpJdffpkniFvJvtNJGr7hZ6VnZMso6a9fVOVMS8/I1vANP1scsrt166Hateupb9+e/39m+j96550ZpieJjxw5RlevXlGXLu3VqVMbnT17RtOmzbbGrgEAAADAfc+sS8Rr166tmJiYfOcZjUbVrl1bhw8ftnpx9lIYLru4nJ6p9ou+M4XrOzFI8nB1UtSABnd1uTjwV1yGBHugz2AP9BlsjR6DPdBntlPgl4i7u7srPj4+33nx8fHy9va2alH/RNuOxpkdrqX/ncmOOhpny7IAAAAAAGYyK2DXq1dPH3/8cb7zVq1apUcffdSqRf3TGI1GrY2Jvatl18TEyoyLEAAAAAAANmbWtcUvvviievbsKQ8PD3Xq1EkBAQE6d+6c1q9frxUrVmj16tW2rvO+lnotM9fTws1llHQ2NV2p6Zkq5ul6x/EAAAAAANsxK2BXr15dkZGReuONNzRr1izT9ICAAM2dO1dVqlSxVX3/CGkZWfe2/I0sAjYAAAAAFDCzn47VvHlz7dq1S0eOHNHFixdVokQJ1alTRy4uPGDrXnm5Ot/b8m73tjwAAAAA4N5ZlI7d3Ny439oGfD1dVMbXQ7Gp6WY/5Ey6+STxYF8P+fIUcQAAAAAocGY95Ay2ZTAY1L128F0t26N2cJ73kwMAAAAA7I+AXUh0qBYoD1cnmRuVnQw334PdvlqgTesCAAAAAJiHgF1I+Hi46J2wajIYdMeQnTP/3bBq8uHycAAAAAAoFAjYhUjD8sU1q2uI6Uz2X4N2zjQPVyfN7hqiBuWL279IAAAAAEC+OP1ZyDQsX1xRAxoo6mic1sTE5no/drniXnqqVim1rxaoIu781gEAAABAYUJKK4R8PFz0dO1g9QgtrdT0TKXdyJK3u7MqlvFTYuIVGS151DgAAAAAwC4I2IWYwWBQMU9XFfN0vXlvNk8LBwAAAIBCi3uwAQAAAACwAgI2AAAAAABWUCABOzExUREREapbt67q16+vSZMmKTMzM9+xq1atUps2bRQaGqo2bdpo5cqVueYvXrxYjz/+uGrVqqVevXrp1KlT9tgFAAAAAAByKZCAPXz4cHl5eWn37t1av3699u3bp6VLl+YZt2PHDs2cOVPvvPOOYmJiNHXqVM2aNUvR0dGSpI0bN2rFihVasmSJ9u/fr+rVq2vo0KEy8hQwAAAAAICd2T1g//HHHzpw4IBGjRolT09PlS1bVhEREXnOTEtSXFyc+vfvr1q1aslgMCg0NFT169fXwYMHJUlr167VM888o0qVKsnd3V0jR47UuXPntH//fnvvFgAAAADgH87uAfvEiRMqVqyYAgMDTdMqVqyoc+fO6dKlS7nG9uzZUwMGDDB9TkxM1MGDBxUSEiJJ+u2331S5cmXTfFdXV5UvX17Hjx+38V4AAAAAAJCb3V/TdfXqVXl6euaalvM5LS1NRYsWzXe5+Ph4vfjiiwoJCVGHDh1uuy4PDw+lpaVZVJMjvP0qp0ZHqBWOiR6DPdBnsAf6DLZGj8Ee6DPbseUxtXvA9vLy0rVr13JNy/ns7e2d7zJHjhzRsGHDVLduXU2ZMkUuLjfL9vT0VHp6eq6x6enpt13P7fj7+1g0viA5Uq1wTPQY7IE+gz3QZ7A1egz2QJ85FrsH7EqVKiklJUUJCQkKCAiQJJ08eVJBQUHy8cnbPOvXr9fEiRM1dOhQ9e3bN8+6Tpw4oebNm0uSMjIydPr06VyXjZsjMfGyCvtz0QyGmz9cjlArHBM9Bnugz2AP9BlsjR6DPdBntpNzbG3B7gG7fPnyqlOnjiZPnqwJEyYoOTlZ8+fPV3h4eJ6x0dHRGj9+vBYsWKAmTZrkmd+tWzfNnTtXjz/+uCpUqKDIyEgFBASobt26FtVkNMphmtaRaoVjosdgD/QZ7IE+g63RY7AH+syx2D1gS9KcOXM0YcIEtWzZUk5OTurcubMiIiIkSaGhoXrrrbcUFhamefPmKSsrS0OHDs21fMeOHTVhwgSFh4fr8uXLGjRokJKSklSjRg0tXLhQrq6uBbFbAAAAAIB/MIORl0YrIaHwX3ZhMEgBAT4OUSscEz0Ge6DPYA/0GWyNHoM90Ge2k3NsbcHur+kCAAAAAOB+RMAGAAAAAMAKCNgAAAAAAFgBARu4j5w/f06NG9fV+fPnbLL+5cs/1MiRQ+88EAAAAPgHKpCniANwTL17973zIAAAAOAfioAN3KeSkhI1b94sHTp0QAaDQY0bP65Bg4bJy8tbknTw4HdatGi+Tp/+XcWK+enpp3vqpZf6SZI+//wzrVjxoS5cOK+SJQPVt++LatmylZYsWajDh7/XvHmLtH37Vm3duklVqjysHTs+k3RzG//+91i5uLgoOztbK1cu19atG5WamqJy5R5Qv34DVb9+wwI8KgAAAIDtcIk4cB/Kzs7WmDEjZTAYtHr1Bi1fvlrx8fF6551JkqQ///xDo0e/rE6duunTT7/U22+/o4UL52v37t2KiTmkqVMnKCJiqKKjv9aQIS/r7bff0O+/n8qznZ9++kF+fn7atOkzTZs2Szt3fq6vvtopSfroo8XauHGd3n77HUVF7dTTT/fS2LEjdezYL3Y9FgAAAIC9ELCB+1Bqaop+/fWYRo4cIy8vb/n6FtPgwcO1c+fnSk1N0Y4d0apcuao6dOgkFxcXVa36sBYs+EDVq1fXp59G6fHHm6thw8ZycnJSgwaPacGCJSpRomSe7bi7u6t3775ycXHRww9X10MPVdKZM39KkqKitujZZ59TlSpV5eLiopYtW6lRo8e1bdtmex8OAAAAwC64RBy4Dx0+/L2ys7PVtWu7XNPd3Nx07lysEhMTFBgYlGveQw9VUvHiPkpMTFClSlVyzXv44er5bsfPr7gMBoPps7PzzUvDJSk5OUmlSwfnGl+qVGn99tuJu94vAAAAoDAjYAP3oZo1a8nd3V1RUTvl7OwsSbpx44bOnz+n4OAyKlkyUKdO/ZZrmaioLXrggWCVLBmouLgLueatWvUfhYTUsKiGoKBSio09m2vauXNnFRAQcBd7BAAAABR+XCIO3If8/IqrTJlymjdvltLS0nT9errmzJmpYcMGKisrS0880Ua//vqrPv10m7KysnT8+DHNnRspFxcXtWvXQV9//aUOHPhO2dnZ2r9/nz78cKG8vYtYVEPHjp21cuUy/frrcWVlZWnXrh3as+cbPflkBxvtNQAAAFCwOIMNOAij0ajUa5lKy8iSl6uzfD1dcl2efStnZ2e9+26k3ntvlp5+uotu3Liuhx+ursjI9+Tu7q7g4DKaPn22FiyYq1mzpsnPr7iGDBmhxo0bKyHhsl5//S29994snT9/XkFBQRo/frIefLCivvxyh9n19ujRU1lZ2XrzzbFKTExQmTJl9dZbkxUaWsdahwQAAAAoVAxGo9FY0EUUtISEyyrsR8FgkAICfByiVljX5fRMbTsap7UxsTqbmm6aXsbXQ91rB6tDtUD5eNz7d2X0GOyBPoM90GewNXoM9kCf2U7OsbUFzmADhdi+00kaveWo0jOy88yLTU1X5JcntWDP73onrJoali9eABUCAAAAyME92EAhte90koZv+FnpGdkySvrrF5c509IzsjV8w8/adzrJ/kUCAAAAMCFgA4XQ5fRMjd5yVEZj3mD9V0ZJRqM0estRXU7PtEd5AAAAAPJBwAYKoW1H40xnrs2RcyY76micLcsCAAAA8DcI2EAhYzQatTYm9q6WXRMTK55bCAAAABQMAjZQyKRey9TZ1HSzz17nMEo6m5quVC4TBwAAAAoEARsoZNIysu5t+Rv3tjwAAACAu0PABgoZL1fne1ve7d6WBwAAAHB3CNhAIePr6aIyvh4yWLicQVIZXw/5evB6ewAAAKAgELCBQsZgMKh77eC7WrZH7WAZDJZGcwAAAADWQMAGCqEO1QLl4epk9llsJ4Pk4eqk9tUCbVoXAAAAgNsjYAOFkI+Hi94JqyaDQXcM2Tnz3w2rJh8uDwcAAAAKDAEbKKQali+uWV1DTGey/xq0c6Z5uDppdtcQNShf3P5FAgAAADDhdBdQiDUsX1xRAxoo6mic1sTE6mxqumlesK+HetQOVofqgSrizo8yAAAAUND4VzlQyPl4uOjp2sHqEVpaqemZSruRJS83Z/l6uPBAMwAAAKAQIWADDsJgMKiYp6uKeboWdCkAAAAA8sE92AAAAAAAWAEBGwAAAAAAKyBgAwAAAABgBQRsAAAAAACsgIANAAAAAIAVELABAAAAALACAjYAAAAAAFZAwAYAAAAAwAoI2AAAAAAAWAEBGwAAAAAAKyBgAwAAAABgBQRsAAAAAACsgIANAAAAAIAVELABAAAAALACAjYAAAAAAFZAwAYAAAAAwAoI2AAAAAAAWAEBGwAAAAAAKyBgAwAAAABgBQRsAAAAAACsgIANAAAAAIAVELABAAAAALACAjYAAAAAAFZQIAE7MTFRERERqlu3rurXr69JkyYpMzPzb5eJjo5Wy5Ytc027ceOGpk2bpscff1z16tXToEGDdP78eVuWDgAAAABAvgokYA8fPlxeXl7avXu31q9fr3379mnp0qX5js3IyNDixYv18ssvy2g05po3Y8YMff7551qyZIn27t2rBx54QM8//7xu3Lhhh70AAAAAAOB/7B6w//jjDx04cECjRo2Sp6enypYtq4iICK1cuTLf8X379tX+/fvVv3//PPO2bdumQYMGqVKlSnJzc9PIkSMVFxenffv22Xo3AAAAAADIxcXeGzxx4oSKFSumwMBA07SKFSvq3LlzunTpkooWLZpr/LRp0xQUFKQNGzbkWVdWVpY8PT1Nnw0GgyTp999/V9OmTc2u6f8XK9RyanSEWuGY6DHYA30Ge6DPYGv0GOyBPrMdWx5Tuwfsq1ev5grFkkyf09LS8gTsoKCg266rdevWev/99/Xwww8rMDBQ8+fP1/Xr15Wenm5RTf7+PhaNL0iOVCscEz0Ge6DPYA/0GWyNHoM90GeOxe4B28vLS9euXcs1Leezt7e3ResaM2aMpk+frp49e8rFxUXh4eGqXLlynpB+J4mJl/WX27sLHYPh5g+XI9QKx0SPwR7oM9gDfQZbo8dgD/SZ7eQcW1uwe8CuVKmSUlJSlJCQoICAAEnSyZMnFRQUJB8fy3YyLi5OAwcO1Lhx4yRJqampWrhwoUJCQixaj9Eoh2laR6oVjokegz3QZ7AH+gy2Ro/BHugzx2L3h5yVL19ederU0eTJk3XlyhWdOXNG8+fPV3h4uMXrWrp0qcaMGaOrV68qNTVVb731lqpXr66aNWvaoHIAAAAAAG6vQF7TNWfOHGVmZqply5bq3r27mjRpooiICElSaGiotmzZYtZ6Ro0apWLFiqlFixZq3bq1DAaD5s+fb8vSAQAAAADIl8H415dL/wMlJBT++xoMBikgwMchaoVjosdgD/QZ7IE+g63RY7AH+sx2co6tLRTIGWwAAAAAAO43BGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGwAAO5z27dvVXh4R7PGLlmyUIMHD5Akff75p3r22e62LA0AgPuKS0EXAAAACqfWrZ9U69ZPFnQZAAA4DAI2AAAF4Pz5c3rqqTANH/5vLV/+ka5fT1fjxo/r5ZdHy9u7iHbsiNaKFR/pwoXzCg4uq5deGqxHH20gSRo8eIBCQmrqp59+0H//e1wlSwaqb98X1bJlK0nSH3+c1rRpk/Xrr8dUqlRp1a5dN9e2f/jhsBYtmq+TJ0/Ix6eoWrd+Un36vCA3N7dc47Zv36oPP1yk9eu3KibmkCZPfksdO3bWxo3rdf36ddWuXUevvvqmvL2LSJK2bt2kNWs+1sWLcQoKCtKzzz5HQAcA/KNwiTgAAAXoq692admy1fr440905swZzZz5jvbt26Pp06doxIhXtH37Lr3wwot67bVXdOrUSdNyW7Zs1LBhI7V9+y41bdpC06ZN0vXr15WZmalRo4bpwQcratu2HRo/frK++eYr03J//nlaI0YMUtOmLbR16xeKjHxPe/Z8o/nz59yx1gsXzis+Pl5r1mzU4sXL9PPPP2nDhvWSbobxefMiNWLEKH366S4NG/ZvzZgxVV9//aXVjxkAAIUVARsAgAI0dOjL8vPzk79/gPr1e0lffrlT69evVefO4apVq7acnZ3VqFETNWrURJs3f2JarnnzlqpcuapcXV315JMddOXKFSUnJ+unn35QXNwFDRo0TO7u7nrwwYp6+ulnTct9/vlnqljxIXXv/i+5urqqTJmyeumlQdq6daOys7PvWO/zz/eTu7uHypQpq9q16+rMmT8kSVFRW9SpU1fVqVNPzs7OqlOnnjp16qrNmzdY/6ABAFBIcYk4AAAFqEyZcqZfBwYG6caNG/rzz9M6cuR7bdq03jQvKytLderUM30uXtzf9GsXl5t/nRuN2YqPj1exYsXk7u5hmh8cXMb066SkRJUuHZyrhlKlgnX9+nUlJyfdsV5//4Bc2zUajX+73j17vrnjOgEAuF8QsAEAKEAJCRdVrlx5SdK5c7Hy8PBQUFAphYV1Va9ez5nGXbhwQe7u7ndcX2BgoFJSUpSWliYvLy9JUnx8nGl+qVKl81y2HRt7Vm5ubipa1Peu96NUqdKKjY3Ns95bAzkAAPc7LhEHAKAALVgwT1evXlFCQryWLFmotm3bq2vXp7R+/WodO/aLJOn48aPq1+9Z7dgRfcf1hYTUVNmyD2jWrGlKT0/X2bNntGrVf0zzn3iijU6fPqW1a1cpIyNDsbFntWjRe2rVqq1cXV3vej86dOiszZs36PvvDyorK0sxMYe0ZctGtW8fdtfrBADA0XAGGwAAKzMajUq9lqm0jCx5uTrL19NFBoMh37FlypRVr149lJ6ertat22rgwKFyd3fXtWvXNHnyW4qLi1PRokXVvfszCg/vccdtOzs7a/r02Xr33cnq2LGVihf3V+PGTfX117sk3TzTPGPGPC1cOE8ffrhQ7u7ueuKJthowYOA97XOLFk8oLe2KIiOnKS7uvEqUKKmIiKFq27b9Pa0XAABHYjDm3Dz1D5aQcFmF/SgYDFJAgI9D1ArHRI/BHu73PrucnqltR+O0NiZWZ1PTTdPL+Hqoe+1gdagWKB+Pm99t57yma926LSpVqnRBlXxfut/7DAWPHoM90Ge2k3NsbaFALhFPTExURESE6tatq/r162vSpEnKzMz822Wio6PVsmXLXNPS09M1btw4NWrUSPXq1VOfPn10/PhxW5YOAEC+9p1OUvtF3ynyy5OKvSVcS1Jsaroivzyp9ou+077Td36QGAAAcEwFErCHDx8uLy8v7d69W+vXr9e+ffu0dOnSfMdmZGRo8eLFevnll/XXk+1z587V6dOnFRUVpb1796pq1aoaPHiwHfYAAID/2Xc6ScM3/Kz0jGwZJf31REPOtPSMbA3f8DMhGwCA+5TdA/Yff/yhAwcOaNSoUfL09FTZsmUVERGhlStX5ju+b9++2r9/v/r3759n3smTJ2U0Gk3B28nJSZ6enjatHwCAW11Oz9ToLUdlNOYN1n9llGQ0SqO3HFURv5Las+cQl4cDAHAfsftDzk6cOKFixYopMDDQNK1ixYo6d+6cLl26pKJFi+YaP23aNAUFBWnDhg151tW3b18NGTJEDRo0kLOzs/z8/LR8+XKb7wMAADm2HY0znbk2R86Z7KijcXq6dvAdxwMAAMdh94B99erVPGeZcz6npaXlCdhBQUG3XVdWVpbatGmjQYMGydvbW++++64iIiK0ZcsWs94VmuM2D3YtVHJqdIRa4ZjoMdjD/dZnRqNRaw/H3nlgPtYcjtXTtUvf9uniuHv3W5+h8KHHYA/0me3Y8pjaPWB7eXnp2rVruablfPb29jZ7PRkZGRo2bJgWLVpkOhv+xhtvqF69etq7d69atGhh9rr8/W3zBDlbcKRa4ZjoMdjD/dJnSVdv6GxK+p0H/oVR0tmUdLl4ecjP2836hUHS/dNnKLzoMdgDfeZY7B6wK1WqpJSUFCUkJCggIEDSzXupg4KC5ONjfvOkpaUpNTVVN27cME1zdnaWwWCQq6urRTUlJhb+R98bDDd/uByhVjgmegz2cL/12blUy8P1rc5cSFWWr4eVqkGO+63PUPjQY7AH+sx2co6tLdg9YJcvX1516tTR5MmTNWHCBCUnJ2v+/PkKDw+3aD2+vr6qU6eOpk+frgULFqhIkSKaNWuW/Pz8VKdOHYvWZTTKYZrWkWqFY6LHYA/3S595ujjf2/KuzvfFcSis7pc+Q+FFj8Ee6DPHUiCv6ZozZ44yMzPVsmVLde/eXU2aNFFERIQkKTQ0VFu2bDF7PeXLl1dYWJgef/xxnTx5UkuWLJGXl5ctywcAQJLk6+miMr4esvRWLoOkMr4e8vWw+/fcAADAhgzGv75c+h8oIaHwX3ZhMEgBAT4OUSscEz0Ge7gf+2xVTKwivzxp9lPEpZsB++XmFXmKuI3cj32GwoUegz3QZ7aTc2xtoUDOYAMAcL/oUC1QHq5OZp/FdjJIHq5Oal8t8M6DAQCAQyFgAwBwD3w8XPROWDUZDLpjyM6Z/25YNflweTgAAPcdAjYAAPeoYfnimtU1xHQm+69BO2eah6uTZncNUYPyxe1fJAAAsDm+PgcAwAoali+uqAENFHU0TmtiYnX2lld4Bft6qEftYHWoHqgi7vzVCwDA/Yq/5QEAsBIfDxc9XTtYPUJLKzU9U2k3suTl5ixfDxcZDJY+axwAADgaAjYAAFZmMBhUzNNVxTxdC7oUAABgR9yDDQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKCNgAAAAAAFgBARsAAAAAACsgYAMAAAAAYAUEbAAAAAAArICADQAAAACAFRCwAQAAAACwAgI2AAAAAABWQMAGAAAAAMAKXAq6gMLAYCjoCu4sp0ZHqBWOiR6DPdBnsAf6DLZGj8Ee6DPbseUxNRiNRqPtVg8AAAAAwD8Dl4gDAAAAAGAFBGwAAAAAAKyAgA0AAAAAgBUQsAEAAAAAsAICNgAAAAAAVkDABgAAAADACgjYAAAAAABYAQEbAAAAAAArIGADAAAAAGAFBGw7SkpKUqtWrbR//37TtB9++EFPPfWUQkND1aJFC61bty7XMhs3blSrVq1Uq1Ytde3aVYcPH/6/9u49Ksd8///4E92JMTlsJcdtobKmUElRMpXk0ORYGKONMcRY5DDjMBNtMzQYe0jjNIq2jdmMCYUZsY2GRZoGMw7LKcsuhSiHju7u+vz+8HN93VOhkcwe78da91ruz+e6Pvd1XfeLdb3v63NdtL6SkhIWL16Mm5sbjo6OTJw4kaysLK0/Ozub999/H2dnZ1xdXVm4cCEGg+HF76h4qcrL2b59+xgwYABOTk54e3vz5ZdfUlpaqvVLzkRllJexR7KysnBzcyM2NtaoXTImKqu8nJ0/f55Ro0bh6OiIm5sbn332mVEWJGeissrL2Z49e+jbty9OTk707t2br7/+2mgdyZl4FufPn2fMmDG4uLjg7u7OzJkzycnJAeT8/09PiWqRkpKifHx8lI2NjUpKSlJKKXX37l3l4uKiNm3apIqLi9XRo0eVo6Oj+uWXX5RSSiUlJSlHR0eVkpKi9Hq92rBhg3J1dVUFBQVKKaUiIyOVv7+/yszMVLm5uWrq1Klq3Lhx2meOHDlSzZgxQxUUFKi0tDTl5+en1q1bV/07L6pNeTk7ffq06tixozp48KAqKSlRly9fVl5eXio6OlopJTkTlVNexh4pKSlRQUFBqn379urbb7/V2iVjorLKy1l2drZydXVVa9asUXq9XqWnpytfX18VFRWllJKcicorL2cXLlxQnTp1UidPnlRKKfXzzz8rOzs79dNPPymlJGfi2RQWFip3d3cVERGhHjx4oHJyctS4ceNUcHCwnP+/AqTArgaxsbHK09NT7dmzx+gf8W3btilfX1+jZefNm6dmzpyplFJqxowZKjQ01Ki/T58+avv27UoppXr06KHi4uK0vlu3bilbW1uVlpamrl69qmxsbNSNGze0/j179ihPT88Xso/i5asoZ99//70KDw83WjY8PFxNmDBBKSU5E8+uoow9smLFCvXhhx8qLy8vowJbMiYqo6KcRUdHq2HDhhkte+3aNZWRkaGUkpyJyqkoZ/v27VN2dnbq559/VqWlperEiROqY8eOWvEjORPPIjU1VY0dO1YZDAat7cCBA8rJyUnO/18BMkW8GnTv3p39+/fTr18/o/ZLly5hY2Nj1NauXTvOnz8PwOXLlyvsz83N5caNG0b9jRs3pn79+ly4cIFLly7RoEEDmjRpovW3bduWzMxM7t+/X9W7KP4AKspZ7969mTNnjva+qKiIQ4cOYWdnB0jOxLOrKGMASUlJ7Nmzh7CwsDJ9kjFRGRXl7Ndff8XGxoZ58+bh7u6Oj48PcXFxWFlZAZIzUTkV5ax79+44ODjw9ttvY2dnx/DhwwkJCaFjx46A5Ew8mzZt2hAVFUWtWrW0tn379mFnZyfn/68AKbCrgYWFBSYmJmXa8/PzqVOnjlGbmZkZBQUFT+3Pz88HoG7dumX68/Pzy1330ftH44s/l4py9ri8vDwmTZqEmZkZo0ePBiRn4tlVlLHs7Gw++ugjli5dymuvvVamXzImKqOinN27d4/Y2Fg6duzIoUOH+PLLL9m6dSsbNmwAJGeicirKmV6vp0WLFmzYsIFffvmFtWvXEhkZyZEjRwDJmag8pRTLli3jhx9+4OOPP5bz/1eAFNgvUZ06dSgqKjJqKyoq0k5Qn9T/6C9LYWFhuf1169Yt0/fofXknwOLP78qVKwwfPhyDwcDGjRupV68eIDkTz0cpxcyZMwkKCsLe3r7cZSRjoiqYmprSoUMHAgIC0Ol0tG/fnpEjR/Ldd98BkjNRNSIjIzE1NcXNzQ2dToenpyd+fn5s3boVkJyJysnLy2PKlCnEx8ezadMmbG1t5fz/FSAF9ktkY2PDpUuXjNouX76MtbU1ANbW1hX2169fnyZNmnD58mWt79atW9y9excbGxusra25e/cut2/f1vpTU1OxsrLi9ddff4F7Jf6IEhMTCQwMxMPDg+joaOrXr6/1Sc7E87h+/TrJycmsXLkSZ2dnnJ2dyczMZP78+QQHBwOSMVE12rZti16vN2orLS1FKQVIzkTVyMzMpLi42KjNxMQEnU4HSM7Es0tLS2PIkCHk5eWxfft2bG1tATn/fxVIgf0S9erVi9u3bxMTE0NxcTFJSUnEx8czZMgQAAICAoiPjycpKYni4mJiYmLIzs6mV69eAAwePJjVq1eTnp5OXl4e4eHhuLi40KpVK1q3bk3nzp0JDw8nLy+P9PR0Vq1aRUBAwMvcZfESnDp1ikmTJjFnzhxmzZpVZkqc5Ew8j2bNmnH69GlSUlK0V7NmzQgLC2Pt2rWAZExUjSFDhnDx4kXWrVtHSUkJFy5cYNOmTQwYMACQnImq4e3tzd69ezl8+DBKKZKTk4mLi8Pf3x+QnIlnc+/ePUaNGoWTkxPR0dE0atRI65Pz/1fAy33G2qvnt0/e/fXXX9WwYcOUo6Oj6tmzp9GTd5VSaufOnap3797KwcFBBQQEqFOnTml9er1eff7558rDw0M5OTmpiRMnqtu3b2v9t27dUpMnT1YuLi6qa9euatGiRUZPMxR/Xo/nLDg4WNna2ioHBwej19ixY7XlJWeissp7ivgjv32KuFKSMfH7/DZnp06dUiNGjFDOzs6qe/fuauXKlaq0tFTrl5yJ3+O3Odu4caPy9fVVjo6Oys/PT+3atctoecmZeJr169crGxsb1alTpzLnX0rJ+f+fXQ2l/v/cKiGEEEIIIYQQQvxuMkVcCCGEEEIIIYSoAlJgCyGEEEIIIYQQVUAKbCGEEEIIIYQQogpIgS2EEEIIIYQQQlQBKbCFEEIIIYQQQogqIAW2EEIIIYQQQghRBaTAFkIIIYQQQgghqoAU2EIIIYR46f773/++7E0QQgghnpsU2EIIIard5s2bsbW1JSYm5mVvSpXR6/V89dVX+Pv74+DggKurK2PGjOGHH34wWs7b25vY2FgA3nvvPdasWVPl2xIUFIS9vT2Ojo7aq2vXrsyZM4eioqIq+5zZs2cze/bs5x5n8eLFrF69Wnvv6OhISkrKc49bkfXr17N27VrA+Pv4PbZu3cqCBQuIjY3F29v7d48zd+5cEhISfvf6Qggh/hikwBZCCFHtNm/ezNtvv83GjRsxGAwve3Oem16vZ+zYsezevZuPPvqI5ORkEhMT6d+/P7NmzWLlypXlrhcVFcWECRNeyDYFBwdz8uRJ7fXtt99y4sQJwsLCXsjnPY87d+4YvT958iTOzs4v5LNSU1PZtm0bY8aMqZLxEhIS8PHxee5xpk+fzpIlS8jJyamCrRJCCPGySIEthBCiWh07dozs7Gxmz55NaWkp+/btA2DmzJnMmDHDaNmpU6cyf/58ANLS0pgwYQKurq54eXmxbNky9Ho9ALGxsQwePJh3330XZ2dn4uPjuXnzJlOnTsXb25tOnTrRs2dPtm/fro197do1xo4di5OTE3369CEmJgZbW1ut/+zZswQFBdGlSxd8fX2JiYlBKVXuPn399ddcunSJTZs20a1bN0xNTTEzM2PQoEH84x//IDIykkuXLpVZLygoiMjISNLS0mjfvj1XrlzR+lJTU7GzsyMrKwulFBs3bqR37944OzszYsQIzpw5U6nj3rx5c7y9vTl37hzw8OrzlClT6Nu3L127diUtLY2MjAymTp1Kt27dcHd3Z8aMGWRlZWlj/Oc//8HPzw8HBweCg4ONCuPIyEiCgoKMPvPxq8MFBQV88skndOvWDWdnZ8aNG0dGRgYrV64kPj6e+Ph4+vfvD4CtrS3Hjx8HHhbfc+fOpXv37ri6uhIcHMzVq1eBh9+hra0t33zzDd7e3nTu3JkxY8Zw48aNCo9DREQEgwcPxtTUtEzf4cOH6dy5M9999502/pMykpuby8WLF+nSpQsABoOBpUuX4unpiZOTE6GhodoPSHl5eYSGhuLr64uDgwMeHh5GsxcaNmyIu7s7UVFRT/oahRBC/MFJgS2EEKJa/etf/2Lo0KGYmZkxYsQI1q9fD8DQoUM5cOAAeXl5ANy/f5+DBw8SEBBAQUEBo0ePxtramh9//JEtW7Zw9OhRIiMjtXHPnj2Lv78/R48epVevXoSGhqLT6dizZw8nTpxg5MiRfPrpp+Tn51NSUkJwcDCWlpYcOXKE6Ohodu7cqY118+ZNRo0aRZ8+fTh69CirVq1iy5YtbN26tdx9OnDgAF5eXpibm5fp8/DwwMrKSvshoTytWrXC1dWVXbt2aW2xsbF4eHhgaWnJli1b2LBhAxERERw7dozBgwczZswYbt++/UzHvKSkhHPnzpGQkIC7u7vWfvjwYSIiIkhISKBp06a8++671KpVi4SEBK3InDBhAgaDgStXrhASEkJwcDApKSkEBgZy+PDhZ/p8gE8++YTTp08TGxvL0aNHady4MdOnT2fSpEn4+/vj7+9PXFxcmfWmTJlCWloaO3bsIDExkTZt2jB69GgtJwCHDh1i586d7Nu3j9u3b7Nq1apyt+H27dvs378ff3//Mn2JiYlMnz6dL774gr59+z41IwAHDx7Ew8ODWrVqAQ9zY25uzoEDB9i2bRu7d+/m+++/B2Dp0qVcu3aN7du3c/LkSUJDQ1m2bJnRvedvvfUW27Zt+1PM6hBCiFeVFNhCCCGqTUZGBocPH+add94BHhbVly9fJjk5GWdnZ5o2baoVdrt376ZNmzbY2dlx6NAh9Ho906dPp3bt2jRt2pSQkBA2b96sja3T6RgwYIB29XjBggWEhYWh0+nIzMzktddeo6ioiHv37nHq1CmuXr3K3LlzqVu3Ls2bN2fatGnaWHFxcbRt25Z33nkHnU5Hu3btGDt2rNHnPS4rKwsLC4sK99vS0tLoSnB5AgMDiYuLQylFSUkJcXFxBAQEAA+n1AcHB9O+fXt0Oh0BAQG0bdu23IL0ka+++gpnZ2ecnZ1xcXFh2rRp+Pr6Gu2ng4MDNjY2mJubk5KSQnp6OvPnz+f111/H3Nyc+fPnc/78ec6cOcPevXuxt7enf//+mJiY4OPjg5eX1xP36RG9Xs+ePXsICQmhadOmmJqaMmfOHEJDQ5+4Xnp6OsnJycydOxcLCwvMzMz44IMPMBgMJCYmasuNGzcOc3NzGjdujLe3t3aF+7eSk5OxtLSkadOmRu2JiYlMmjSJ+fPn8+abbwI8NSMA+/fvx9fXV3tfr149xo0bh4mJCe3ataN9+/akpaUBMHnyZJYvX069evW4ceMGtWvXBjDKRceOHSkoKODs2bNPOaJCCCH+qExe9gYIIYR4dWzZsgWDwcCAAQO0NoPBwPr163FxcSEwMJBdu3YRGBjIjh07CAwMBB4W5jk5OdpUXAClFMXFxWRnZwNgYWFBzZr/97txeno6S5Ys4erVq7Ru3Zq//vWvAJSWlnLjxg0aNmxI3bp1teVbtGih/TkjI4OzZ88a3QdcWlqqXan8LQsLCzIyMirc72vXrtGjR48nHhtfX18+/fRTjh8/zoMHD1BK4enpqW3P4sWLWbp0qdFxs7e3r3C88ePHM3ny5Cd+pqWlpfbn7OxsGjZsSL169bS2evXq0aBBAzIyMrh58ybNmjUzWr9Vq1Zl7p8uz71799Dr9Ubrm5ub06FDhyeu9+gKfcuWLbW2WrVq0bRpUzIyMujUqRMAjRs31vpNTEwqnMqfmZlJkyZNyrQfO3YMOzs7duzYQb9+/QCempHCwkJOnjzJF198obXVr1+fGjVqaO91Oh0lJSXAw+O7cOFCzp07R4sWLbTvrrS0VFu+du3aNGzYkOvXr2v7JoQQ4n+LFNhCCCGqxYMHD9i+fTsLFy7Ezc1Na7948SLjx48nNTWVQYMGsXz5co4ePcqFCxd46623ALCysqJVq1badFt4eE9rdnY2jRo1AjAqbIqLiwkODmb69OmMGDGCGjVqcObMGe2Kb7NmzcjJyaGwsJA6deoAD4uvR6ysrHB1dSU6Olpru3PnDvn5+eXuW58+fYiIiCArK8uoaIWH04izs7Pp1avXE4+Pqakp/fv3Z/fu3RQWFjJw4EBMTEy07ZkyZQp+fn7a8mlpaTRo0OCJYz7N48esefPm3Llzh7y8PK3Izs3N5c6dO1hYWGBlZcWhQ4eM1n/8SmzNmjUpLi7W+kpLS7l79y4Af/nLXzA1NeX69eu0adMGeFhwrlu3jqlTp1a4fc2bN9f21draGng43T0zM/OJMwYqUrNmTaOC9pEZM2bg6emJn58f//73vxk+fPhTM/Ljjz/i4uJS7r3c5QkJCcHb25vo6GhMTEy4c+cO27ZtK7OcwWCo8IccIYQQf3wyRVwIIUS1iI+Pp0aNGvj7+2NlZaW9evTogY2NDTExMTRq1AgvLy/tYVD169cHwMvLi/z8fKKiotDr9dy/f59Zs2Yxbdo0oyLxkeLiYoqKijAzM6NGjRpkZmby+eefa32dOnWiXbt2LFq0iMLCQm7evMmKFSu09f39/Tl16hRxcXEYDAaysrKYMGECixYtKnffhg8fjr29PWPHjuX48ePo9Xpyc3OJjY1lzpw5TJw40ejhWBV5dB/6o3vPH29fvXo1qampwMN7p/38/Pjpp5+e/Qt4ig4dOtCuXTvCwsLIzc0lNzeXv//977Rq1QonJyf69+/PxYsXtXuEjxw5wv79+7X127Zty4ULF7h06RIGg4GoqCgKCgqAh4XtwIEDiYyM5ObNmzx48IDly5dz6tQpzMzMMDU1JTc3t8w2WVpa8uabb7JgwQJu3bpFUVERS5cupaSk5Jmnpz+uWbNm3Lx5s0y7TqejSZMmzJkzh8WLF5OWlvbUjCQkJDz1R5PH5ebmYmZmRq1atcjJyWHBggUARj9KPHjwgPv375eZwi6EEOJ/hxTYQgghqsWWLVvw9/dHp9OV6Rs2bBi7du0iOzuboUOHkpGRYVRg1qtXj5iYGI4fP06PHj3w8fGhZs2aRv938uPq1q1LeHg4K1euxNHRkb/97W+4u7vTuHFjLl68SM2aNVmxYgVXr16lW7dujBo1ii5dumjb1rx5c6Kioti6dStubm4MGDCANm3aVFhgm5iYsG7dOgYNGkR4eDhdu3alZ8+exMXFsXDhwidepX2ctbU1rVu3xs7OjtatW2vto0ePZuDAgbz//vs4OjqycOFC5s2bR8+ePZ9p3GdhYmLC2rVrMRgM9O7dGy8vL4qLi9mwYQMmJia0bNmSNWvWsHnzZjp37syqVauMCkwfHx/8/f0ZPXo0Hh4e3Llzh86dO2v9s2fPxt7ensDAQK0/IiICgH79+nHixAltSvzjlixZQsuWLRk0aBBubm5cuHCBf/7zn7/r6n3Xrl3JyckhPT293P4hQ4bQpUsXZs2aBVBhRvR6PUlJSdr92s/is88+Y+/evTg5OTF48GCaNGnCG2+8wcWLF7VlTpw4QaNGjXjjjTcqvW9CCCH+GGqoim5UEkIIIf6kioqKOHnyJC4uLtp03IMHDxIWFlapJ2OL/z1TpkzB3t6e8ePHP3G5l5GRefPmYW5uzgcffPBCxhdCCPHiyRVsIYQQrxydTsfUqVPZtm0bpaWlZGdns379+t817Vj8bwkJCeGbb77R/g/1ilR3RnJyckhMTOS99957IeMLIYSoHnIFWwghxCspJSWFJUuWkJqaSu3atenduzcffvih0VOjxZ/TunXrMBgMTJw48YnLVWdGPv74Y7p3707fvn2rfGwhhBDVRwpsIYQQQgghhBCiCsgUcSGEEEIIIYQQogpIgS2EEEIIIYQQQlQBKbCFEEIIIYQQQogqIAW2EEIIIYQQQghRBaTAFkIIIYQQQgghqoAU2EIIIYQQQgghRBWQAlsIIYQQQgghhKgCUmALIYQQQgghhBBVQApsIYQQQgghhBCiCvw/oJ1NO6K49sQAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAJOCAYAAABMYq+bAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLmUlEQVR4nOzdd3yNd//H8feRHSJ2QqxSobbYxN63WRQtXWaFmlW6aLWovdUebVWpasVolVK1Vbm1apTYQUhIiCRkXL8/3Dm/nibI4Zwkh9fz8dBHzrXO51w+0bxzfa/vZTIMwxAAAAAAAHgsWTK6AAAAAAAAngQEbAAAAAAAbICADQAAAACADRCwAQAAAACwAQI2AAAAAAA2QMAGAAAAAMAGCNgAAAAAANgAARsAAAAAABsgYAOAgzIMI6NLAJ5YfH+lL843gCcFARsAbGjAgAGqWrVqih8Wjx07ppIlS6pChQq6c+eOxbq///5bJUuW1IoVK9L0HleuXFGfPn0UGhpqs7r/6eLFiypZsuQD/3z55Zfm7Tdu3KgGDRqoXLlyGjlypK5cuaJu3bqpXLlyqlmzprZv366SJUtq3759aXr/ffv2WbX9k+z69euaMGGCmjdvrvLly6tmzZp69dVXtXHjxhTbjhgxQg0bNjS/btiwoUaMGGH3Gl9++eUU/VG2bFnVr19fH330kaKiouz23mvWrFHJkiV18eJFmx73559/1vDhw82v07Mn7fGZYmNjVblyZfXu3fu+21y/fl1ly5bVxIkTH/l9HqX2mzdvavjw4Tpw4MAjvy8AZCbOGV0AADxJatWqpU2bNunUqVMqUaKEefmOHTuUI0cORUZGav/+/apTp4553W+//SZJCgwMTNN77N69W7/88os++OAD2xb/L3379lX9+vVTXVewYEHz1x999JGKFi2qTz/9VD4+Plq2bJkOHTqkiRMnysfHRyVLltTKlSv17LPPpul9y5QpY9X2T6rjx4+rZ8+ecnJy0quvvqoyZcro1q1b+vnnnzV06FBt2rRJkyZNkouLS6r7z5o1S9myZUuXWkuXLq1Ro0aZX8fHx+uvv/7SlClTdOzYMa1YsUImkyldarGFpUuXWrx29J708PBQy5Yt9e233+r69evKlStXim3Wr1+v+Ph4dejQ4ZHfp379+lq5cqXy5cuX5n2OHTum77//Xu3bt3/k9wWAzISADQA2VKtWLUnSwYMHUwTspk2bas+ePdqxY4dFwD5w4IAKFy6sQoUKpXu9D1K4cGFVrFjxodtFRkaqdu3aql69uvl1vnz59J///Me8TVqOkyxbtmxWbf8kio2NVVBQkHLnzq1ly5YpR44c5nWNGzdWgwYN9Oabb+qZZ57RoEGDUj1G6dKl06dYpf53VrVqVd2+fVszZszQ4cOHHfrv9EnoyY4dO2rlypXauHGjunXrlmL9999/rypVqqhYsWKP/B65cuVKNbwDwNOEIeIAYEOFCxeWn5+fDh48aF52+/ZtHTp0SDVr1lTt2rW1c+dOi30OHDig2rVrS5ISExM1f/58tWrVSuXLl1fFihXVpUsX7dmzR9K9IZjvvPOOJKlRo0YWQ4C/+eYbtWzZ0jw8d+bMmUpISDCvHzFihF599VWNGjVKVapU0fPPP2+x3lrJw2Ylafbs2SpZsqQaNmyoNWvW6NKlSypZsqRmzpyZ6vDaI0eOqGfPnqpcubJq1KihwYMH6/LlyxbH/ef2f//9t/r06aOAgAAFBASoX79+unDhQopa9uzZo+7du6tChQqqVauWxo8fb/EZ4+PjNXv2bDVu3Fjly5c3X9WTpOXLl6tkyZI6c+aMxefcsGGDSpUqleqw17lz56pMmTK6fv26xfKvvvpKpUuX1rVr15SUlKTp06erYcOGKlu2rBo2bKgpU6YoPj7+vud2zZo1Cg0N1ahRoyzCdbKmTZvqP//5j5YuXarbt2+neox/DhFv1qyZ+vXrl2KbF154wWLY8JYtW9S+fXuVK1dOtWvX1ieffKKYmJj71vkwZcuWlSRdunRJ0r3h5G+99ZYGDBiggIAA83vfunVL48aNU+PGjVWuXDm1atVKq1evtjhWUlKS5syZo/r166tChQoKCgpKMfx85syZ5p78p+ReTHb79m2NGzdOdevWVcWKFdW+fXtt3brVXOP+/fu1f/9+cx+m1pN//vmnevTooerVqysgIEBvvPGGTp48aV6f1p68n4MHD6pdu3YqV66cWrdubXFbQIcOHdSlS5cU+/To0UMvv/xyqscrX768/P39tW7duhTrTp48qb/++ksvvPCCpHujJ/r3768aNWqoTJkyqlOnjj755BPFxcVZnNNZs2apQ4cOqly5subMmZPqEPEDBw6oW7duqlChgqpVq6bhw4ebv1/27dunV155RZL0yiuv6OWXX36k70MAyEwI2ABgYzVr1rQI2Hv37lViYqJq1aqlwMBAhYSEmAPHuXPndPXqVfPw8EmTJmn27Nnq3LmzFi5cqNGjR+vGjRsaOHCgYmJiVL9+ffXt21fSvSHAQUFBkqR58+bpgw8+UM2aNTV37lx17dpVCxYs0MiRIy1qO3DggM6dO6eZM2eqX79+cna+/0CmpKQkJSQkpPiTmJgo6f+HzUr/f3Vs6tSpqlevnvLmzauVK1eaf2D/p+PHj+vFF19UbGysPv30U40ePVpHjx5V9+7dUw2dZ86cUZcuXRQREaFPP/1UY8aM0YULF/Tiiy8qIiLCYtu33npLlStX1ty5c9W6dWstXrzYIqgNHz5c8+fPV8eOHTVv3jzVq1dP7777rr7//nu1bt1abm5uWrt2rcUxv/vuO1WrVs1iWHyyNm3aKDExUT/99JPF8vXr16tmzZrKmzevFixYoOXLl6tfv35avHixXnzxRS1cuFBz586977nfsWOHcubMqYCAgPtu07JlS8XGxmr37t333SZZ27Zt9euvvyo6Otq87Pz58/rjjz/Utm1bSdK6devUr18/FStWTLNnz1b//v0VHBysoKCgR56AKjkk/XN0xg8//CAXFxfNnj1br7zyiuLi4vTSSy8pODhY3bt315w5c1S5cmW99957Fudo4sSJmj17tjp06KBZs2YpZ86cmjx5stU1JSUlqWfPnvruu+/Uu3dvffbZZ/L391f//v21b98+jRo1SqVLl1bp0qW1cuVKlSlTJsUx9u7dqxdffFFJSUkaM2aMPvnkE12+fFldunRRSEiIxbYP68n7+eCDD9S8eXPNnj1bzz77rAYPHmz+5VzHjh116NAhnTt3zrx9WFiY9uzZ88Ah3h06dNB///tfnT9/3mL5d999p2zZsqlZs2a6evWqunbtav7+XLBggVq0aKEvvvgixdD5zz77TM2aNdOUKVPUqFGjFO/322+/6bXXXpO7u7umTZumd999V/v37zf/vZcpU8b8b9TIkSM1atSoR/o+BIBMxQAA2NT69esNf39/4+rVq4ZhGMaoUaOMF154wTAMw7h165ZRunRp4+uvvzYMwzC++eYbo3Tp0satW7cMwzCMIUOGGEuWLLE43qZNmwx/f3/j4MGDhmEYxrfffmv4+/sbFy5cMAzDMG7evGlUqFDBGDlypMV+q1atMvz9/Y2///7bMAzDGD58uOHv72+cPXv2gfVfuHDB8Pf3v++f5557zmJ7f39/Y8aMGebXw4cPNxo0aGB+vXfvXsPf39/Yu3evYRiG8eabbxq1a9c24uLizNscPnzYaNCggfHnn3+m2H7IkCFGzZo1zefIMAzjxo0bRuXKlY1PP/3U4j2mTp1qUVvDhg2NPn36GIZhGH///bfh7+9vLFu2zGKbgQMHGiNGjDC/V4MGDYykpCTDMAwjLCzMeO6554zvvvvuvuerW7duRrdu3cyvQ0NDjZIlSxpr1641DMMwunfvbrz22msW+3zxxRcPPGbLli2NDh063He9YRjGiRMnDH9/f3O//Pu8N2jQwBg+fLhhGPf+TkuWLGmsWbPGvH7WrFlGpUqVjNjYWCMpKcmoW7eu0aNHD4v32L17t+Hv729s27btgZ+/a9euRnx8vPlPeHi4sXHjRqNatWpGp06dzOezW7duRtmyZY3bt2+b91++fLnh7+9vHDhwwOK47777rlGuXDnjxo0bRlRUlFGmTBnz33eyHj16WHwvzJgxw/D3909R4z97dNu2bYa/v7+xZcsW8/qkpCSjS5cuxrRp08x1/vPv9N892bFjR6N58+ZGQkKCeZuoqCijWrVqxsCBAy32eVBPpib5+3vevHkWy9u1a2d07tzZMIx73/Ply5c3pk+fbl4/f/58o1KlShbn9t8iIiKMMmXKGDNnzjQvS0hIMAIDA83/fuzYscPo2rWrxfebYRhGq1atjO7du5tf+/v7G126dEm19uS/j86dOxutWrWyOE+nT582nnvuOePLL780DCPluTWMR/s+BIDMgnuwAcDGatSoIZPJpEOHDqlp06bauXOn2rRpI+nevZzly5fX7t271blzZ/32228qX768eTKq5Cty169f17lz53TmzBnz0NX7DSk+dOiQYmNj1bBhQ4uhp8kzSu/atct8P7i7u7sKFy6cps/Rv3//VCc5e9zJqn7//XfVq1dPbm5u5mXly5c3f85/z9S8d+9eVa9eXe7u7ubPly1bNlWpUiXF1dtKlSpZvPb19TUPcU6epbhJkyYW20ybNs38dceOHbV+/XodOHBAVatW1dq1a+Xu7q5mzZrd9/O0bdtWH3zwga5evap8+fJpw4YN8vDwML9P9erVNXnyZL300ktq0qSJ6tatm+o9sP9kGMYDRxdIkpOTk3nbhylYsKAqV66sDRs26Pnnn5d0b8hts2bN5O7urpCQEPPs9P/soapVqypbtmzatWvXfSe8k+5dqfz3ld4sWbKoZs2a+vjjjy16pmDBgvL09DS/3r9/v/z8/FS5cmWL/du0aaPVq1fr8OHDMplMio+PT3GVtEWLFtqxY8dDP/8/HThwQC4uLmrQoIF5mclkSvMs/jExMfrzzz/Vr18/89+BJGXPnl0NGjTQ9u3bLbZ/UE8+SIsWLSxeN27cWDNnztTt27fl5eWlpk2bKjg4WAMGDJB07x7q5s2bW5zbf8uVK5caNmyodevWqX///pLu/ftw9epV82iTwMBABQYGKj4+XmfOnNHZs2d14sQJXb9+PcXtCv7+/vd9r9jYWB0+fFg9evSQYRjmvipUqJCKFy+uXbt2qWvXrqnu+yjfhwCQWRCwAcDGcufOLX9/fx08eFD+/v66cOGCxQzhgYGB+vLLL2UYhg4cOGAOPNK9+zo/+ugj/fnnn3J3d9ezzz4rPz8/SfcPUpGRkZJ030fwXL161aK2tAZkPz8/lStXLk3bWiMyMlK5c+e2avuNGzem+miqf0+o5O7ubvE6S5Ys5vOWfJ4e9N41atRQwYIF9f3336tq1ar6/vvv1aJFC3l4eNx3n+bNm+vjjz/WDz/8oFdffVXr169X06ZNzfv07NlTWbNm1bfffqvx48fr008/lb+/v959913VrFkz1WP6+fnp2LFj931PSeZ7UQsUKPDA7ZK1a9dOH374oW7cuKErV64oJCTEPDw3+dx89NFH+uijj1Ls+88eSk2ZMmXM+5lMJrm5uSl//vypzmKeJ08ei9dRUVEplv1zu5s3b5qX/fvvO2/evA+sKzWRkZHKkSOHsmR5tLvkbt26JcMw7lvzrVu3LJY9qCcf5N+fLXfu3DIMQ9HR0cqaNas6duyo4OBgHThwQK6urjp16lSqf3f/1rFjR/Xq1Ut//PGHypcvr7Vr16pUqVLm++WTkpI0ZcoULV++XDExMcqfP7/Kly9v8Quxf37e+7l586aSkpK0YMECLViwIMX61I6X7FG+DwEgsyBgA4Ad1KpVS4cPH1ahQoXk5eWlChUqmNcFBgZqxowZ2rt3ry5evGgO39HR0erZs6dKliyp9evXq3jx4sqSJYu2b9+uTZs23fe9smfPLune/dtFixZNsf5BPwRnBC8vrxSTgknS9u3bVapUqVS3r1Wrll5//fUU6x52lfefks/T9evX5evra15++vRpXb9+XVWqVJHJZNLzzz+vzz//XF27dtWpU6c0evToBx43W7ZsatSokX744QcFBgbq+PHjFs9QzpIli7p27aquXbsqIiJC27dv19y5c/Xmm29q9+7dcnV1TXHMhg0bavv27Tp06FCKK6DJfvzxR7m7u5snyHuY5F8EbN68WefOnVP+/PlVrVo1i3Pz9ttvm5f9k7e39wOPnTVr1kf+ZYy3t7fFvcTJrl27JknKmTOneVlERITFLNfJvxhIlvzLo8TERPPV5X9PAufl5aXIyEglJSVZhOxjx44pISHhoZ/Dy8tLJpNJ4eHhqdac2qR0jyIqKsoinIeHh8vJycn8d1GtWjUVLlxYP/74o1xcXFSkSBFVqVLloccNDAyUr6+v1q1bp2LFimnLli0aNmyYef38+fO1dOlSffjhh2rWrJm8vLwk3Qvm1siaNatMJpNee+01tWzZMsX6B4XlR/k+BIDMgknOAMAOatasqWPHjmnv3r2qVauWxVDScuXKKUeOHPr666+VPXt28w/0p0+fVmRkpF555RWVKFHC/MP/r7/+KunelSVJKa68VahQQS4uLgoLC1O5cuXMf1xcXDR58uRMN+tulSpVtGPHDt29e9e87MSJE+rdu7f+/PPPFNtXq1ZNp06d0nPPPWf+bGXLltXSpUu1efPmNL9v8hDkLVu2WCyfOnWqPv74Y/PrDh06mGe1Llq0aIqhy6lp27atDh8+rOXLlytfvnyqUaOGeV2XLl30ySefSLp3FbJ9+/bq2rWrbt26ZTHp2D+1adNGRYoU0ciRI1OESEnatm2bvv/+e7388stpfta1l5eXGjRooJ9//lk//vijWrdube6lYsWKKXfu3Lp48aJFD/n6+mry5Mk6evRomt7jUVStWlWhoaH6/fffLZYHBwfLxcVF5cuXV6VKleTu7q4ff/zRYptt27ZZvE4+F8kz0kuymHBQutd/8fHxFkO5DcPQe++9p88++0xSyu+xf/L09FTZsmW1ceNG84R/0r0r27/88kua+iUt/jn0PSkpST/++KMqVKhgDt0mk0nt27fXli1btGXLFouRMA+SJUsWPf/889q8ebO2bt0qwzDUunVr8/rff/9dzz77rDp27GgO12FhYfr777/N/walRbZs2VS6dGmdPn3aoqdKlCihWbNmmW8F+ee/jf/0KN+HAJAZcAUbAOygatWqSkhI0LZt21LM5J0lSxbVqFFDP//8sxo2bGj+AfOZZ55RtmzZNHfuXDk7O8vZ2VmbNm0yzzgcGxsr6f+vNm7evFl169ZV8eLF1bNnT02fPl3R0dGqXr26wsLCNH36dJlMplSvCqfF+fPn9d///jfVddmzZ3/k5+UGBQWpc+fO6tWrl1599VXdvXtX06dPV5kyZVS3bl0dOnQoxfZdunRRnz599OKLL8rNzU0rV67Uli1bNGPGjDS/b6lSpdS8eXNNmjTJPIPxzp07tXnzZov7sPPnz69atWpp586dGjx4cJqOHRgYqFy5cunrr7/Wa6+9ZhHQqlatqsWLFytPnjyqVKmSwsLCtGTJElWrVu2+zwz29PTUzJkz1adPH7Vr106vvfaaSpcurdjYWG3dulWrV69Wo0aNNHDgwDR/funeMPF+/fopMTHRPC+AdC/kDB48WCNHjpSTk5MaNGigmzdvas6cOQoLC0t1Jm1bad++vb766iv1799fAwYMUKFChbR161Z9++236t+/v7nfg4KCNG3aNHl4eKhGjRravn17ioBdr149jRs3Th988IF69eqlK1euaNasWcqaNat5m/r166tSpUp65513NHDgQBUpUkTr1q3T33//rQ8++EDSvf4+dOiQ9uzZk+rzxIcOHaoePXqoZ8+e6tatm+Lj4zV//nzdvXvXfG/z45o2bZoSExOVP39+rVixQmfOnNGSJUtSnLuZM2fKMAy1a9cuzcfu0KGD5s6dq9mzZ6tJkyYWIxTKly+vOXPmaP78+apYsaLOnTunefPm6e7du+Z/g9JqyJAh6t27t4YOHWqecX/x4sU6fPiw+WkIySH+l19+kbe3t/nfq0f5PgSAzICADQB24OnpqQoVKlg84/qfAgMD9eOPP1qs8/Ly0pw5czRhwgQNHDhQWbNm1XPPPacvv/xSvXr10oEDB9SwYUNVr15dtWrV0uTJk7Vnzx7Nnz9fgwYNUt68efXVV19p4cKF8vb2Vs2aNTVkyBDzD7DW+uyzz8xX9P6tfv36mjdv3iMdt3Tp0vriiy80efJkDR48WFmzZlW9evX01ltvpTpculSpUlq+fLmmTp2qt99+W4ZhyN/fX7Nnz0710UAPMnHiRM2aNUtffPGFbty4oWeeeUbTpk1T8+bNLbZr0KCBdu/enebQ4uTkpJYtW2rZsmUWwVWSBg4cKFdXV3377beaPXu2vLy81LBhQw0dOvSBxyxZsqTWrFmjL7/8UqtXr9bFixfl7u6uUqVKacKECakOu32YOnXqyNvbW76+vuaJ75K98MILypo1qxYuXKiVK1fK09NTAQEBmjRpksVjtmzNw8PD3A8zZsxQdHS0ihUrpjFjxlgMS+7Tp488PT21bNkyLVu2TJUqVdLw4cP14Ycfmrd55plnNH78eH322Wfq3bu3ihcvro8//thihIKTk5MWLFigyZMna+bMmYqJiVGpUqW0cOFC83D8rl276siRI+rVq5fGjRunfPnyWdRcs2ZNLVmyRDNmzNCQIUPk6uqqKlWqaPz48SnO66MaM2aMJkyYoHPnzsnf318LFixIMXzfx8dHpUqVUs6cOZU/f/40H7tQoUKqXr269u7dm+K+7T59+ujGjRv6/PPPNXv2bOXPn19t27aVyWTSvHnzFBUV9dBbBpIFBgZq0aJFmjVrlgYMGCAXFxeVKVNGS5YsUcWKFSVJJUqUUKtWrbR8+XLt2LFD69evN+9v7fchAGQGJiMtM20AAPAU6dWrl5ycnB74rGogo4WFhalhw4aaMmXKEznDNt+HABwRV7ABAPif2bNn68yZM/r111/15ZdfZnQ5QKqOHTumn3/+WZs2bVLBggXVuHHjjC7Jpvg+BODICNgAAPzP1q1bde7cOQ0bNkxVq1bN6HKAVN25c0dLliyRj4+Ppk2bdt+JwhwV34cAHBlDxAEAAAAAsAEe0wUAAAAAgA0QsAEAAAAAsAECNgAAAAAANkDABgAAAADABgjYAAAAAADYAI/p+p+IiFvK7POpm0xS7txeDlErHBM9hvRAn8He6DGkB/oM9kaP2U/yubUHAvb/GIYcpnEdqVY4JnoM6YE+g73RY0gP9BnsjR5zLAwRBwAAAADABgjYAAAAAADYAAEbAAAAAAAbIGADAAAAAGADBGwAAAAAwBMhMTFRly6FZtj7E7ABAAAAAOnm5583q1WrJmrWrJ527dph02OPGvWufvhhfZq2DQ4OVsuWLW36/jymCwAAAACQbtat+06NGzfVoEHDbH7syMgbad62TZs2atOmjU3fn4ANAAAAAEgXvXq9ohMnjuu//z2oNWu+UVJSkjp37qoNG4LVpElzDRgwRPPnz9Hu3Tt09epVubm5qVGjJho0aJhMJpP69++tsmXL688/D+vvv48rXz4fde/eR40aNdGnn36sP/74r44c+UMnThzXhAlTFRJySp99NkN//XVE7u7uql27rvr27a88eby0Zs0azZo1S1u3bpUkHThwQFOnTtWJEyeUPXt2tWnTRkFBQXJ1dU3z52OIOAAAAAAgXSxY8LnKl6+ol19+XStXfi9JiomJ0bp1P6l37yCtWvWV9u7dpenT52rz5l/16aeT9f333+r3338zHyM4+DsNHDhUGzduVb16DTVx4hjduXNHI0Z8YD72hAlTFRUVqTff7KOiRYvp++83auHCz3Xhwjl9/PHIFHWdPn1ar7/+upo2bardu3dryZIl2rp1qyZMmGDV5yNgAwAAAAAyTIsWLeXi4iIvLy+1bv28pk//TLlz51Z4eLju3LkjT8+sunbtqnn7Bg0ayd+/lFxcXNSiRStFR0frxo2UQ8N37NguFxdn9e37ptzc3JU7dx4NGjRMO3f+qmvXrllsu27dOpUsWVKvvvqqXF1dVaRIEQ0dOlTffHPvKntaMUQcAAAAAJBh8uTJa/46Li5WU6dO0KFDB5UvXz75+5eSYRgyDMO8Ta5cuc1fOzvfi7SGkTIE37hxXT4++eXk5GReVqBAAUlSaKjlTOMREREqVKiQxbKCBQsqLi5OERERyps3r9Iiw65gR0REKCgoSFWqVFH16tU1ZswYJSQkPHCfTZs2qVGjRhbL4uLiNHLkSNWuXVtVq1bVq6++quPHj9uzdAAAAACAjZhMJvPX48ePkbu7h9au/VGff75S7747KtXwnBa+vvkVFnZZiYmJ5mWhoRclKUVg9vPz0/nz5y2WnT9/Xq6urvL29k7ze2ZYwB40aJA8PT21Y8cOrV69Wnv27NHSpUtT3TY+Pl4LFizQkCFDLH5zIUkzZ87U2bNntWHDBu3atUulSpVS//790+ETAAAAAABs6fbtaLm6usrJyUkxMbc1e/Z03b59W/Hx8Wna39XVTbdvR0uSatYMlGTSZ5/N1J07cYqICNf06ZNVuXJV+fn5WezXsmVLhYSEaNmyZbp7967Onz+vKVOmqHXr1pl/krNz585p//79GjZsmDw8PFSoUCEFBQVp+fLlqW7fvXt37du3T7169UqxLiQkxGLIQJYsWeTh4WHX+gEAAAAAlgzDUGRMvC5FxSkyJj7FxdG0GDRomE6e/FstWjTQiy92UEzMbVWvXkunT59K0/7Nm7fUhg3BCgrqqWzZsmnq1Nk6fTpEzz/fUq+80lm+vvn1ySefptivYMGCWrhwoTZt2qRatWrppZdeUu3atTVyZMoJ0R7EZDzKp35MW7Zs0Xvvvad9+/aZl504cUJt2rTRb7/9puzZs1tsf+XKFfn6+qaYRl2S9u/frzfffFORkZFycnJSzpw59fnnn6t48eJW1RQRcUvpfyasYzJJuXN7OUStcEz0GNIDfQZ7o8eQHugz2Jsj9dituASt/ytMKw+F6mJknHl5wRzu6lzJT63K+MjLPfNM/5V8bu0hQz7l7du3U1xlTn4dExOTImD7+vre91iJiYlq1qyZ+vXrp6xZs2rChAkKCgpScHCw3Nzc0lyTvU6wPThSrXBM9BjSA30Ge6PHkB7oM9hbZu+x7X9fU98vf1fs3cQU60Ij4zRlW4g+23VWn3WrrHr+aZsozJFlSMD29PRUbGysxbLk11mzZk3zceLj4zVw4EDNnz9fPj4+kqQPPvhAVatW1a5du9SwYcM0H8sRfjPkSL/FgmOix5Ae6DPYGz2G9ECfwd4cocf2nLmugWuOyDCk1EpMXhZ7N1GvL9mv6e3LquYzudKzxFQ9cVewS5QoocjISIWHhytPnjyS7t1L7evrKy+vtH/QmJgYRUVF6e7du+ZlTk5OMplMcnFxsaomw1Cmbdx/c6Ra4ZjoMaQH+gz2Ro8hPdBnsLfM2mO34hL0dvDR+4brfzL+95+3g49qQ+8amWq4uK1lyCRnRYsWVeXKlTV27FhFR0frwoULmjNnjjp27GjVcby9vVW5cmVNmjRJERERunPnjiZOnKicOXOqcuXKdqoeAAAAAJ5u64+GKS4+6aHhOpkhKS4+SRuOhtmzrAyXYY/pmjFjhhISEtSoUSN16tRJderUUVBQkCSpUqVKCg4OTvNxihYtqjZt2qhu3boKCQnRokWL5Onpac/yAQAAAOCpZBiGVh0MfaR9Vx4MfaTZxR1FhswinhmFh2feexuSmUxSnjxeDlErHBM9hvRAn8He6DGkB/oM9paZeywyJl5NPtvzyPtvDqqpHB7W3dJrS8nn1h4y7Ao2AAAAAMDxxMSnnDHcqv1TmXH8SUHABgAAAACkmaeL0+Pt7/p4+2dmBGwAAAAAQJp5eziroLe7TFbuZ5JU0Ntd3swiDgAAAACAZDKZ1CnA75H27RzgJ5PJ2mjuOAjYAAAAAACrtCrtI3eXLGm+ip3FJLm7ZFHL0j52rSujEbABAAAAAFbxcnfW+DalZTLpoSE7ef2ENqXl9QQPD5cI2AAAAACAR1CzaC5Na1/WfCX730E7eZm7SxZNb19WNYrmSv8i09mT/esDAAAAAIDd1CyaSxt619CGo2FaeTBUF6PizOv8vN3VOcBPrcr4KJvb0xE9n45PCQAAAACwCy93Z3UJ8FPnSgUUFZegmLuJ8nR1kre78xM9oVlqCNgAAAAAgMdmMpmUw8NFOTxcMrqUDMM92AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAxkWsCMiIhQUFKQqVaqoevXqGjNmjBISEh64z6ZNm9SoUaMUy7/66is1adJElSpVUuvWrbVt2zZ7lQ0AAAAAQKoyLGAPGjRInp6e2rFjh1avXq09e/Zo6dKlqW4bHx+vBQsWaMiQITIMw2Ldd999p9mzZ2vy5Mk6ePCg+vTpozfffFNhYWHp8CkAAAAAALgnQwL2uXPntH//fg0bNkweHh4qVKiQgoKCtHz58lS37969u/bt26devXqlWLd48WINHDhQ5cuXl8lkUqtWrbRy5Uply5bN3h8DAAAAAACzDAnYJ0+eVI4cOeTj42NeVrx4cV26dEk3b95Msf3EiRO1cOFCFS5c2GJ5bGysTp48qSxZsqhr166qXr26unTpotjYWGXNmtXunwMAAAAAgGTOGfGmt2/floeHh8Wy5NcxMTHKnj27xTpfX99Uj3Pz5k0ZhqHFixdr+vTpKlKkiFatWqVevXpp3bp1KliwYJprMpms/BAZILlGR6gVjokeQ3qgz2Bv9BjSA30Ge6PH7Mee5zRDAranp6diY2MtliW/tubKs4uLiyTp9ddfV4kSJSRJ3bp104oVK7R9+3Z17do1zcfKndsrzdtmNEeqFY6JHkN6oM9gb/QY0gN9BnujxxxLhgTsEiVKKDIyUuHh4cqTJ48kKSQkRL6+vvLySnsD5cqVS7lz59bdu3ctlicmJlpdU0TELf1r/rRMx2S69w3mCLXCMdFjSA/0GeyNHkN6oM9gb/SY/SSfW3vIkIBdtGhRVa5cWWPHjtXo0aN148YNzZkzRx07drT6WF26dNHs2bMVEBCgEiVK6KuvvlJYWJgaN25s1XEMQw7TuI5UKxwTPYb0QJ/B3ugxpAf6DPZGjzmWDHtM14wZM5SQkKBGjRqpU6dOqlOnjoKCgiRJlSpVUnBwcJqO079/f/Xs2VODBg1S1apVtXbtWi1YsMBiAjUAAAAAAOzNZPz7wdJPqfDwzD/0wmSS8uTxcoha4ZjoMaQH+gz2Ro8hPdBnsDd6zH6Sz609ZNgVbAAAAAAAniQEbAAAAAAAbICADQAAAACADRCwAQAAAACwAQI2AAAAAAA2QMAGAAAAAMAGCNgAAAAAANgAARsAAAAAABsgYAMAAAAAYAMEbAAAAAAAbICADQAAAACADRCwAQAAAACwAQI2AAAAAAA2QMAGAAAAAMAGCNgAAAAAANgAARsAAAAAABsgYAMAAAAAYAMEbAAAAAAAbICADQAAAACADRCwAQAAAACwAQI2AAAAAAA2QMAGAAAAAMAGCNgAAAAAANgAARsAAAAAABsgYAMAAAAAYAMEbAAAAAAAbICADQAAAACADTg/6o7Xr1/X5cuX5eTkpPz588vb29uWdQEAAAAA4FCsCtjx8fFavXq1vvrqK506dUqGYUiSTCaTypYtq44dO6pjx45ycnKyS7EAAAAAAGRWaQ7Yf/zxh0aMGKGCBQuqR48eCggIkK+vrxITExUWFqbff/9dGzdu1JIlSzRhwgSVL1/ennUDAAAAAJCppDlgz549W7NmzVKxYsVSrCtatKiKFi2qDh066OTJk5owYYIWLFhg00IBAAAAAMjM0hyw582bJ0m6cOGCChUqdN/tSpQoQbgGAAAAADx1rJ5FvHPnzoqOjrZHLQAAAAAAOCyrA3aOHDkUFhZmj1oAAAAAAHBYVj+mq0SJEurUqZMqVqyofPnyWawbN26czQoDAAAAAMCRWB2wPT091bRpU3vUAgAAAACAw7I6YHOVGgAAAACAlKy+B1uSdu3apb59+6p9+/a6du2axo8fr4SEBFvXBgAAAACAw7A6YK9bt07Dhg2Tv7+/zp07J0naunWrpkyZYvPiAAAAAABwFFYH7Pnz52vOnDkaPHiwsmTJorx582revHlav369PeoDAAAAAMAhWB2wr1y5ogoVKkiSTCaTJKlIkSKKiYmxbWUAAAAAADgQqwN20aJF9fPPP1ss2717t4oUKWKzogAAAAAAcDRWzyI+ePBgBQUFqVGjRrpz544+/PBDrV+/XpMnT7ZHfQAAAAAAOASrr2DXqlVLX3/9tbJnz67q1asrKSlJixcvVr169exRHwAAAAAADsHqK9iLFi1Sjx49NGrUKIvl06ZN06BBg2xVFwAAAAAADiVNAfv69esKCQmRJM2cOVMVKlSQYRjm9bdu3dKyZcsI2AAAAACAp1aaArarq6sGDBigGzduSJK6deuWYn3nzp1tXx0AAAAAAA4iTQE7W7Zs2rNnjySpefPm+vHHH+1aFAAAAAAAjsbqSc7uF66vX7/+2MUAAAAAAOCorJ7k7I8//tCECRMUFhampKQkSVJ8fLyuX7+uI0eO2LxAAAAAAAAcgdVXsEePHq28efMqMDBQzzzzjLp16yYnJycNHTrUHvUBAAAAAOAQrA7YJ0+e1Lhx49S1a1clJibq9ddf19SpU7Vu3Tp71AcAAAAAgEOwOmBnz55d7u7uKlSokE6ePClJqlixokJDQ21eHAAAAAAAjsLqgF2sWDGtWLFCbm5u8vT01LFjxxQSEiKTyWSP+gAAAAAAcAhWT3I2cOBA9e3bV7Vr11aPHj3UqVMnOTk56cUXX7RHfQAAAAAAOASrA3ZAQIB+/fVXubq6qnDhwipVqpSio6NVu3Zte9QHAAAAAIBDsDpgN2zYUE2bNlXjxo1VpUoVVahQwR51AQAAAADgUKy+B/uDDz5QTEyMBg8erMDAQI0aNUq7du1SYmKiPeoDAAAAAMAhWH0Fu0GDBmrQoIEk6Y8//tCmTZvUv39/ubq6at++fTYvEAAAAAAAR2B1wJakv//+W7t379bu3bv122+/KWfOnNyDDQAAAAB4qlkdsAMDA3X79m3Vrl1bderU0YgRI1SsWDF71AYAAAAAgMOw+h7swMBAZcuWTSdOnFBISIhOnz6t6Ohoe9QGAAAAAIDDsPoK9qeffipJOnHihHbs2KEVK1ZoxIgR8vf311dffWXzAgEAAAAAcARWX8FOljVrVnl4eMjFxUVJSUlKSkqyZV0AAAAAADgUq69gjx07Vjt27NDFixdVrVo1NWrUSKNHj1a+fPnsUR8AAAAAAA7B6oB95coVBQUFqX79+vLy8rJHTQAAAAAAOByrA/aMGTPsUQcAAAAAAA7tke/BBgAAAAAA/4+ADQAAAACADRCwAQAAAACwgTQF7G+++UaDBw/WV199papVq2rDhg32rgsAAAAAAIeSpoC9dOlSVa5cWV988YXWrFmjzz//3N51AQAAAADgUNI0i3iWLFn0/PPPq0iRIsqZM6e9awIAAAAAwOGk6Qp2u3bttHfvXtWpU0dff/21WrVqZe+6AAAAAABwKGm6gt2jRw+Lr00mk90KAgAAAADAEaUpYP/TxYsXNXfuXIWGhiopKcliHfdmAwAAAACeVlYH7MGDB8vV1VU1atRQliw85QsAAAAAAOkRAnZISIj27Nkjd3d3e9QDAAAAAIBDsvoSdKlSpXTlyhV71AIAAAAAgMOy+gr2+++/r9dee01NmzZV9uzZLdb179/fZoUBAAAAAOBIrA7YM2fOVExMjP766y+Le7CZWRwAAAAA8DSzOmDv27dPmzdvVp48eexRDwAAAAAADsnqe7Dz5csnNzc3e9QCAAAAAIDDsvoKdo8ePRQUFKRXXnlF3t7eFkPDq1atatPiAAAAAABwFFYH7JEjR0qSfvvtN4vlJpNJx44ds01VAAAAAAA4GKsD9vHjx+1RBwAAAAAADs3qe7ABAAAAAEBKBGwAAAAAAGyAgA0AAAAAgA2kOWDfuHHDnnUAAAAAAODQ0jzJWYcOHeTn56emTZuqSZMm8vX1tWddAAAAAAA4lDQH7K1bt+rw4cP66aef9Oqrryp79uxq0qSJmjRpomeeecaeNQIAAAAAkOlZ9ZiuChUqqEKFCho2bJhOnDihn376SQMHDpRhGGrcuLEGDhxorzoBAAAAAMjUrH4OdrKSJUuqZMmSevPNN3Xu3Dn99NNPtqwLAAAAAACHYpNZxIsUKaJevXpZtU9ERISCgoJUpUoVVa9eXWPGjFFCQsID99m0aZMaNWp03/XffPONSpYsaVUdAAAAAADYQoY9pmvQoEHy9PTUjh07tHr1au3Zs0dLly5Nddv4+HgtWLBAQ4YMkWEYqW5z8uRJjR071o4VAwAAAABwfxkSsM+dO6f9+/dr2LBh8vDwUKFChRQUFKTly5enun337t21b9+++14lj42N1ZAhQ/TKK6/Ys2wAAAAAAO7rke/BfhwnT55Ujhw55OPjY15WvHhxXbp0STdv3lT27Nkttp84caJ8fX21Zs2aVI83evRo1a9fX7Vq1dLcuXMfqSaT6ZF2S1fJNTpCrXBM9BjSA30Ge6PHkB7oM9gbPWY/9jynaQ7Ys2bNeug2/fv3T9Oxbt++LQ8PD4tlya9jYmJSBOwHPXN77dq1CgkJ0ccff6zff/89Te+fmty5vR553/TmSLXCMdFjSA/0GeyNHkN6oM9gb/SYY0lzwN63b98D15us+DWAp6enYmNjLZYlv86aNWuaj3P69GlNnjxZy5cvl7Pz412Mj4i4pfvc3p1pmEz3vsEcoVY4JnoM6YE+g73RY0gP9BnsjR6zn+Rzaw9pTqVffPGFzd60RIkSioyMVHh4uPLkySNJCgkJka+vr7y80v5BN23apJs3b+r555+XJCUmJkqSqlSpolGjRql169ZpPpZhyGEa15FqhWOix5Ae6DPYGz2G9ECfwd7oMceS5oC9fv16tWrVSt9///19t2nXrl2ajlW0aFFVrlxZY8eO1ejRo3Xjxg3NmTNHHTt2TGs5kqS+ffuqb9++5tf79u3TK6+8ogMHDlh1HAAAAAAAHleaA/bcuXPVqlUrzZgxI9X1JpMpzQFbkmbMmKHRo0erUaNGypIli9q1a6egoCBJUqVKlfTRRx+pTZs2aT4eAAAAAAAZyWTc78HST5nw8Mx/b4PJJOXJ4+UQtcIx0WNID/QZ7I0eQ3qgz2Bv9Jj9JJ9be3ikmcGOHDmi1atXKzQ0VHnz5lX79u1VpUoVW9cGAAAAAIDDyGLtDjt37tRLL72kyMhIlSxZUtHR0Xr99de1ZcsWe9QHAAAAAIBDsPoK9owZMzR+/Hi1aNHCvOyHH37QnDlz1LhxY5sWBwAAAACAo7D6CvaZM2fUrFkzi2XNmjXT2bNnbVUTAAAAAAAOx+qAnSNHDv39998Wy44fP668efParCgAAAAAAByN1UPEX3jhBfXt21d9+vRRwYIFdf78eS1YsEAvvfSSPeoDAAAAAMAhWB2we/XqpTt37mjevHkKDw+Xn5+funXrptdff90e9QEAAAAA4BCsDtgmk0lvvvmm3nzzTXvUAwAAAACAQ7L6HmwAAAAAAJASARsAAAAAABsgYAMAAAAAYAM2CdhRUVEaOnSoLQ4FAAAAAIBDsknAjouL08aNG21xKAAAAAAAHBJDxAEAAAAAsAECNgAAAAAANkDABgAAAADABpzTuuHLL78sk8mU6rq7d+/arCAAAAAAABxRmgN29erVH7g+MDDwsYsBAAAAAMBRpTlg9+/f3551AAAAAADg0NJ8D/Ybb7yhM2fOPHS7kJAQ9enT57GKAgAAAADA0aT5Cnbfvn0VFBSkQoUKqVWrVqpUqZJ8fHxkGIbCwsL0+++/a+PGjTp//rw+/fRTe9YMAAAAAECmk+aAXaFCBa1du1bffPON5s+fr1OnTllMevbcc8+pQ4cO6tSpk1xcXOxSLAAAAAAAmVWaA7Ykubq6qmvXruratasiIiJ06dIlZcmSRfnz51euXLnsVSMAAAAAAJmeVQH7n3Lnzq3cuXPbshYAAAAAABxWmic5AwAAAAAA90fABgAAAADABgjYAAAAAADYgNUBe8SIEfrtt9/sUQsAAAAAAA7L6oDt6empN998U02aNNGcOXN05coVe9QFAAAAAIBDsTpgjxw5Ujt27NCwYcP0559/qmnTpurRo4c2btyou3fv2qNGAAAAAAAyvUe6B9vFxUVNmzbVZ599ps8//1w3btzQkCFDVKdOHY0fP163bt2ydZ0AAAAAAGRqjxSwr127piVLlqhdu3Z6+eWXVaBAAc2ZM0fLli3TmTNn1LdvX1vXCQAAAABApuZs7Q49evTQ3r17VaxYMbVv315t27ZVrly5zOuHDBmizp0727RIAAAAAAAyO6sDdsGCBbVixQqVL18+1fV+fn5avXr1YxcGAAAAAIAjsXqI+Hvvvaeff/5ZFy5ckCQtW7ZMU6dOVVJSkiQpa9asKl68uG2rBAAAAAAgk7M6YH/66afasWOHnJycJEllypTRrl27NGnSJJsXBwAAAACAo7A6YG/atEkLFy5UgQIFJElVqlTR3LlzFRwcbPPiAAAAAABwFFYH7Dt37sjT09NiWbZs2ZSQkGCzogAAAAAAcDRWB+wqVapo3Lhxunv3rqR7gXvChAkKCAiweXEAAAAAADgKq2cRf++999SzZ08FBAQoZ86cunHjhp555hnNnTvXHvUBAAAAAOAQrA7YhQoV0saNG/X7778rPDxcvr6+Kl++vJydrT4UAAAAAABPjEdKxYmJiSpcuLAKFiwoSbp69aokmSc+AwAAAADgaWN1wP7hhx80cuRIRUdHm5cZhiGTyaRjx47ZtDgAAAAAAByF1QF75syZ6tq1q55//nmGhQMAAAAA8D9WzyJ++fJl9e/fX0WKFJGfn5/FHwAZ7/LlSwoMrKLLly/Z5fiff75YQ4cOsMuxAQAAAEdm9SXoMmXK6NSpUypVqpQ96gGQyb3ySveMLgEAAADIlKwO2AEBAXrttdfUvHlz5cmTx2Jd//79bVYYgMd3/XqEZs2apgMH9stkMikwsK769RsoT8+skqTfftur+fPn6OzZM8qRI6e6dOmqN97oKUn66acf9cUXi3XlymXly+ej7t37qFGjJlq0aJ4OHfpds2bN18aN67Ru3fcqWfI5bdnyo6R77/HWW+/I2dlZSUlJWr78c61b952ioiJVuHAR9ezZV9Wr18zAswIAAADYh9UB+9ChQypRooRCQkIUEhJiXm4ymWxaGIDHk5SUpBEjhqpQocL6+us1io+P15gxH2n8+DH66KOxOn/+nIYPH6IhQ4arefOWOnXqpAYMeENlypRUbGyCPv10tMaMmaDq1Wtp//69GjFiiIoVK57iff7887Bq1Kil77//USdPntCAAW+oSpVqaty4mZYsWaANG4I1btxkFS/+rLZv36Z33hmq2bMX6LnnymTAWQEAAADsx+qA/cUXX9ijDgA2FhUVqRMnjmnatDny9PSUJPXvP0gvvdRBQ4a8rS1bNsnfv5RatWorSSpV6jl99tlC+fsX1ccfj1Xdug1Us2agJKlGjVr67LNFyps3X4r3cXNz0yuvdJfJZNJzz5XRs8+W0IUL5yVJGzYEq1u311Sy5L1bSho1aqJffvlZ69evJWADAADgifNI04CHhIRoxYoVunLlij7++GNt2LBB3bp1s3VtAB7DoUO/KykpSe3b/8diuaurqy5dClVERLh8fHwt1j37bAnlyuWliIhwlShR0mLd/QJxzpy5LEawODndGxouSTduXFeBApYTIObPX0CnTp185M8FAAAAZFZWB+xdu3bpzTffVIMGDbR7927FxcVp9uzZiomJUe/eve1RI4BHUL58Rbm5uWnDhp/l5OQkSbp7964uX74kP7+CypfPR6dPn7LYZ8OGYBUp4qd8+XwUFnbFYt2KFV+qbNlyVtXg65tfoaEXLZZdunQxxfwNAAAAwJPA6sd0TZkyRVOnTtXkyZPl5OSk/Pnza/78+Vq5cqU96gPwiHLmzKWCBQtr1qxpiomJ0Z07cZoxY4oGDuyrxMRENW7cTCdOnNAPP6xXYmKijh8/ppkzp8rZ2Vn/+U8rbd++Tfv371VSUpL27dujxYvnKWvWbFbV0Lp1Oy1fvkwnThxXYmKitm7dop07f1WLFq3s9KkBAACAjGP1Fexz586pbt26kv5/YrNy5copKirKtpUBsGAYhqJiExQTnyhPFyd5ezg/cHJBJycnTZgwVbNnT1OXLs/r7t07eu65Mpo6dbbc3Nzk51dQkyZN12efzdS0aROVM2cuvfnmYAUGBio8/Jbef/8jzZ49TZcvX5avr68+/HCsihUrrm3btqS55s6duyoxMUmjRr2jiIhwFSxYSB99NFaVKlW2xSkBAAAAMhWTYRiGNTu0adNGo0aNUuXKlVWtWjXt379ff/75p959912tW7fOXnXaXXj4LVl3JtKfySTlyePlELXCdm7FJWj90TCtOhiqi1Fx5uUFvd3VKcBPrUr7yMv9kaZTSIEeQ3qgz2Bv9BjSA30Ge6PH7Cf53NqD1T+V9+nTR3379tWLL76o+Ph4LViwQF988YWGDBlij/qAp9qes9c1PPio4uKTUqwLjYrT1G0h+mznGY1vU1o1i+bKgAoBAAAAJLP6HuyWLVtq4sSJOnbsmAoUKKC9e/fqvffeU7t27exQHvD02nP2ugatOaK4+CQZkv79i8vkZXHxSRq05oj2nL2e/kUCAAAAMHukcaX16tVTvXr1bF0LgP+5FZeg4cFHZRgpg/W/Gf/7z/Dgo9rQu4bNhosDAAAAsE6afxL/8MMP9eGHH+qdd9657zbjxo2zSVHA02790TDzleu0SL6SveFomLoE+D10ewAAAAC2l+Yh4lbOhQbgERmGoVUHQx9p35UHQ/leBQAAADJImq9gf/TRR5LuXaW+efOm3Nzc5ObmppCQEOXKlUs5c+a0W5HA0yQqNsFitvC0MiRdjIpTVFyCcni42L4wAAAAAA9k9SRne/fuVb169XTs2DFJ0rp169SsWTP98ccfNi8OeBrFxCc+3v53H29/AAAAAI/G6tmQJk6cqHfffVcVK1aUJA0aNEiFChXS2LFj9fXXX9u6PuCp4+ni9Hj7uz7e/gAAAAAejdVXsM+ePasXXnjBYln79u116tQpmxUFPM28PZxV0NtdJiv3M0kq6O0ub2YRBwAAADKE1QE7d+7cKYaDHzlyRHny5LFZUcDTzGQyqdMjzgTeOcBPJpO10RwAAACALVh9qatr167q3bu3OnfuLD8/P126dEmrVq1S//797VEf8FRqVdpHn+08k+ZHdWUxSW7OWdSytI/dawMAAACQOqsD9quvviovLy99//33+umnn5Q/f369++67atWqlT3qA55KXu7OGt+mtAatOSIZemDITr5ePaFNaXkxPBwAAADIMI/003j79u3Vvn17W9cC4B9qFs2lae3LanjwUcXFJ0myDNrJwdrdJYsmtCmtGkVzpXuNAAAAAP5fmgP2hx9+qA8//FDvvPPOfbcZN26cTYoCcE/Norm0oXcNbTgappUHQy2ej+3n7a7OAX5qVcZH2dy4cg0AAABkNH4qBzI5L3dndQnwU+dKBRQVl6CYu4nydHWSt7szE5oBAAAAmUiaA3ZISIgkqUqVKurQoYPdCgKQOpPJpBweLsrh4ZLRpQAAAABIRZof03XkyBHdvHlTY8aMsWc9AAAAAAA4pDRfwQ4ICFD16tVlGIaee+65VLc5duyYzQoDAAAAAMCRpDlgjxs3ThcuXFD37t21YMECe9YEAAAAAIDDSXPAbtOmjfbu3StXV1dVq1bNnjUBAAAAAOBw0hyw7969qy1btig+Pl4HDhyQYRgptqlatapNiwMAAAAAwFGkOWB37txZgwYNUmJiorp165Zivclk4h5sAAAAAMBTK80Be/jw4Ro+fLgqVaqkQ4cO2bMmAAAAAAAcTpof05Vs27Zt9qgDAAAAAACHluaA3bt3b0lSjhw5JEkbNmywWM/EZwAAAACAp1maA/aBAwcsXn/00UcWr+Pj421TEQAAAAAADsjqIeLJ/j2LuMlkeuxiAAAAAABwVI8csAnUAAAAAAD8v0cO2AAAAAAA4P8RsAEAAAAAsIE0Pwc7NjZWjRo1Mr++deuWxeu4uDjbVgYAAAAAgANJc8AeO3asPesAAAAAAMChpTlgP//88/asAwAAAAAAh8Y92AAAAAAA2AABGwAAAAAAGyBgAwAAAABgA1YH7I8//ljR0dH2qAUAAAAAAIdldcBet26d3N3d7VELAAAAAAAOK82ziCfr0KGDRo8erfbt2ytv3rwymUzmdQUKFLBpcQAAAAAAOAqrA/aSJUskSatWrZIkmUwmGYYhk8mkY8eOpfk4ERER+uCDD7R//345OTmpTZs2Gj58uJyd71/Spk2bNGHCBP3888/mZXfu3NGkSZO0adMm3b59W8WKFdPQoUNVo0YNaz8aAAAAAACPzOqA/c9w+zgGDRokHx8f7dixQ+Hh4erbt6+WLl2qnj17ptg2Pj5eS5cu1bRp0+Tj42OxbtKkSTp48KBWrlypfPny6dtvv9Ubb7yhjRs3ckUdAAAAAJBurL4H28/PT35+foqKitJff/2lvHnzyt3dXX5+fmk+xrlz57R//34NGzZMHh4eKlSokIKCgrR8+fJUt+/evbv27dunXr16pVh3584dDRgwQPnz55eTk5M6deokV1dX/fXXX9Z+NAAAAAAAHpnVV7AjIiLUr18/HTlyRC4uLlq9erU6duyoxYsXq1KlSmk6xsmTJ5UjRw6Lq9HFixfXpUuXdPPmTWXPnt1i+4kTJ8rX11dr1qxJcazRo0dbvN6zZ49u3bqlUqVKWfW5/nEreaaVXKMj1ArHRI8hPdBnsDd6DOmBPoO90WP2Y89zanXAHjt2rPz9/bVkyRLVrVtXxYsXV+/evTVhwgStWLEiTce4ffu2PDw8LJYlv46JiUkRsH19fdN03P/+978aNGiQ+vfvr0KFCqVpn2S5c3tZtX1GcqRa4ZjoMaQH+gz2Ro8hPdBnsDd6zLFYHbD37t2rLVu2yMPDwzyDeM+ePbV48eI0H8PT01OxsbEWy5JfZ82a1dqSJEnffPONxo4dqwEDBuj111+3ev+IiFsyjEd663RjMt37BnOEWuGY6DGkB/oM9kaPIT3QZ7A3esx+ks+tPVgdsF1cXBQXFycPDw8Z//ubvn37tlXBuESJEoqMjFR4eLjy5MkjSQoJCZGvr6+8vKz7oImJifroo4/0008/afbs2apVq5ZV+yczDDlM4zpSrXBM9BjSA30Ge6PHkB7oM9gbPeZYrJ7krGHDhho2bJjOnj0rk8mkiIgIffTRR6pbt26aj1G0aFFVrlxZY8eOVXR0tC5cuKA5c+aoY8eO1pajcePG6ddff9W33377yOEaAAAAAIDHZXXAHjp0qDw9PdW8eXPdvHlTgYGBio2N1VtvvWXVcWbMmKGEhAQ1atRInTp1Up06dRQUFCRJqlSpkoKDgx96jOvXr2v58uUKDw9Xq1atVKlSJfOftOwPAAAAAICtmAzj0QYcREREKDQ0VL6+vsqXL5+io6OVLVs2W9eXbsLDM/+9DSaTlCePl0PUCsdEjyE90GewN3oM6YE+g73RY/aTfG7tweor2NWqVZMk5c6dW+XLl1e+fPkkSfXr17dpYQAAAAAAOJI0TXJ27tw5jRw5UoZhKDo6Wq+88orF+ujo6BSP1gIAAAAA4GmSpoBdpEgRNW3aVDdu3NDBgwfNV7GTubq6qmHDhnYpEAAAAAAAR5Dmx3R17dpVklSwYEG1a9fOXvUAAAAAAOCQrH4Odrt27bR3716FhYWZn4MdHx+vEydO6P3337d5gQAAAAAAOAKrA/Ynn3yir7/+WlmzZpUkJSYm6vbt26pTp47NiwMAAAAAwFFYHbB/+OEHffnll4qNjVVwcLDGjh2r8ePHKyYmxh71AQAAAADgEKwO2LGxsapYsaKuXbumv/76SyaTSf3799d//vMfe9QHAAAAAIBDsPo52L6+voqIiFDevHl15coVxcfHy93dXdHR0faoDwAAAAAAh2D1Fex69erptdde07Jly1S1alW9++67cnNzU9GiRe1QHgAAAAAAjsHqK9hDhgxR27Zt5eLiopEjRyoyMlKnTp3SJ598Yo/6AAAAAABwCGm+gt2xY0c1bNhQDRs2VM+ePSVJXl5eWrBggd2KAwAAAADAUaQ5YAcGBurXX3/V7NmzlTdvXjVo0EANGjRQjRo15Orqas8aAQAAAADI9NIcsAcNGiRJio6O1t69e7Vnzx6NHTtWV69eVe3atdWwYUM9//zz9qoTAAAAAIBMzepJzrJly6bGjRurcePGioyM1Nq1a7Vs2TJt2bKFgA0AAAAAeGpZHbDPnDmjLVu26Oeff9aRI0dUokQJtWvXTo0aNbJHfQAAAAAAOIQ0B+ypU6dq8+bNunDhgqpWrapWrVppypQpKlCggD3rAwAAAADAIaQ5YM+bN08BAQH69NNPVb58eXvWBAAAAACAw0nzc7DHjx+vPHny6LXXXlOLFi00adIkHTp0yJ61AQAAAADgMNJ8Bbtt27Zq27at7t69q127dunnn39W//79JUkNGjRQo0aN1KBBA7sVCgAAAABAZmb1JGeurq7mZ2AnJibq+++/19y5c/Xtt9/q2LFj9qgRAAAAAIBM75FmEd+7d6/27t2r/fv3K0uWLKpTp46GDBlij/oAAAAAAHAIaQ7Yw4YN0/79+3Xt2jWVKlVK9evXV48ePVSuXDmZTCZ71ggAAAAAQKaX5oAdGxurN998U/Xq1VPevHntWRMAAAAAAA4nzQF71qxZ9qwDAAAAAACHlubHdAEAAAAAgPsjYAMAAAAAYAMEbAAAAAAAbICADQAAAACADRCwAQAAAACwAQI2AAAAAAA2QMAGAAAAAMAGCNgAAAAAANgAARsAAAAAABsgYAMAAAAAYAMEbAAAAAAAbICADQAAAACADRCwAQAAAACwAQI2AAAAAAA2QMAGAAAAAMAGCNgAAAAAANgAARsAAAAAABsgYAMAAAAAYAMEbAAAAAAAbICADQAAAACADRCwAQAAADy2O3fu6OrVsIwuA8hQBGwAAAAAj61fv146cGC/JOnw4UNq0qROBlcEpD8CNgAAAIDHFhl5w/x1hQqVtHnzjgysBsgYzhldAAAAAAD7OXHiuGbOnKITJ47L09NTrVu3U48effTHH//V/PlzFBJyUl5e2dW0aQu9+moPubq6atGieTpy5A/dunVLoaEXNW7cJOXIkVNz5kzXqVMnFRkZqQIFCqhv3wGqXbuOBg/up7CwK5o0aZyOHz+q+vUbacCAN7Rz5wFdvnxJL7zQRiNGvK+lSxfp1q2beu65Mnr33VHKl89HhmFo+fJl+umnH/43xNykmjVra8SI9+Xm5p7Rpw+wClewAQAAgCfUzZtRGjy4nwICqmjDhi2aM2ehNm5cp7Vr12jw4H6qV6+h1q3brKlTZ2vnzl81Z84M876///6b+vZ9U99+u15ly5bX+++/rWLFntWqVWu1adMvqlathiZP/lSSNHXqbPn4+Oqtt97RkCHDU61l166dWrLkK61YsUY3blzXsmWLJElbt27RN9+s0JgxE/Xjj79o3rwl2rdvjzZv/tH+JwiwMQI2AAAA8ITatWuH3Nzc9PrrveTq6io/v4KaNm22jh49ouLFn1WnTi/KxcVFBQsW0htv9NO6dd8pKSlJklSggJ8qV64qT09POTs7a8KEaerevbeSkpJ0+fIleXll17VrV9NcS9eur8rLy0u5cuVWrVp1dOHCeUlSzZq1tGDB5ypUqLBu3LihyMhIeXt769q1a3Y5J4A9MUQcAAAAeEKFh4crXz4fmUwm87LChYvK2dlZBQr4WWybP7+f7ty5oxs3rkuS8uTJa7H+5Mm/NWLEEF2/HqEiRZ5Rjhw5ZBhGmmvJnTu3+WtnZ2dzkE9KMjR//hzt2rVDOXPmVIkS/oqPjzevBxwJARsAAAB4Qvn4+Ojq1TAZhmEO2Tt2/KJ8+Xy0c+cJi21DQy/K1dVV2bN7pzhOePg1jRw5QmPGTFRgYF1J0i+//Kzt27c9do1z585UWNgVrV4drKxZs0mSXnml82MfF8gIDBEHAAAAnlA1awYqISFBn3++WPHx8QoNvagZM6YoZ85cOnv2tFatWmFePn/+bDVp0lwuLi4pjhMTc1uJiYny8PCQJJ05c1pLliyUJMXHx0uSXF1dFR0dbXWN0dHRcnV1k5OTs+7cuaMVK77U6dMhSkhIeIxPDmQMrmADAAAADsgwDEXFJigmPlGeLk7y9nC2GAouSV5eXpoyZaZmzpyqr79eLg8PDz3//Atq27a9ihYtpnnzZmnx4nlyc3NT48bN1bt331Tfq3DhogoKGqjRo99XXFyc8ub1UZs2z2vOnOkKCTmlUqWeU6tWbTV//mwdP35UrVq1TfPn6NWrr8aNG63WrZvIw8NT5ctXVLNm/1FIyKnHOj9ARjAZ1tw48QQLD7+lzH4mTCYpTx4vh6gVjokeQ3qgz2Bv9NjTJzw8XFmzZjVfXU0PGdlnt+IStP5omFYdDNXFqDjz8oLe7uoU4KdWpX3k5c51NEfHv2X2k3xu7YEh4gAAAA4uMLCKDh48IEnq2LG1Nm5cl8EV3XPw4AEFBlZJ07YbN65Tx46trd7v+vUIvfji84qMvPHIdTqSPWevq+X8vZq6LUSh/wjXkhQaFaep20LUcv5e7Tl7PYMqBJ5uBGwAAAA4rDt37ig2Njajy0gXe85e16A1RxQXnyRD0r8vaiYvi4tP0qA1RwjZQAZg7AgAAICNXL58SS+80EYjRryvpUsX6datm3ruuTJ6991RypfPR7/++ouWLl2oixcvKHfu3Hr++Y7q2LGLsmTJooSEBC1dulAbN65TdHS0SpTw16BBw8yPLFq2bJE2bfpB0dG3VKZMWQ0aNEwFCxZ6YD3h4dc0Y8YUHTv2l65fj1CuXHn06qvdzffHBgZWUceOnbV5848qU6a8xo+fouXLl+mnn37Q1athkkyqWbO2Rox4X25u7g/9/OHh4Zo4cYwOHToob+8caty4qcX60NCLmj59sv766w+5u3uoadMW6t69d6qTaqVlvyxZsujllztJkl5+uZPeeWekzp49ozNnQuTq6qbdu3fIw8NTzZr9R2+80T9N5ySzuhWXoOHBR2UYKYP1vxn/+8/w4KPa0LsGw8WBdMQVbAAAABvbtWunliz5SitWrNGNG9e1bNkiHTx4QCNHjlDXrq9q48af9eGHY/X118v1zTcrJEnLli3S5s0/avLkmfrhh62qVKmyhg8frMTERM2fP0e7d+/Q9Olz9P33P6hMmXIaPLi/7ty588A6Pv30Y7m4OOuLL1bpp59+VYcOL2jq1AmKiYkxbxMaelHffrtBH3wwWlu3btE336zQmDET9eOPv2jevCXat2+PNm/+MU2fe9Sod+Tk5Kzvv9+oWbPmae/eXeZ1sbGxGjiwr4oVK641azZqzpyFOnBgvxYtmvfAYz5oPycnJ33xxSpJ0hdfrFKjRvcC/fbt21S1anVt2PCz3n77XS1fvkxHjvyZ5nOSGa0/Gma+cp0WyVeyNxwNs2dZAP6FgA0AAGBjXbu+Ki8vL+XKlVu1atXRhQvntWFDsOrUqa9GjZrI2dlZJUuWUrdur2nt2jWSpB9/3KCXXnpFzzxTTE5OTnr11R4aPfpTGYah779frT59+qtAAT+5ubnptdd6KiEhXnv27HxgHcOHv6+hQ0fI2dlZYWFX5OmZVXfu3NHNmzfN2zRp0lzu7u7y8vJSzZq1tGDB5ypUqLBu3LihyMhIeXt769q1aw/9zFeuXNbhw4fUt++b8vTMKh8fX3Xv3tu8fvfunYqPj1efPv3k5uYmHx9f9erVV2vWfPPA4z7KfoUKFVaLFq3k5OSkmjUDlTt3Hl24cC7N5ySzMQxDqw6GPtK+Kw+GijmNgfTDeBEAAAAby507t/lrZ2dnJSUl6caN6ypRoqTFdvnzF9CVK5clSRER4fL1zW9e5+LiorJly+nGjeuKjY3VBx+MUJYs//8Ipvj4eF2+fPmBdVy6FKrZs6frwoXzKlSosAoVujek3DCSzNvkyZPX/HVSkqH58+do164dypkzp3l4elJSUopj/9u1a1clST4+vuZlfn4FzV9fuXJJkZE31KJFA/MywzCUkBCvGzfuf6/wo+yXK1dui9fOzs7mkJmWc5LZRMUmWMwWnlaGpItRcYqKS1AOjwcPwwdgGwRsAACAdODrm1+hoRctll26dFG5c+eRJOXL56OwsCvmdQkJCZozZ7pefPFlubq6acqUWSpbtpx5/fnzZ5UnT777vl9CQoLefnuQevfup/btX5DJZNLx48e0adMP991n7tyZCgu7otWrg5U1azZJ0iuvdE7T58ub1+d/nylURYs+I0m6evWqxXo/v4L66qtvzctiYm7r+vXrypEj5wOP+6D9kn9BkRaPck4yg5j4xMfb/24iARtIJwwRBwAASActW7bVzp3btXXrFiUmJurvv49r+fLP1bJlG0nSf/7TWl999YXOnz+nhIQEff75Yv366y/KmTOXWrVqo7lzZ+rq1TAlJSXphx/W6+WXO+vixfP3fb/4+HjFxcXJ3d1dJpNJV65c0WefzTCvS010dLRcXd3k5OSsO3fuaMWKL3X6dIgSEhIe+vl8fX1VrVoNzZw5VTdv3lRERLgWL55vXl+7dqBiYmL01Vef6+7du7p165Y+/niURo58RyaT6b7Hfdh+rq6u5tof5lHOSWbg6eL0ePu7Pt7+ANKOgA0AAPAQhmEoMiZel6LiFBkT/0j3tJYpU1affDJeX365VM2bN9C77w5Tu3Yd9PLLr0uSXnrpFTVt2lxDh76pli0b6fDh/2rSpBlydnZWv36DVKZMOfXr10vNmzfQypVf6ZNPxsvfv9R938/Dw0PvvjtKS5cuVJMmdTVgQB9VqVJduXLl1unTp1Ldp1evvrpzJ06tWzfRCy+00V9//almzf6jkJDUt/+3Dz8co2zZsqpjx9bq2fMVVa1a3bwua9ZsmjZtjg4ePKD27f+jTp3aKksWk8aPn/LAYz5sv1y5cqtu3QZ6443X9f33qx94rEc5J5mBt4ezCnq76/6/hkidSVJBb3d5M4s4kG5MBrMeSJLCw28ps58Jk0nKk8fLIWqFY6LHkB7oM9ibLXvsVlyC1h8N06qDoRb3wBb0dlenAD+1Ku3DI5CeUun9b9mKg6Gaui0kzbOIS/cC9pAGxdUlwM9eZcGO+P+l/SSfW3vgCjYAAE+BjRvXqWPH1mnadtGieerf/97szz/99IO6detkz9IyrT1nr6vl/L2aui1Eof+aYCo0Kk5Tt4Wo5fy92nP2/hN0AbbSqrSP3F2ypPkqdhaT5O6SRS1L+9i1LgCW+JUrAAC4r6ZNW6hp0xYZXUa623P2ugatOSLDUKpXDJOXxcUnadCaI5rWvqxqFs2VniWmu3feeUsHDuy77/phw959KnslvXi5O2t8m9IatOaIdJ++TJYcwie0Kc0ICyCd8R0HAEAGuXz5kl54oY0GDXpLn3++RHfuxCkwsK6GDBmurFmzacuWTfriiyW6cuWy/PwK6Y03+qtatRqSpP79e6ts2fL688/D+vvv48qXz0fdu/dRo0ZNJEnnzp3VxIljdeLEMeXPX0ABAVUs3vvw4UOaP3+OQkJOyssru5o2baFXX+1hnjAq2caN67R48XytXr1OBw8e0NixH6l163b67rvVunPnjgICKuvdd0eZZ5xet+57rVz5la5eDZOvr6+6dXvN4ULXrbgEDQ8+et9w/U/G//4zPPioNvSu8USHmXHjJmV0CU+9mkVzaVr7shoefFRx8fceK/bPHk0O1u4uWTShTWnVeMJ/6QNkRgwRBwAgg/3yy1YtW/a1vvrqW124cEFTpozXnj07NWnSOA0e/LY2btyqHj366L333tbp0yHm/YKDv9PAgUO1ceNW1avXUBMnjtGdO3eUkJCgYcMGqlix4lq/fos+/HCsfv31F/N+58+f1eDB/VSvXkOtW7dZU6fO1s6dv2rOnBkPrfXKlcu6du2aVq78TgsWLNORI39qzZp7E0tt3LhOs2ZN1eDBw/TDD1s1cOBbmjz5U23fvs3m58ye1h8NU1x8UprvdTV070r2hqNh9iwLkHQvZG/oXUNDGhSXn7e7xTo/b3cNaVBcG/vUIFwDGYSADQBABhswYIhy5syp3LnzqGfPN7Rt289avXqV2rXrqIoVA+Tk5KTateuodu06Wrv2/58F3KBBI/n7l5KLi4tatGil6Oho3bhxQ3/+eVhhYVfUr99Aubm5qVix4urSpZt5v59++lHFiz+rTp1elIuLiwoWLKQ33uindeu+U1JS0kPrff31nnJzc1fBgoUUEFBFFy6ckyRt2BCstm3bq3LlqnJyclLlylXVtm17rV27xvYnzU4Mw9Cqg6GPtO/Kg6GPNLs4YC0vd2d1CfDTmh5VtTmoptb2rKbNQTW1pkdVdQnwUza3J3ckBZDZ8d0HAEAGK1iwsPlrHx9f3b17V+fPn9V///u7xWOHEhMTVblyVfPrXLlym792dr73v3TDSNK1a9eUI0cOubn9/9UtP7+C5q+vX49QgQKWswrnz++nO3fu6MaNh0/YlTt3Hov3TQ6V9zvuzp2/PvSYmUVUbILFbOFpZUi6GBWnqLgE5fBwsX1hQCpMJpNyeLjQc0AmQsAGACCDhYdfVeHCRSVJly6Fyt3dXb6++dWmTXu9/PJr5u2uXLkiNze3hx7Px8dHkZGRiomJkaenpyTp2rX/H76cP3+BFMO2Q0MvytXVVdmzez/y58ifv4BCQy2v/oaGXrQI5JldTHzi4+1/N5GwAwBPMYaIAwCQwT77bJZu345WePg1LVo0T82bt1T79i9o9eqvdezYX5Kk48ePqmfPbtqyZdNDj1e2bHkVKlRE06ZNVFxcnC5evKAVK740r2/cuJnOnj2tVatWKD4+XqGhFzV//mw1adJcLi6PHg5btWqntWvX6Pfff1NiYqIOHjyg4ODv1LJlm0c+ZnrzdHF6vP1dH29/AIBj4wo2AAA2ZhiGomITFBOfKE8XJ3l7OMtkuv/TawsWLKSXX+6suLg4NW3aXH37DpCbm5tiY2M1duxHCgsLU/bs2dWp00vq2LHzQ9/fyclJkyZN14QJY9W6dRPlypVbgYH1tH37Vkn3rjRPnjxL8+bN0uLF8+Tm5qbGjZurd+++j/W5GzZsrJiYaE2dOlFhYZeVN28+BQUNUPPmLR/ruOnJ28NZBb3dFRoVl+ZJzqR7szf7ebvL+wmeRRwA8HAmg9k4JEnh4beU2c+EySTlyePlELXCMdFjSA9Pcp/dikvQ+qNhWnUw1OI+3oLe7uoU4KdWpX0sHuOU/Jiub74JVv78BTKi5CfS4/bYioOhmrotxOqAPaRBcXUJ8HvotngyPMn/liFzoMfsJ/nc2gNDxAEAsIE9Z6+r5fy9mrotRKH/miQrNCpOU7eFqOX8vdpz9uGTiCFjtSrtI3eXLLr/mANLWUz3njvcsrSPXesCAGR+BGwAAB7TnrPXNWjNEfOzk/99oSF5WVx8kgatOULIzuS83J01vk1pmUx6aMhOXj+hTWmL0QkAgKcTARsAgMdwKy5Bw4OPyjBSBut/MyQZhjQ8+KhuxSUof/4C2rnzAMPDM6GaRXNpWvuy5ivZ/w7aycvcXbJoevuyqlE0V/oXCQDIdAjYAAA8hvVHw8xXrtMi+Ur2hqNhD90WGatm0Vza0LuGhjQoLj9vd4t1ft7uGtKguDb2qUG4BgCYMZYJAIBHZBiGVh0MffiGqVh5MFSdKxV44OziyHhe7s7qEuCnzpUKKCouQTF3E+Xp6iRv9wfPDA8AeDoRsAEAeERRsQkWs4WnlSHpYlScouISlMPj0Z87jfRjMpmUw8OFvy8AwAMxRBwAgEcUE5/4ePvffbz9AQBA5kLABgDgEXm6OD3e/q6Ptz8AAMhcCNgAADwibw9nFfR2T/PzkpOZJBX0dpc3j3UCAOCJQsAGAOARmUwmdQrwe6R9Owf4MUkWAABPGAI2AACPoVVpH/OzktMii+nes5Nblvaxa10AACD9EbABAHgMXu7OGt+mtEwmPTRkJ6+f0Ka0vBgeDgDAE4eADQDAY6pZNJemtS9rvpL976CdvMzdJYumty+rGkVzpX+RAADA7vj1OQAANlCzaC5t6F1DG46GaeXBUIvnY/t5u6tzgJ9alfFRNjf+1wsAwJOK/8sDAGAjXu7O6hLgp86VCigqLkExdxPl6eokb3dnJjQDAOApQMAGAMDGTCaTcni4KIeHS0aXAgAA0hH3YAMAAAAAYAMZFrAjIiIUFBSkKlWqqHr16hozZowSEhIeuM+mTZvUqFGjFMsXLFigunXrqmLFinr55Zd1+vRpe5UNAAAAAECqMixgDxo0SJ6entqxY4dWr16tPXv2aOnSpaluGx8frwULFmjIkCEyDMNi3XfffacvvvhCixYt0r59+1SmTBkNGDAgxXYAAAAAANhThgTsc+fOaf/+/Ro2bJg8PDxUqFAhBQUFafny5alu3717d+3bt0+9evVKsW7VqlV66aWXVKJECbm5uWno0KG6dOmS9u3bZ++PAQAAAACAWYYE7JMnTypHjhzy8fExLytevLguXbqkmzdvpth+4sSJWrhwoQoXLpxi3alTp+Tv729+7eLioqJFi+r48eP2KR4AAAAAgFRkyCzit2/floeHh8Wy5NcxMTHKnj27xTpfX1+rjuXu7q6YmBiranKEp6ck1+gItcIx0WNID/QZ7I0eQ3qgz2Bv9Jj92POcZkjA9vT0VGxsrMWy5NdZs2a16lgeHh6Ki4uzWBYXF2f1cXLn9rJq+4zkSLXCMdFjSA/0GeyNHkN6oM9gb/SYY8mQgF2iRAlFRkYqPDxcefLkkSSFhITI19dXXl7WNVCJEiV08uRJNWjQQNK9CdHOnj1rMWw8LSIibimzz4tmMt37BnOEWuGY6DGkB/oM9kaPIT3QZ7A3esx+ks+tPWRIwC5atKgqV66ssWPHavTo0bpx44bmzJmjjh07Wn2sDh06aObMmapbt66eeeYZTZ06VXny5FGVKlWsOo5hyGEa15FqhWOix5Ae6DPYGz2G9ECfwd7oMceSYY/pmjFjhhISEtSoUSN16tRJderUUVBQkCSpUqVKCg4OTtNxOnbsqNdee039+vVTjRo1dPToUc2bN08uLi72LB8AAAAAAAsmgwdGS5LCwzP/0AuTScqTx8shaoVjoseQHugz2Bs9hvRAn8He6DH7ST639pBhV7ABAAAAAHiSELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAIAD+vzzxRo6dECath0z5kONGfOhfQsCAMg5owsAAACA9V55pXtGlwAA+BcCNgAAwCO6fPmSXnihjd5770MtXDhXUVGRatiwiVq2bKspU8br0qWLKl26rD76aJyyZ8+u5cs/17p13ykqKlKFCxdRz559Vb16TUlSx46tVb16Te3YsV25c+fWokVfauPGdVqz5htduXJZ8fHxqlQpQO+8M0o5c+bUokXzdOjQ75o1a74k6ddff9HSpQt18eIF5c6dW88/31EdO3ZRliwpByyuW/e9Vq78SlevhsnX11fdur2mpk1bpOu5A4AnEQEbAADgMe3du0vLl6/WpUsX9frrXfX33yc0adJ0ubi46o03Xtd3332jpKQkbdgQrHHjJqt48We1ffs2vfPOUM2evUDPPVdGknT06BEtX75aknT8+FFNmzZRM2bMVenSZXX1apgGDuyr1au/Vq9efS3e/+DBAxo5coQ++OBj1avXQCEhp/TOO0NlGIY6d+5qse3Gjes0a9ZUjR07SRUrBui//z2od999S25u7qpXr0H6nDAAeEJxDzYAAMBjevHFl+Xu7q5ixZ5V7tx51KJFS+XNm085cuRQmTLldPnyJW3YEKxu3V5TyZKl5OzsrEaNmqh27bpav36t+Tj16zeSl5eXvLy8VLz4s/rii1UqXbqsbt68qfDwa8qRI6euXbua4v03bAhWnTr11ahREzk7O6tkyVLq1u01rV27JtVt27Ztr8qVq8rJyUmVK1dV27btU90WAGAdrmADAAA8puzZvc1fZ8mSRV5e2S1eG4ahGzeuq0ABP4v98ucvoFOnTppf58mT9x/7Oembb1bop59+lIeHp5599lnFxNyWYRgp3v/GjesqUaJkimNfuXI5xbbXr0ekUoefdu78NY2fFgBwPwRsAACAx2QymR66ja9vfoWGXrRYdunSReXJkyfV46xcuVz79+/T559/rVy5ckuS3n57sFXHzp07T4pt8+cvoNDQUItloaGpbwsAsA5DxAEAANJB69bttHz5Mp04cVyJiYnaunWLdu78VS1atEp1+9u3b8vZ2VnOzi5KSEjQpk0btW/fbsXHx6fYtmXLttq5c7u2bt2ixMRE/f33cS1f/rlatmyTYttWrdpp7do1+v3335SYmKiDBw8oOPi7VLcFAFiHK9gAAAD/YhiGomITFBOfKE8XJ3l7OKfpKvWDdO7cVYmJSRo16h1FRISrYMFC+uijsapUqXKq27/4YjeFhJxSx46t5erqKn//UmrfvpN+/31/im3LlCmrTz4Zr8WLF2jcuNHy9vZWu3Yd1LXrqym2bdiwsWJiojV16kSFhV1W3rz5FBQ0QM2bt3yszwcAkExGajfyPIXCw28ps58Jk0nKk8fLIWqFY6LHkB7oM9jb4/TYrbgErT8aplUHQ3UxKs68vKC3uzoF+KlVaR95uXN9AvxbBvujx+wn+dzaA/+HAAAAkLTn7HUNDz6quPikFOtCo+I0dVuIPtt5RuPblFbNorkyoEIAQGbHPdgAAOCpt+fsdQ1ac0Rx8UkyJP37YlHysrj4JA1ac0R7zl5P/yIBAJkeARsAADzVbsUlaHjwURlGymD9b4Ykw5CGBx/VrbiE9CgPAOBACNgAAOCptv5omPnKdVokX8necDTMnmUBABwQARsAADy1DMPQqoOhD98wFSsPhoq5YgEA/0TAfkLcuXNHV6/ym3QAAKwRFZugi1Fxab56ncyQdDEqTlEMEwcA/AMB+wnRr18vHTiQ8rmYttakSR0dPnzI7u8DAEB6iIlPfLz97z7e/gCAJwuP6XpCREbeSJf32bx5R7q8DwAA6cHTxenx9nd9vP0BAE8WAvYTYPDgfgoLu6JJk8bp+PGj8vcvpTVrvtGVK5cVHx+vSpUC9M47o5QzZ05J0jfffK2vv/5SsbGxqlq1mhISElSs2LPq0aOP7tyJ08yZU/Xzz5vl4eGhFi1a6aefftA774xUQEAVBQZW0YwZcxUQUEVnz57RnDnTderUSUVGRqpAgQLq23eAateuI0latGieNmwIVmxsrPz8Cuq113ooMLCeJOm33/Zq/vw5Onv2jHLkyKkuXbqqQ4fOMgxDy5cv008//fC/Ie8m1axZWyNGvC83N/eMOsUAgCeUt4ezCnq7K9TKYeImSX7e7vJ250cpAMD/Y4j4E2Dq1Nny8fHVW2+9o+bNW2ratIl6660R2rjxZy1f/o0uXDiv1au/liRt2bJJixfP14cfjlFw8CZVqBCg7du3mY81Y8YUHTt2VEuXfqUvv7wX0i9fvpTq+77//tsqVuxZrVq1Vps2/aJq1Wpo8uRPJUkHDx5QcPB3mj9/mTZu/FmtWrXVp59+rISEBJ0/f07Dhw9R27Yd9MMP2/Txx+M1b94c7du3R1u3btE336zQmDET9eOPv2jevCXat2+PNm/+0f4nEgDw1DGZTOoU4PdI+3YO8JPJZLJxRQAAR8avXZ8wxYs/qy++WKX8+Qvo5s2bCg+/phw5curatauSpPXr16pt2/YqV66CJKl9+xf0ww/rJEkJCQnatGmjxoyZKB8fX0nS0KHDtWXLplTfa8KEacqTJ6+SkpJ05cpleXllN7+Pq6urbt26qeDgNapdu65at26ntm3by2QyacuWTfL3L6VWrdpKkkqVek5z5ixU7tx55ObmqnLlPle+fD66ceOGIiMj5e3trWvXrtn1vAEAnl6tSvvos51n0vyoriwmyc05i1qW9rF7bQAAx0LAfsJkyeKkb75ZoZ9++lEeHp569tlnFRNz2/wYkatXw1S/fiOLfQoUuPeb+6ioSMXFxSl//vzmdZ6eWeXtnSPV9zp58m+NGDFE169HqEiRZ5QjRw7z+5QtW16ffDJBq1d/ra+++lzu7u7q2LGLXnmluyIiws0BPtmzz5aQJEVHR2v+/DnatWuHcubMqRIl/BUfH6+kpCSbnB8AAP7Ny91Z49uU1qA1RyRDDwzZyderJ7QpLS+GhwMA/oX/MzxhVq5crv379+nzz79Wrly5JUlvvz3YvN7XN7/Cwq5Y7HPlyhUVLlxUOXPmkpubm/m1JMXGxioqKjLF+4SHX9PIkSM0ZsxEBQbWlST98svP5uHmV65cUa5cuTRlyizFx8frwIF9eu+9t+XvX0r58vno9OlTFsfbsCFYOXPm0u7dOxQWdkWrVwcra9ZskqRXXulsk3MDAMD91CyaS9Pal9Xw4KOKi7/3S91/Bu3kYO3ukkUT2pRWjaK50r1GAEDmxz3YTwhXV1dFR0fr9u3bcnZ2lrOzi3nI9759uxUfHy9JatPmea1b952OHftLCQkJ2rAhWH/99ackKUuWLGrVqq0WLZqn8PBriouL04wZU5SYmPIRJDExt5WYmCgPDw9J0pkzp7VkyUJJUnx8vI4f/0tDh76pkyf/louLi3LmvBf2vb1zqHHjZjpx4oR++GG9EhMTdfz4Mc2cOVXOzs6Kjo6Wq6ubnJycdefOHa1Y8aVOnw5RQgLPGQUA2FfNorm0oXcNDWlQXH7elhNr+nm7a0iD4trYpwbhGgBwX1zBzuQMw1BUbIJi4hOV1dVJuY3UB661atVW8+fPVsWKAcqXz0cdO7aWq6ur/P1LqX37Tvr993vPyK5fv5FCQy9qxIihunv3rmrWrK1SpUrLxcVFkvTGG29q6tQJ6tq1ozw9s6pt2/bKkiWLeX2ywoWLKihooEaPfl9xcXHKm9dHbdo8rzlzpisk5JTq12+kCxfOa8SIIYqKilTOnLk1YMAQlSlTVpI0adJ0ffbZTE2bNlE5c+bSm28OVrVqNeTnV1Djxo1W69ZN5OHhqfLlK6pZs/8oJMTyijcAAPbg5e6sLgF+6lypgKLiEhRzN1Gerk7ydndmQjMAwEOZDOM+ie0pEx5+S5npTNyKS9D6o2FadTBUF6PizMuL5PJUxwr51bK0zyPd+3Xy5N/y8vKSr+//32fdvXs3tWvXQW3aPK///vegihcvIS8vL0n3rlQ3bVpPK1asUaFChR//gyFTM5mkPHm8Mt33A54s9BnsjR5DeqDPYG/0mP0kn1t7YIh4JrTn7HW1nL9XU7eFKPQf4VqSzl+P0ZRtIWo5f6/2nL1u9bEPHvxNw4cPVkREuAzD0M8//6SzZ8+oSpVqkqSvv/5S06dP0p07cbpz544WLpyrwoWLEK4BAAAA4CEYIp7J7Dl7XYPWHJFxn1lMk5fFxSdp0Jojmta+rGpacS9Yhw6ddeXKFXXv3lUxMbEqUqSoxo+fbJ5JfOjQEZoyZbyef76lkpISVb58RU2cOP3xPxgAAAAAPOEYIv4/mWHoxa24BLWcvzfNz+E06d5spht61+BRIbAJhiIhPdBnsDd6DOmBPoO90WP2wxDxp8T6o2FpDtfSvavZcfFJ2nA0zJ5lAQAAAADSgICdSRiGoVUHQx9p35UHQ8VABAAAAADIWATsTCIqNkEXo+LSfPU6mSHpYlScouJ4TjQAAAAAZCQCdiYRE5/4ePvffbz9AQAAAACPh4CdSXi6OD3e/q6Ptz8AAAAA4PEQsDMJbw9nFfR2l8nK/UySCnq7y5tZxAEAAAAgQxGwMwmTyaROAX6PtG/nAD+ZTNZGcwAAAACALRGwM5FWpX3k7pIlzVexs5juPQe7ZWkfu9YFAAAAAHg4AnYm4uXurPFtSstk0kNDdvL6CW1Ky4vh4QAAAACQ4QjYmUzNork0rX1Z85Xsfwft5GXuLlk0vX1Z1SiaK/2LBAAAAACkwKXPTKhm0Vza0LuGNhwN08qDoboYFWdeVziXp16omF8tS/somxt/fQAAAACQWZDQMikvd2d1CfBT50oFFBWXoJi7icrq5qTiBXMqIiJahpHRFQIAAAAA/omAncmZTCbl8HBRDg+Xe/dmM1s4AAAAAGRK3IMNAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAYI2AAAAAAA2AABGwAAAAAAGyBgAwAAAABgAwRsAAAAAABsgIANAAAAAIANELABAAAAALABAjYAAAAAADZAwAYAAAAAwAacM7qAzMJkyugKHi65RkeoFY6JHkN6oM9gb/QY0gN9Bnujx+zHnufUZBiGYb/DAwAAAADwdGCIOAAAAAAANkDABgAAAADABgjYAAAAAADYAAEbAAAAAAAbIGADAAAAAGADBGwAAAAAAGyAgA0AAAAAgA0QsAEAAAAAsAECNgAAAAAANkDATmfXr19XkyZNtG/fPvOyw4cP64UXXlClSpXUsGFDffPNNxb7fPfdd2rSpIkqVqyo9u3b69ChQ+Z1iYmJGj9+vGrVqqVKlSqpb9++unr1qnl9RESEgoKCVKVKFVWvXl1jxoxRQkKC/T8oMkxqPbZp0ya1bdtWAQEBatiwoWbNmqWkpCTzenoM1kqtz5JdvXpVtWrV0po1ayyW02ewRmo9dvz4cb366quqVKmSatWqpXHjxln0AT0Ga6XWZxs2bFCLFi0UEBCgZs2aacWKFRb70GdIi+PHj+v1119XtWrVVLt2bb399tu6fv26JH72f+IZSDcHDhwwGjdubPj7+xt79+41DMMwIiMjjWrVqhlffvmlER8fb+zevduoVKmScfjwYcMwDGPv3r1GpUqVjAMHDhh37941lixZYlSvXt2IiYkxDMMwZs6cabRu3dq4dOmScevWLWPQoEFGr169zO/ZrVs3Y+jQoUZMTIxx/vx5o2XLlsaCBQvS/8MjXaTWY3/++adRvnx5Y+vWrUZiYqJx6tQpo0GDBsaiRYsMw6DHYL3U+ixZYmKi8fLLLxulSpUyvv32W/Ny+gzWSK3HIiIijOrVqxtz58417t69a1y4cMFo2rSpsXDhQsMw6DFYL7U+O3HihFGhQgXj0KFDhmEYxu+//26UKVPG+O233wzDoM+QNrGxsUbt2rWN6dOnG3fu3DGuX79u9OrVy+jTpw8/+z8FCNjpZM2aNUb9+vWNDRs2WPxDvmrVKqNp06YW244cOdJ4++23DcMwjKFDhxrvv/++xfrmzZsbq1evNgzDMOrWrWsEBweb1127ds0oWbKkcf78eePs2bOGv7+/ceXKFfP6DRs2GPXr17fLZ0TGul+P/fjjj8bYsWMtth07dqzxxhtvGIZBj8E69+uzZDNmzDCGDRtmNGjQwCJg02dIq/v12KJFi4zOnTtbbHvx4kUjNDTUMAx6DNa5X59t2rTJKFOmjPH7778bSUlJxsGDB43y5cubww99hrQICQkxevToYSQkJJiXbdmyxQgICOBn/6cAQ8TTSWBgoDZv3qz//Oc/FstPnjwpf39/i2XPPvusjh8/Lkk6derUfdffunVLV65csVifJ08eeXt768SJEzp58qRy5MghHx8f8/rixYvr0qVLunnzpq0/IjLY/XqsWbNmeuedd8yv4+Li9Msvv6hMmTKS6DFY5359Jkl79+7Vhg0bNGrUqBTr6DOk1f167I8//pC/v79Gjhyp2rVrq3HjxgoODpavr68kegzWuV+fBQYGqmLFinrxxRdVpkwZdenSRQMHDlT58uUl0WdIm2LFimnhwoVycnIyL9u0aZPKlCnDz/5PAQJ2OsmbN6+cnZ1TLL99+7Y8PDwslrm7uysmJuah62/fvi1J8vT0TLH+9u3bqe6b/Dr5+Hhy3K/H/ik6Olr9+vWTu7u7XnvtNUn0GKxzvz6LiIjQu+++q0mTJilr1qwp1tNnSKv79VhUVJTWrFmj8uXL65dfftGsWbO0cuVKLVmyRBI9Buvcr8/u3r2rggULasmSJTp8+LDmzZunmTNnaufOnZLoM1jPMAxNnTpV27Zt03vvvcfP/k8BAnYG8/DwUFxcnMWyuLg48w+oD1qf/A0TGxub6npPT88U65Jfp/YDMJ5sp0+fVpcuXZSQkKDPP/9c2bJlk0SP4fEZhqG3335bL7/8ssqWLZvqNvQZHperq6vKlSunjh07ysXFRaVKlVK3bt30ww8/SKLHYBszZ86Uq6uratWqJRcXF9WvX18tW7bUypUrJdFnsE50dLQGDBigdevW6csvv1TJkiX52f8pQMDOYP7+/jp58qTFslOnTqlEiRKSpBIlStx3vbe3t3x8fHTq1CnzumvXrikyMlL+/v4qUaKEIiMjFR4ebl4fEhIiX19feXl52fFTIbPZvn27XnjhBdWpU0eLFi2St7e3eR09hsd1+fJl7d+/X7Nnz1aVKlVUpUoVXbp0SR999JH69OkjiT7D4ytevLju3r1rsSwpKUmGYUiix2Ably5dUnx8vMUyZ+f/a+/eg6q6zj6Of1VAaimJVpBLpI43nEgqNwEvGEFFDQEVwaSmVg1RtI6CmFZpMdRErRqbSBg1RiTURlqJRQVjG7RWQgaVMsI06lQsGQtihHCpgopw4PQPXvfridco0Vx+n5kzw1lr7bXX2uf54zxnrb2xwtraGlCcyb0rLy9n6tSpNDY2smvXLtzd3QF99/8uUIL9iI0bN46amhrS09NpaWnh6NGj5OTkMHXqVAAiIyPJycnh6NGjtLS0kJ6eTm1tLePGjQMgIiKCzZs3U1FRQWNjI6tXr8bPzw83Nzf69OmDj48Pq1evprGxkYqKCjZt2kRkZOSjnLI8ZCUlJSxYsICEhASWLl1605Y4xZg8KBcXFz755BOKioqMl4uLC0lJSWzZsgVQnMmDmzp1KqWlpWzdupXW1lZOnz7Ne++9x6RJkwDFmHSM4OBg9u/fT35+PmazmcLCQrKzswkLCwMUZ3JvLl68yMyZM/H29mbbtm306NHDqNN3/++AR/uMte+mLz5595///Kf5ueeeM3t5eZnHjBlj8eRds9ls3rNnj3n8+PFmT09Pc2RkpLmkpMSoa25uNr/++uvmwMBAs7e3t3n+/Pnmmpoao/7zzz83L1y40Ozn52cOCAgwr1mzxuKJhvLtdGOMxcTEmN3d3c2enp4Wr+joaKO9Ykzux62eIn7dF58ibjYrzuTL+2KMlZSUmKdPn2729fU1jxw50rxx40ZzW1ubUa8Yk/vxxTjbvn27OSQkxOzl5WUODQ01792716K94kzuJi0tzTxw4EDzkCFDbvr+ZTbru/+3XSez+f/2VomIiIiIiIjIfdMWcREREREREZEOoARbREREREREpAMowRYRERERERHpAEqwRURERERERDqAEmwRERERERGRDqAEW0RERERERKQDKMEWERERERER6QBKsEVEROSR+89//vOohyAiIvLAlGCLiMhDt2PHDtzd3UlPT3/UQ+kwzc3NvPPOO4SFheHp6Ym/vz+zZ8/m73//u0W74OBgsrKyAHjppZd4++23O3wsM2bMwMPDAy8vL+MVEBBAQkICTU1NHXaeZcuWsWzZsgfuZ+3atWzevNl47+XlRVFR0QP3eztpaWls2bIFsPw87sfOnTtZuXIlWVlZBAcH33c/y5cvJzc3976PFxGRrwcl2CIi8tDt2LGDn/zkJ2zfvh2TyfSoh/PAmpubiY6OZt++ffzqV7+isLCQvLw8wsPDWbp0KRs3brzlcampqcybN+8rGVNMTAzFxcXG689//jPHjx8nKSnpKznfg6ivr7d4X1xcjK+v71dyrrKyMjIzM5k9e3aH9Jebm8vYsWMfuJ/4+HjWrVtHXV1dB4xKREQeFSXYIiLyUB05coTa2lqWLVtGW1sbH374IQC//OUvWbJkiUXbuLg4VqxYAUB5eTnz5s3D39+foKAg3nzzTZqbmwHIysoiIiKCF198EV9fX3JycqiqqiIuLo7g4GCGDBnCmDFj2LVrl9H3uXPniI6OxtvbmwkTJpCeno67u7tRf/LkSWbMmMHQoUMJCQkhPT0ds9l8yzn98Y9/5MyZM7z33nsMGzYMGxsbbG1tmTJlCr/73e9ISUnhzJkzNx03Y8YMUlJSKC8vZ9CgQXz66adGXVlZGYMHD6a6uhqz2cz27dsZP348vr6+TJ8+nRMnTnyp6+7q6kpwcDCnTp0C2lefFy1axMSJEwkICKC8vJzKykri4uIYNmwYI0aMYMmSJVRXVxt9/O1vfyM0NBRPT09iYmIsEuOUlBRmzJhhcc4bV4evXLnCq6++yrBhw/D19WXOnDlUVlayceNGcnJyyMnJITw8HAB3d3eOHTsGtCffy5cvZ+TIkfj7+xMTE8PZs2eB9s/Q3d2d999/n+DgYHx8fJg9ezYXLly47XVITk4mIiICGxubm+ry8/Px8fHhL3/5i9H/nWKkoaGB0tJShg4dCoDJZGL9+vWMHj0ab29vEhMTjR+QGhsbSUxMJCQkBE9PTwIDAy12L3Tv3p0RI0aQmpp6p49RRES+5pRgi4jIQ/WHP/yBadOmYWtry/Tp00lLSwNg2rRpHDx4kMbGRgAuXbrEoUOHiIyM5MqVK8yaNYsBAwbw0UcfkZGRQUFBASkpKUa/J0+eJCwsjIKCAsaNG0diYiLW1tZ88MEHHD9+nJ/+9Ke89tprXL58mdbWVmJiYnB0dOTjjz9m27Zt7Nmzx+irqqqKmTNnMmHCBAoKCti0aRMZGRns3LnzlnM6ePAgQUFB2Nvb31QXGBiIk5OT8UPCrbi5ueHv78/evXuNsqysLAIDA3F0dCQjI4N3332X5ORkjhw5QkREBLNnz6ampuaernlrayunTp0iNzeXESNGGOX5+fkkJyeTm5uLs7MzL774Il26dCE3N9dIMufNm4fJZOLTTz8lNjaWmJgYioqKiIqKIj8//57OD/Dqq6/yySefkJWVRUFBAT179iQ+Pp4FCxYQFhZGWFgY2dnZNx23aNEiysvL2b17N3l5efTt25dZs2YZcQJw+PBh9uzZw4cffkhNTQ2bNm265Rhqamo4cOAAYWFhN9Xl5eURHx/PG2+8wcSJE+8aIwCHDh0iMDCQLl26AO1xY29vz8GDB8nMzGTfvn389a9/BWD9+vWcO3eOXbt2UVxcTGJiIm+++abFvefPPvssmZmZ34pdHSIi31VKsEVE5KGprKwkPz+fF154AWhPqv/9739TWFiIr68vzs7ORmK3b98++vbty+DBgzl8+DDNzc3Ex8fTtWtXnJ2diY2NZceOHUbf1tbWTJo0yVg9XrlyJUlJSVhbW3P+/Hm+//3v09TUxMWLFykpKeHs2bMsX76cbt264erqyuLFi42+srOz6devHy+88ALW1tb079+f6Ohoi/PdqLq6GgcHh9vO29HR0WIl+FaioqLIzs7GbDbT2tpKdnY2kZGRQPuW+piYGAYNGoS1tTWRkZH069fvlgnpde+88w6+vr74+vri5+fH4sWLCQkJsZinp6cnAwcOxN7enqKiIioqKlixYgU/+MEPsLe3Z8WKFfzrX//ixIkT7N+/Hw8PD8LDw7GysmLs2LEEBQXdcU7XNTc388EHHxAbG4uzszM2NjYkJCSQmJh4x+MqKiooLCxk+fLlODg4YGtry8svv4zJZCIvL89oN2fOHOzt7enZsyfBwcHGCvcXFRYW4ujoiLOzs0V5Xl4eCxYsYMWKFTz99NMAd40RgAMHDhASEmK8t7OzY86cOVhZWdG/f38GDRpEeXk5AAsXLmTDhg3Y2dlx4cIFunbtCmARFz/+8Y+5cuUKJ0+evMsVFRGRryurRz0AERH57sjIyMBkMjFp0iSjzGQykZaWhp+fH1FRUezdu5eoqCh2795NVFQU0J6Y19XVGVtxAcxmMy0tLdTW1gLg4OBA587//7txRUUF69at4+zZs/Tp04cf/ehHALS1tXHhwgW6d+9Ot27djPZPPPGE8XdlZSUnT560uA+4ra3NWKn8IgcHByorK28773PnzjFq1Kg7XpuQkBBee+01jh07xrVr1zCbzYwePdoYz9q1a1m/fr3FdfPw8Lhtf3PnzmXhwoV3PKejo6Pxd21tLd27d8fOzs4os7Oz4/HHH6eyspKqqipcXFwsjndzc7vp/ulbuXjxIs3NzRbH29vb89RTT93xuOsr9L179zbKunTpgrOzM5WVlQwZMgSAnj17GvVWVla33cp//vx5evXqdVP5kSNHGDx4MLt37+aZZ54BuGuMXL16leLiYt544w2j7LHHHqNTp07Ge2tra1pbW4H267tq1SpOnTrFE088YXx2bW1tRvuuXbvSvXt3PvvsM2NuIiLyzaIEW0REHopr166xa9cuVq1axfDhw43y0tJS5s6dS1lZGVOmTGHDhg0UFBRw+vRpnn32WQCcnJxwc3MztttC+z2ttbW19OjRA8AisWlpaSEmJob4+HimT59Op06dOHHihLHi6+LiQl1dHVevXuV73/se0J58Xefk5IS/vz/btm0zyurr67l8+fIt5zZhwgSSk5Oprq62SFqhfRtxbW0t48aNu+P1sbGxITw8nH379nH16lUmT56MlZWVMZ5FixYRGhpqtC8vL+fxxx+/Y593c+M1c3V1pb6+nsbGRiPJbmhooL6+HgcHB5ycnDh8+LDF8TeuxHbu3JmWlhajrq2tjf/+978A/PCHP8TGxobPPvuMvn37Au0J59atW4mLi7vt+FxdXY25DhgwAGjf7n7+/Pk77hi4nc6dO1sktNctWbKE0aNHExoayp/+9Ceef/75u8bIRx99hJ+f3y3v5b6V2NhYgoOD2bZtG1ZWVtTX15OZmXlTO5PJdNsfckRE5OtPW8RFROShyMnJoVOnToSFheHk5GS8Ro0axcCBA0lPT6dHjx4EBQUZD4N67LHHAAgKCuLy5cukpqbS3NzMpUuXWLp0KYsXL7ZIEq9raWmhqakJW1tbOnXqxPnz53n99deNuiFDhtC/f3/WrFnD1atXqaqq4q233jKODwsLo6SkhOzsbEwmE9XV1cybN481a9bccm7PP/88Hh4eREdHc+zYMZqbm2loaCArK4uEhATmz59v8XCs27l+H/r1e89vLN+8eTNlZWVA+73ToaGh/OMf/7j3D+AunnrqKfr3709SUhINDQ00NDTwm9/8Bjc3N7y9vQkPD6e0tNS4R/jjjz/mwIEDxvH9+vXj9OnTnDlzBpPJRGpqKleuXAHaE9vJkyeTkpJCVVUV165dY8OGDZSUlGBra4uNjQ0NDQ03jcnR0ZGnn36alStX8vnnn9PU1MT69etpbW295+3pN3JxcaGqquqmcmtra3r16kVCQgJr166lvLz8rjGSm5t71x9NbtTQ0ICtrS1dunShrq6OlStXAlj8KHHt2jUuXbp00xZ2ERH55lCCLSIiD0VGRgZhYWFYW1vfVPfcc8+xd+9eamtrmTZtGpWVlRYJpp2dHenp6Rw7doxRo0YxduxYOnfubPG/k2/UrVs3Vq9ezcaNG/Hy8uJnP/sZI0aMoGfPnpSWltK5c2feeustzp49y7Bhw5g5cyZDhw41xubq6kpqaio7d+5k+PDhTJo0ib59+942wbaysmLr1q1MmTKF1atXExAQwJgxY8jOzmbVqlV3XKW90YABA+jTpw+DBw+mT58+RvmsWbOYPHkyP//5z/Hy8mLVqlW88sorjBkz5p76vRdWVlZs2bIFk8nE+PHjCQoKoqWlhXfffRcrKyt69+7N22+/zY4dO/Dx8WHTpk0WCebYsWMJCwtj1qxZBAYGUl9fj4+Pj1G/bNkyPDw8iIqKMuqTk5MBeOaZZzh+/LixJf5G69ato3fv3kyZMoXhw4dz+vRpfv/739/X6n1AQAB1dXVUVFTcsn7q1KkMHTqUpUuXAtw2Rpqbmzl69Khxv/a9+O1vf8v+/fvx9vYmIiKCXr168eSTT1JaWmq0OX78OD169ODJJ5/80nMTEZGvh07m292oJCIi8i3V1NREcXExfn5+xnbcQ4cOkZSU9KWejC3fPIsWLcLDw4O5c+fesd2jiJFXXnkFe3t7Xn755a+kfxER+eppBVtERL5zrK2tiYuLIzMzk7a2Nmpra0lLS7uvbcfyzRIbG8v7779v/A/123nYMVJXV0deXh4vvfTSV9K/iIg8HFrBFhGR76SioiLWrVtHWVkZXbt2Zfz48fziF7+weGq0fDtt3boVk8nE/Pnz79juYcbIr3/9a0aOHMnEiRM7vG8REXl4lGCLiIiIiIiIdABtERcRERERERHpAEqwRURERERERDqAEmwRERERERGRDqAEW0RERERERKQDKMEWERERERER6QBKsEVEREREREQ6gBJsERERERERkQ6gBFtERERERESkAyjBFhEREREREekA/wO4k4gaKfRiagAAAABJRU5ErkJggg=="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAJNCAYAAADK9t01AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACN+0lEQVR4nOzde3zO9f/H8ec1O1wbawdjGJLzKRnCUKKmZKiZ+CahHBrpqBAlySnnQ5ZjUnLMYWMkVA45jRXluMo3xzFssbl2vH5/+O76tZyui+u6bDzut9u+2fU5vT6fz8u+nvu8P5+PwWw2mwUAAAAAAG6Ly50uAAAAAACAuwEBGwAAAAAAOyBgAwAAAABgBwRsAAAAAADsgIANAAAAAIAdELABAAAAALADAjYAAAAAAHZAwAYAAAAAwA4I2ACAe4bZbL7TJRQ4HDPQAwBgPQI2ABRQu3fvVt++fdW4cWM9+OCDevzxxzV48GD9/vvvV81bpUoVTZkyRZK0Y8cOValSRTt27Ljuujt37qwqVark+apZs6Yee+wxDR06VCkpKQ7br2XLlqlKlSo6fvy4Xde7YcMG9e/f3/K9NcchvzKbzWrUqJF69+591bS5c+eqSpUq6ty581XTvvrqK1WpUuWaPXItu3fvVq9evW673uuZMmWKqlSporlz515z+oABA9S8eXOHbd/W7R0/flxVqlTRsmXL7Lrdbt26qX79+srIyLjuPG3btlX79u1veRu3WntUVJRmz559y9sFgHsNARsACqAZM2aoU6dOSktL08CBAzV79my98sor2r9/v5599lmtXr06z/yLFi2y+R/n1atX16JFiyxfn3/+ubp27apvvvlGvXr1KnBXtebOnatTp05Zvq9Ro4YWLVqkGjVq3MGqbo3BYFDDhg21Z8+eq6Zt3rxZvr6+io+P16VLl/JM27Vrl0qWLKkKFSpYtZ0lS5YoISHBLjXfyIQJE/Tf//7X4dvJryIiIpSSkqJNmzZdc/rBgwd18OBBRURE3PI2ihcvrkWLFumxxx6zabmJEyfq8uXLt7xdALjXELABoID5/vvvNW7cOEVGRmr27NkKCwtT/fr11b59e8s/oAcMGKAjR45Ylqldu7ZKlChh03aKFCmi2rVrW74efvhhde3aVb169VJ8fLx++eUXe++aU+XuX5EiRe50KbckJCREFy5c0J9//mn5LD09XXFxcXr55ZeVmZmp7du351lm9+7daty4sbNLvSl3d3cNHDhQOTk5d7qUOyI0NFQ+Pj6Kjo6+5vQVK1bIy8tLrVq1uuVtuLu7q3bt2vL397/ldQAAbo6ADQAFzNSpU/XAAw/otddeu2qam5ubhg4dqkKFCmnmzJmWz/85RPx21axZU5J08uRJSVeGk/fr10+vvfaa6tSpo549e0qSLl68qJEjR+qJJ57Qgw8+qLCwMC1dujTPunJycjRt2jQ99thjeuihh9S7d++rhp/nDiP+t3/vU2pqqkaOHKlHH31UtWvXVnh4uDZu3GipcefOndq5c6dlWPi1hojv27dPL7/8sho0aKA6derolVdeyfOLitxltm3bppdeekkPPfSQGjVqpNGjRysrK+uax+v06dOqVq2avvjiizyf//3333rwwQc1a9YsSdJPP/2kDh06KDg4WA8//LB69+6tP/7447rnoVGjRpKU5yr2zp07lZ6ervDwcJUvX15btmyxTPvzzz919uxZS8A+f/68hg4dqmbNmqlmzZqqX7+++vTpYxmaP2DAAC1fvlwnTpzIM7Q4PT1dn3zyiZo2baqaNWuqdevWio2NzVNb8+bNNWLECHXp0kV16tTRBx98cN39yN3W7t279eWXX95wPkmKi4vTCy+8oIceekj169dX//79df78+TzznDx5Um+99Zbq16+vhx56SF26dNH+/fvzzJOSkqKBAweqQYMGevjhhzVmzBirA35iYqJ69eqlWrVqqWnTppo8ebKys7MlSaNHj1atWrV08eLFPMvMmDFDwcHBSktLu2p97u7uat26tb7//vurlsvOztaqVav01FNPqUiRIjc9b9K1/05ea4j4zY5T7t+7qVOnqkqVKjpy5IiqVKmiRYsWXXU8qlWrpuXLl1t1/ADgbkbABoAC5Pz58/r111/VrFkzGQyGa87j5+enRo0aacOGDQ6pIfeKaZkyZSyfrVmzRm5ubvr000/14osvymQy6fnnn1d0dLReeuklTZs2TXXr1tWgQYP02WefWZYbM2aMPv30U7Vr105Tp06Vn5+fxo0bZ3NNOTk56t69u5YvX66ePXsqKipKlStX1quvvqodO3ZoyJAhql69umXY+7WGhW/fvl3/+c9/lJOTo+HDh+vjjz/WqVOn1LFjx6vuWe7Xr5/q1q2rzz77TK1bt9acOXOu+uVBrhIlSqhBgwZXhdBvv/1WWVlZat26tY4dO6bIyEjVqFFDUVFR+vjjj/XHH3+oZ8+e1w19QUFBKlu2bJ6AvWXLFlWtWlUBAQFq3LixNm/ebJkWFxcnFxcXhYSEyGw2q1evXtq6davefvttzZ49W71799ZPP/1kCcO9e/dW06ZNVaxYMcvICLPZrD59+mjhwoXq1q2boqKiFBwcrDfffFMrVqzIU9/8+fMtvwRp27bt9U+epHbt2unRRx+96VDxXbt2qWvXrjIajZo4caLee+897dy509Jz0pW/Ix07dtRvv/2m999/X+PGjVNOTo46depkOY+5/fLDDz+oX79+Gj16tOLj4686R9czZcoU+fv7W3r3s88+0+TJkyVdGe6dnp6utWvX5llmxYoVeuqpp+Tl5XXNdUZERCgjI+Oq5bZs2aKzZ88qIiLCqvOW699/J//NmuOUG6QjIiK0aNEiVapUSQ899JBWrlyZZ10rV66U0WjUk08+adXxA4C7meudLgAAYL0TJ05IkkqXLn3D+e6//35t2LBBKSkp8vHxuaVtmc3mPFdlU1JStHPnTkVFRal27dqWK9mS5OLiomHDhlnCw9dff63Dhw/r66+/Vt26dSVJjzzyiLKysjRt2jR17NhRLi4u+vLLL/Xiiy+qb9++lnkSExPzBENrbNq0SXv27NG0adP0+OOPS5IaNmyo//73v9q+fbtef/11y1Dw2rVrX3Md48aNU5kyZTRr1iwVKlRIktSkSROFhoZqypQpmjhxomXe9u3bq0+fPpKuDNVev369fvjhB3Xs2PGa627btq0GDBig48ePW87dqlWr1LBhQwUGBmr16tUymUzq1auXAgMDJUklS5bUhg0blJaWdt1h7CEhIdq1a5fl+82bN1se0vXII4/oyy+/1J9//qkHHnhAu3btUo0aNeTn56fExER5enqqf//+qlevniSpQYMGOn78uBYuXChJKlu2rPz9/S1DiyVp69at2rx5syZMmKCnn37asp3Lly9r7NixCgsLk6vrlX9aFC9eXAMGDJCLi3W/yx82bJjCwsL03nvv6auvvrrmL5DGjRunBx54QNOnT7eco4ceekitWrXSN998o06dOumLL75QcnKyFixYoKCgIEnSo48+qqefflqTJk3S5MmTtWnTJu3du1fTp0+33JPcsGFDqx+oFhISopEjR1r2/9KlS5o3b55eeuklVahQQcHBwVq5cqXluQd79+7V77//ro8++ui666xWrZqqV6+umJiYPM9LWL58uSpUqKC6detadd5y/fvv5L8fGmjNcco97yVKlLD8uV27dvrggw907Ngxyy/ZVqxYoZYtW173lwcAcC/hCjYAFCC5DxZzc3O74Xy54eN2HkSWG8hyvxo1aqS33npLNWrU0Pjx4/MEoNKlS+f5x/XOnTsVFBRkCde52rRpo/T0dP3yyy/6+eeflZmZaQnEuVq2bGlzrXFxcXJzc1OzZs0snxkMBi1YsECvv/76TZdPS0vTvn379PTTT1uOnSTdd999atas2VVPGg8ODs7zfYkSJa459DdXixYt5OnpablCevbsWe3cudNyZfehhx6Sh4eHIiIiNHLkSP3000+qWrWq3nzzzRveIx4SEqI//vhDFy5c0KlTp/T777+rSZMmkqT69evLzc1NP/30k6Qr5zN3eHhgYKDmzZunevXq6eTJk9q2bZu++uor7dmzR5mZmdfd3rZt22QwGNS0aVNlZWVZvpo3b66zZ8/mGU5foUIFq8O1dOUY9u/fX3FxcdccKn758mX98ssvatq0qeWXP1lZWSpTpowqVKigrVu3WmqsVq2aAgMDLfO4uLjo0UcftRyL3H559NFHLev38vJS06ZNrao195cLuVq0aKG0tDT9/PPPkq6E0Li4OEuoXbZsmcqWLWsJxdcTERGhXbt26fTp05Ku3GaxceNGy8PNbDlv//47+W/WHKdradWqlTw9PS1XsXN/eRAeHn7DfQOAewVXsAGgAMm90pR7Jft6jh07Ji8vL/n6+t7ytmrUqKGhQ4dKuhJWPTw8VLJkyWsGvoCAgDzfp6SkXPXZP+f7+++/LZ/9+6FLxYoVs7nW5ORk+fr62hTo/unixYsym83Xrfnf98UajcY837u4uNzwlxmFCxfWE088odjYWPXs2VOrV6+Wh4eHQkNDJV0JQ1999ZVmzJihxYsXa+7cubrvvvv0/PPP6/XXX7/ufjVs2FAuLi6Kj49XUlKSvLy8VKdOHUmSp6en6tatqx07dqhZs2Y6efKkJXxLUnR0tMaPH69Tp07J19dXVatWvWq//i05OVlms9myjX87c+aMqlWrZjlutmrfvr3Wrl2r8ePHX/W067///ls5OTmaOXNmnucL5PLw8LDU+N///ve6T4e/fPmyUlJSrtkv1vbev/ctt4dznx/w9NNPa8SIEYqOjlb37t21Zs0adenS5abrbd26tUaPHq1Vq1ape/fuio2NVU5OTp4h9taet5sdf2uOk6en51WfFylSRE899ZSio6P16quvavny5br//vtv+ssDALhXELABoAApWrSoateurXXr1umNN9645jDaS5cuaevWrVddGbZV4cKF9eCDD97Ssj4+Pte8l/bs2bOSrtwnnuvcuXMqX7685fvk5OQ8y+TuY3Z2tuXqcmpqap55vL29lZycrJycnDyh6cCBA8rKyrrpfnh7e8tgMCgpKemaNd/OLypytW3bVt27d9fRo0e1evVqPfHEEypcuLBleq1atTR16lRlZGRo9+7dWrRokT777DNVqVLlqiumufz8/FStWjX98ssvOnr0qBo0aCB3d3fL9MaNG2vevHmKi4uTl5eXZZhvXFyc+vfvrxdeeEEvv/yy5Qnzn3zyiXbv3n3dffD29paXl5fmzZt3zen333+/rYflKh9//LHCwsI0aNAglSpVyvJ54cKFZTAY1LVr12s+TTs3DHp7e6t+/fp69913r7l+d3d3+fn56cKFC3l6Srq6967nn78gkmTpm6JFi1pqfeqpp7RmzRpVq1ZNf//9t5555pmbrve+++5TaGioYmJi1L17d61YsULNmze3rPdWz9u1WHOcrqddu3Zavny59u7dq2+//faa71wHgHsVQ8QBoIB59dVX9ccff+S5JzhXdna2hgwZIpPJpO7duzu/uP95+OGHdeLEiav+0R8dHS03NzfVqlVLwcHBMhqNVz3U6fvvv8/zfe4V83++w/rf73+uV6+eMjMz9eOPP1o+M5vNGjRokKKioiTphle3vby8VLNmTcXGxlqeBi1dubL9ww8/XDXU/VY0atRIxYoV05dffqm9e/fmuSo5d+5cNW/eXBkZGXJ3d1dISIiGDRsmKe9+X0vDhg3166+/ateuXXmuUEtX7g8+e/as1q9frwYNGlhuLYiPj1dOTo5ee+01S0jLzs62DA3OfbDav49Z/fr1lZaWJrPZrAcffNDydeTIEX366afXfZK6LUqWLKn+/ftr586deR7UV6RIEVWvXl1//PFHnm1XqlRJU6dOtQzjr1+/vuW+83/OFx0drSVLlqhQoUIKCQlRVlaW1q9fb1l/RkaGZZj5zfz7GQGrV6+Wp6enHnroIctnEREROnz4sObMmaOGDRvm+WXBjUREROjgwYPauXOn4uPj87z72trzZg1rjpN07b83Dz/8sMqVK6cxY8bowoULVv3yAADuFQRsAChgHnnkEQ0YMEAzZsxQjx49FBsbq7i4OK1YsULPP/+8vvvuOw0fPlxVq1a9YzWGh4erYsWKevXVV7VgwQJt2bJFH330kb755hv16tVL9913nwoXLqzevXvr66+/1tixY7VlyxYNHz78qoCde1/s+++/r59++knLli3TkCFD8lz9feyxxxQcHKyBAwdqwYIF+umnn/Tee+/p8OHD6tGjh6QrVwf//PNPbdu27apXgUnS22+/rf/+97/q3r27NmzYoLVr16pLly7KyMjQq6++etvHpFChQmrdurUWLFigYsWKWV6zJV0JyWfOnFGfPn30448/asuWLRo4cKDc3d3z3Fd+LY0aNdKOHTt07ty5qwJ27hPFN27cmGdarVq1JEkfffSRtm/frnXr1qlbt246ePCgJFnuJ7/vvvuUlJSkH3/8UWfOnFHTpk0trxD7+uuvtWPHDs2cOVMffvihXFxc7PaO5eeee06NGze+amj+W2+9pS1btujtt9/Wjz/+qI0bN6p79+766aefLEOdu3btqpycHHXt2lWxsbHatm2b3n//fc2bN88yUiIkJERNmjTR4MGD9fXXX+vHH39UZGTkVa/7up5169Zp3Lhx2rZtm8aMGaNFixapV69eeW6fqFu3rsqXL6+dO3fadH9yw4YNVbp0ab3//vsqUaLELZ03a1hznKQrPRAfH69du3bluQ2iXbt22rlzp0JCQlSyZEmrtwsAdzsCNgAUQN26ddOCBQtUpEgRjR49Wt26ddPkyZNVuXJlLVu27KavRXI0T09Pffnll2revLkmT56syMhI7d69W8OHD7c8MVySevXqpffee09r165VZGSkDh06pP79++dZ1wMPPKDRo0fr5MmT6tmzp7744gsNGzZMxYsXt8yT+97vp556SlOmTFHv3r31559/atasWZYHknXq1Elubm7q0aOHNm3adFXNISEh+vzzz5WRkaG33npL77//vgIDA7V48WJVqlTJLselbdu2ys7OVqtWrfIMTa5atao+++wzXbp0SW+99ZZeffVVJScna86cOXnCzrXUq1dPBoNBQUFBKleuXJ5pBoNBjRo1UmZmpuUBZ9KVJ09/8MEHio+PV48ePTRy5EiVKlVKU6dOlSTLyIPw8HAFBQWpT58+WrFihVxcXDRjxgy1atVK06dP18svv6yFCxeqa9eumjBhgl2OUa6PP/44zy9RpCtPdZ89e7ZOnz6t1157Te+++64KFSqkzz//3DL8PTAwUAsXLlRQUJA+/PBDvfLKK9q7d6+GDx+url27WtY1depUtWnTRpMnT9Ybb7yhEiVK6LnnnrOqtgEDBmjfvn3q2bOn1qxZo4EDByoyMvKq+R577DF5e3tb7rW3hsFgUHh4uI4eParw8PA8V5CtPW/WsPY4vfLKK9q3b5969OiRZzRF7j3yPNwMAPIymG/nEbMAAAC4itlsVuvWrdWgQQO9//77d7ocu5s5c6ZmzZqlzZs33/B+bQC41/CQMwAAADu5dOmS5s6dq3379uno0aOaNm3anS7JrpYvX255x33Pnj0J1wDwLwRsAAAAOzEajVq4cKFycnI0fPhwlS1b9k6XZFcHDx7UwoUL9cQTT1iebwAA+H8MEQcAAAAAwA54yBkAAAAAAHZAwAYAAAAAwA4I2AAAAAAA2AEBGwAAAAAAO+Ap4tdx7txF8fi3/MNgkIoW9ea8wOHoNTgT/QZnot/gTPQbnMXaXsudz9EI2NdhNosfBvkQ5wXOQq/Bmeg3OBP9Bmei3+As+aXXGCIOAAAAAIAdELABAAAAALADAjYAAAAAAHZAwAYAAAAAwA4I2AAAAAAA2AEBGwCAm8jOztbJkyfudBkAACCfI2ADAO4KGzZ8p7CwUD35ZFNt3brZruseMuQ9rVmzyqp5161boxdeeM6u2wcAAAUD78EGANwVYmKW64knWuiNN96x+7qTky9YPW+LFi3VokVLu9cAAADyPwI2AKDA69HjRR06dFA//7xHy5YtUU5Ojjp06KTVq6MVGvqUXnvtLc2YMU0//bRZZ86ckYeHhx5/PFRvvPGODAaDXn21p2rWrKV9+37R4cMHVbx4oF56qZcefzxUo0YN0969P+vXX/fq0KGD+uSTCfr99wRFRU3Wb7/9KqPRqMaNH9Urr7yqIkWKKDY2RnPmzNDSpTGSpF9+ideMGdP0++9H5O19n1q0aKkuXV6Wu7v7HT5qAADA3hgiDgAo8GbOnKdatWqrc+duWrRohSQpLS1NMTHr1LNnby1e/LW2b9+qSZM+03ffbdKoUeO0YsU32r17l2Ud0dHL9frrbys2dqOaNm2uMWOGKz09XQMGvG9Z9yefTFBKSrL69u2lcuXKa8WKWM2aNU/Hjv1XH3/8wVV1/fXXUb35Zh81bdpcMTHfacKET7VlyyZNmzbZWYcGAAA4EQEbAHBXatmyldzc3OTt7a3WrZ/VpElRKlq0qJKSkpSeni4vr8I6e/aMZf5mzR5X5cpV5ebmppYtw3Tp0iVduHD10PDNm3+Um5urIiP7ysPDqKJFA/TGG+9oy5ZNOncuKc+869atVYUKFfXcc/+Rm5ubSpcuo1de6aOYmOXKyclx+DEAAADOxRBxAMBdKSCgmOXPJtNlTZjwieLj96h48eKqXLmqzGazzGazZR5//6KWP7u6Xvm/R7P56hB84cJ5BQaWVKFChSyflSpVSpJ06tSpPPOeP39OpUoF5fmsZMkgpaen68KF8woICLiNPQQAAPkNARsAcFcyGAyWP48ePVz33XefVq5cKw8PD+Xk5Khly2a3tN4SJUoqMfGUsrOzLSH7xInjkqSAgAD99ddRy7wlS5bSjz9+n2f5EyeOy93dXffd53NL2wcAAPkXQ8QBAPma2WxWclqmTqaYlJyWmeeqs7VSUy/J3d1dhQoVUlpaqj79dJJSU1OVmZlp1fLu7h5KTb0kSQoJaSLJoKioKUpPN+ncuSRNmjROdes+rBIlSuZZ7oknntTRo39o8eIFyszM1IkTxzVjxqcKDX1Kbm5uNu8HAADI37iCDQDIly6asrRqf6IW7zmh4ykmy+elfYx6rk6QwqoHytto3f+NvfHGO/rkk+Fq2bKZvLwKq1GjJmrQoJH++CPBquWfeqqVxo0bqYMHD2jatFmaMOFTTZ06Uc8+20oGg9SkSVP16fP6VcuVLFlK48ZN1fTpUzVnznR5eHjoiSeeUs+ekdYdBAAAUKAYzLdyKeAekJR0URyZ/MNgkAICvDkvcDh6LX/YdvS8+kfvlynzyj3Q/zwVuQO/jW4uGt2mukLK+Tu9Pnuh3+BM9BuciX6Ds1jba7nzORpDxAEA+cq2o+f1xrJfZcrMkVl5w7X+971ZkikzR28s+1Xbjp53fpEAAADXQMAGAOQbF01Z6h+9X2bz1cH638ySzGapf/R+XTRlOaM8AACAGyJgAwDyjVX7Ey1Xrq2ReyV79f5ER5YFAABgFQI2ACBfMJvNWrznxC0tu2jPiVt6ujgAAIA9EbABAPlCyuUsHU8xWX31OpdZ0vEUk1IYJg4AAO4wAjYAIF9Iy8y+veUzbm95AACA20XABgDkC15uhW5veffbWx4AAOB2EbABAPmCj6erSvsYLe+5tpZBUmkfo3yMro4oCwAAwGoEbABAvmAwGPRcnaBbWrZDnSAZDLZGcwAAAPsiYAMA8o2w6oEyurlYfRXbxSAZ3VzUqnqgQ+sCAACwxh0L2LGxsapevbqCg4MtX++8844k6ZdfflH79u0VHBys5s2ba8mSJXmWXb58uUJDQ1W7dm2Fh4crPj7eMi07O1ujR49Wo0aNFBwcrMjISJ05c8ap+wYAuDXeRleNblNdBoNuGrJzp3/Sprq8GR4OAADygTsWsPft26e2bdsqPj7e8jVmzBilpKSoZ8+eeuaZZ7Rr1y4NHz5cI0eO1N69eyVJO3bs0LBhwzRq1Cjt2rVLbdq0UWRkpC5fvixJioqK0tatW/XNN99o8+bNMhqNGjx48J3aTQCAjULK+WtieE3Llex/B+3cz4xuLpoUXlMNy/k7v0gAAIBruGO/8t+3b59atmx51efr1q2Tr6+vOnXqJEkKCQlR69atNX/+fNWqVUtLlixRq1atVLduXUlS165dtWjRIsXGxqpdu3ZasmSJ+vXrp5IlS0qSBg0apCZNmujYsWMqU6aM1fVxK1/+kns+OC9wNHotf2j0gL9iezXU6v2JWrjnhI4nmyzTgnyN6lgnSGE1AlXEo2Bfuabf4Ez0G5yJfoOzWNtrzurFO/Ivk5ycHP3222/y9PTUrFmzlJ2draZNm6pfv346cuSIKleunGf+ihUraunSpZKkhIQEtWvX7qrpBw8e1MWLF3X69Ok8ywcEBMjHx0eHDh2yKWAXLep9G3sIR+G8wFnotTsvQNKrpf3UJ7SKktMydSk9S0U8XOXr5XbXPdCMfoMz0W9wJvoNzpJfeu2OBOzz58+revXqevLJJzV58mRduHBB/fv31zvvvKNixYrJ09Mzz/xGo1FpaWmSpNTU1OtOT01NlSR5eXldNT13mrXOnbsos9nWPYOjGAxX/tJwXuBo9Fr+5Skp+3K2zl1Ov9Ol2A39Bmei3+BM9Bucxdpey53P0e5IwA4ICND8+fMt33t6euqdd97Rc889p/DwcJlMpjzzm0wmFS5c2DLvtab7+flZgnfu/djXWt5aZrP4YZAPcV7gLPQanIl+gzPRb3Am+g3Okl967Y485OzgwYMaO3aszP84AhkZGXJxcVGtWrV05MiRPPMnJCSoUqVKkqRKlSpdd7qPj48CAwOVkJBgmXb27FklJydfNewcAAAAAAB7uiMB29fXV/Pnz9esWbOUlZWlkydPasyYMXr22Wf15JNPKikpSXPnzlVmZqa2b9+umJgYy33XERERiomJ0fbt25WZmam5c+fq3LlzCg0NlSSFh4crKipKx44d06VLlzRixAjVr19fZcuWvRO7CgAAAAC4RxjM5jtzIX3nzp0aP368Dh8+LA8PD7Vq1UrvvPOOPDw8tG/fPg0fPlyHDx+Wv7+/evfurfDwcMuyK1euVFRUlBITE1WxYkUNHjxYDz30kCQpMzNTkyZNUnR0tFJTU9WgQQMNGzZMRYsWtam+pCTuF8lPDAYpIMCb8wKHo9fgTPQbnIl+gzPRb3AWa3stdz6H13OnAnZ+xw+D/IUf0nAWeg3ORL/Bmeg3OBP9BmfJbwH7jgwRBwAAAADgbkPABgAAAADADgjYAAAAAADYAQEbAAAAAAA7IGADAAAAAGAHBGwAAAAAAOyAgA0AAAAAgB0QsAEAAAAAsAMCNgAAAAAAdkDABgAAAADADgjYAAAAAADYAQEbAAAAAAA7IGADAAAAAGAHBGwAAAAAAOyAgA0AAAAAgB0QsAEAAAAAsAMCNgAAAAAAdkDABgAAAADADgjYAAAAAADYAQEbAAAAAAA7IGADAAAAAGAHBGwAAAAAAOyAgA0AAAAAuGukp6frzJnEO7JtAjYAAAAA4K7Rp08PxcXtlCT98ku8QkMfcdq2CdgAAAAAgLtGcvIFy58feihY33232WnbdnXalgAAAAAA96xDhw5qypTxOnTooLy8vNS69TN6+eVe2rv3Z82YMU2//35E3t73qUWLlurS5WW5u7tr9uzp+vXXvbp48aJOnDiukSPHytfXT9OmTVJCwhElJyerTJnS6tXrVTVq9IjefLOPEhNPa+zYkTp4cL8ee+xxvfbaK9q6NU7Hjx/X448/ro8//lhRUVFKSUlRrVq1NHLkSJUoUUJms1kzZ85UTEyMTp06JYPBoEcffVTDhw+X0Wi0ah+5gg0AAAAAcKi//07Rm2/2UZ069bR69XpNmzZLsbExWrlymd58s4+aNm2umJjvNGHCp9qyZZOmTZtsWXb37l2KjOyrb75ZpZo1a2nw4HdVvnxFLV68UuvW/aAmTZpo7NhRkqQJEz5VYGAJ9es3UG+91f+atfzwww9asWKFvv32WyUlJWnatGmSpDVr1mjevHmaMmWK4uLitHDhQm3ZskUxMTFW7ycBGwAAAADgUFu3bpaHh4e6deshd3d3BQWV1sSJn2r//l9VoUJFPffcf+Tm5qbSpcvolVf6KCZmuXJyciRJpUoFqW7dh+Xl5SVXV1d98slEvfRST+Xk5OjUqZO67777dPbsGatr6dGjh+677z4FBASoefPmOnr0qCTp0Ucf1dKlS1WuXDmdP39eFy5ckK+vrxITrX9gGkPEAQAAAAAOlZSUpOLFA2UwGCyflS1bTq6uripVKijPvCVLBik9PV0XLpyXJAUEFMsz/ciRwxow4C2dP39O99//gAIDi8lsNltdS0BAgOXPrq6ulmXNZrMmTJig77//Xv7+/qpWrZoyMzNtWjcBGwAAAADgUIGBgTpzJlFms9kSsjdv/kHFiwdqy5ZDeeY9ceK43N3ddd99PletJynprD74YICGDx+jJk0elcEg7d79k9atW3fbNY4dO1YnT57Uxo0bVaRIEUlS69atbVoHQ8QBAAAAALfEbDYrOS1TJ1NMSk67/tXekJAmysrK0rx5c5SZmakTJ45r8uTx8vPz19Gjf2jx4gWWz2fM+FShoU/Jzc3tqvWkpaUqOztbnp6ekqQ///xDn376qSQpMzNTkuTu7q5Lly7ZvC+XLl2Sh4eHChUqpPT0dM2ZM0eHDx+2rNcaXMEGAAAAANjkoilLq/YnavGeEzqeYrJ8XtrHqOfqBCmseqC8jf8fN729vTV+/BRNmTJBCxfOl6enp559tr3atg1XuXLlNX36VM2ZM10eHh564omn1LNn5DW3W7ZsOfXu/bo++miwTCaTihUL1PPPd9Qnn3yi339PUNWq1RQW1lYzZnyqgwf3KyysrdX79MYbb2jgwIFq1KiRvLy8VLduXbVt21aHDx+2eh0Gsy0Dyu8hSUkXxZHJPwwGKSDAm/MCh6PX4Ez0G5yJfoMz0W93t21Hz6t/9H6ZMq88hOyfpzj3Dmujm4tGt6mukHL+Dq3F2l7Lnc/RGCIOAAAAALDKtqPn9cayX2XKzJFZecO1/ve9WZIpM0dvLPtV246ed36RdxABGwAAAABwUxdNWeofvV9m89XB+t/MksxmqX/0fl00ZTmjvHyBgA0AAAAAuKlV+xMtV66tkXsle/V+698jXdARsAEAAAAAN2Q2m7V4z4lbWnbRnhM2vUu6ICNgAwAAAABuKOVylo6nmKy+ep3LLOl4ikkp98gwcQI2AAAAAOCG0jKzb2/5jNtbvqAgYAMAAAAAbsjLrdDtLe9+e8sXFARsAAAAAMAN+Xi6qrSP0fKea2sZJJX2McrH6OqIsvIdAjYAAAAA4IYMBoOeqxN0S8t2qBMkg8HWaF4wEbABAAAAADcVVj1QRjcXq69iuxgko5uLWlUPdGhd+QkBGwAAAABwU95GV41uU10Gg24asnOnf9KmurzvkeHhEgEbAAAAAGClkHL+mhhe03Il+99BO/czo5uLJoXXVMNy/s4v8g66d36VAAAAAAC4bSHl/LW6Z0Ot3p+oRXtO6HiKyTItyMeoDnWCFFYjUEU87r24ee/tMQAAAADgtngbXdWxTpA6BJdSiilLaRnZ8nIvJB+j6z3zQLNrIWADAAAAAG6JwWCQr6ebfD3d7nQp+QL3YAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7OCOBuzs7Gx17txZAwYMsHw2ZMgQ1axZU8HBwZavRYsWWaYvX75coaGhql27tsLDwxUfH59nfaNHj1ajRo0UHBysyMhInTlzxqn7BAAAAAC4N93RgD116lTFxcXl+Wzfvn0aNmyY4uPjLV8dOnSQJO3YsUPDhg3TqFGjtGvXLrVp00aRkZG6fPmyJCkqKkpbt27VN998o82bN8toNGrw4MFO3y8AAAAAwL3H9U5teNu2bVq3bp1atGhh+SwjI0OHDx9WzZo1r7nMkiVL1KpVK9WtW1eS1LVrVy1atEixsbFq166dlixZon79+qlkyZKSpEGDBqlJkyY6duyYypQpY1N9BsMt7hgcIvd8cF7gaPQanIl+gzPRb3Am+g3OYm2vOasX70jAPnfunAYNGqRp06Zp7ty5ls8PHjyorKwsTZ48Wbt375a3t7fatWun7t27y8XFRQkJCWrXrl2edVWsWFEHDx7UxYsXdfr0aVWuXNkyLSAgQD4+Pjp06JDNAbtoUe/b2kc4BucFzkKvwZnoNzgT/QZnot/gLPml15wesHNycvTOO++oW7duqlq1ap5pFy9eVP369dW5c2eNHz9eBw4cUJ8+feTi4qLu3bsrNTVVnp6eeZYxGo1KS0tTamqqJMnLy+uq6bnTbHHu3EWZzTYvBgcxGK78peG8wNHoNTgT/QZnot/gTPQbnMXaXsudz9GcHrCnT58ud3d3de7c+appjRs3VuPGjS3f16pVS126dFFsbKy6d+8uT09PmUymPMuYTCb5+flZgnfu/dj/nF64cGGb6zSbxQ+DfIjzAmeh1+BM9BuciX6DM9FvcJb80mtOD9grV67UmTNnVK9ePUmyBOb169dr1KhRSkpKUseOHS3zZ2RkyGg0SpIqVaqkI0eO5FlfQkKCHn30Ufn4+CgwMFAJCQmWYeJnz55VcnJynmHjAAAAAAA4gtOfIr527Vrt2bNHcXFxiouLU1hYmMLCwhQXFyez2ayRI0dq27ZtMpvNio+P17x58yxPEY+IiFBMTIy2b9+uzMxMzZ07V+fOnVNoaKgkKTw8XFFRUTp27JguXbqkESNGqH79+ipbtqyzdxMAAAAAcI+5Y08Rv5bQ0FANHDhQH374oRITExUQEKC+ffuqbdu2kqSQkBANGTLEMr1ixYqaOXOmfH19JUl9+vRRVlaWOnXqpNTUVDVo0EATJ068czsEAAAAALhnGMzm/DBSPf9JSuKBDPmJwSAFBHhzXuBw9BqciX6DM9FvcCb6Dc5iba/lzudoTh8iDgAAAADA3YiADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwA1dbF/jtt9+0bds2nT59Wi4uLipVqpQeeeQRVahQwRH1AQAAAABQIFh9BXv79u1q3769XnjhBW3cuFHnz5/X6dOntXbtWj377LPq2LGjdu3a5chaAQAAAADIt6y6gv3xxx/rwIED6tatmx5//HF5eHjkmZ6RkaF169Zp7Nixqlmzpt5//32HFAsAAAAAQH5lVcCuXbu2Bg8efN3p7u7uCgsLU1hYmKKjo+1WHAAAAAAABYVVQ8TDwsKsXmGbNm1uuRgAAAAAAAoqmx5ylpGRoZiYGCUmJionJ0eSlJmZqcOHDysqKsohBQIAAAAAUBDYFLDfe+89bd68WX5+fsrMzJSXl5eOHDmiZ555xkHlAQAAAABQMNgUsDdv3qwFCxbo/PnzWrBggcaNG6c5c+Zo7969jqoPAAAAAIACwerXdElSTk6Oypcvr/Lly+vAgQOSpE6dOikuLs4hxQEAAAAAUFDYFLBLlCihY8eOyd/fX+fOnVNaWprMZrNSU1MdVR8AAAAAAAWCTUPEW7dureeff15Lly7VY489psjISHl4eKhmzZqOqg8AAAAAgALBpoDds2dPlSlTRt7e3nr//fc1ZswYXbp0Se+//76j6gMAAAAAoECwKWBLUsuWLS1/Hjp0qF2LAQAAAACgoLIpYJ85c0affvqpjh07pqysrDzT5s2bZ9fCAAAAAAAoSGwK2P3791dKSooeeeQRubm5OaomAAAAAAAKHJsC9s8//6xNmzbJ29vbLhvPzs5W165dFRQUpFGjRkmSfvnlF3388cdKSEiQn5+fIiMj1b59e8syy5cv17Rp03T27FmVL19e77//voKDgy3rGzt2rFauXKnLly+rYcOGGjp0qIoXL26XegEAAAAAuB6bXtNVsmRJubjYtMgNTZ06Nc87tFNSUtSzZ08988wz2rVrl4YPH66RI0dq7969kqQdO3Zo2LBhGjVqlHbt2qU2bdooMjJSly9fliRFRUVp69at+uabb7R582YZjUYNHjzYbvUCAAAAAHA9VqXlkydP6uTJk2rTpo0GDhyoAwcOWD7L/bLVtm3btG7dOrVo0cLy2bp16+Tr66tOnTrJ1dVVISEhat26tebPny9JWrJkiVq1aqW6devKzc1NXbt2lZ+fn2JjYy3Te/TooZIlS6pIkSIaNGiQNm3apGPHjtlcHwAAAAAAtrBqiHjz5s1lMBhkNpslXQnCBoNBkmQ2m2UwGHTgwAGrN3ru3DkNGjRI06ZN09y5cy2fHzlyRJUrV84zb8WKFbV06VJJUkJCgtq1a3fV9IMHD+rixYs6ffp0nuUDAgLk4+OjQ4cOqUyZMlbXJ0n/2z3kE7nng/MCR6PX4Ez0G5yJfoMz0W9wFmt7zVm9aFXA3rBhg902mJOTo3feeUfdunVT1apV80xLTU2Vp6dnns+MRqPS0tJuOj01NVWS5OXlddX03Gm2KFrUPveZw744L3AWeg3ORL/Bmeg3OBP9BmfJL71mVcCOjIxUixYtFBoaqipVqtzWBqdPny53d3d17tz5qmmenp66ePFins9MJpMKFy5smW4yma6a7ufnZwneufdjX2t5W5w7d1H/u2CPfMBguPKXhvMCR6PX4Ez0G5yJfoMz0W9wFmt7LXc+R7MqYE+ZMkXffvutBg8erL///ltPPPGEQkNDVbt2bZs3uHLlSp05c0b16tWTJEtgXr9+vd59911t3bo1z/wJCQmqVKmSJKlSpUo6cuTIVdMfffRR+fj4KDAwUAkJCZZh4mfPnlVycvJVw86tYTaLHwb5EOcFzkKvwZnoNzgT/QZnot/gLPml16x6yNn999+vnj17asmSJZo3b55KlCihcePGqVmzZvroo4+0bds2qze4du1a7dmzR3FxcYqLi1NYWJjCwsIUFxen0NBQJSUlae7cucrMzNT27dsVExNjue86IiJCMTEx2r59uzIzMzV37lydO3dOoaGhkqTw8HBFRUXp2LFjunTpkkaMGKH69eurbNmyt3BoAAAAAACwnk3vwZakwMBAde7cWZ07d9b58+e1YcMGff755woJCbntYvz8/DRnzhwNHz5ckydPlr+/vwYPHqyGDRtKkkJCQjRkyBB9+OGHSkxMVMWKFTVz5kz5+vpKkvr06aOsrCx16tRJqampatCggSZOnHjbdQEAAAAAcDMGs/n2LqSnpKToo48+0rhx4+xVU76QlMT9IvmJwSAFBHhzXuBw9BqciX6DM9FvcCb6Dc5iba/lzudoVg0RvxGTyWR5DzUAAAAAAPeq2w7YAAAAAACAgA0AAAAAgF0QsAEAAAAAsAOrniLeuXNnGQyGa07LyMiwa0EAAAAAABREVgXsBg0a3HB6kyZN7FIMAAAAAAAFlVUB+9VXX3V0HQAAAAAAFGhW3YP9yiuv6M8//7zpfL///rt69ep120UBAAAAAFDQWHUFOzIyUr1791aZMmUUFham4OBgBQYGymw2KzExUbt371ZsbKz++usvjRo1ytE1AwAAAACQ71gVsB966CGtXLlSS5Ys0YwZM5SQkJDnoWfVqlVTu3bt9Nxzz8nNzc1hxQIAAAAAkF9ZFbAlyd3dXZ06dVKnTp107tw5nTx5Ui4uLipZsqT8/f0dWSMAAAAAAPme1QH7n4oWLaqiRYvauxYAAAAAAAosqx5yBgAAAAAAboyADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2YNNDznbs2KGhQ4fq6NGjMpvNeaYdOHDAroUBAAAAAFCQ2BSwR40apYceekiDBw+Wq+stPYAcAAAAAIC7kk0p+ejRo1q4cKE8PDwcVQ8AAAAAAAWSTfdglytXTmfOnHFULQAAAAAAFFg2XcFu2bKlunfvroiICBUrVizPtGeeecaedQEAAAAAUKDYFLAXLlwoSVqwYEGezw0GAwEbAAAAAHBPsylgb9y40VF1AAAAAABQoNn8KPBff/1VS5cu1YkTJ1SsWDGFh4erXr16jqgNAAAAAIACw6aHnG3ZskXPP/+8kpOTVaVKFV26dEndunXT+vXrHVUfAAAAAAAFgk1XsCdPnqzRo0erZcuWls/WrFmjadOm6YknnrB7cQAAAAAAFBQ2XcH+888/9eSTT+b57Mknn9TRo0ftWRMAAAAAAAWOTQHb19dXhw8fzvPZwYMHr3plFwAAAAAA9xqbhoi3b99ekZGR6tWrl0qXLq2//vpLM2fO1PPPP++o+gAAAAAAKBBsCtg9evRQenq6pk+frqSkJAUFBemFF15Qt27dHFUfAAAAAAAFgk0B22AwqG/fvurbt6+j6gEAAAAAoECyKmDPmDFDPXv21NSpU687z6uvvmq3ogAAAAAAKGisCti7du1Sz549tWPHjmtONxgMdi0KAAAAAICCxqqAPXPmTEnS+PHjr/nE8CNHjti3KgAAAAAAChibXtP173dgS1J2drY6dOhgt4IAAAAAACiIbnoF+7///a9efvllmc1mXb58WY8//nie6SaTSUFBQQ4rEAAAAACAguCmAfv+++/XoEGDdOHCBX344YdXPczMw8NDDz/8sMMKBAAAAACgILDqHuxmzZpJkkqXLq2qVavKaDTK3d1df/zxh/z8/OTn5+fQIgEAAAAAyO9sugc7JydHTZs21f79+yVJ0dHRevLJJ7V3716HFAcAAAAAQEFh1RXsXGPGjNF7772n2rVrS5LeeOMNlSlTRiNGjNDChQsdUR8AAAAAAAWCTVewjx49qvbt2+f5LDw8XAkJCXYtCgAAAACAgsamgF20aNGrhoP/+uuvCggIsGtRAAAAAAAUNDYNEe/UqZN69uypDh06KCgoSCdPntTixYuverI4AAAAUNAkJSWpcOHC8vT0vNOlACigbLqC3aVLF7377ruKj4/X559/rr179+q9997T888/76j6AAAA4CRNmtTTnj1xkqSIiNaKjY25wxVdsWdPnJo0qWfVvLGxMYqIaG3zcufPn9N//vOskpMv3HKdAGDTFWzpyj3X4eHhjqgFAAAAuCPS09N1+fLlO10GgALOpoA9cODA604bOXLkbRcDAAAA6dSpk2rfvo0GDBisuXNn6+LFv1WtWg29994QFS8eqE2bftDcubN0/PgxFS1aVM8+G6GIiI5ycXFRVlaW5s6dpdjYGF26dEmVKlXWG2+8o8qVKysjI0MzZ36mb79do0uXLqpGjZp64413VLp0mRvWk5R0VpMnj9eBA7/p/Plz8vcPUJcuLyksrK2kK1e+IyI66Lvv1qpGjVoaPXq85s//QuvWrdGZM4mSDAoJaawBAwbLw8N40/1PSkrSmDHDFR+/Rz4+vnriiRZ5pp84cVyTJo3Tb7/tldHoqRYtWuqll3rKzc3thuu93nIuLi7q3Pk5SVLnzs9p4MAPdPTon/rzz9/l7u6hn37aLE9PLz355NN65ZVXrTomAO5NNg0R/7cLFy5ozZo18vLyslc9AAAA+J+tW7fo88+/1oIFy3Thwnl98cVs7dkTpw8+GKBOnbooNnaDPvxwhBYunK8lSxZIkr74Yra++26txo2bojVrNio4uK76939T2dnZmjBhgn76abMmTZqmFSvWqEaNB/Xmm68qPT39hnWMGjVMbm6u+vLLxVq3bpPatWuvCRM+UVpammWeEyeO65tvVuv99z/Sxo3rtWTJAg0fPkZr1/6g6dM/144d2/Tdd2ut2u8hQwaqUCFXrVgRq6lTp2v79q2WaZcvX9brr0eqfPkKWrYsVtOmzVJc3E7Nnj39huu80XKFChXSl18uliR9+eViPf74lUD/44/f6+GHG2j16g169933NH/+F/r1131WHxMA9x6brmBf6yr1Tz/9pK+//tpuBQEAAOCKTp26yNvbW5LUqNEj+u23fVq9OlqPPPKYHn88VJJUpUpVvfBCVy1dulAdOnTS2rWr9cILXfXAA+UlSV26vKyGDRvLbDZr4cKF+vjj0SpVKkiS1LVrd0VHL9e2bVv02GOPX7eO/v0Hq3DhwnJ1dVVi4ml5eRVWenq6/v77b8uFltDQp2Q0GmU0GhUS0kgPPjhPxYsH6sKFC0pOTpaPj4/Onj17030+ffqUfvklXgsWLJOXV2F5eRXWSy/11MCB/SRJP/20RZmZmerVq48MBoMCA0uoR49IDR7c33J1+VpuZbkyZcqqZcswSVJISBMVLRqgY8f+q5o1H7TqmAC499h8D/a/NWrUSK+99po9agEAAMA/FC1a1PJnV1dX5eTk6MKF86pUqUqe+UqWLKXTp09Jks6dS1KJEiUt09zc3FSz5oNKTj6vtLQ0DR48QC4uBsv0zMxMnTp16oZ1nDx5Qp9+OknHjv2lMmXKqkyZK0PKzeYcyzwBAcUsf87JMWvGjGnaunWz/Pz8VKlSZWVmZionJ+eqdf/b2bNnJEmBgSUsnwUFlbb8+fTpk0pOvqCWLZtZPjObzcrKytSFC+evu95bWc7fv2ie711dXWU2myVZd0wA3HtuK2BnZWVp1apV8vf3t1c9AAAAuIESJUrqxInjeT47efK4ihYNkCQVLx6oxMTTlmlZWVmaNm2Snn++szw8PDRhwlTVqPGgZfpffx1VQEDx624vKytL7777hnr27KPw8PYyGAw6ePCAvv12zXWX+eyzKUpMPK2lS6NVuHARSdKLL3awav+KFQv83z6dULlyD0iSzpw5k2d6UFBpff31N5bP0tJSdf78efn6+t1wvTdaLvcXFNa4lWMC4N5g0z3YVatWVbVq1SxfDz74oAYPHqxu3bo5qj4AAIC7itlsVnJapk6mmJSclmm5ImqtVq3aasuWH7Vx43plZ2fr8OGDmj9/nlq1aiNJevrp1vr66y/111//VVZWlubNm6NNm36Qn5+/IiIi9NlnU3TmTKJycnK0Zs0qde7cQceP/3Xd7WVmZspkMsloNMpgMOj06dOKippsmXYtly5dkru7hwoVclV6eroWLPhKf/zxu7Kysm66fyVKlFD9+g01ZcoE/f333zp3Lklz5sywTG/cuInS0tL09dfzlJGRoYsXL2rYsCH64IOBMhgM113vzZZzd3e31H4zt3JMCpJ58+bo7betG6E6fPiHGj78Q8cWBBQgNl3B/uKLL/L84HJxcdH999+vYsWK3WApAAAAXDRladX+RC3ec0LHU0yWz0v7GPVcnSCFVQ+Ut/Hm/zSrUaOmPv54tObMmamRIz+Sj4+PnnmmnTp16iJJev75F5WVlaW33+6rv/9OUdWqNTR27GS5urqqf//++uSTcerTp4dSUlJUqlSQPv54tCpXrnrd7Xl6euq994Zo1qzPNHHiWPn5+al162f1559/6I8/ElS27P1XLdOjR6RGjvxIrVuHytPTS7Vq1daTTz6t339PsOpYffjhcI0bN0oREa1VuHBhPf10a+3f/6skqXDhIpo4cZqmTp2gr7+ep+zsHNWpU1ejR4+/4Tpvtpy/f1E9+mgzvfJKN/Xt++YN13Urx6QgefHFl+50CUCBZTDb+mvTe0RS0kVxZPIPg0EKCPDmvMDh6DU4E/1279h29Lz6R++XKfPK/bn/PN25ly6Mbi4a3aa6Qso55tY7+q1gyX1V26BBH2rWrM+UkpKs5s1D1apVW40fP1onTx5X9eo1NXToSN13332aP3+eYmKWKyUlWWXL3q/u3SPVoEGIJCkiorUaNAjR5s0/qmjRopo9+yvFxsZo2bIlOn36lDIzMxUcXEcDBw6Rn5+fZs+ervj43Zo69crIgRu9Fi736vWgQVf+GxOzQosWfa0zZxJVunSQOnbsrBYtWt6JQ4h7hLU/23LnczSrrmA3b978hkNuJGnDhg12KQgAAOBusu3oeb2x7FeZzXmDda7cz0yZOXpj2a+aGF7TYSEbBc/27Vs1f/5SnTx5XN26ddLhw4c0duwkubm565VXumn58iXKycnR6tXRGjlynCpUqKgff/xeAwe+rU8/nalq1WpIkvbv/1Xz5y+VJB08uF8TJ47R5MmfqXr1mjpzJlGvvx6ppUsXqkePyDzbz30t3PvvD1PTps30++8JGjjwbZnNZnXo0CnPvLGxMZo6dYJGjBir4OA6+uOPA+rTp488PIxq2rSZgHuBVQG7b9++kqTffvtNGzZsULdu3VS2bFmdOnVKn3/+uR5//PqvdQAAALhXXTRlqX/0/uuG638y/+9/+kfv1+qeDa0aLl4QDRzYT3FxO647/Z133uOK5z/85z+dZTQaVb58RRUtGqCWLVupWLErD6WrUeNBnTp1UnFxO/XCC11VpcqVof6PPx6qH37YoFWrVloC9mOPPW555VuFChX15ZeLVbJkKf39999KSjorX18/yxPc/+lmr4X797xt24arbt2HZTBIISEhats2XCtXLiNg455h1U/uZ599VpL0+eefa9asWapQoYJlWqNGjdSzZ0/179/fMRUCAAAUUKv2J8qUmXPTcJ3LrCtXslfvT1THOkGOLO2OGTly7J0uoUC57z4fy59dXFzk7X1fnu/NZrMuXDhvebd5rpIlSykh4Yjl+3++Rs3FpZCWLFmgdevWytPTSxUrVlRaWuo1H7h3s9fC/dP58+euqqNUqSBt2bLJyr0FCj6bfjV67NgxlS1bNs9ngYGBeV6dAAAAgCtPC1+858QtLbtozwl1CC5101v0cPezpgeu9+q2gICAa65n0aL52rlzh+bNW2h51/e77177wW43ey3cP5UsWUonTuTt+RMnrj0vcLey6TVdNWvW1OjRo5WRkSFJunz5soYNG6a6des6pDgAAICCKuVylo6nmKy+ep3LLOl4ikkpppu/0goF0+2+qu3fWrd+RvPnf6FDhw4qOztbGzeu15Ytm9SyZdg1509NTZWrq6tcXd2UlZWlb7+N1Y4dP13zFWM3ey3cP4WFPaOVK5dp9+5dys7O1vbt27Vy5fJrzgvcrWy6gj106FD16tVLCxculJ+fny5cuKAHHnhAM2bMuPnCAAAA95C0zOzbWz4jW76ebnaqBvmBvV7V9m8dOnRSdnaOhgwZqHPnklS6dBkNHTpCwcHXvgj2n/+8oN9/T1BERGu5u7urcuWqCg9/Trt377xq3pu9Fu6fmjd/QmlplzRhwhglJp5SiRIl1KfPa3rqqVY27xNQUNn8mq6srCzFx8crMTFRJUqUUJ06deTiYtOF8AKBV1jkL7xaBM5Cr8GZ6Le7W3JapkKjtt3y8t/1DrFrwKbf7qz88Ko2Z6Lf4Cz57TVdNifjpKQk/fzzz4qLi9OOHTt0/Pjxmy8EAABwj/HxdFVpH6NsvYvaoCtXNH3u0qeI34tyX9WW+8C7f2eA3M9yX9W27eh55xcJwC5sCtj79u1Tq1attG7dOqWkpGjjxo1q06aNdu/e7aj6AAAACiSDwaDnbvFJ4B3qBPGAs7uEra9qM//vVW0XuQcfKJBsCthjxozR66+/riVLlmjChAn65ptv9Oabb2rsWF63AAAA8G9h1QNldHOx+iq2i+HKMOFW1QMdWhec53Ze1Qag4LEpYB86dEjPP/98ns+ef/55HT582K5FAQAA3A28ja4a3aa6DAbdNGTnTv+kTfVbetAV8p/bfVXb7T5dHIDz2RSwPT09depU3pfKnzp1Sj4+PnYtCgAA4G4RUs5fE8NrWq5k/zto535mdHPRpPCaangXPOAKV/CqNuDeY9OvR59++mn17dtXb7/9tkqXLq2//vpLEyZM0NNPP+2o+gAAAAq8kHL+Wt2zoVbvT9Sif72iKcjHqA51ghRWI1BFPLhyfTfhVW3Avcemn+Kvv/66zp8/r969eyszM1MeHh5q166d+vbt66j6AAAA7greRld1rBOkDsGllGLKUlpGtrzcC8nH6MoDze5SXm6Fbm9599tbHoDz2TREfP369Ro6dKh2796tzZs36+eff9YHH3wgDw8Pmze8bds2tW/fXnXq1FHjxo01bNgwmUxXfps7ZMgQ1axZU8HBwZavRYsWWZZdvny5QkNDVbt2bYWHhys+Pt4yLTs7W6NHj1ajRo0UHBysyMhInTlzxub6AAAAHMFgMMjX002lfIzy9XQjXN/FeFUbcO+xKWAPHTpULi4ucnd3V7FixW75/xDOnz+vXr166T//+Y/i4uK0fPly7dy5UzNmzJB05XVgw4YNU3x8vOWrQ4cOkqQdO3Zo2LBhGjVqlHbt2qU2bdooMjJSly9fliRFRUVp69at+uabb7R582YZjUYNHjz4luoEAAAAbhWvagPuPTb9WuzBBx9UbGys2rZte1sb9ff3108//aQiRYrIbDYrOTlZ6enp8vf3V0ZGhg4fPqyaNWtec9klS5aoVatWqlu3riSpa9euWrRokWJjY9WuXTstWbJE/fr1U8mSJSVJgwYNUpMmTXTs2DGVKVPG6hr5eZa/5J4PzgscjV6DM9FvcCb67c5oXSNQUVv+tPpVXS4GycPVRWE1Agv0uaLf4CzW9pqzetGmgJ2cnKz+/fvr/fffV0BAQJ7fqm3YsMGmDRcpUkSS1LRpUyUmJqpevXoKDw/XwYMHlZWVpcmTJ2v37t3y9vZWu3bt1L17d7m4uCghIUHt2rXLs66KFSvq4MGDunjxok6fPq3KlStbpgUEBMjHx0eHDh2yKWAXLept0/7AOTgvcBZ6Dc5Ev8GZ6DfnCpD0Wed66vb5TknSjd68lftP6+md6+mB0n6OL84J6Dc4S37pNZsC9gsvvGD3AtatW6eUlBT169dPr732mrp166b69eurc+fOGj9+vA4cOKA+ffrIxcVF3bt3V2pqqjw9PfOsw2g0Ki0tTampqZIkLy+vq6bnTrPWuXMXb/gDEM5lMFz5S8N5gaPRa3Am+g3ORL/dOTX8jZoUXlPvRu+XKTNHkvJczc69ZGV0ddGYttVV3d+opKSLTq/Tnug3OIu1vZY7n6NZHbDNZrOaN29u93deG41GGY1GvfPOO2rfvr3GjRunefPmWabXqlVLXbp0UWxsrLp37y5PT0/Lw9BymUwm+fn5WYJ37v3Y/5xeuHBhm+oym2/8G0bcGZwXOAu9Bmei3+BM9Nud0dCGV7XdTeeHfoOz5JdesypgHzt2TC+99JKOHz+uGjVqaOrUqSpRosQtb3TPnj167733FB0dLXd3d0lSRkaG3NzctHXrVv3999/q2LGjZf6MjAwZjUZJUqVKlXTkyJE860tISNCjjz4qHx8fBQYGKiEhwTJM/OzZs0pOTs4zbBwAAABwNl7VBtz9rHqK+Icffqjq1asrKipKRYsW1ZgxY25ro1WqVJHJZNK4ceOUkZGhEydOaPTo0YqIiJCbm5tGjhypbdu2yWw2Kz4+XvPmzbM8RTwiIkIxMTHavn27MjMzNXfuXJ07d06hoaGSpPDwcEVFRenYsWO6dOmSRowYofr166ts2bK3VTMAAABgD7yqDbh7WXUF+5dfftGmTZvk5eWlypUrq1OnTre10cKFC2vWrFkaMWKEGjduLG9vb7Vu3Vp9+vSRu7u7Bg4cqA8//FCJiYkKCAhQ3759LU8uDwkJ0ZAhQyzTK1asqJkzZ8rX11eS1KdPH2VlZalTp05KTU1VgwYNNHHixNuqFwAAAACAmzGYzTcfqV6nTh3t2bPH8v3DDz+sXbt2ObSwOy0piQcy5CcGgxQQ4M15gcPRa3Am+g3ORL/Bmeg3OIu1vZY7n6NZNUT83xjGAgAAAABAXrcUsAEAAAAAQF5W3YNtMpn04osvWr5PTU3N872kPK/WAgAAAADgXmNVwO7du3ee7+vXr++QYgAAAAAAKKisCtivvvqqo+sAAAAAAKBA4x5sAAAAAADsgIANAAAAAIAdELABAAAAALADAjYAAAAAAHZg1UPOpk6detN5eBAaAAAAAOBeZlXA3rFjxw2nGwwGuxQDAAAAAEBBZVXA/vLLLx1dBwAAAAAABZpVAXvVqlUKCwvTihUrrjvPM888Y6eSAAAAAAAoeKwK2J999pnCwsI0efLka043GAwEbAAAAADAPc3qK9iStHHjRocWAwAAAABAQWVVwM71+++/69tvv9WZM2dUvHhxtWjRQhUrVnRUbQAAAAAAFBhWvwc7KipKYWFhWrJkiQ4cOKD58+erdevWmjJliiPrAwAAAACgQLDqCvYPP/yguXPnaubMmWrSpInl840bN2rgwIGqWbOmmjVr5rAiAQAAAADI76y6gv3ll19q4MCBecK1JDVv3lz9+/fnNV4AAAAAgHueVQF7//79evrpp685rUWLFvrtt9/sWhQAAAAAAAWNVQHbZDLJYDBcc5q7u7uys7PtWhQAAAAAAAWNVQG7dOnSio+Pv+a0n3/+WaVLl7ZrUQAAAAAAFDRWBezWrVtrxIgRunTpUp7Pk5KSNHz4cD3zzDOOqA0AAAAAgALDqqeId+vWTZs3b1aLFi3UrFkzBQQE6OTJk9q0aZNq1qypF1980dF1AgAAAACQr1kVsN3c3DRnzhx9/fXXWr9+veLi4lS8eHG99tpr6tixo1xcrH6dNgAAAAAAdyWrArZ0JWR36dJFXbp0cWQ9AAAAAAAUSFx6BgAAAADADgjYAAAAAADYAQEbAAAAAAA7IGADAAAAAGAHNgfsxYsXq3Xr1mrQoIFOnjyp1157TampqY6oDQAAAACAAsOmgD137lzNnj1bnTt3VnZ2tgoXLqwzZ85o5MiRjqoPAAAAAIACwaaAvWDBAk2bNk3PPfecXFxc5OPjo8mTJ+v77793VH0AAAAAABQINgXsCxcu6IEHHpAkmc1mSVLRokWVlZVl/8oAAAAAAChAbArYVatW1aJFiyRJBoNBkhQbG6tKlSrZvzIAAAAAAAoQV1tm7t+/v7p27aqVK1cqLS1NPXr00M8//6xZs2Y5qj4AAAAAAAoEmwJ2jRo1tGrVKkVHR6tatWoqUaKEhg4dqlKlSjmqPgAAAAAACgSbArYkBQYGqkePHo6oBQAAAACAAsumgF21alXLvdd5VuLqKn9/fzVr1kwDBgyQ0Wi0W4EAAAAAABQENj3kbMCAAapatao+++wzrV69WjNmzNCDDz6oLl266MMPP9Tvv/+usWPHOqpWAAAAAADyLZuuYC9evFizZ89WyZIlJUnly5dX5cqV1a1bN/Xr10+1atVS27ZtNXjwYIcUCwAAAABAfmXTFezExET5+/vn+czHx0enTp2SJPn7+8tkMtmvOgAAAAAACgibAnZwcLCGDRum9PR0SVJ6erpGjx6t2rVry2w2a9GiRapQoYJDCgUAAAAAID+zaYj40KFD1atXL9WtW1d+fn66cOGCKlasqEmTJmnHjh2aMGGCoqKiHFUrAAAAAAD5lk0BOygoSNHR0YqPj1diYqJKlSqlhx56SAaDQSVKlNC2bdvk4mLTRXEAAAAAAO4KNr8HOz09XUFBQZYHnf311186fPiwQkND7V4cAAAAAAAFhU0B+5tvvslzD3auokWLErABAAAAAPc0mwL2Z599pjfeeEOFCxfWrl271KVLF40ZM0aNGzd2VH0AAAAAABQINt0wffbsWXXp0kUhISH666+/VKNGDY0YMUJLlixxVH0AAAAAABQINgXsokWLKjMzUyVLltSff/4pSSpVqpTOnTvnkOIAAAAAACgobArYtWrV0gcffCCTyaRy5cppwYIFWr58uXx9fR1UHgAAAAAABYNN92APHDhQgwcPVmpqqt555x298sorMplMGjlypKPqAwAAAACgQLApYO/atUtTpkyRh4eHihcvru3btyszM1Oenp6Oqg8AAAAAgALBpiHiQ4cOlYvL/y/i6upKuAYAAAAAQDYG7AcffFCxsbGOqgUAAAAAgALLpiHiycnJ6t+/v95//30FBATIYDBYpm3YsMHuxQEAAAAAUFDYFLBfeOEFR9UBAAAAAECBZlPAfvbZZy1/Pn/+vPz9/e1eEAAAAAAABZFN92BnZWVpwoQJqlu3rpo3b65jx46pXbt2Onv2rKPqAwAAAACgQLApYE+ZMkXbt2/XpEmT5ObmpqJFi6pEiRL6+OOPHVUfAAAAAAAFgk1DxGNiYrRgwQIFBgbKYDDIy8tLI0eOVGhoqKPqAwAAAACgQLDpCnZaWprlvmuz2SxJMhqNed6NDQAAAADAvcimZFy7dm1NnTpVkiyv6Pryyy/14IMP2r8yAAAAAAAKEJuGiL/33nvq2rWrli9frtTUVD399NNKTU3V559/7qj6AAAAAAAoEGwK2GXLltXq1av1/fff6+TJkypRooQee+wxFSlSxFH1AQAAAABQINgUsIcNG6b27dvr6aefdlQ9AAAAAAAUSDbdg33u3Dl16NBB4eHhWrBggS5evHjLG962bZvat2+vOnXqqHHjxho2bJhMJpMk6ZdfflH79u0VHBys5s2ba8mSJXmWXb58uUJDQ1W7dm2Fh4crPj7eMi07O1ujR49Wo0aNFBwcrMjISJ05c+aW6wQAAAAAwBo2BeyJEydqy5YtioiI0PLly/XII4+of//+2rVrl00bPX/+vHr16qX//Oc/iouL0/Lly7Vz507NmDFDKSkp6tmzp5555hnt2rVLw4cP18iRI7V3715J0o4dOzRs2DCNGjVKu3btUps2bRQZGanLly9LkqKiorR161Z988032rx5s4xGowYPHmxTfQAAAAAA2MqmIeKS5O3treeff17PP/+8tm3bpkGDBik6OloHDhyweh3+/v766aefVKRIEZnNZiUnJys9PV3+/v5at26dfH191alTJ0lSSEiIWrdurfnz56tWrVpasmSJWrVqpbp160qSunbtqkWLFik2Nlbt2rXTkiVL1K9fP5UsWVKSNGjQIDVp0kTHjh1TmTJlrK7xfw9JRz6Rez44L3A0eg3ORL/Bmeg3OBP9Bmexttec1Ys2B+zU1FStXbtWK1as0N69e/XYY49p2LBhNm8498FoTZs2VWJiourVq6fw8HBNnDhRlStXzjNvxYoVtXTpUklSQkKC2rVrd9X0gwcP6uLFizp9+nSe5QMCAuTj46NDhw7ZFLCLFvW2eZ/geJwXOAu9Bmei3+BM9BuciX6Ds+SXXrMpYL/99tvauHGjSpQoofbt22vSpEny9/fX+fPnb7mAdevWKSUlRf369dNrr72mwMBAeXp65pnHaDQqLS1N0pWAf73pqampkiQvL6+rpudOs9a5cxdlNtu6N3AUg+HKXxrOCxyNXoMz0W9wJvoNzkS/wVms7bXc+RzNpoDt6uqqmTNnql69epKkP//8UxMnTlR0dLR+/vnnWyrAaDTKaDTqnXfeUfv27dW5c+erHp5mMplUuHBhSZKnp6flYWj/nO7n52cJ3rn3Y19reWuZzeKHQT7EeYGz0GtwJvoNzkS/wZnoNzhLfuk1mx5yNnr0aNWrV09xcXGKjIxUq1at9Msvv+idd96xaaN79uzRU089pYyMDMtnGRkZcnNzU8WKFXXkyJE88yckJKhSpUqSpEqVKl13uo+PjwIDA5WQkGCZdvbsWSUnJ1817BwAAAAAAHuyOmDn5OQoNjZW7du3V/fu3bV582ZNnz5dK1eutDyQzFpVqlSRyWTSuHHjlJGRoRMnTmj06NGKiIjQk08+qaSkJM2dO1eZmZnavn27YmJiLPddR0REKCYmRtu3b1dmZqbmzp2rc+fOKTQ0VJIUHh6uqKgoHTt2TJcuXdKIESNUv359lS1b1qYaAQAAAACwhVVDxL/44gvNmzdPOTk5+s9//qOZM2fqqaeeuuWrwoULF9asWbM0YsQINW7cWN7e3mrdurX69Okjd3d3zZkzR8OHD9fkyZPl7++vwYMHq2HDhpKuPFV8yJAh+vDDD5WYmKiKFStq5syZ8vX1lST16dNHWVlZ6tSpk1JTU9WgQQNNnDjxluoEAAAAAMBaBrP55iPVq1atqueff14DBgyQu7u7JKlhw4ZauXKlAgMDHV7knZCUxAMZ8hODQQoI8Oa8wOHoNTgT/QZnot/gTPQbnMXaXsudz9GsGiL+/vvva8eOHWratKkmTJigxMREGXipHQAAAAAAFlYF7E6dOmn16tUaP368EhISFBoaqr///lvbtm1Tdna2o2sEAAAAACDfs+kp4iEhIfr000+1Zs0ade3aVaNGjdIjjzyiUaNGOao+AAAAAAAKBJsCdq6goCC988472rRpk9566y3t3LnT3nUBAAAAAFCg3FLAzuXu7q6IiAgtW7bMXvUAAAAAAFAg3VbABgAAAAAAVxCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2ANzDYmNjFBHR2qp5Z8+erldf7SlJWrdujV544TlHlgYAAFDguN7pAgAABU+LFi3VokXLO10GAABAvkLABoB85tSpk2rfvo3eeKOf5s37XOnpJjVp8qjeequ/ChcuovXrv9WXX36u06dPKSiojF555VXVr99QkvTqqz1Vs2Yt7dv3iw4fPqjixQP10ku99PjjoZKk//73qMaMGaFDhw6oZMlSqlOnXp5t//JLvGbMmKbffz8ib+/71KJFS3Xp8rLc3d3zzBcbG6M5c2Zo6dIY7dkTpxEjhqp162e0fPlSpaenq06dunrvvSEqXLiIJCkmZoUWLfpaZ84kqkSJEnrhha4EdAAAcNdhiDgA5FM//LBRX3yxUF9//Y2OHTum8eNHa9u2LRo7dqTefPNdxcZu1Msv99KgQe/qjz9+tywXHb1cr7/+tmJjN6pp0+YaM2a40tPTlZWVpXfeeV3ly1fQqlXr9eGHI7Rp0w+W5f7666jefLOPmjZtrpiY7zRhwqfasmWTpk2bfNNaT58+pbNnz2rRouWaOfML/frrPi1btlTSlTA+deoEvfnmO1qzZqNef72fxo0bpR9//N7uxwwAAOBOImADQD712mtvyc/PT0WLBqh791f0/fcbtHTpYj3zTIRq166jQoUKqXHjR9S48SNaufIby3LNmj2uypWrys3NTS1bhunSpUu6cOGC9u37RYmJp9Wnz+vy8PBQ+fIV1LHjC5bl1q1bqwoVKuq55/4jNzc3lS5dRq+80kcxMcuVk5Nz03q7desuDw+jSpcuozp16unYsf9KklavjlbbtuGqW/dhFSpUSHXrPqy2bcO1cuUy+x80AACAO4gh4gCQT5UuXdby58DAEsrIyNBffx3Vzz/v1ooVSy3TsrOzVbfuw5bv/f2LWv7s6nrlx7zZnKOzZ8/K19dXHh5Gy/SgoNKWP58/f06lSgXlqaFkySClp6frwoXzN623aNGAPNs1m803XO+WLZtuuk4AAICChIANAPlUUtIZlS1bTpJ08uQJGY1GlShRUm3ahKtz566W+U6fPi0PD4+bri8wMFDJyclKS0uTl5eXJOns2UTL9JIlS101bPvEieNyd3fXfff53PJ+lCxZSidOnLhqvf8M5AAAAHcDhogDgJOYzWYlp2XqZIpJyWmZliu81xMVNVWpqZeUlHRWs2dP11NPtVJ4eHstXbpQBw78Jkk6eHC/und/QevXf3vT7desWUtlytyviRPHyGQy6fjxY1qw4CvL9CeeeFJHj/6hxYsXKDMzUydOHNeMGZ8qNPQpubm53fJ+h4U9o5Url2n37l3Kzs7Wnj1xio5erlat2tzyOgEAAPIjrmADgINdNGVp1f5ELd5zQsdTTJbPS/sY9VydIIVVD5S38eofx6VLl1Hnzh1kMpnUosVTiox8TR4eHrp8+bJGjBiqxMRE3XfffXruuecVEdHhpnUUKlRIY8dO0iefjFDr1qHy9y+qJk2a6scfN0q6cqV53Lipmj59qubMmS4PDw898cRT6tkz8rb2v3nzJ5SWdkkTJoxRYuIpFStWXL17v6annmp1W+sFAADIbwzmm11CuUclJV0URyb/MBikgABvzgsczt69tu3oefWP3i9T5pWHhP1zlYb//dfo5qLRbaorpJy/pP9/TdeSJdEqWbLU7ReBfIufbXAm+g3ORL/BWazttdz5HI0h4gDgINuOntcby36VKTNHZuUN1/rf92ZJpswcvbHsV207evMHiQEAACD/ImADgANcNGWpf/R+mc1XB+t/M0sym6X+0ft10ZTljPIAAADgAARsAHCAVfsTLVeurZF7JXv1/kSVLFlKW7bEMTwcAACggCFgA4Cdmc1mLd5z4uYzXsOiPSdu+nRxAAAA5E8EbACws5TLWTqeYrL66nUus6TjKSalMEwcAACgQCJgA4CdpWVm397yGbe3PAAAAO4MAjYA2JmXW6HbW9799pYHAADAnUHABgA78/F0VWkfo+U919YySCrtY5SP0dURZQEAAMDBCNgAYGcGg0HP1Qm6pWU71AmSwWBrNAcAAEB+QMAGAAcIqx4oo5uL1VexXQyS0c1FraoHOrQuAAAAOA4BGwAcwNvoqtFtqstg0E1Ddu70T9pUlzfDwwEAAAosAjYAOEhIOX9NDK9puZL976Cd+5nRzUWTwmuqYTl/5xcJAAAAu+FSCQA4UEg5f63u2VCr9ydq0Z4TOp5iskwL8jGqQ50ghdUIVBEPfhwDAAAUdPyLDgAczNvoqo51gtQhuJRSTFlKy8iWl3sh+RhdeaAZAADAXYSADQBOYjAY5OvpJl9PtztdCgAAAByAe7ABAAAAALADAjYAAAAAAHZAwAYAAAAAwA4I2AAAAAAA2AEBGwAAAAAAOyBgAwAAAABgBwRsAAAAAADsgIANAAAAAIAdELABAAAAALADAjYAAAAAAHZwRwL2wYMH1a1bN9WvX1+NGzfWu+++q/Pnz0uShgwZopo1ayo4ONjytWjRIsuyy5cvV2hoqGrXrq3w8HDFx8dbpmVnZ2v06NFq1KiRgoODFRkZqTNnzjh9/wAAAAAA9x6nB2yTyaTu3bsrODhYW7Zs0apVq5ScnKz33ntPkrRv3z4NGzZM8fHxlq8OHTpIknbs2KFhw4Zp1KhR2rVrl9q0aaPIyEhdvnxZkhQVFaWtW7fqm2++0ebNm2U0GjV48GBn7yIAAAAA4B7k9IB98uRJVa1aVX369JG7u7v8/PzUoUMH7dq1SxkZGTp8+LBq1qx5zWWXLFmiVq1aqW7dunJzc1PXrl3l5+en2NhYy/QePXqoZMmSKlKkiAYNGqRNmzbp2LFjztxFAAAAAMA9yNXZGyxfvrxmzZqV57Nvv/1WNWrU0MGDB5WVlaXJkydr9+7d8vb2Vrt27dS9e3e5uLgoISFB7dq1y7NsxYoVdfDgQV28eFGnT59W5cqVLdMCAgLk4+OjQ4cOqUyZMjbVaTDc+j7C/nLPB+cFjkavwZnoNzgT/QZnot/gLNb2mrN60ekB+5/MZrMmTpyo77//Xl999ZWSkpJUv359de7cWePHj9eBAwfUp08fubi4qHv37kpNTZWnp2eedRiNRqWlpSk1NVWS5OXlddX03Gm2KFrU+9Z3DA7DeYGz0GtwJvoNzkS/wZnoNzhLfum1OxawL126pIEDB+q3337TV199pSpVqqhKlSpq3LixZZ5atWqpS5cuio2NVffu3eXp6SmTyZRnPSaTSX5+fpbgnXs/9j+nFy5c2Ob6zp27KLP5FnYMDmEwXPlLw3mBo9FrcCb6Dc5Ev8GZ6Dc4i7W9ljufo92RgP3XX3+pR48eKlWqlJYuXSp/f39J0vr165WUlKSOHTta5s3IyJDRaJQkVapUSUeOHMmzroSEBD366KPy8fFRYGCgEhISLMPEz549q+Tk5DzDxq1lNosfBvkQ5wXOQq/Bmeg3OBP9Bmei3+As+aXXnP6Qs5SUFHXp0kV16tTR7NmzLeFaujJkfOTIkdq2bZvMZrPi4+M1b948y1PEIyIiFBMTo+3btyszM1Nz587VuXPnFBoaKkkKDw9XVFSUjh07pkuXLmnEiBGqX7++ypYt6+zdBAAAAADcY5x+BXvZsmU6efKk1qxZo7Vr1+aZFh8fr4EDB+rDDz9UYmKiAgIC1LdvX7Vt21aSFBISoiFDhlimV6xYUTNnzpSvr68kqU+fPsrKylKnTp2UmpqqBg0aaOLEiU7eQwAAAADAvchgNueHC+n5T1IS94vkJwaDFBDgzXmBw9FrcCb6Dc5Ev8GZ6Dc4i7W9ljufozl9iDgAAAAAAHcjAjYAAAAAAHZAwAYAAAAAwA4I2AAAAAAA2AEBGwAAAAAAOyBgAwAAAABgBwRsAAAAAADsgIANAAAAAIAdELABAAAAALADAjYAAAAAAHZAwL4LnTp1Uk2a1NOpUycdsv558+bo7bdfc8i6AQAAAKCgcr3TBaDgefHFl+50CQAAAACQ7xCw73Lnz5/T1KkTFRe3UwaDQU2aPKo+fV6Xl1dhSdKuXds1Y8Y0HT36p3x9/dSxYye1a9dBkrRu3Vp9+eUcnT59SsWLB+qll3rp8cdDNXv2dMXH79bUqTMUGxujmJgVqlKlmtavXyvpyjb69RsoV1dX5eTkaP78eYqJWa6UlGSVLXu/unePVIMGIXfwqAAAAACA/TFE/C6Wk5OjAQPelsFg0MKFyzRv3kKdPXtWo0cPlyT99dd/1b//W2rbtp3WrPlew4aN1vTp07Rjxzbt2ROnUaM+Uu/er+nbb39U375vadiw9/Xnn39ctZ19+36Rn5+fVqxYqzFjJmrDhnX64YcNkqTPP5+p5cuXaNiw0Vq9eoM6duysgQPf1oEDvzn1WAAAAACAoxGw72IpKck6dOiA3n57gLy8CsvHx1evvvqGNmxYp5SUZK1f/60qV66qsLC2cnV1VdWq1TRt2ixVrlxVa9eu1qOPNlNISBO5uLioYcNGioqarWLFil+1HQ8PD7344ktydXVVtWo1VLFiJR079pckafXqaL3wQldVqVJVrq6uevzxUDVu/KhWrVrp7MMBAAAAAA7FEPG7WHz8buXk5Cg8/Ok8n7u7u+vkyRM6dy5JgYEl8kyrWLGSJCkpKUmVK1fJM61atRrX3I6fn78MBoPl+0KFrgwNl6QLF86rVKmgPPOXLFlKCQlHbm2nAAAAACCfImDfxWrVqi0PDw+tXr1BhQoVkiRlZGTo1KmTCgoqreLFA/XHHwl5llm9Olp+fv4KDAxUYuLpPNMWLPhKNWs+aFMNJUqU1IkTx/N8dvLkcQUEBNzCHgEAAABA/sUQ8QLEbDYrOS1TJ1NMSk7LlNlsvuH8fn7+Kl26rKZOnai0tDSlp5s0efJ4vf56pLKzs/XEE0/q0KFDWrNmlbKzs3Xw4AFNmTJBrq6uatkyTD/++L127tyunJwc7dixTXPmTFfhwkVsqrl162c0f/4XOnTooLKzs7Vx43pt2bJJLVuG3c6hAAAAAIB8hyvYBcBFU5ZW7U/U4j0ndDzFZPm8tI9Rz9UJUlj1QHkbrz6VhQoV0iefTNCnn05Ux47PKiMjXdWq1dCECZ/Kw8NDQUGlNXbsJEVFTdHEiWPk5+evvn3fVP36DSVJgwcP1aefTtSpU6dUokQJffjhCJUvX0Hff7/e6to7dOik7OwcDRkyUOfOJal06TIaOnSEgoPr3v6BAQAAAIB8xGC+2WXQe1RS0kXlhyOz7eh59Y/eL1PmlXua/1lS7l3PRjcXjW5TXSHl/J1en7MYDFJAgHe+OS+4e9FrcCb6Dc5Ev8GZ6Dc4i7W9ljufozFEPB/bdvS83lj2q0yZOTIrb7jW/743SzJl5uiNZb9q29Hzzi8SAAAAACCJgJ1vXTRlqX/0fpnNVwfrfzNLMpul/tH7ddGU5YzyAAAAAAD/QsDOp1btT7RcubZG7pXs1fsTHVkWAAAAAOA6CNj5kNls1uI9J25p2UV7Ttz06eIAAAAAAPsjYOdDKZezdDzFZPXV61xmScdTTEphmDgAAAAAOB0BOx9Ky8y+veUzbm95AAAAAIDtCNj5kJdbodtb3v32lgcAAAAA2I6AnQ/5eLqqtI/R8p5raxkklfYxysfo6oiyAAAAAAA3QMDOhwwGg56rE3RLy3aoEySDwdZoDgAAAAC4XQTsfCqseqCMbi5WX8V2MUhGNxe1qh7o0LoAAAAAANdGwM6nvI2uGt2mugwG3TRk507/pE11eTM8HAAAAADuCAJ2PhZSzl8Tw2tarmT/O2jnfmZ0c9Gk8JpqWM7f+UUCAAAAACRJXO7M50LK+Wt1z4ZavT9Ri/ac0PEUk2VakI9RHeoEKaxGoIp4cCoBAAAA4E4ilRUA3kZXdawTpA7BpZRiylJaRra83AvJx+jKA80AAAAAIJ8gYBcgBoNBvp5u8vV0u9OlAAAAAAD+hXuwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAeSRnp6uM2cS73QZAAAAQIFDwAaQR58+PRQXt9Ph2wkNfUS//BLv8O0AAAAAzuJ6pwsAkL8kJ19wyna++26zU7YDAAAAOAsBG4DFm2/2UWLiaY0dO1IHD+5X5cpVtWzZEp0+fUqZmZkKDq6jgQOHyM/PT5K0ZMlCLVz4lS5fvqyHH66vrKwslS9fUS+/3Evp6SZNmTJBGzZ8J09PT7VsGaZ169Zo4MAPVKdOPTVpUk+TJ3+mOnXq6ejRPzVt2iQlJBxRcnKySpUqpcjI19S48SOSpNmzp2v16mhdvnxZQUGl1bXry2rSpKkkadeu7ZoxY5qOHv1Tvr5+6tixk9q16yCz2az587/QunVr/jfk3aCQkMYaMGCwPDyMd+oQAwAA4C7GEHEAFhMmfKrAwBLq12+gnnqqlSZOHKN+/QYoNnaD5s9fomPH/tLSpQslSevXf6s5c2boww+HKzr6Wz30UB39+OP3lnVNnjxeBw7s19y5X+urr66E9FOnTl5zu4MHv6vy5Stq8eKV+vbbH1S/fkONGzdKkrRnT5yio5drxowvFBu7QWFhbTVq1DBlZWXpr7/+q/7931Lbtu20Zs33GjZstKZPn6YdO7Zp48b1WrJkgYYPH6O1a3/Q9Omfa8eObfruu7WOP5AAAAC4J3EFG8A1VahQUV9+uVglS5bS33//raSks/L19dPZs2ckSatWrVTbtuF68MGHJEnh4e21Zk2MJCkrK0vffhur4cPHKDCwhCTp7bf7a/36b6+5rU8+maiAgGLKycnR6dOn5O19n2U77u7uunjxb0VHL1Pjxo+qdetn1LZtuAwGg9av/1aVK1dVWFhbSVLVqtU0bdosFS0aIA8Pdz344DwVLx6oCxcuKDk5WT4+Pjp79qxDjxsAAADuXQRsANfk4lJIS5Ys0Lp1a+Xp6aWKFSsqLS1VZrNZknTmTKIee+zxPMuUKhUkSUpJSZbJZFLJkiUt07y8CsvHx/ea2zpy5LAGDHhL58+f0/33PyBfX1/LdmrWrKWPP/5ES5cu1Ndfz5PRaFREREe9+OJLOncuyRLgc1WsWEmSdOnSJc2YMU1bt26Wn5+fKlWqrMzMTOXk5Njl+AAAAAD/RsAGcE2LFs3Xzp07NG/eQvn7F5Ukvfvum5bpJUqUVGLi6TzLnD59WmXLlpOfn788PDws30vS5cuXlZKSfNV2kpLO6oMPBmj48DFq0uRRSdIPP2ywDDc/ffq0/P39NX78VGVmZioubocGDXpXlStXVfHigfrjj4Q861u9Olp+fv766afNSkw8raVLo1W4cBFJ0osvdrDLsQEAAACuhXuwgXuE2WxWclqmTqaYlJyWablC/G/u7u66dOmSUlNT5erqKldXN8uQ7x07flJmZqYkqU2bZxUTs1wHDvymrKwsrV4drd9+2ydJcnFxUVhYW82ePV1JSWdlMpk0efJ4ZWdnX7W9tLRUZWdny9PTU5L0559/6PPPZ0mSMjMzdfDgb3r77b46cuSw3Nzc5Od3Jez7+PjqiSee1KFDh7RmzSplZ2fr4MEDmjJlglxdXXXp0iW5u3uoUCFXpaena8GCr/THH78rKyvL7scWAAAAkLiCDdz1LpqytGp/ohbvOaHjKSbL56V9jHquTpDCqgfK2/j/PwrCwtpqxoxPVbt2HRUvHqiIiNZyd3dX5cpVFR7+nHbvvvKO7Mcee1wnThzXgAFvKyMjQyEhjVW1anW5ublJkl55pa8mTPhEnTpFyMursNq2DZeLi4tleq6yZcupd+/X9dFHg2UymVSsWKDatHlW06ZN0u+/J+ixxx7XsWN/acCAt5SSkiw/v6J67bW3VKNGTUnS2LGTFBU1RRMnjpGfn7/69n1T9es3VFBQaY0c+ZFatw6Vp6eXatWqrSeffFq//573ijcAAABgLwbz9S5j3eOSki6KI5N/GAxSQIA358VG246eV//o/TJlXrnv+J+HzvC//xrdXDS6TXWFlPO3ad1HjhyWt7e3SpT4//usX3rpBT3zTDu1afOsfv55jypUqCRvb29JV65Ut2jRVAsWLFOZMmVvZ7ccil6DM9FvcCb6Dc5Ev8FZrO213PkcjSHiwF1q29HzemPZrzJl5sisvOFa//veLMmUmaM3lv2qbUfP27T+PXt2qX//N3XuXJLMZrM2bFino0f/VL169SVJCxd+pUmTxio93aT09HTNmvWZypa9P1+HawAAAOB2MEQcuAtdNGWpf/R+mc1XB+t/M//vf/pH79fqng3zDBe/kXbtOuj06dN66aVOSku7rPvvL6fRo8dZniT+9tsDNH78aD37bCvl5GSrVq3aGjNm0m3tFwAAAJCfMUT8OhjOkr8wzMg2C/ac0ITvf79puP4ng6S3mlVQxzpBjiqrQKDX4Ez0G5yJfoMz0W9wFoaIA3Aos9msxXtO3NKyi/acuO7TxQEAAADcGAEbuMukXM7S8RSTTVevpStDxY+nmJRi4jVWAAAAwK24IwH74MGD6tatm+rXr6/GjRvr3Xff1fnzVx6w9Msvv6h9+/YKDg5W8+bNtWTJkjzLLl++XKGhoapdu7bCw8MVHx9vmZadna3Ro0erUaNGCg4OVmRkpM6cOePUfQPutLTMq981bdPyGbe3PAAAAHCvcnrANplM6t69u4KDg7VlyxatWrVKycnJeu+995SSkqKePXvqmWee0a5duzR8+HCNHDlSe/fulSTt2LFDw4YN06hRo7Rr1y61adNGkZGRunz5siQpKipKW7du1TfffKPNmzfLaDRq8ODBzt5F4I7ycit0e8u7397yAAAAwL3K6U8RP3nypKpWrao+ffqoUKFCcnd3V4cOHfTuu+9q3bp18vX1VadOnSRJISEhat26tebPn69atWppyZIlatWqlerWrStJ6tq1qxYtWqTY2Fi1a9dOS5YsUb9+/VSy5JX38g4aNEhNmjTRsWPHVKZMGZvqNBhuPg+cJ/d8cF5uztfLVaV9jTqRbNswcYOkIF+jfD1d7+njTK/Bmeg3OBP9Bmei3+As1vaas3rR6QG7fPnymjVrVp7Pvv32W9WoUUNHjhxR5cqV80yrWLGili5dKklKSEhQu3btrpp+8OBBXbx4UadPn86zfEBAgHx8fHTo0CGbA3bRoo5/whxsx3mxzktNymvYqv02L/fyI+VVrNh9Dqio4KHX4Ez0G5yJfoMz0W9wlvzSa3f0Pdhms1kTJ07U999/r6+++krz5s2Tp6dnnnmMRqPS0tIkSampqdednpqaKkny8vK6anruNFucO8crBfITg+HKXxrOi3WalfPVGDcXmTJzrLqK7WKQPFxd9Nj9vkpKuujw+vIzeg3ORL/Bmeg3OBP9Bmexttdy53O0OxawL126pIEDB+q3337TV199pSpVqsjT01MXL+b9x73JZFLhwoUlSZ6enjKZTFdN9/PzswTv3Puxr7W8Lcxm8cMgH+K8WKeIh6tGt6muN5b9Kpl1w5CdO1rmkzbVVcTDleP7P/QanIl+gzPRb3Am+g3Okl967Y48Rfyvv/5Su3btdOnSJS1dulRVqlSRJFWuXFlHjhzJM29CQoIqVaokSapUqdJ1p/v4+CgwMFAJCQmWaWfPnlVycvJVw86Be0FIOX9NDK8po5uLDPr/IJ0r9zOjm4smhddUw3L+zi8SAAAAuIs4PWCnpKSoS5cuqlOnjmbPni1/////R31oaKiSkpI0d+5cZWZmavv27YqJibHcdx0REaGYmBht375dmZmZmjt3rs6dO6fQ0FBJUnh4uKKionTs2DFdunRJI0aMUP369VW2bFln7yaQL4SU89fqng31VrMKCvIx5pkW5GPUW80qKLZXQ8I1AAAAYAcGs9m5F9I///xzjRo1Sp6enjL861Fu8fHx2rdvn4YPH67Dhw/L399fvXv3Vnh4uGWelStXKioqSomJiapYsaIGDx6shx56SJKUmZmpSZMmKTo6WqmpqWrQoIGGDRumokWL2lxnUhL3i+QnBoMUEODNebkNZrNZKaYspWVky8u9kHyMrlf9HQS9Buei3+BM9BuciX6Ds1jba7nzObweZwfsgoIfBvkLP6ThLPQanIl+gzPRb3Am+g3Okt8C9h25BxsAAAAAgLsNARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7ICADQAAAACAHRCwAQAAAACwAwI2AAAAAAB2QMAGAAAAAMAOCNgAAAAAANgBARsAAAAAADsgYAMAAAAAYAcEbAAAAAAA7MD1TheQXxkMd7oC/FPu+eC8wNHoNTgT/QZnot/gTPQbnMXaXnNWLxrMZrPZOZsCAAAAAODuxRBxAAAA/F979x4U5XX+AfwLurgQg5cmgvHSjEGg8QJLl0VB7gImkTog4AQh1FA0dCbES1WmEp0Ub8FUwLTpRSSMFyKEGEViG8qQgJaLMYid0sFFWkqEAMpCuCywwJ7fH47vLxu5xLiI2O9nhhk5Z9/znvfl4RmePe8eiYjICFhgExERERERERkBC2wiIiIiIiIiI2CBTURERERERGQELLCJiIiIiIiIjIAFNhEREREREZERsMAmIiIiIiIiMgIW2ERERERERERGwAKbiIiIiIiIyAhYYNOYq66uxoYNG6BSqeDm5oYdO3ZAo9EAAK5du4bQ0FAoFAr4+Pjgww8/NDj2448/hp+fHxwdHREcHIyrV69KfYODg3j77bfh6uoKhUKB2NhYtLS0SP2tra345S9/CaVSCRcXF+zbtw8DAwMP56JpXIwUa3v27MHixYuhUCikr6ysLOlYxhrdr9LSUoSGhsLJyQlubm5ITExEb28vAOY2Mr6R4o35jcbC4OAgIiMjER8fL7Uxt9FYGSreJmxuE0RjqKenR7i5uYnU1FTR19cnNBqNiImJEZs2bRLt7e1CpVKJkydPiv7+flFSUiIUCoW4du2aEEKIsrIyoVAoxJUrV4ROpxPvv/++cHFxEVqtVgghxLvvvisCAwNFY2Oj6OzsFJs3bxYxMTHSuSMiIsS2bduEVqsV9fX14qWXXhJHjx4dl/tAY2+kWBNCiKCgIHHmzJkhj2Ws0f1qbW0VS5YsER999JEYHBwUzc3NYvXq1SI1NZW5jYxupHgTgvmNxkZKSoqwt7cXO3fuFEII5jYaU9+NNyEmbm5jgU1jqra2VkRHR4uBgQGpraCgQDg5OYns7Gzh7+9v8Prdu3eLHTt2CCGE2LZtm0hISDDoX7VqlcjJyRFCCOHh4SFyc3Olvlu3bgk7OztRX18v6urqhK2trWhqapL6P/nkE+Hl5WX0a6RHw0ix1tfXJxYtWiTUavWQxzLW6Ifo7OwUQgih1+vF9evXhZ+fnzhx4gRzG42J4eKN+Y3GQklJiXjxxRdFXFycVPAwt9FYGSreJnJu4yPiNKYWLFiAtLQ0TJo0SWr79NNPsWjRItTU1MDW1tbg9TY2NqiurgYA3LhxY9j+zs5ONDU1GfQ/9dRTmDZtGq5fv46amhpMnz4dVlZWUv9zzz2HxsZGdHR0jMWl0jgbKdaqq6sxMDCAI0eOwNXVFQEBAfjzn/8MvV4PgLFGP8zUqVMBAJ6enggMDMTTTz+N4OBg5jYaE8PFG/MbGVtrayt27dqF3/72tzA3N5famdtoLAwXbxM5t7HApodGCIHk5GR89tln2LVrF7q7uw1+kQBALpdDq9UCwIj93d3dAAALC4t7+ru7u4c89u73d8enx9d3Y62zsxMqlQqRkZEoKirCoUOHcOLECaSnpwNgrNGDyc/PR3FxMUxNTREXF8fcRmPqu/HG/EbGpNfrsX37dmzYsAH29vYGfcxtZGwjxdtEzm0ssOmh6OrqQlxcHM6fP4+TJ0/Czs4O5ubm0gYtd/X29uKJJ54AgBH77/4S9PT0DNlvYWFxT9/d7++OT4+noWLNzc0Nx48fh0qlgkwmw9KlSxEVFYULFy4AYKzRg5HL5bCyssL27dtx8eJF5jYaU9+Nt8WLFzO/kdH86U9/gpmZGSIjI+/pY24jYxsp3iby324ssGnM1dfXY+3atejq6kJOTg7s7OwAALa2tqipqTF47Y0bN7Bw4UIAwMKFC4ftnzZtGqysrHDjxg2p79atW2hvb4etrS0WLlyI9vZ23L59W+qvra2FtbU1nnzyybG6VBpnw8VaQUEBTp8+bfBanU4HuVwOgLFG96+iogKrVq2CTqeT2nQ6HWQyGWxsbJjbyKhGire///3vzG9kNOfOncPly5ehVCqhVCqRl5eHvLw8KJVK/t1GRjdSvE3ov92M8kluomG0t7cLLy8vER8fLwYHBw36NBqNUCqV4v333xc6nU6UlpYKhUIhSktLhRBC2p2ytLRU2h3Q2dlZtLW1CSGESE5OFqtXrxb19fXS7oARERHS+C+//LLYsmWL6OzslHYHPHLkyEO7dnq4Roq1/Px8sXTpUlFSUiL0er2oqKgQLi4u4uzZs0IIxhrdv66uLuHp6Sn2798v+vr6xM2bN0VISIjYs2cPcxsZ3UjxxvxGY2nnzp3SplPMbTTWvh1vEzm3scCmMZWeni5sbW2Fg4ODcHR0NPgSQoh//OMfYt26dUKhUAhfX1/x0UcfGRx/9uxZERAQIBwdHUVISIiorKyU+nQ6nTh06JBwd3cXTk5OIjY2Vty+fVvqv3Xrlnj99deFSqUSy5YtEwcPHjTYYZoeL6PF2gcffCD8/f2Fg4OD8PX1FSdPnjQ4nrFG96umpkZs2LBBKJVK4e3tLQ4fPiz6+vqEEMxtZHwjxRvzG42Vbxc8QjC30dj6brxN1NxmIoQQD74OTkRERERERPS/jZ/BJiIiIiIiIjICFthERERERERERsACm4iIiIiIiMgIWGATERERERERGQELbCIiIiIiIiIjYIFNREREREREZAQssImIiIiIiIiMgAU2ERERERERkRFMHu8JEBERkfF0dnaiv78fM2fOHO+pPJK6u7sRGxsLrVaL/v5+/O53v8O8efPGe1pERPSY4Ao2ERFNGKdOnYKdnR0yMjLGeyoPrLq6GnZ2dvjvf/9r0O7n54fFixejq6tLauvt7cWSJUvw2WefjTqun58fampqjDZPOzs7bNy4EUIIg/YzZ87Ax8fHaOcZ6rzl5eXD9nd0dGDt2rXo6Oi4r3F7e3sRExODzMxMyOVy/Pvf/5b6srKysHfv3ge+tjfffBP5+fk/+HgiIpq4WGATEdGEcerUKbz88ss4fvw4BgYGxns6D8Te3h6zZ89GWVmZ1KZWq9HR0YG5c+eiqKhIav/iiy9gamqK5cuXjzpuW1ub0edaVFSEtLQ0o4/7IBITExEWFgZLS8v7Ou5HP/oR3N3dkZSUBK1Wi/nz50t9+fn5WLly5QPPbevWrUhKSoJGo3ngsYiIaGJhgU1ERBNCaWkpWltbER8fD71ej08//RQAsGPHDmzbts3gtZs3b8Zbb70FAKivr8drr70GFxcXeHt7Izk5GTqdDsCdVdjg4GC8+uqrUCqVOH/+PJqbm7F582b4+PjAwcEBvr6+yMnJkca+efMmoqOj4eTkhFWrViEjIwN2dnZSf1VVFSIjI+Hs7Ax/f39kZGTcs/p7l4eHh0GBXVBQAFdXV/j6+qKgoEBqLykpwfLlyyGXy1FRUYFXXnkFK1aswJIlSxAcHIzKykoAQEBAAAAgJiYGR48elY4NCQmBUqnESy+9hNzcXGnc+Ph4xMXF4YUXXsCyZctQX18/5DwjIyORmpqKioqKYX8+I93n0ebR39+PAwcOwMXFBcuWLRu1mFer1SgqKkJQUBCAOz/H8PBwvP3221CpVFi2bBlOnDiB7OxseHt746c//Sl2794NAKipqUFubi4SEhLg6+uLU6dOAbjzaL1arYazszMAYGBgAO+88w68vLzg5OSEhIQE6U2drq4uJCQkwN/fH46OjnB3d8cf//hHaX4zZsyAm5vbI/emBBERjT0W2ERENCGcOHECYWFhkMvlCA8PR3p6OgAgLCwMBQUF0iPVHR0dKCwsREhICLRaLX7+859j4cKFKC4uRmZmJkpKSvDuu+9K41ZVVSEwMBAlJSXw8/NDQkICZDIZPvnkE1RUVCAiIgKJiYno7u7G4OAgNm3ahFmzZuHSpUs4duwYzp49K43V3NyMqKgorFq1CiUlJXjvvfeQmZmJrKysIa/Jy8vL4DHogoIC+Pr6wsfHB8XFxVKBWlJSAl9fX/T29iI2NhYBAQEoLi5GeXk55s+fj6SkJACQ3nQ4evQoYmJiUF1djdjYWGzcuBHl5eVITEzE/v37cfHiRemcFy9eRGpqKvLz8w1Wc7/Nz88P69atw9atW9He3n5P/2j3ebR5vPfee/j888+Rk5ODwsJCqNXq4QMBwAcffICVK1fCzMxMavvyyy9hZWWFsrIyxMXF4cCBAygvL8eFCxeQkZGBnJwcfPHFF7CyskJhYSFCQ0NRVVWFqKgoAEBhYSHc3d0xadIk6WdpaWmJgoICZGdnIy8vD3/9618BAO+88w5u3ryJnJwcXL16FQkJCUhOTjZ43H/16tXIzs6e8E9aEBHR/WGBTUREj7yGhgZcvHgR69evB3CnqL5x4wYuX74MpVKJ2bNn4y9/+QsAIC8vDwsWLMCiRYvw+eefQ6fTYevWrZgyZQpmz56NN954Q1q1BACZTIY1a9bAzMwMcrkce/fuxZ49eyCTydDY2IgnnngCvb29+Oabb1BZWYm6ujq8+eabsLCwwJw5c7BlyxZprNzcXDz33HNYv349ZDIZbGxsEB0dbXC+b1u+fDm6urqgVqvR1NQEtVoNDw8PKBQKmJmZoby8HBqNBmq1Gp6enpDJZMjKykJ4eDh0Oh0aGhowffp0NDc3Dzn+6dOn4evrC39/f0yaNAlOTk4ICwszmI+joyNsbW1HfdR6586dmDlzJuLj4+9ZkR/tPo82j3PnziE6Ohrz5s2DhYUFEhISYGJiMuxcysrKoFAoDNosLCwQFRUFU1NTrFixAoODg4iOjoa5uTmWLFmCWbNmoaGhAZaWlkhJScGHH36Io0ePShuc/e1vf4O/v7803tSpUxETE4PJkyfDxsYG9vb20gr/66+/jpSUFEydOhVNTU2YMmUKAKClpUU6funSpdBqtaiqqhrxvhIR0eOFu4gTEdEjLzMzEwMDA1izZo3UNjAwgPT0dKhUKoSGhuLcuXMIDQ3Fxx9/jNDQUAB3CnONRiM99gsAQgj09/ejtbUVAPD000/D1PT/32/+6quvkJSUhLq6Ojz77LP48Y9/DADQ6/VoamrCjBkzYGFhIb1+7ty50r8bGhpQVVUFpVIpten1emlV9LvMzc2hUqlQVlYGU1NTODs7S4Wul5cXiouL8c0332DRokWYNWsWAKC8vBwxMTHQarWwsbHB5MmTh30EvaGhAWVlZQbzGRwcNFipvjvuaMzMzJCSkoKgoCCkp6djxowZBucZ6T6PNo+WlhbMnj1b6rO0tMS0adOGncvXX38NKysrg7bp06dLRfndn+e33zQwNTWFXq8fcryenh5cvXoVhw8fltqmTZtmUOTLZDIMDg4CAFpbW7Fv3z7861//wty5c7F48WIAMBh/ypQpmDFjBr7++ms4ODgMey1ERPR4YYFNRESPtL6+PuTk5GDfvn1wdXWV2tVqNTZu3Ija2loEBQUhJSUFJSUluH79OlavXg0AsLa2xvz586VHe4E7n59tbW2V/hurbxdR/f392LRpE7Zu3Yrw8HCYmJjgn//8p/R54WeeeQYajQY9PT0wNzcHADQ2NkrHW1tbw8XFBceOHZPa2tra0N3dPez1eXl54fLly9BqtfD19ZXafX19kZqaiu7ubmlH62vXriExMRGnT5+Wirr09HT85z//GXJsa2trBAUF4Te/+Y3U1tLSYlCQj7RS/F3z589HYmIiduzYgeDgYIPzjHSfR5uHtbU1vvrqK6lPq9Wis7Nz2HmYmJjc86bC/VzHdxUXF0OlUhk8cj6SN954Az4+Pjh27BgmT56MtrY2ZGdn3/O6gYGBYd9cISKixxMfESciokfa+fPnYWJigsDAQFhbW0tfHh4esLW1RUZGBmbOnAlvb29p46m7q5/e3t7o7u5GWloadDodOjo6sHPnTmzZsmXIgqy/vx+9vb2Qy+UwMTFBY2MjDh06JPU5ODjAxsYGBw8eRE9PD5qbm3HkyBHp+MDAQFRWViI3NxcDAwNoaWnBa6+9hoMHDw57fZ6enqioqMCVK1cM/msoNzc33Lx5E5cuXZLaOzs7YWpqCrlcDgCorKzE8ePHDTYTMzMzk4rTkJAQ5OXl4dKlS9Dr9airq0NERIT0+fUf4sUXX8TatWsNPlc+2n0ebR6hoaFIS0tDbW0t+vr6cPDgQWm1eChz5swZ9rH4HyI/Px9+fn7f+/WdnZ2Qy+WYNGkSNBoN9u7dC+BOjNzV19eHjo4Og5V5IiJ6/LHAJiKiR1pmZiYCAwMhk8nu6Vu3bh3OnTuH1tZWhIWFoaGhASEhIVL/1KlTkZGRgfLycnh4eGDlypUwNTXFH/7whyHPZWFhgf379+P3v/89FAoFXnnlFbi5ueGpp56CWq2Gqakpjhw5grq6OixfvhxRUVFwdnaW5jZnzhykpaUhKysLrq6uWLNmDRYsWDBigT1v3jxYWlri2WefxTPPPCO1m5ubw8XFBaamprC3twdwp+gODw/H+vXr4ezsjLfeeguRkZHQaDS4ffu2dE+2bduG5ORkODg44PDhwzh8+DCcnZ0REREBHx+fe3Zdv1+//vWv8ZOf/OR73+fR5hETE4Of/exniIiIwIoVK/Dkk09i+vTpw57fzc0NX3755QNdw106nQ5lZWXw9PT83sccOHAAFy5cgJOTE4KDg2FlZYXnn3/eYHO2iooKzJw5E88//7xR5klERBODiRjug1tERERkoLe3F1evXoVKpZIe/S0sLMSePXsMduamsVVdXY2oqCgUFRVJq/mPmt27d8PS0hK/+tWvxnsqRET0EHEFm4iI6HuSyWTYvHkzsrOzodfr0draivT0dHh7e4/31P6n2Nvbw93dHWfOnBnvqQxJo9GgqKgIv/jFL8Z7KkRE9JBxBZuIiOg+XLlyBUlJSaitrcWUKVMQEBCA7du3G+wsTmOvra0Nr776KjIyMkbccXw87Nq1CytWrMALL7ww3lMhIqKHjAU2ERERERERkRHwEXEiIiIiIiIiI2CBTURERERERGQELLCJiIiIiIiIjIAFNhEREREREZERsMAmIiIiIiIiMgIW2ERERERERERGwAKbiIiIiIiIyAhYYBMREREREREZwf8BJ/KWSC3/r+wAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Variety Technique Technique String \\\n",
"0 nocellara_delletna 1 intensiva \n",
"1 nocellara_delletna 2 superintensiva \n",
"2 nocellara_delletna 3 tradizionale \n",
"3 leccino 2 superintensiva \n",
"4 leccino 1 intensiva \n",
"5 leccino 3 tradizionale \n",
"6 frantoio 2 superintensiva \n",
"7 frantoio 1 intensiva \n",
"8 frantoio 3 tradizionale \n",
"9 coratina 3 tradizionale \n",
"10 coratina 2 superintensiva \n",
"11 coratina 1 intensiva \n",
"12 taggiasca 1 intensiva \n",
"13 taggiasca 2 superintensiva \n",
"14 taggiasca 3 tradizionale \n",
"15 pendolino 2 superintensiva \n",
"16 pendolino 1 intensiva \n",
"17 pendolino 3 tradizionale \n",
"18 moraiolo 1 intensiva \n",
"19 moraiolo 2 superintensiva \n",
"20 moraiolo 3 tradizionale \n",
"\n",
" Avg Olive Production (kg/ha) Avg Oil Production (L/ha) \\\n",
"0 13484.387297 2938.696221 \n",
"1 20366.973335 4485.937492 \n",
"2 7925.814903 1778.308342 \n",
"3 15997.073399 3121.799469 \n",
"4 9025.145010 1773.563999 \n",
"5 10108.938875 1997.846706 \n",
"6 24265.376105 5969.363987 \n",
"7 24967.326713 6123.112604 \n",
"8 10351.946892 2525.767703 \n",
"9 12170.662614 3084.580532 \n",
"10 19291.711929 4912.670225 \n",
"11 23042.166618 5897.571654 \n",
"12 8659.152131 1730.266104 \n",
"13 18886.132975 3872.392231 \n",
"14 5414.742282 1086.460741 \n",
"15 16312.507500 2931.346981 \n",
"16 14916.874917 2689.451894 \n",
"17 12279.430682 2203.132618 \n",
"18 10384.336363 2266.477978 \n",
"19 34375.209178 7479.435940 \n",
"20 10014.347057 2172.626249 \n",
"\n",
" Avg Water Need (m³/ha) Oil Efficiency (L/kg) \\\n",
"0 33768.971526 0.217933 \n",
"1 36053.911751 0.220255 \n",
"2 26406.432054 0.224369 \n",
"3 20134.892898 0.195148 \n",
"4 13425.362086 0.196514 \n",
"5 22895.581275 0.197632 \n",
"6 28810.421723 0.246003 \n",
"7 34101.902697 0.245245 \n",
"8 22178.839690 0.243990 \n",
"9 38177.969803 0.253444 \n",
"10 37446.029717 0.254652 \n",
"11 53775.708012 0.255947 \n",
"12 20269.923048 0.199819 \n",
"13 28991.283481 0.205039 \n",
"14 20372.596517 0.200649 \n",
"15 21910.021485 0.179699 \n",
"16 29764.139976 0.180296 \n",
"17 27553.909208 0.179417 \n",
"18 23823.097838 0.218259 \n",
"19 59327.838908 0.217582 \n",
"20 37369.133353 0.216951 \n",
"\n",
" Water Efficiency (L oil/m³ water) \n",
"0 0.087024 \n",
"1 0.124423 \n",
"2 0.067344 \n",
"3 0.155044 \n",
"4 0.132105 \n",
"5 0.087259 \n",
"6 0.207195 \n",
"7 0.179553 \n",
"8 0.113882 \n",
"9 0.080795 \n",
"10 0.131193 \n",
"11 0.109670 \n",
"12 0.085361 \n",
"13 0.133571 \n",
"14 0.053330 \n",
"15 0.133790 \n",
"16 0.090359 \n",
"17 0.079957 \n",
"18 0.095138 \n",
"19 0.126070 \n",
"20 0.058140 \n",
"Comparison by Variety:\n",
" Avg Olive Production (kg/ha) Avg Oil Production (L/ha) \\\n",
"Variety \n",
"nocellara_delletna 16284.306578 3578.425947 \n",
"leccino 11690.863663 2292.609987 \n",
"frantoio 20596.625089 5056.518126 \n",
"coratina 18446.388159 4704.216038 \n",
"taggiasca 9980.436088 2022.517414 \n",
"pendolino 14761.447671 2654.172853 \n",
"moraiolo 16231.746411 3531.590204 \n",
"\n",
" Avg Water Need (m³/ha) Oil Efficiency (L/kg) \\\n",
"Variety \n",
"nocellara_delletna 34061.917853 0.219747 \n",
"leccino 18024.908377 0.196103 \n",
"frantoio 28258.273811 0.245502 \n",
"coratina 44003.305214 0.255021 \n",
"taggiasca 22640.111000 0.202648 \n",
"pendolino 25766.594689 0.179804 \n",
"moraiolo 38202.360033 0.217573 \n",
"\n",
" Water Efficiency (L oil/m³ water) \n",
"Variety \n",
"nocellara_delletna 0.105057 \n",
"leccino 0.127191 \n",
"frantoio 0.178939 \n",
"coratina 0.106906 \n",
"taggiasca 0.089333 \n",
"pendolino 0.103008 \n",
"moraiolo 0.092444 \n",
"\n",
"Best Varieties by Water Efficiency:\n",
" Variety Avg Olive Production (kg/ha) \\\n",
"2 frantoio 20596.625089 \n",
"1 leccino 11690.863663 \n",
"3 coratina 18446.388159 \n",
"0 nocellara_delletna 16284.306578 \n",
"5 pendolino 14761.447671 \n",
"\n",
" Avg Oil Production (L/ha) Avg Water Need (m³/ha) Oil Efficiency (L/kg) \\\n",
"2 5056.518126 28258.273811 0.245502 \n",
"1 2292.609987 18024.908377 0.196103 \n",
"3 4704.216038 44003.305214 0.255021 \n",
"0 3578.425947 34061.917853 0.219747 \n",
"5 2654.172853 25766.594689 0.179804 \n",
"\n",
" Water Efficiency (L oil/m³ water) \n",
"2 0.178939 \n",
"1 0.127191 \n",
"3 0.106906 \n",
"0 0.105057 \n",
"5 0.103008 \n"
]
}
],
"execution_count": 25
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Analisi della Relazione tra Meteo e Produzione"
]
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-23T06:10:55.903873Z",
"start_time": "2024-10-23T06:10:54.655058Z"
}
},
"source": [
"def get_full_data(simulated_data, olive_varieties):\n",
" # Assumiamo che simulated_data contenga già tutti i dati necessari\n",
" # Includiamo solo le colonne rilevanti\n",
" relevant_columns = ['year', 'temp_mean', 'precip_sum', 'solar_energy_sum', 'ha', 'zone', 'olive_prod']\n",
"\n",
" # Aggiungiamo le colonne specifiche per varietà\n",
" all_varieties = olive_varieties['Varietà di Olive'].unique()\n",
" varieties = [clean_column_name(variety) for variety in all_varieties]\n",
" for variety in varieties:\n",
" relevant_columns.extend([f'{variety}_olive_prod', f'{variety}_tech'])\n",
"\n",
" return simulated_data[relevant_columns].copy()\n",
"\n",
"\n",
"def analyze_correlations(full_data, variety):\n",
" # Filtra i dati per la varietà specifica\n",
" variety_data = full_data[[col for col in full_data.columns if not col.startswith('_') or col.startswith(f'{variety}_')]]\n",
"\n",
" # Rinomina le colonne per chiarezza\n",
" variety_data = variety_data.rename(columns={\n",
" f'{variety}_olive_prod': 'olive_production',\n",
" f'{variety}_tech': 'technique'\n",
" })\n",
"\n",
" # Matrice di correlazione\n",
" plt.figure(figsize=(12, 10))\n",
" corr_matrix = variety_data[['temp_mean', 'precip_sum', 'solar_energy_sum', 'olive_production']].corr()\n",
" sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')\n",
" plt.title(f'Matrice di Correlazione - {variety}')\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
" # Scatter plots\n",
" fig, axes = plt.subplots(2, 2, figsize=(20, 20))\n",
" fig.suptitle(f'Relazione tra Fattori Meteorologici e Produzione di Olive - {variety}', fontsize=16)\n",
"\n",
" for ax, var in zip(axes.flat, ['temp_mean', 'precip_sum', 'solar_energy_sum', 'ha']):\n",
" sns.scatterplot(data=variety_data, x=var, y='olive_production', hue='technique', ax=ax)\n",
" ax.set_title(f'{var.capitalize()} vs Produzione Olive')\n",
" ax.set_xlabel(var.capitalize())\n",
" ax.set_ylabel('Produzione Olive (kg/ettaro)')\n",
"\n",
" plt.tight_layout()\n",
" plt.show()\n",
"\n",
"\n",
"# Uso delle funzioni\n",
"full_data = get_full_data(simulated_data, olive_varieties)\n",
"\n",
"# Assumiamo che 'selected_variety' sia definito altrove nel codice\n",
"# Per esempio:\n",
"selected_variety = 'nocellara_delletna'\n",
"\n",
"analyze_correlations(full_data, selected_variety)"
],
"outputs": [
{
"data": {
"text/plain": [
"<Figure size 1200x1000 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAPeCAYAAAD5yuRCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACk/0lEQVR4nOzdeZyN5f/H8feZfTEY61jGNtYIwzAlsleUrZBIloRki7LUj6Isfck6SHaRJSlEliSp7KGIhDCMBjO22bfz+8PX+TrmVo7O4vB6Ph7n8ejc93Xu+dy3mWrePtd1mcxms1kAAAAAAACw4uHqAgAAAAAAAO5FhCYAAAAAAAAGCE0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAUITALgHmM1mV5cA4D7Bv08AALAfQhMAuAMdO3ZUuXLl1K5du9uOef3111WuXDkNGTLEpmvv3btXPXr0+MdxU6dOVbly5Wy6tr2cOXNG5cqV08qVKyVJO3fuVLly5bRz585//Oyvv/6qN998U/Xq1VPlypXVsGFD/d///Z+io6MdXfYdKVeunKZOnWrXaw4ZMkQNGjSw6zUfRCtXrlS5cuV05swZSe71XBs0aGDzvws6duyojh07Wt7fzffmZ599pg8++MCmzwAAgNsjNAGAO+Th4aH9+/fr3Llz2c4lJyfru+++u6vrfvbZZzp27Ng/jmvTpo2WLVt2V1/D3ipWrKhly5apYsWKfztu8eLFateuneLi4jRw4EDNmjVLPXv21O7du/Xcc8/p0KFDTqrYuXr16qWoqChXl4EH0IwZM3T58mVXlwEAwH2D0AQA7tBDDz0kX19frV+/Ptu5b7/9Vr6+vipYsKDDvn5ISIiqVq3qsOvbIkeOHKpatapy5Mhx2zF79+7VqFGj1L59e82dO1fNmjVTZGSk2rRpoyVLliggIEBDhw51YtXOU6xYMT300EOuLgMAAAD/EqEJANyhgIAA1a1bV19//XW2c+vWrdNTTz0lLy8vq+Px8fEaMWKE6tevr0qVKqlmzZp67bXXrKYbfPHFFzp79qxl+suNqTDz5s1TkyZNVLNmTa1cudJwes7atWv17LPPqkqVKqpXr57GjRuntLQ0y/mjR4+qR48eqlatmqpVq6bXXnvtjqbFbNy4Uc2bN1flypXVqlUrHTlyxOr8nUzPmTNnjoKCgjRgwIBs5/LkyaMhQ4boiSeeUEJCgtVzfPbZZxUeHq7HHntMw4cP15UrVyznp06dqsaNGysqKkqRkZFq1KiRLl26pAYNGmj06NHq1KmTqlWrpuHDh0uSLl++rOHDh6tWrVp6+OGH1bZtW23fvv1v7/3IkSPq3bu3HnnkEVWsWFF16tTR+++/r5SUFEsN5cqVM3zdmI5x6zSSzMxMLV68WM2aNVPlypVVr149jR8/XqmpqZYxQ4YMUefOnfX555/rySefVKVKldS8eXNt3brVqr6YmBgNGDBANWvWVJUqVdSpUyf99ttvf3tPd2rlypV66KGHdODAAT3//PN6+OGHVa9ePc2aNctq3LVr1zRmzBg1atRIDz/8sJ555hmtWLHCaozZbNbixYv19NNPq3LlymrcuLFmzZpltd7Gnj179OKLL6pKlSqqWbOmBg8erPj4+DuuNyUlRR9++KGeeOIJVapUSdWqVVOXLl10+PBhy5ghQ4aoU6dOeueddxQREaFWrVopIyPjH382bXHkyBF16dJF4eHhql+/vlavXp1tTFZWlj7++GM1btxYlSpV0pNPPqlPPvnEpq/zT9/PDRo00NmzZ/XFF19YpjXd6Z/pmTNnNGjQINWuXVsVK1bUo48+qkGDBunSpUs2Pw8AAO4nXv88BABwQ9OmTdWvXz/FxMSocOHCkqSEhAR9//33mjdvnr7//nvLWLPZrB49eujKlSsaOHCg8ufPr8OHD2vy5MkaPny45s6dq169eik+Pl6//faboqKiVKxYMSUlJUmSJk6cqOHDhytnzpyqVKmSPv/8c6tali5dqnfeeUetW7fW66+/rjNnzug///mPLl26pNGjR+vPP/9Uu3btVKpUKY0dO1aZmZmaMWOGXnjhBa1atUp58+Y1vMdvv/1Wffv21dNPP6033nhDR44c0ZtvvmnTczKbzfrhhx/UoEED+fv7G4556qmnrN5Pnz5dkydPVvv27fX6668rOjpakydP1v79+7V8+XL5+flJuh4abNq0SRMmTNClS5cUHBws6fpUoA4dOqh79+7y8/NTamqqOnXqpIsXL+r1119XgQIF9Pnnn6tbt26aPXu2Hn300Ww1nT9/Xh06dFDVqlU1duxY+fj46LvvvtOCBQuUL18+9ezZU23atFGdOnWsPvfxxx9r69atatWqleG9Dh8+XF9++aW6deummjVr6rffftO0adN0+PBhzZ49WyaTSZJ08OBBnT9/Xn379lWOHDk0efJk9e3bV99//71y5cql+Ph4tWvXTv7+/ho2bJj8/f21YMECdejQQStWrFBYWJhNf05GsrKy1L9/f3Xu3Fn9+/fXihUrNH78eJUvX1516tRRSkqK2rdvr4sXL6pPnz4KDQ3VN998o7ffflsXL15Uz549JUkTJkzQnDlz1LlzZz322GM6dOiQJk6cqLS0NL322mvavXu3unTpokceeUSTJk3SlStXNHnyZL300ktasWKF5c/77wwaNEi7d+/WwIEDVaxYMZ08eVKTJ0/W66+/rq+//tryXPfs2SOTyaSpU6cqMTFRnp6e//izeadiY2P14osvqlixYho3bpwSEhI0fvx4xcXFWY179913tXLlSvXo0UPh4eHavXu3Ro8eratXr+q11177x69zJ9/PUVFR6t69ux566CH16tVLBQoUuKM/0+TkZL300ksKDg7WO++8o6CgIO3du1fTpk2Tr6+v3nvvvTt+HgAA3G8ITQDABvXq1VNAQIDWr1+vrl27SpI2bdqkPHnyqHr16lZjz58/L39/fw0ePFgRERGSpMjISJ05c0ZLly6VdH0aR548eeTj42OZenMjNHniiSfUunVrwzqysrIsXRejRo2yHE9NTdUXX3yhtLQ0RUVFyc/PT/Pnz7dMo3n00UfVqFEjzZ49W4MHDza89rRp01SxYkV9+OGHkqTHH39ckizv78SlS5eUmpqqokWL3tH4K1euaMaMGWrTpo3eeecdy/GyZcuqQ4cOWrlypdq3by9JysjI0ODBg1WrVi2raxQoUEBDhgyRh8f1Jsrly5fryJEjWr58uapUqWK5l44dO2r8+PHZQijpemdOhQoVNHnyZMszq1WrlrZv367du3erZ8+eCgkJUUhIiOUz69at0+bNm/XOO+8oMjIy2zWPHTumFStWqH///nr11VclSY899pgKFCigQYMG6fvvv1fdunUlXe/gWLlypYoVKybpenfTiy++qB07dujJJ5/UggULdPnyZS1ZskRFihSx3FPTpk01efJkTZky5Y6e998xm83q1auX2rRpI0mqXr26Nm3apO+++0516tTRypUrdfToUX366aeW7/k6deooIyND06dPV7t27eTh4aF58+apY8eOGjRokOWe4+PjtXfvXknXv59KliypmTNnytPTU5JUpUoVPf300/r888/VoUOHv60zLS1NiYmJGjZsmJo2bSpJqlmzphITEzV27FhduHDBEhpkZGRoxIgRKl68uKTrQcc//Wzeqfnz5ysjI0OzZs2yBJElS5ZU27ZtLWP+/PNPLV++XAMGDFD37t0lSbVr15bJZNLMmTPVvn17S/h3O6tWrfrH7+eHHnpIPj4+ypMnj9VUvn/6Mz158qRCQkI0duxYy/feI488ol9//VW7du2y6XkAAHC/YXoOANjAz89PDRo0sJqis3btWjVt2tTyt9o3FCxYUAsXLlRERIRiYmK0fft2LVq0SD///LPS09P/8WuVLVv2tuf+/PNPXbx4UY0aNbI63rlzZ61atUo+Pj7asWOHIiMj5efnp4yMDGVkZChHjhyKiIjQTz/9ZHjdlJQUHTp0SA0bNrQ63qRJk3+s92Y3govMzMw7Gr9//36lpaWpWbNmVscjIiJUpEiRbNOAjJ5NWFiY5etK0vbt25U/f35VrFjRcv+ZmZmqX7++Dh48aDXt54batWtr0aJF8vX11Z9//qktW7boo48+Unx8vNW0pxsOHTqkoUOH6vnnn7eEOre68Uvnrff29NNPy9PT0+re8uTJY/mlVZIlnElOTrbcU4UKFVSwYEHLPXl4eOjxxx+/7Z+pJMvYG69/2pI2PDzc8s83fgm/Eebt2rVLRYoUyRYSNm/eXKmpqTpw4ID279+v9PR0NW7c2GrMkCFDNHfuXCUnJ+vAgQOqW7euzGazpa7Q0FCFhYXpxx9//Nv6btQ1Z84cNW3aVOfPn9fu3bu1bNkybdmyRZKsfsb8/Pysnuu//dm82d69e1W1alWrzq0qVapYOtEkaceOHTKbzWrQoIHVn0ODBg2UmppqCZL+zt18P9/s7/5MK1SooE8//VRFixZVdHS0tm3bprlz5+rEiRM2Pw8AAO43dJoAgI2aNGliWfsgMDBQ27dvV//+/Q3Hrl69WhMmTNC5c+eUO3dulS9f/o6mHUhSvnz5bnvuxu4Yt5tic2PMunXrtG7dumzn8uTJY/iZK1euyGw2Zzt/42/s71Tu3LkVGBiomJiY245JSkpSWlqacufObfmFz+ie8+XLp2vXrmU7ZjTuZpcvX9aFCxduu8PPhQsXlCtXLqtjWVlZmjBhghYvXqykpCQVKlRIlStXlq+vr+Hne/XqpUqVKmnYsGG3vc8b95Y/f36r415eXgoODra6t1unMt0I4rKysiz3dOrUqdveU3JycrZrnDlzJlsINmbMGD377LO3rfnW71EPDw9L0HLlypW/ff5Xr161jL3d99nVq1eVlZWlWbNmZVtbQ5Lh8zaybds2jR49WidOnFBgYKDKlSunwMBASbIKhvLmzZst1Pw3P5s3u3LlimFH1c1/3jd+Xp9++mnDa8TGxv7j17mb7+eb/d2fqSTNmzdPM2fO1KVLl5QvXz5VrFhR/v7+2X72AAB40BCaAICNHn/8cQUFBWnDhg0KCgpS0aJFValSpWzj9uzZo8GDB+vFF1/Uyy+/bOka+M9//nNHf7P8d3LmzClJ2RbNvHz5sg4dOqSqVasqKChItWrVUpcuXbJ9/tYFa2/InTu3PDw8dPHixWzXtVXt2rW1c+dOpaamGv4SvHLlSo0aNUqffvqp5Ze9ixcvZluX48KFCwoNDbX56wcFBalEiRIaP3684XmjX3Q//vhjzZ8/X++++66efPJJBQUFSVK2aVJpaWnq3bu3PDw8NHXqVHl7e9+2jhv3duHCBauvmZ6ebrUmy53eU82aNS1TXm7l4+OT7ViBAgWyLdJ6p9OmjOTKlUunTp3KdvzChQuSpODgYGVkZEi6/v1ZqlQpy5hz587p1KlTqlSpkkwmkzp37mwYJNxuHZybnT59Wq+99poaNmyomTNnWjpJFi9erG3btv3tZ+35sxkcHJzt50Wy/pm58fO6YMECS6hzs5u7Um7nbr6f79SaNWs0duxYDRw4UK1bt7aEXf369dOvv/5619cFAOB+wPQcALCRj4+PGjZsqI0bN+rrr7++7d8e79u3T1lZWerbt6/ll7LMzEzLNIob3QM3Tym5U6VKlVJwcLA2b95sdXzNmjV65ZVXlJqaqpo1a+rYsWOqUKGCHn74YT388MOqVKmS5s+fr02bNhle19fXV+Hh4dq4caPV30J/++23NtfYtWtXXb58WRMnTsx2Li4uTrNnz1bx4sVVtWpVValSRT4+PlqzZo3VuD179igmJkbVqlWz+evXrFlT586dU968eS33//DDD2v79u2aPXu2ZR2Nm+3du1elS5dW69atLYFJbGysjh49avnzkqRhw4bp999/1/Tp02/bTXFzHZKy3dvatWuVmZmZbZrLP13rzz//VMmSJa3uafXq1frss88M78nHx8dq7MMPP2xTUHOrGjVq6OzZs9nChdWrV8vb21uVK1dW5cqV5e3tne37c8GCBerXr5/8/Pz00EMP6cSJE1Z1lSlTRlFRUX+7K9MNBw8eVGpqqnr06GE19eZGYPJ3U5Du9GfzTjzyyCPat2+fVbfIsWPHrHapqlGjhqTra/3cfL+XL1/WpEmT7iiUvNPv57v598nevXsVFBSk7t27W76fExMTtXfvXpueBQAA9yM6TQDgLjRt2lQ9evSQh4eH/u///s9wTOXKlSVJI0eO1HPPPaerV69q0aJFlu17k5KSlCNHDuXMmVMXL17U1q1bVaFChTv6+p6enurTp49Gjhypd999V40bN9bJkyc1adIkvfDCC8qTJ4969eqldu3aqUePHnrhhRfk6+urZcuW6ZtvvvnbBUMHDBigTp06qXfv3nr++ed18uRJzZgxw8YnJFWtWlX9+vXTpEmTdPz4cbVq1UrBwcH6448/NHfuXCUmJurjjz+WyWRS7ty51b17d0VFRcnb21sNGzbUmTNnNHnyZJUuXfpvp5LczrPPPqtFixapS5cu6tmzpwoVKqSffvpJs2bN0osvvmjYHVK5cmVNnz5dH3/8sapWrapTp05p5syZSktLs6wrMm/ePH355ZcaMGCAMjMztX//fsvnfXx89NBDD1lds3Tp0mrVqpWioqKUkpKiyMhIHT582LJt8q078fydG2vWdO7cWV27dlVwcLDWrVun5cuXa+jQoTY/o7vx7LPP6tNPP1Xv3r3Vt29fhYaG6ttvv9Xnn3+u3r17W7oqXnrpJS1YsEA+Pj6WRUUXLVqkAQMGyMvLy7Io6sCBA9W8eXNlZmZq7ty5OnDggGXB3L9TsWJFeXl5ady4ceratavS0tK0cuVKfffdd5L+t6CykTv92bwTnTp10ooVK/Tyyy+rT58+yszM1KRJk6y+v8qWLavmzZtr2LBhOnv2rCpVqqQ///xTEydOVNGiRVWiRIl//Dp3+v2cM2dO/fbbb9q1a5flPv9J5cqVtWTJEo0dO1b169fX+fPnNWfOHF28ePFvp/wAAPAgIDQBgLtQq1Yt5cyZU4UKFbrtNq+RkZEaPny45s2bp/Xr1ytfvnyKjIxUVFSUXnvtNe3du1d169bVs88+q61bt+q1115T3759LTuB/JMOHTooICBAc+bM0YoVK1SwYEF17drVsjtH+fLltXjxYk2cOFGDBg2S2WxW2bJlNW3atGxrXNwsIiJCs2bN0oQJE9S7d28VLVpUo0ePtmwla4tXX31VDz30kBYvXqwxY8bo8uXLCgkJ0eOPP66ePXtaTUvo06eP8uXLp0WLFumzzz5T7ty59dRTT6l///53NF3jVgEBAVq8eLE+/PBDjRs3TteuXVORIkU0cOBAy85Ht+rRo4cuXbqkhQsXatq0aSpUqJBatGhh2eXkypUrlq6bCRMmaMKECVafL1KkiGFXzqhRo1S8eHF9/vnnmjNnjgoUKKCOHTvqtddes6kzoGDBglq6dKk+/PBDvfvuu0pNTVWJEiU0atSo2+60ZG/+/v765JNP9OGHH2rKlClKSEhQqVKlstXw5ptvKl++fFqyZInmzp2rokWL6q233rIsmFu7dm3NmTNHUVFR6tu3r7y9vVWxYkXNmzfPaueX2ylevLg+/PBDRUVF6dVXX1WuXLlUtWpVffLJJ+rYsaP27NmjcuXKGX72Tn8270RwcLCWLFmiUaNGaciQIQoMDFS3bt2yrSU0ZswYzZw5U0uXLtVff/2lvHnzqmnTpurfv79hh9Ct7vT7uWvXrho9erRefvllzZs3747uoVWrVjpz5ow+//xzffrppypYsKDq1q2r9u3ba9iwYTp27JhKly59R9cCAOB+YzL/0xL6AAAAAAAADyA6TQAAAG5xYzHbv+Ph4XFXa4gAAAD3QWgCAABwE6Ntmo20atVKY8eOdUJFAADAVZieAwAAcJO0tDT9/vvv/zguODj4X231CwAA7n2EJgAAAAAA4J4SHx+v559/Xu+//74iIyMNx2zdulXjx49XdHS0ChUqpEGDBql+/fp2rYOJuAAAAAAA4J6xd+9ePf/88zp9+vRtx5w8eVJ9+vRRv379tGfPHvXp00f9+/dXbGysXWshNAEAAAAAAPeEL774Qm+88YZef/31fxwXERGhRo0aycvLS02bNlWNGjW0bNkyu9ZDaAIAAAAAABwmLS1NCQkJVq+0tDTDsbVr19amTZvUtGnTv73msWPHVLZsWatjpUuX1pEjR+xWt3QP7J6z1rucq0sAcIuKh9e4ugQAN3nx9XOuLgHALd4aUcvVJQC4SdNq3q4uwSnc9ffnExN6KyoqyupY79691adPn2xj8+fPf0fXTExMlL+/v9UxPz8/JSUl3X2hBlwemgAAAAAAgPtXjx491KVLF6tjPj4+/+qa/v7+SklJsTqWkpKiwMDAf3XdWxGaAAAAAAAAh/Hx8fnXIcmtypYtq0OHDlkdO3bsmCpVqmTXr8OaJgAAAAAAwK00b95cu3bt0rp165SRkaF169Zp165datGihV2/DqEJAAAAAABuwORtcsuXvYSHh2v16tWSpLCwME2bNk0zZ85UjRo1NH36dE2dOlUlS5a029eTmJ4DAAAAAADuQb///rvV+3379lm9r1OnjurUqePQGug0AQAAAAAAMEBoAgAAAAAAYIDpOQAAAAAAuAEPL/utD4I7Q6cJAAAAAACAAUITAAAAAAAAA0zPAQAAAADADZi86XtwNp44AAAAAACAAUITAAAAAAAAA4QmAAAAAAAABljTBAAAAAAAN8CWw85HpwkAAAAAAIABQhMAAAAAAAADhCYAAAAAAAAGWNMEAAAAAAA3YPJmTRNno9MEAAAAAADAAKEJAAAAAACAAabnAAAAAADgBthy2PnoNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAa5oAAAAAAOAG2HLY+eg0AQAAAAAAMEBoAgAAAAAAYIDpOQAAAAAAuAG2HHY+Ok0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwwJomAAAAAAC4AZMna5o4G50mAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGGBNEwAAAAAA3IAHa5o4HZ0mAAAAAAAABghNAAAAAAAADDA9BwAAAAAAN2DyYHqOs9FpAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwA2YPOl7cDaeOAAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAZY0wQAAAAAADfg4WlydQkPHDpNAAAAAAAADBCaAAAAAAAAGGB6DgAAAAAAbsDkwfQcZ6PTBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOsaQIAAAAAgBtgy2Hno9MEAAAAAADAAKEJAAAAAACAAabnAAAAAADgBkxMz3E6Ok0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwwJomAAAAAAC4AZMHfQ/OxhMHAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAGuaAAAAAADgBkweJleX8MCh0wQAAAAAAMAAoQkAAAAAAIABpucAAAAAAOAGPDyZnuNsdJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggDVNAAAAAABwA2w57Hx0mgAAAAAAABggNAEAAAAAADDA9BwAAAAAANyAyYO+B2fjiQMAAAAAABggNAEAAAAAADBAaAIAAAAAAGCANU0AAAAAAHADbDnsfHSaAAAAAAAAGLirTpPz58/r9OnTMpvNVsdr1Khhl6IAAAAAAABczebQ5JNPPtHYsWOVmZlpddxkMunw4cN2KwwAAAAAAMCVbA5NFixYoOHDh+u5556TlxdLogAAAAAA4Awenqxp4mw2px7x8fFq06aNPDxYDgUAAAAAANy/bE4+atasqZ07dzqiFgAAAAAAgHuGzZ0mBQsWVI8ePRQZGal8+fJZnRszZozdCgMAAAAAAP/DlsPOZ3NokpaWpqefftoRtQAAAAAAANwzbA5N6CYBAAAAAAAPgrvqNFmzZo1iY2OVlZUlSUpPT9fRo0c1Y8YMuxcIAAAAAADgCjaHJm+99Za2bdum4OBgpaenKyAgQH/88YdatmzpgPIAAAAAAIAkmdjF1ulsDk22bdumJUuWKD4+XkuWLNGHH36ouXPn6pdffnFEfQAAAAAAAC5hc0yVlZWlUqVKqVSpUjp8+LAkqUOHDtqzZ4/diwMAAAAAAHAVm0OTkJAQRUdHK0+ePIqLi1NSUpLMZrMSExMdUR8AAAAAAIBL2Dw9p1mzZmrfvr1WrFihevXq6dVXX5Wvr68qVarkiPoAAAAAAIAkk4fJ1SU8cGwOTbp3767Q0FAFBQVp2LBhGjdunBISEjRs2DBH1AcAAAAAAOASNocmktSkSRNJUnx8vEaMGGHXggAAAAAAAO4FNq9pkp6erokTJ6p69epq0KCBoqOj9dxzz+n8+fOOqA8AAAAAAOj69Bx3fLkzm0OTqKgo7dixQ5MnT5a3t7fy5s2rkJAQjRo1yhH1AQAAAAAAuITN03PWrFmjJUuWqGDBgjKZTAoICNCYMWPUuHFjR9QHAAAAAADgEjZ3miQlJSlPnjySJLPZLEny8/OTh4fNlwIAAAAAALhn2Zx0VK1aVVFRUZIkk+n63KRPPvlEDz/8sH0rAwAAAAAAFq5em+RBXNPE5uk5b7/9tjp16qQvvvhCiYmJatq0qRITEzVv3jxH1AcAAAAAAOASNocmoaGhWrt2rbZs2aKYmBiFhISoXr16ypEjhyPqAwAAAAAAcAmbQxNJ8vb2VrVq1VS1alVJ0tWrV3X16lUVLlzYnrUBAAAAAID/MrGWqNPZHJqsWLFCI0eOVHp6uuWY2WyWyWTS4cOH7VocAAAAAACAq9gcmkyaNElvvvmm6tWrx445AAAAAADgvmVzaJKWlqYOHToQmAAAAAAAgPuazclH8+bNtWTJEkfUAgAAAAAAbsPD0+SWL3dmc6dJo0aN9PLLL2vy5MkKCgqyOrd582a7FQb345MvWLW2LdMvPf5P8d/vcnU5wH3p8uXLmjQ1Sr/8elCenh5qUL++ur/cVZ6entnGfrXua33x5SrFxccrT3CwWrVormbPPJ1t3NcbNmjSlChtWLvGGbcA3JceqZ5Hr3YuqcIh/oq9kKLp807op93xhmODc3trzSe1lJScaTl25Wq62nTbKUkKyuGlfq+E6dGIvPLwkPYdvKIPp/+huEtpTrkX4F537Uqcls8eoWO/7Zanh6eq135GzV98Q56e2X+1+W3f9/pqyUTFnT+j3HlD1LzDQFWsVs9yfvPqudq2YbGSE68qtFRFte32jgoULilJuhgbrZXzR+vUHwfk4eml8lUe07Odhso/MKckaf+ODdq48iPFXzgr/8Ccqlm3pZ58rhcd+cB9xubQ5J133tFTTz2lRx991PB/0vFgCq5VTVXmjFVg6eKuLgW4r40a+x/ly5tXny6cr0uXLuud997Tyi9Xqc1zz1qN+2n7ds2bv0Dvj3xX5cuV0+Ejv2vYO+8qd3Bu1XnsMcu4k6dOaeasOU6+C+D+UrSQv0YNfUjvjj+sn3bFqW6t/Bo5+CG1675LF+OzBx0VygQpJjZZbbsZ/wXDqKEVdS0hXc9336nMLOnt/uU0qE9ZDR550NG3AriFhVPeUK7gAhox/VtdvXxRc8b30dZ1C9WgWVercRfOndL8ia+rY5//6KFqdfXLrm+0YPIbemviWuXOU1C7tq7Stg2L1WPITOUrGKp1y6Zo3sTXNeg/X8hkMumTqYMUVqG6Xh44RSkpSZr3YT+tWjRO7Xq8p5hTv2vRtCHq9maUyld+TBfOndLUkZ2UJ38RRdZr5aInA8ARbI5Bz58/rw8//FCtW7dWq1atrF54MBXp2FJVF47X78MnuroU4L52NiZGv/z6q7p17Sw/Pz8VKhSi9u3aafWar7KNjYuLV9s2rVWhfHmZTCY9VKG8qlSurIMHD1nGpKSkaMwH49SyeTNn3gZw32nSsKAO/HZF23bEKTNL+vaHC9p/8IqaP1XIcHz5MkH6/Y8Ew3PlwnKoYrkgjZr0uxISM5WcnKkPph7VR/NPOPIWALdx4a/TOvbbbjVrP1A+vv7KVzBUTzzbQz9szL58wO7vV6lk+Wp6uEZDeXp6KfzRpxRWIULbN38mSdqxZYUea/y8CoWWlrePr555ob8uxZ3Tsd92S5JiY07InGWW2WyWzGaZPEzy9vGXJBUuXk7vf/yDyld+TFlZWUq8dklZGRkKDAp23sMA4BQ2d5pERkZq3759Cg8Pd0Q9cEMXN/6gmE/XyJyZKX06ydXlAPetU6dOKygoSHnz5rUcK14sVOcvXFBCQoJy5MhhOX7rNJzLly/r10MH1b1bN8uxqBkfKbJmDYVXraoly5Y7/gaA+1TJYoE6cTLR6tjJ04kqXTKH4fgKZYKUM4e3FkZFKDi3t478cU3T5p7QyegkVSgbpJPRSWr+ZCG1bFJYfn4e2vnzJUXNOe6MWwHueX+dOaaAHLmUK08By7GCRcJ06eI5JSdetUyduTG2cGhZq8+HFAlTzOmj/z1/XA2avWw55+nlrfwhxRVz6neVqVhTTz3XS18tmajv1y9SVlamipepombtX7eM9/MPVFpait7q+ogyMzNU9ZEnVaFqbUfdOiBJMnm49/og7sjmTpMiRYqoa9eu6tmzp4YOHWr1woMpNfbi9cAEgEMlJyfLz8/X6piv7/X3ySkpt/1cfPwlvT38XZUpXVoN6tWVJG3+douio8+oU8cXHVcw8IAI8PdUcmqW1bGU1CwF+BlPY05IzNCB366oz1v71faVXYo+m6yJ71VWYICncgZ5K6xEoIoW9leX/nvVpd9e5c/ro/8bUN4ZtwLc81KTE+Xj6291zMfX7/q5lCSr4ykpSfLxsx7r7etnGZeanCjfW67l7fO/8yaTh554tqdGz9muYVM2SpKWzx5hNd7Ly0dj5+/W0Alf6a8zx7Vy/uh/eYcA7jU2hyZJSUl66qmnFBxM6xkAOJOfn59SU1Otjt14H+Dvb/QRHT5yRH1eH6CiRYvo3eHD5OnpqegzZzR3/gINHfQGa1MBd6Fjm2LauLy25SWT5Odr/b9Ufr4eVgu93mzE+COaPu+ErlzNUHJypqbOOa4Af09VqZhL6enXw5cps44pOTlTly6n6+NPTurR6nnk78fikoCPn7/SU63/oiDtv+99/QOtjvv6+istNdnqWHpqivz8Aq5fy9dfaWm3nE9Lka9/gKJPHNK65VPUsEU3+foFKE/+wmreYaB+/nGtUpL+N73Ow8NDXl7eKlCohJ54tqd+/nGd3e4VeJDFxcWpV69eioiIUGRkpEaNGqWMjAzDsQsWLFCDBg1UrVo1NWvWTBs2bLBrLTZPzxkzZsw/jnn33Xf17rvv3k09AIDbKFG8uK5evaZLly5ZgutTp6OVL18+BQYGZhu/YeMmTftopl56sYNaP/u/dae2/fCjriUkqFff/pKkzP92ij3btp169+qpBvXqOfxeAHf2yWen9clnpy3vu3csobJh1jsKligWqCN/XMv2WX9/T3V9obhWrDmr2AvXQ08PD5O8PE1KTc3Sn6eTZDKZ5OXlobT06z+bnjeyEhMt2UChomWUmHBZ1y5fVFDufJKk2LPHlTtPQfkHWP8choSW1pk/D1sd++vscYWWqmg5/9eZ45bddDIz0nXhr1MqFFpGl+LOyZyVJXNWlvTfv1/w9PSWZJKHp6f279ig79cvUt93P7FcOyMjTQE5cjnmxoH/Mj0guzP1799fBQsW1LZt23Tx4kW9+uqrmj9/vrrdNNVckrZu3aqZM2dq0aJFKlWqlDZs2KD+/ftr06ZNKlq0qF1qccgTX716tSMuCwAPtCJFCqtixYf00cezlZSUpL/++kufLl2qp55onG3sth9/1NRp0zX87besAhNJat/uea1euUIrly/VyuVLNfKd4ZKklcuXEpgAd2H9lliFV8qlBrXzy9NDalA7v8Ir5dKGLbHZxiYnZyqiSrB6dw1TYICn/P08NKBnacXEpmj/oSvavf+SYmKTNbRfOfn7eSh3Tm+90rGktu24qOTbdK4AD5L8hYqrZLlq+mLhB0pJTlTc+TPauHKmIus/m21sRO1mOv7bbu3bvl6ZmRnat329jv+2WxF1ri+AHlmvlbZt+FRnTx1RelqqvloySUG58iqsfHWVKldN3r5++nLhB0pPS9W1K3Fau3SSKtdsJB9ffxUvU1nnTv+h79YuUFZWps5FH9PGz2eoVqPnnf1IgPvOqVOntGvXLr355pvy9/dXaGioevXqpcWLF2cbe+LECZnNZsvL09NT3t7e8vKyuT/ktkxms9lst6v9V3h4uPbt23dHY9d6l7P3l4cLPZ3+u7Y37Kj47423UYR7qHh4jatLwG1cunRJ02bM1IFff5HJ5KFGDerr5S6d5enpqRbPtVG/3q+pQf166vlaH506fVo+Pj5Wn29Qv5769X7N6tiBX37VoKFvacNa/tzvVS++fs7VJeAf1AwP1qudS6lIiJ/+upCq6fNOaMfeeElS47oF9OZrZfVE2x8kSQXz+6pvtzBVqZRb3l4m/fzLZU36+Jil8yRvHh/1eTlMVSvlkq+Ph37YGafJs44pIZHQ5F7y1ohari7hgXXt8kV9Pn+0jh3aJZOHhyLqNFOz9gPk4eGpwZ1rqG23d1S99jOSpCMHftSaJRMUFxut4HyF1az9AD0U/rgkyWw267u1C/TDpqVKvBqv0FKV1KbbcBUoVEKSFH3ikNYsmaizf/4mbx8/VaxeT81eGCC/gOuLPP95dJ9WLxqvv84cV1CuvHqscTvVeaqDPB6QToB7TdNq3q4uwSn+7Nrc1SXclSIfrVBaWprVMR8fn2z/rypJ33zzjd5++23t3LnTcuz3339X8+bNtXv3buXM+b8Fn8+fP6+XX35ZR48elaenp0wmk8aNG6emTZvarXaHhCbVqlXTzz//fEdjCU2Aew+hCXBvITQB7j2EJsC9hdDk3vZVeGNFRUVZHevdu7f69OmTbeyqVas0ceJEfffdd5Zjp0+fVuPGjbV161aFhIRYjp89e1aTJk1Sx44dVb58ea1Zs0bvv/++li5dqnLl7JM12K9nBQAAAAAAOIy7bjnco0cPdenSxeqYUZeJJAUEBCg52XqR5hvvb13H77333lO1atVUuXJlSdJzzz2nr776Sl988YWGDBlil9rpHQMAAAAAAA7j4+OjHDlyWL1uF5qUKVNGly9f1sWLFy3Hjh8/rpCQEAUFWS/4HBMTk23aj5eXl7y97dd5RGgCAAAAAADuCSVKlFD16tU1evRoJSQkKDo6WtOnT1fr1q2zjW3QoIEWLVqkQ4cOKSsrS+vXr9fOnTvtuqaJQ6bnOGCZFAAAAAAA8ACYMmWKRo4cqYYNG8rDw0MtW7ZUr169JF3feGbEiBFq3ry5evfuLU9PT/Xp00dXrlxR8eLFNW3aNFWoUMFutdx1aBITE6MLFy6oUKFCKlCggNW5fv36/evCAAAAAADA/7jrmia2ypcvn6ZMmWJ47uader28vNSnTx/DBWXtxebQ5Pz583r99de1d+9eSZLJZNLjjz+ucePGWbb+6dy5s12LBAAAAAAAcDab1zQZPny4cuXKpfXr1+uXX37RV199JUkaNWqU3YsDAAAAAABwFZs7TXbv3q2tW7cqR44ckqSwsDCNGzdOjRo1sntxAAAAAADgOpMHe7k4m81PPGfOnLp69arVsbS0NOXOndteNQEAAAAAALiczZ0mL774onr06KH+/furePHiio2NVVRUlB5//HHt3r3bMq5GjRp2LRQAAAAAAMCZbA5Nxo0bJ0l67bXXrI7v27dPixYtknR9cdjDhw/boTwAAAAAAADXsDk0OXLkiCPqAAAAAAAAf+NB2XL4XmJzaCJJ586d09mzZ2U2my3HTCaTIiIi7FYYAAAAAACAK9kcmsyYMUOTJ0/OdpwpOQAAAAAA4H5ic2gyf/58TZs2TQ0aNJDJRGsQAAAAAADOwJbDzmfzE/fy8lK9evUITAAAAAAAwH3N5tCkQ4cOmjhxohISEhxRDwAAAAAAwD3B5uk5pUqV0sCBAzVnzpxs51jTBAAAAAAA3C9sDk3Gjh2rrl27qlatWvL09HRETQAAAAAA4FYsk+F0Nocm165d08CBAx1RCwAAAAAAwD3D5jVNGjdurE2bNjmiFgAAAAAAgHuGzZ0mKSkp6tevn8LCwpQ7d26rXXQWLlxo1+IAAAAAAABcxebQpHTp0ipdurQjagEAAAAAALdh8mBNE2ezOTTp3bu3I+oAAAAAAAC4p9i8pokkLV++XM2aNVNkZKRiYmLUt29fJSYm2rs2AAAAAAAAl7E5NJk/f77mzJmjjh07KjMzU4GBgYqNjdWYMWMcUR8AAAAAAJBk8vBwy5c7s7n6JUuWaPr06Wrbtq08PDyUK1cuTZ06VVu2bHFEfQAAAAAAAC5hc2hy6dIllSxZUpJkNpslSXnz5lVGRoZ9KwMAAAAAAHAhm0OT8uXLa9myZZJk2W543bp1KlOmjH0rAwAAAAAAcCGbd88ZMmSIOnXqpFWrVikpKUmvvPKK9u/fr9mzZzuiPgAAAAAAILYcdgWbO01WrlyptWvXqlGjRmrTpo1q1KihVatWafHixY6oDwAAAAAAwCXuqNMkNjZW27dvlyR99tlnqlSpkvLly6d8+fJJkjZv3qxNmzY5rkoAAAAAAAAnu6PQJDg4WIsWLVJ8fLzS0tI0ZcoUq/O+vr7q3bu3QwoEAAAAAABwhTsKTXx8fLRixQpJ0ssvv6w5c+Y4tCgAAAAAAGDN5GHzChv4l2x+4gQmAAAAAADgQUBMBQAAAAAAYMDmLYcBAAAAAIDzseWw89FpAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwA2wponz0WkCAAAAAABggNAEAAAAAADAANNzAAAAAABwBx70PTgbTxwAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADrGkCAAAAAIAbMJnYctjZ6DQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAGuaAAAAAADgBkwe9D04G08cAAAAAADAAKEJAAAAAACAAabnAAAAAADgBkwebDnsbHSaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIA1TQAAAAAAcAdsOex0PHEAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMsKYJAAAAAABuwORhcnUJDxw6TQAAAAAAAAwQmgAAAAAAABhgeg4AAAAAAG7AZKLvwdl44gAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABhgTRMAAAAAANwBWw47HZ0mAAAAAAAABghNAAAAAAAADDA9BwAAAAAAN2DyoO/B2XjiAAAAAAAABghNAAAAAAAADBCaAAAAAAAAGGBNEwAAAAAA3ICJLYedjk4TAAAAAAAAA4QmAAAAAAAABghNAAAAAAAADLCmCQAAAAAA7sBE34Oz8cQBAAAAAAAMEJoAAAAAAAAYYHoOAAAAAABugC2HnY9OEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAywpgkAAAAAAO7Ag74HZ+OJAwAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIA1TQAAAAAAcAMmk8nVJTxw6DQBAAAAAAAwQGgCAAAAAABggOk5AAAAAAC4A7YcdjqeOAAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAZY0wQAAAAAADdg8mDLYWej0wQAAAAAAMAAoQkAAAAAAIABpucAAAAAAOAOTPQ9OBtPHAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOsaQIAAAAAgDtgy2Gno9MEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA6xpAgAAAACAGzCZ6HtwNp44AAAAAACAAUITAAAAAAAAAy6fnlPx8BpXlwDgFocqNHN1CQBu8sLq311dAoBb5PJLcHUJAKx4u7oA52DLYaej0wQAAAAAAMAAoQkAAAAAALhnxMXFqVevXoqIiFBkZKRGjRqljIwMw7G7du1SmzZtFB4errp162rmzJl2rYXQBAAAAAAA3DP69++vgIAAbdu2TStWrND27ds1f/78bOOOHz+u7t27q3379vr55581c+ZMzZ07V+vXr7dbLS5f0wQAAAAAAPwzk8f93/dw6tQp7dq1S99//738/f0VGhqqXr16ady4cerWrZvV2E8//VQNGzZUq1atJEnly5fX0qVLlSNHDrvVc/8/cQAAAAAA4DJpaWlKSEiweqWlpRmO/eOPP5Q7d24VLFjQciwsLEwxMTG6evWq1dhffvlFRYsW1YABAxQZGakmTZpo165dyp8/v91qJzQBAAAAAAAOM3PmTFWvXt3qdbu1RxITE+Xv72917Mb7pKQkq+NXrlzRwoUL1bx5c/34448aOXKkPvjgA6bnAAAAAAAA99CjRw916dLF6piPj4/h2ICAACUnJ1sdu/E+MDAw2zUaNmyoevXqSZJq1KihFi1a6Ouvv9ZTTz1ll9oJTQAAAAAAcAcmk6sruCs+Pj63DUluVaZMGV2+fFkXL15Uvnz5JF1f8DUkJERBQUFWY8PCwrJN88nMzJTZbLZP4WJ6DgAAAAAAuEeUKFFC1atX1+jRo5WQkKDo6GhNnz5drVu3zja2Xbt22rx5s1atWiWz2azdu3drzZo1atGihd3qITQBAAAAAAD3jClTpigjI0MNGzZU27ZtVadOHfXq1UuSFB4ertWrV0uSHn30UU2fPl0LFy5U9erVNXToUA0ePFgNGza0Wy1MzwEAAAAAwB08AFsOS1K+fPk0ZcoUw3P79u2zel+3bl3VrVvXYbU8GE8cAAAAAADARoQmAAAAAAAABghNAAAAAAAADLCmCQAAAAAA7sBNtxx2Z3SaAAAAAAAAGCA0AQAAAAAAMMD0HAAAAAAA3IDpAdly+F7CEwcAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAa5oAAAAAAOAOTPQ9OBtPHAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOsaQIAAAAAgDvwMLm6ggcOnSYAAAAAAAAGCE0AAAAAAAAMMD0HAAAAAAA3YGLLYafjiQMAAAAAABggNAEAAAAAADBAaAIAAAAAAGCANU0AAAAAAHAHbDnsdHSaAAAAAAAAGCA0AQAAAAAAMEBoAgAAAAAAYIA1TQAAAAAAcAcm+h6cjScOAAAAAABggNAEAAAAAADAANNzAAAAAABwBya2HHY2Ok0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwwJomAAAAAAC4Aw/6HpyNJw4AAAAAAGCA0AQAAAAAAMAA03MAAAAAAHAHJvoenI0nDgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwB14mFxdwQOHThMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMsKYJAAAAAADuwETfg7PxxAEAAAAAAAwQmgAAAAAAABhgeg4AAAAAAO7AxJbDzkanCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAZY0wQAAAAAAHfgQd+Ds/HEAQAAAAAADBCaAAAAAAAAGGB6DgAAAAAA7oAth52OThMAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMsKYJAAAAAADuwETfg7PxxAEAAAAAAAwQmgAAAAAAABggNAEAAAAAADDAmiYAAAAAALgDD/oenI0nDgAAAAAAYIDQBAAAAAAAwADTcwAAAAAAcAcmk6sreODQaQIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIAB1jQBAAAAAMAdmOh7cDaeOAAAAAAAgAFCEwAAAAAAAAM2T8+5fPmyPv30U509e1ZZWVlW58aMGWO3wgAAAAAAAFzJ5tCkf//+OnfunKpWrSoPDxpVAAAAAABwCpPJ1RU8cGwOTQ4cOKAtW7Yod+7cDigHAAAAAADg3mBzq0ixYsWUnp7uiFoAAAAAAADuGTZ3mgwfPlzdu3dXy5YtlStXLqtzLVu2tFddAAAAAADgZiyR4XQ2hyYrVqzQ0aNHNW/ePKs1TUwmE6EJAAAAAAC4b9gcmqxfv16rVq1S6dKlHVEPAAAAAADAPcHm3p7g4GAVK1bMEbUAAAAAAADcM2zuNOnbt6+GDh2ql19+Wbly5ZLppi2PChcubNfiAAAAAADAdWa2HHY6m0OTIUOGSJLWrl1rCUzMZrNMJpMOHz5s3+oAAAAAAABcxObQZPPmzY6oAwAAAAAA4J5ic2hSpEgRR9QBAAAAAAD+jokth53N5tCkfPnyVuuY3IzpOQAAAAAA4H5hc2iycOFCq/fx8fH65JNP1KJFC7sVBQAAAAAA4Go2hyY1a9bMdqx69erq3Lmz2rZta5eiAAAAAAAAXM3m0MRIzpw5FRsba49LAQAAAAAAI6xp4nQ2hyZffvml1fv09HRt3rxZFSpUsFdNAAAAAAAALmdzaDJlyhSr956engoLC9M777xjt6IAAAAAAABczebQ5Ntvv3VEHQAAAAAAAPcUmydEZWVladOmTZKk2NhY9e/fXyNHjlRCQoLdiwMAAAAAANeZTSa3fLkzm0OTsWPH6v3335ckvfPOO7p48aJOnDihkSNH2r04AAAAAAAAV7F5es7WrVu1ZMkSJSYm6ocfftDatWuVN29eNWzY0BH1AQAAAAAAuITNocmlS5dUuHBhfffddypQoICKFy+uzMxMZWZmOqI+AAAAAAAgseWwC9gcmoSGhurLL7/U+vXrVbt2bWVlZWnu3LkqXbq0I+oDAAAAAABwCZtDkyFDhmjw4MHy8/PTyJEjtWPHDs2ZM0cfffSRI+oDAAAAAABwCZtDkxo1alhtO5w7d259//338vHxsRz7+OOP1b17d/tUCAAAAAAA4AL/ekKUj4+PVWAiia4TAAAAAADszWRyz5cbs7nT5E6YzWZHXBZOdvnyZU2aGqVffj0oT08PNahfX91f7ipPT89sY79a97W++HKV4uLjlSc4WK1aNFezZ57ONu7rDRs0aUqUNqxd44xbAB5oPvmCVWvbMv3S4/8U//0uV5cD3NdO/rZVP64Zrytx0QrKXUi1WwxSyYr1//YzWVmZ+np+P+UtVE6PNOljeP6LaZ2VM08RNe4w1lGlA27v6uV4LZjxvo4c3CtPT089Urepnu/cX56e2X/V+WXvD/ps4RRdiD2rvPlC1KZTP1Wt8bgkKS01RUvnTtDPu75TRnqaipcqr3ZdByq0RBmra6SmJmv88FdV98lnVbtBc6fcIwDXccjSuyY3T5Jw3aix/5G/n78+XThfUyZM0L79+7Xyy1XZxv20fbvmzV+gNwb01xefLdMbA17X/IWfaNuPP1qNO3nqlGbOmuOs8oEHWnCtaqq1bZkCSxd3dSnAfe/yhZNaO6+PHmnSTz3H7FFkkz76en5/JVyOve1nrl2K0eqZ3XX8l023HbNrfZRiTuxxRMnAfeWjD4fI1y9AE+au1//9Z6EOH9iljas/zTYuNua0pv1nkFq1f1XTFm9Vixd66KPxQ3Qp7rwkadWyj/VXzCm9P+UzTZq3SaElyipq7ECra5w9fVxj335Fx4/+6pR7A+B67FcEQ2djYvTLr7+qW9fO8vPzU6FCIWrfrp1Wr/kq29i4uHi1bdNaFcqXl8lk0kMVyqtK5co6ePCQZUxKSorGfDBOLZs3c+ZtAA+kIh1bqurC8fp9+ERXlwI8EA7v+kKFS0UorHIjeXh6qWx4UxUJq6GD25cZjr90/k8tGd9KISWqqFDJcMMx0Ue369gvGxVW5QlHlg64vdhz0TpycK/adOonX19/FQgpqmZtu+nbr7P//P245SuVrVBV1SLry9PTSzUfe0JlK1bX1o0rJUnnzvx5vWPebJZZZnl4eMjH18/y+cO/7NK44T31WP1nlDd/iNPuEYBrEZrA0KlTpxUUFKS8efNajhUvFqrzFy4oISHBamyzZ57W821aW95fvnxZvx46aLUNddSMjxRZs4bCq1Z1eO3Ag+7ixh/0XbnGOvfZ164uBXggxP11TPkKlbU6liektC6ePWI4PjBnfnX6v2/0SJO+8vDwznY+6VqcNi99W092/FDe3v4OqRm4X8ScPq7AHLkUnCe/5Vjh0JKKu/CXkhKvWY09G31cRYqXtjpWOLSkok8elSQ92fxFnT19TH07NdSr7Wrrp63r9OobH1jGhpYoq3Eff6VGT7eTRGc9XMTDwz1fbsy9q4fDJCcny8/P1+qYr+/198kpKbf9XHz8Jb09/F2VKV1aDerVlSRt/naLoqPPqFPHFx1XMACL1NiLMmdmuroM4IGRnpoobx/rcMPLx0/paUmG4338csjXP8jwnDkrSxsWvanwel2Uv0h5u9cK3G9SkpPk6+dndczHx89yLttYX+ufVR9fP6WkJEuSMrMyVf3Rhvpw9teaumiLqtWsp6ljBig9LVWSlCNnbnn7WP//MYD7n0NCExaCdX9+fn5KTU21OnbjfYC/8d96HT5yRH1eH6CiRYvo3eHD5OnpqegzZzR3/gINHfSG4QKyAAC4m92bPtKMQeGWl9lsVnq69V8oZKSlyNs30OZr7/lmpry8fFTl8Y72Khe4r/n4+Skt1frnLy3t+ns//wCr476+/pZzlrGpKfLzD1BGRrpmjBus2g2aKzhvAfn7B6r9K2/qUvx5HTqw07E3AeCedte756Snp+vKlSsKDg7O9stwmzZt/nVhcK0SxYvr6tVrunTpkoKDgyVJp05HK1++fAoMzP4/gRs2btK0j2bqpRc7qPWzrSzHt/3wo64lJKhX3/6SpMz//u33s23bqXevnmpQr57D7wUAAHuq0binajTuaXn/09qJuhB9yGpM/F/HVKBYJZuvfWTPKiVcOa+PhkRIkjL+G8Yc//Ub9RzLorDArYoWK62Ea1d05XKccuW+Pq08JvpPBectqIBA646uIsXCdOqE9bS5mOg/VaJ0BaWmJCsx4aoy0tMs5zw8PGUyecjLyyEbjgJ3xcymK05nc6dJYmKiBg8erIiICNWpU0cREREaOXKk0tL+9y+Yt956y65FwvmKFCmsihUf0kcfz1ZSUpL++usvfbp0qZ56onG2sdt+/FFTp03X8LffsgpMJKl9u+e1euUKrVy+VCuXL9XId4ZLklYuX0pgAgC4L5SPaK4zx3fp6L51ysrM0NF963Tm+C6Vj2hh87U6vrVer37ws3qO3aOeY/eoXLVnVK7aMwQmwG0ULFxMZSpU1ZI5Hyo5OVEXYs9qzfLZqtMo+89frXpN9fuhvdr140ZlZmZo148b9fuhvapV92kF5sipMhWq6rNPpujq5Xilp6VqxcIpCsqZW2UqGC/YDODBYHNoMmLECJ08eVLTp0/X2rVrNWnSJP3yyy8aP368I+qDCw0bOkSZmZnq9HI39R3whiKqVVP7ds9Lklo810bfbvlOkrT406XKzMrSe6PHqMVzbSyvyVHTXFg9AADOkadgmJ7pOk17Ns3UzLdqaNeG6Xq6y1QFFygpSTqyZ7VmDOKXLsBReg36j7IyMzS4RzO9P6iTKlV7VM3bdJMkvfpCbW3fuk6SVKhoSfUZMl5rV8xT7xfra82y2Xpt0H8UUqS45ToFCxfX8NfbacDLTRRz5oQGDI+Srx8LMgMPMpPZxgVIatSoofXr11vtqhIbG6sWLVpox44dNhdw8thRmz8DwLEOVWBraOBecnL1764uAcAtqhZP+OdBAJzmsYdyuLoEp0j8aaWrS7grgbWedXUJd83mThNfX99sa5gEBgbK/zaLgwIAAAAAADswebjny0ZxcXHq1auXIiIiFBkZqVGjRikjI+NvP3P06FFVqVJFO3fad/Fmm6vv2bOn+vbtqyNHjig5OVknT57U0KFD1bRpU8XExFheAAAAAAAAturfv78CAgK0bds2rVixQtu3b9f8+fNvOz45OVkDBw5USkrKbcfcLZuXgn7//fclSS1btpTJZLLaXnju3Lkym80ymUw6fPiw/aoEAAAAAAD3vVOnTmnXrl36/vvv5e/vr9DQUPXq1Uvjxo1Tt27dDD8zYsQINWrUSEeP2n/5D5tDk82bN9u9CAAAAAAA8PfMdzHVxd388ccfyp07twoWLGg5FhYWppiYGF29elU5c+a0Gv/ll1/q1KlTGjVqlKZPn273emwOTYoUKWL3IgAAAAAAwP0pLS1NaWlpVsd8fHzk4+OTbWxiYmK2NVNvvE9KSrIKTY4fP66JEydqyZIl2dZetZc7Dk2qVaumn3/+WeXLl5fJZLI6x5QcAAAAAABgZObMmYqKirI61rt3b/Xp0yfb2ICAACUnJ1sdu/E+MDDQciw1NVWvv/663nrrLRUuXNgBVV93x6HJxx9/LElasGBBttAEAAAAAADASI8ePdSlSxerY0ZdJpJUpkwZXb58WRcvXlS+fPkkXe8oCQkJUVBQkGXcr7/+qpMnT+rtt9/W22+/bTnes2dPtWjRQu+++65dar/j0CQiIkKSFBkZqeXLl6tu3boqWLCgVq1apbS0NLVp08YuBQEAAAAAAANu2sBwu6k4RkqUKKHq1atr9OjRGjlypC5duqTp06erdevWVuMiIiL0yy+/WB0rV66cPvroI0VGRtqtdptXkZkyZYpmzJhhaY/JkSOHPvroI82ePdtuRQEAAAAAgAfTlClTlJGRoYYNG6pt27aqU6eOevXqJUkKDw/X6tWrnVaLyXzznsF34PHHH9fixYsVGhpqOXb69Gl16tRJW7ZssbmAk8fsvyUQgH/nUIVmri4BwE1Orv7d1SUAuEXV4gmuLgHATR57KIerS3CKhJ1rXF3CXckR6b6/X9jcaZKQkKBChQpZHStUqJCSkpLsVhQAAAAAAICr2RyaVKxY0bIo7A1z585V+fLl7VYUAAAAAACwZjZ5uOXLnd3xQrA3DBkyRF27dtXy5csVEhKiv/76SxkZGaxpAgAAAAAA7is2hyYVK1bUxo0btWXLFp0/f16FChVSvXr1rLb+AQAAAAAAcHc2hyaSlCtXLpUtW1YBAQGqV6+erl27Zu+6AAAAAADAzdx0y2F3ZvPkori4OLVr105t27bV4MGDFR0drUaNGmnfvn2OqA8AAAAAAMAlbA5NRo8erbJly2r37t3y8vJSWFiYunfvrv/85z+OqA8AAAAAAMAlbA5NduzYoaFDh8rf31+m/7YGdevWTceOHbN7cQAAAAAAAK5i85om3t7eSklJkb+/v8xmsyQpMTFRgYGBdi8OAAAAAAD8l5tv3+uObH7iDRo00JtvvqmTJ0/KZDIpLi5OI0aMUN26dR1RHwAAAAAAgEvYHJoMHDhQAQEBeuqpp3T16lXVrl1bycnJeuONNxxRHwAAAAAAgEvYPD3n8OHDmjhxoq5cuaIzZ84oJCREBQoUcERtAAAAAAAALmNzaPLaa6/pu+++U548eZQnTx5H1AQAAAAAAG5h/u9mLHAem6fnhIaG6tdff3VELQAAAAAAAPcMmztNcuXKpS5duqho0aIqUKCAZdthSVq4cKFdiwMAAAAAAHAVm0OT8PBwhYeHKy0tTVeuXFFwcLC8vGy+DAAAAAAAsAVbDjudzWlH586dNXLkSK1fv15paWny9/dXy5YtNXToUEfUBwAAAAAA4BI2x1TvvfeeTp06pRkzZmjdunWaNGmSfv31V40fP94R9QEAAAAAALiEzZ0m3377rdavX6+8efNKkkqVKqXy5curRYsWeuutt+xeIAAAAAAAgCvYHJr4+vrK09PT6lhgYKD8/f3tVhQAAAAAALBmFlsOO5vN03N69uypvn376siRI0pOTtbJkyc1dOhQNW3aVDExMZYXAAAAAACAO7O50+T999+XJLVs2VImk0lms9lybu7cuTKbzTKZTDp8+LD9qgQAAAAAAHAym0OTzZs3O6IOAAAAAADwN8xsOex0NocmRYoUcUQdAAAAAAAA9xRiKgAAAAAAAAOEJgAAAAAAAAZsnp4DAAAAAABcgDVNnI4nDgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwA2YTSZXl/DAodMEAAAAAADAAKEJAAAAAACAAabnAAAAAADgBsxsOex0PHEAAAAAAAADhCYAAAAAAAAGCE0AAAAAAAAMsKYJAAAAAADugC2HnY5OEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAywpgkAAAAAAG7AbKLvwdl44gAAAAAAAAYITQAAAAAAAAwwPQcAAAAAADdgFlsOOxudJgAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABhgTRMAAAAAANwAWw47H08cAAAAAADAAKEJAAAAAACAAabnAAAAAADgDkxsOexsdJoAAAAAAAAYIDQBAAAAAAAwQGgCAAAAAABggDVNAAAAAABwA2b6HpyOJw4AAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIAB1jQBAAAAAMANmE0mV5fwwKHTBAAAAAAAwAChCQAAAAAAgAGm5wAAAAAA4AbMJvoenI0nDgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwA2YxZbDzkanCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAZY0wQAAAAAADdgNtH34Gw8cQAAAAAAAAOEJgAAAAAAAAaYngMAAAAAgBswm9hy2NnoNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAa5oAAAAAAOAGzGJNE2ej0wQAAAAAAMAAoQkAAAAAAIABpucAAAAAAOAGzCb6HpyNJw4AAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIAB1jQBAAAAAMANsOWw89FpAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwA2YTfQ9OBtPHAAAAAAAwAChCQAAAAAAgAGm5wAAAAAA4AbYctj56DQBAAAAAAAwQGgCAAAAAABggNAEAAAAAADAAGuaAAAAAADgBthy2Pl44gAAAAAAAAYITQAAAAAAAAwQmgAAAAAAABhgTRMAAAAAANyAWSZXl/DAodMEAAAAAADAAKEJAAAAAACAAZdPz3nx9XOuLgHALV5Y/burSwBwkxLNy7m6BAC3iN9xyNUlAHgAmU1Mz3E2Ok0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAw4PI1TQAAAAAAwD8zm1nTxNnoNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAADdglodbvmwVFxenXr16KSIiQpGRkRo1apQyMjIMxy5ZskRPPvmkwsPD9eSTT2rx4sX/9jFbITQBAAAAAAD3jP79+ysgIEDbtm3TihUrtH37ds2fPz/buG+++UYTJkzQBx98oJ9//lljx47VpEmTtGHDBrvVQmgCAAAAAADuCadOndKuXbv05ptvyt/fX6GhoerVq5dhB0lsbKxeeeUVVa1aVSaTSeHh4YqMjNTu3bvtVg+75wAAAAAAgHvCH3/8ody5c6tgwYKWY2FhYYqJidHVq1eVM2dOy/EOHTpYfTYuLk67d+/W0KFD7VYPoQkAAAAAAG7ALPfccjgtLU1paWlWx3x8fOTj45NtbGJiovz9/a2O3XiflJRkFZrc7MKFC+rRo4cqVaqkZ555xk6VMz0HAAAAAAA40MyZM1W9enWr18yZMw3HBgQEKDk52erYjfeBgYGGn9m/f79at26tkiVLasaMGfLysl9/CJ0mAAAAAADAYXr06KEuXbpYHTPqMpGkMmXK6PLly7p48aLy5csnSTp+/LhCQkIUFBSUbfyKFSv0/vvvq2/fvuratavda6fTBAAAAAAAOIyPj49y5Mhh9bpdaFKiRAlVr15do0ePVkJCgqKjozV9+nS1bt0629gNGzbo3Xff1dSpUx0SmEiEJgAAAAAAuAWzTG75stWUKVOUkZGhhg0bqm3btqpTp4569eolSQoPD9fq1aslSVFRUcrMzFTfvn0VHh5ueQ0fPtxuz5zpOQAAAAAA4J6RL18+TZkyxfDcvn37LP+8Zs0ah9dCpwkAAAAAAIABOk0AAAAAAHAD7rrlsDuj0wQAAAAAAMAAoQkAAAAAAIABQhMAAAAAAAADrGkCAAAAAIAbYE0T56PTBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOsaQIAAAAAgBswm1nTxNnoNAEAAAAAADBAaAIAAAAAAGCA6TkAAAAAALgBthx2PjpNAAAAAAAADBCaAAAAAAAAGCA0AQAAAAAAMMCaJgAAAAAAuAHWNHE+Ok0AAAAAAAAMEJoAAAAAAAAYYHoOAAAAAABugOk5zkenCQAAAAAAgAFCEwAAAAAAAAOEJgAAAAAAAAZY0wQAAAAAADdgNrOmibPRaQIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIAB1jQBAAAAAMANZIk1TZyNThMAAAAAAAADhCYAAAAAAAAGmJ4DAAAAAIAbMDM9x+noNAEAAAAAADBAaAIAAAAAAGCA0AQAAAAAAMAAa5oAAAAAAOAGzGbWNHE2Ok0AAAAAAAAMEJoAAAAAAAAYYHoOAAAAAABugC2HnY9OEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAywpgkAAAAAAG6ALYedj04TAAAAAAAAA4QmAAAAAAAABmyenpOenq5169bp7NmzysrKsjrXu3dvuxUGAAAAAADgSjaHJgMHDtTOnTtVpkwZmUz/m0918z8DAAAAAAD7Movfu53N5tDkhx9+0OrVq1W0aFFH1AMAAAAAAHBPsHlNk/z58yt37twOKAUAAAAAAODeYXOnyeDBg9WvXz+1b99eOXPmtDpXo0YNuxUGAAAAAAD+hy2Hnc/m0OTAgQP68ccf9eOPP1odN5lMOnz4sN0KAwAAAAAAcCWbQ5NPP/1UH3/8sWrXri0PD3YsBgAAAAAA9yebUw9fX1899thjBCYAAAAAAOC+ZnPy0aVLF40fP15XrlxxRD0AAAAAAMBAlpu+3JnN03MWL16smJgYzZ8/P9s51jQBAAAAAAD3C5tDk7FjxzqiDgAAAAAAgHuKzaFJzZo1HVEHAAAAAADAPcXm0KRBgwYymYz3ht68efO/LggAAAAAAGRnNhv/Lg7HsTk06dOnj9X7+Ph4ff7552rTpo3digIAAAAAAHA1m0OTVq1aZTvWuHFjDRgwQF26dLFLUQAAAAAAAK5mc2hipEiRIjp58qQ9LgUAAAAAAAyYxfQcZ7M5NNm9e7fV+/T0dK1fv14lSpSwV00AAAAAAAAuZ3No0rFjR6v3Hh4eCgsL0zvvvGO3ogAAAAAAAFzN5tDkyJEjjqgDAAAAAADgnuJxNx86ePCgJOnatWsaN26c5syZo4yMDLsWBgAAAAAA/sdsNrnly53Z3GkyY8YMzZ49W3v37tV7772ngwcPysPDQ3/99ZfefvttR9QIAAAAAADgdDZ3mnz11VdavHix0tLStGHDBk2YMEELFizQunXrHFEfAAAAAACAS9jcaXL+/HmVL19e27dvV1BQkMqXLy9JSk5OtntxAAAAAADgOrYcdj6bO00KFiyo3bt368svv9Sjjz4q6Xr3SWhoqN2LAwAAAAAAcBWbO0369Omjbt26yc/PT0uWLNH27ds1dOhQTZ061RH1AQAAAAAAuITNocmTTz6pevXqSZJ8fX1VoEABbd68WQUKFLCM+eqrr/TMM8/YrUgAAAAAAABnu6sth319feXr6ytJypEjh1VgIknDhw//95UBAAAAAACLLLN7vtzZXYUm/8RsdvOnAgAAAAAAHngOCU1MJlb0BQAAAAAA7s0hoQkAAAAAAIC7s3khWAAAAAAA4HxmMavD2eg0AQAAAAAAMMBCsAAAAAAAAAZsnp4THR2t0NDQvx3z2GOP3XVBAAAAAAAgO7OZ6TnOZnOnSZMmTdSxY0etWrVKKSkphmOioqL+dWEAAAAAAACuZHNosnXrVtWvX19z5sxR7dq1NWzYMO3bt88RtQEAAAAAALiMzaFJ3rx51bVrV61evVoLFy5Uzpw5NWTIEDVp0kSzZ89WfHy8I+oEAAAAAABwqrteCDYjI0MxMTGKiYlRXFyc/P39deDAAT3xxBP64osv7FkjAAAAAAAPPLPZPV/uzOaFYPfv369Vq1bp66+/lslkUrNmzbRo0SKVL19ekrRp0ya9/fbbatWqld2LBQAAAAAAcBabQ5MOHTroscce04gRI9SgQQN5e3tbna9QoYIaNGhgtwIBAAAAAABcwebQZMuWLSpQoMBtzxctWlRjx479V0UBAAAAAAC4ms2hycSJEw2Pe3t7K0+ePKpfv76qVKnyrwsDAAAAAAD/kyWTq0t44Ni8EKy3t7fWrFmj5ORk5cuXT2lpafrqq68UGxurEydOqHPnzlq3bp0jagUAAAAAAHAamztNzp07p0mTJqlRo0aWY1u3btWSJUs0ZcoU7dy5U++//76aNm1q10IBAAAAAACcyeZOkwMHDmRb6LVOnTras2ePJCkyMlJnz561T3UAAAAAAECSZDab3PLlzmwOTfLkyaNt27ZZHdu+fbty584tSYqOjlauXLnsUhwAAAAAAICr2Dw9p0+fPurdu7eeeOIJFS1aVGfPntU333yjd999VydOnFCnTp304osvOqJWAAAAAAAAp7E5NHn66adVuHBhrVy5UocOHVLhwoW1aNEiVapUSSdPntQ777xjtd4JAAAAAACAO7I5NHn11Vc1btw4vffee9nOlShRQiVKlLBHXQAAAAAA4CZms6srePDYHJrs27dPPj4+jqgF96hHqufRq51LqnCIv2IvpGj6vBP6aXe84djg3N5a80ktJSVnWo5duZquNt12SpKCcnip3ythejQirzw8pH0Hr+jD6X8o7lKaU+4FuB+c/G2rflwzXlfiohWUu5BqtxikkhXr/+1nsrIy9fX8fspbqJweadLH8PwX0zorZ54iatxhrKNKBx54PvmCVWvbMv3S4/8U//0uV5cDuLXD+77X2qUTFHf+jILzFtIz7QfqoWr1DMdmZWVq7ZKJ2rtttdLTklW6YqSe6/qOcgbnlyRduxKnFbPf1fHDu+Xh4anqtZ/RMx3elKen9a9LJ4/u10ejumjsgn2WY2azWd99NVc/fbNMSQmXVazUw2r+0hAVCi3jsHsH4Dw2LwT7zDPPqG/fvlq7dq127dql3bt3W164/xQt5K9RQx/S7MUn9dTzP2jup6c0cvBDypfHODirUCZIMbHJeqLtD5bXjcBEkkYNrSh/P089332nnu26U1lZZg3qU9ZZtwO4vcsXTmrtvD56pEk/9RyzR5FN+ujr+f2VcDn2tp+5dilGq2d21/FfNt12zK71UYo5sccRJQP4r+Ba1VRr2zIFli7u6lIAt3fh3CktmNRfT7Xuo/dn79ATrV/TJ1MG6kq88X8Pv/lipo7++qP6j1qmYVFb5O3tp+WzhlvOL5o6UL5+ARo+bYv6vbdURw/u0PfrFlrOm81m7fpupWaNfUUZ6dZ/2ffDhsXasmauOrz2gUZ+/JMqRjTQR+93UeLVS465eQBOZXNosmjRIn333XcaOHCgXnrpJXXs2FEdO3bUSy+95Ij64GJNGhbUgd+uaNuOOGVmSd/+cEH7D15R86cKGY4vXyZIv/+RYHiuXFgOVSwXpFGTfldCYqaSkzP1wdSj+mj+CUfeAnBfObzrCxUuFaGwyo3k4emlsuFNVSSshg5uX2Y4/tL5P7VkfCuFlKiiQiXDDcdEH92uY79sVFiVJxxZOvBAK9KxpaouHK/fh090dSnAfWHPti9Vqnx1VarRUJ6eXqr6yFMqVSFCO779zHD8zi2fq36zl5U7byH5BeRQi05D9PuBbYqLjdbFv07p+G+79XT7gfLx9VfegqFq3Kqnftz0qeXzy2b+n3Z+u0JPPPdatmvv+2mtaj/VQSXKhsvT00u1n+ygwKBgHdi5wWH3jweXWSa3fLkzm6fnHDlyxBF14B5VsligTpxMtDp28nSiSpfMYTi+Qpkg5czhrYVREQrO7a0jf1zTtLkndDI6SRXKBulkdJKaP1lILZsUlp+fh3b+fElRc44741aA+0LcX8eUr5B1d1aekNK6eNb4382BOfOr0/99I1//IJ09lr0jMOlanDYvfVtPvzxd+7+b74iSAUi6uPEHxXy6RubMTOnTSa4uB3B7sWeOK+SW6S8Fi4Qp5tTv2cYmJ13Tlfi/VCj0f//9DMqVT/6BOXXu9FHJZFJAjlzKFVzA6lqXL55TcuJV+Qfm1FNt+ih33hAd+y37tLqsrEz5+AZYHTOZTDof8+e/vU0A9wCbO00kKS0tTZs2bdL8+fOVnJxMkHIfC/D3VHJqltWxlNQsBfh5Go5PSMzQgd+uqM9b+9X2lV2KPpusie9VVmCAp3IGeSusRKCKFvZXl/571aXfXuXP66P/G1DeGbcC3BfSUxPl7eNvdczLx0/paUmG4338csjXP8jwnDkrSxsWvanwel2Uvwg/h4AjpcZevB6YALCL1ORE+fha//fQx8dPaSnZ/3uYmnz9LwBvHe/t46/U1CSlpmS/lrev3/XP/vd6ufOG3LaWyjUb64cNi3T25GFlZqTrp2+W6cK5k0pPS7H9xgDcc2zuNDl9+rS6du2q9PR0Xb16VXXr1tVzzz2nqKgo1a//9wsR4t7XsU0xdWxTzPL+t6NX5edrna35+XpYLfR6sxHjrQO0qXOO6+nGIapSMZfS06+HL1NmHVNaulnJyZn6+JOT+nh8uPz9PJSckmV0SeCBtnvTR9qzaablfcHilZWebv0/YRlpKfL2DbT52nu+mSkvLx9Vebzjv64TAABH2vzlx9q86mPL+2KlK2cLJdLSUuTrn/2/hzcCkbRbxqenJcvXL1Bmc5bSUm8599/3Rte7Vd2nuygtNUXzJ/RVRkaaqj7ylMpWfkz+OXLe2c0BuKfZHJqMGjVKzz77rF599VXVrFlTJUuW1Pvvv68pU6YQmtwHPvnstD757LTlffeOJVQ2zPpvqUsUC9SRP65l+6y/v6e6vlBcK9acVeyFVEmSh4dJXp4mpaZm6c/TSTKZTPLy8lBa+vXQxfNGHmNy73lugKPUaNxTNRr3tLz/ae1EXYg+ZDUm/q9jKlCsks3XPrJnlRKunNdHQyIkSRn/DWOO//qNeo5lUVgAwL2jYcvuatiyu+X918sm68zJ36zGxJ49rtCSFbN9NiBHLuXKU1CxZ45ZdrS5evmCkhKuKCS0tMxZZiUlXNa1KxcVlCuf5Vq58oTIP8C4W/NmV+LPq2a95/RUm+u702VmZmh0vydU4/GWd3u7wG1lseWw09k8PWf//v3q1q2bTCaTTP/9RbdFixaKjo62e3FwvfVbYhVeKZca1M4vTw+pQe38Cq+USxu2ZF+ZPDk5UxFVgtW7a5gCAzzl7+ehAT1LKyY2RfsPXdHu/ZcUE5usof3Kyd/PQ7lzeuuVjiW1bcdFJd+mcwWAtfIRzXXm+C4d3bdOWZkZOrpvnc4c36XyES1svlbHt9br1Q9+Vs+xe9Rz7B6Vq/aMylV7hsAEAHDPq167mY7/tlv7d6xXZmaG9u9Yr+O/7Vb1Os0Nx9d4vKW++XKm4s6fUUpyolYv/EClKtRQvoLFlL9QcZUsV02rFo5VSnKi4s6f0aYvPlLNes/eUS37t6/T/Am9lXjtslJTErVu6UR5efncdvtjAO7F5tAkKChIFy9etDp24cIF5cqVy25F4d5x+kyyho46pI5tiunrJY+pc7vienvMb4qOSZYkNa5bQBuX17aMH/L+QXl4SMtmRerLBY8qT24fvfHur8rMNCsz06zeQw8oM9OsJTNrasnMGrpwMVVjpmRfsAuAsTwFw/RM12nas2mmZr5VQ7s2TNfTXaYquEBJSdKRPas1Y5DxLjkAANwvChQppS4DpujbVR9r+CuPatPKGerUf5LyFyohSfr5h6/0VpcIy/jGz76qClUf1/SRL+n93g2Unp6qjn0/tJx/qf9EZWVmanS/JzRl+AsqX6W2Gj/b89Yva6hu004qUTZc/3mzmd7r3VDnY/5Uj7fnyNvH1673DMA1TGaz2aYGn8mTJ2vr1q0aOHCg+vXrp7lz52rcuHEKDw/XgAEDbC6gdrOtNn8GgGO90Kuuq0sAcJMSzcu5ugQAt8jaceifBwFwmmbVbV55wi2t35/m6hLuylNVfVxdwl2z+TurV69eSklJUe/evZWcnKyOHTuqdevW6t27tyPqAwAAAAAAksxm1oJ0NptDE29vbw0ePFiDBw9WfHy8goODLWubAAAAAAAA3C/uqofpl19+0Z9//qlbZ/a0bNnSHjUBAAAAAAC4nM2hyYQJEzRr1izlz59fXl7/+7jJZCI0AQAAAADAQWxbkRT2YHNosnr1an300UeqW5eFIgEAAAAAwP3L5i2HExMT9fjjjzuiFgAAAAAAgHuGzaFJvXr1tGbNGkfUAgAAAAAAHnBxcXHq1auXIiIiFBkZqVGjRikjI8Nw7NatW9WsWTNVrVpVTZo00ZYtW+xai83Tc1JTUzVkyBB99NFHypcvn9W5hQsX2q0wAAAAAADwP1l6MHau7d+/vwoWLKht27bp4sWLevXVVzV//nx169bNatzJkyfVp08fTZgwQfXq1dPGjRvVv39/bdy4UQULFrRLLTaHJmXLllXZsmXt8sUBAAAAAABuOHXqlHbt2qXvv/9e/v7+Cg0NVa9evTRu3LhsockXX3yhiIgINWrUSJLUtGlTrVy5UsuWLVPfvn3tUo/NoUnv3r3t8oUBAAAAAMD9Ly0tTWlpaVbHfHx85OPjk23sH3/8ody5c1t1ioSFhSkmJkZXr15Vzpw5LcePHTuWramjdOnSOnLkiN1qt3lNE0lavny5mjVrpsjISMXExKhv375KTEy0W1EAAAAAAOD+MHPmTFWvXt3qNXPmTMOxiYmJ8vf3tzp2431SUtI/jvXz88s27t+wOTSZP3++5syZo44dOyozM1OBgYGKjY3VmDFj7FYUAAAAAACwZja756tHjx7au3ev1atHjx6G9xgQEKDk5GSrYzfeBwYGWh339/dXSkqK1bGUlJRs4/4Nm0OTJUuWaPr06Wrbtq08PDyUK1cuTZ061e4r1AIAAAAAAPfn4+OjHDlyWL2MpuZIUpkyZXT58mVdvHjRcuz48eMKCQlRUFCQ1diyZcvqjz/+sDp27NgxlSlTxm612xyaXLp0SSVLlpQkmc1mSVLevHlvu/0PAAAAAADAnShRooSqV6+u0aNHKyEhQdHR0Zo+fbpat26dbWzz5s21a9curVu3ThkZGVq3bp127dqlFi1a2K0em0OT8uXLa9myZZIkk+n6dkfr1q2za5IDAAAAAACsmc0mt3zZasqUKcrIyFDDhg3Vtm1b1alTR7169ZIkhYeHa/Xq1ZKuLxA7bdo0zZw5UzVq1ND06dM1depUS6OHPZjMN9pF7tChQ4fUuXNnhYWF6eDBg3r00Ue1f/9+zZ49W1WqVLG5gNrNttr8GQCO9UKvuq4uAcBNSjQv5+oSANwia8chV5cA4CbNqtu8MaxbWr0n09Ul3JXmEZ6uLuGu2fydVbFiRa1du1arV69WhQoVFBISohEjRqhw4cKOqA8AAAAAAMAl7iqOK1CggLp163bb89WqVdPPP/9810UBAAAAAAC4mkN6mGyc8QMAAAAAAP5BFr9qO53NC8HeiRsLxAIAAAAAALgrh4QmAAAAAAAA7u7BWGIYAAAAAAA3x0oYzkenCQAAAAAAgAFCEwAAAAAAAAM2hybR0dH/OIbdcwAAAAAAgLuzOTR5/vnnlZCQ8LdjNm/efNcFAQAAAACA7MwyueXLndkcmuTOnVuxsbF/OyZPnjx3XRAAAAAAAMC9wObdc8qUKaO2bduqatWqKlCggNW5MWPG2K0wAAAAAAAAV7I5NAkICNATTzzhiFoAAAAAAADuGTaHJnSTAAAAAADgfFnsueJ0NocmaWlpWrNmjWJjY5WVlSVJSk9P19GjRzVjxgy7FwgAAAAAAOAKNocmb731lrZt26bg4GClp6crICBAf/zxh1q2bOmA8gAAAAAAAFzD5tBk27ZtWrJkieLj47VkyRJ9+OGHmjt3rn755RdH1AcAAAAAACSZmZ7jdDZvOZyVlaVSpUqpVKlSOnz4sCSpQ4cO2rNnj92LAwAAAAAAcBWbQ5OQkBBFR0crT548iouLU1JSksxmsxITEx1RHwAAAAAAgEvYPD2nWbNmat++vVasWKF69erp1Vdfla+vrypVquSI+gAAAAAAAFzC5tCke/fuCg0NVVBQkIYNG6Zx48YpISFBw4YNc0R9AAAAAABArGniCjaHJpLUpEkTyz+PGDHCbsUAAAAAAADcK+44NOnYsaNMJtPfjlm4cOG/LggAAAAAAOBecMehSWRkpCPrAAAAAAAAuKfccWjSu3fvbMfi4uKUK1cueXnd1SwfAAAAAABwh7LMfz/7A/Zn85bD6enpGj16tMLDw1W7dm1Vr15dw4YNU1pamiPqAwAAAAAAcAmbQ5Pp06dr586dmjRpkr766itNmjRJBw4c0KRJkxxQHgAAAAAAgGvYPK9mzZo1mjdvnkJDQyVJYWFhCgsLU4cOHTRo0CC7FwgAAAAAANhy2BVs7jS5cuWKChUqZHWsUKFCSklJsVtRAAAAAAAArmZzaFKuXDktXbrU6tjSpUtVtmxZuxUFAAAAAADgajZPz+nfv7+6du2q1atXKzQ0VKdOndLx48c1Z84cR9QHAAAAAADgEjZ3mkRERGjVqlWqXbu2AgIC1LhxYy1YsEDVqlVzRH0AAAAAAEDX1zRxx5c7szk0+fbbb9WhQwf17dtXhQoV0rRp09SxY0ctX77cEfUBAAAAAAC4hM2hyYwZM9S/f39lZWVp0aJFioqK0uLFizVr1ixH1AcAAAAAAOASNq9pcvr0abVt21a//fabkpOTVatWLXl5eenixYuOqA8AAAAAAEjKcvOpLu7I5k4Tf39/xcXF6dtvv1X16tXl5eWlI0eOKDg42BH1AQAAAAAAuITNnSbPPfecWrZsqatXr2rKlCk6ePCgunXrpq5duzqiPgAAAAAAAJewOTTp06ePatasKV9fX1WtWlXnzp3TyJEj9cQTTziiPgAAAAAAAJewOTSRpMjISMs/FypUSIUKFbJbQQAAAAAAIDuz2eTqEh44Nq9pAgAAAAAA8CAgNAEAAAAAADBAaAIAAAAAAGDgrtY0AQAAAAAAzmU2u7qCBw+dJgAAAAAAAAYITQAAAAAAAAwwPQcAAAAAADeQxfQcp6PTBAAAAAAAwAChCQAAAAAAgAFCEwAAAAAAAAOsaQIAAAAAgBtgy2Hno9MEAAAAAADAAKEJAAAAAACAAUITAAAAAAAAA6xpAgAAAACAG2BNE+ej0wQAAAAAAMAAoQkAAAAAAIABpucAAAAAAOAGspie43R0mgAAAAAAABggNAEAAAAAADBAaAIAAAAAAGCANU0AAAAAAHADbDnsfHSaAAAAAAAAGCA0AQAAAAAAMMD0HAAAAAAA3EBWlqsrePDQaQIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIAB1jQBAAAAAMANsOWw89FpAgAAAAAAYIDQBAAAAAAAwAChCQAAAAAAgAHWNAEAAAAAwA2wponz0WkCAAAAAABggNAEAAAAAADAANNzAAAAAABwA1lMz3E6Ok0AAAAAAAAMEJoAAAAAAAAYIDQBAAAAAAAwwJomAAAAAAC4AbPb7jlscnUBd41OEwAAAAAAAAOEJgAAAAAAAAYITQAAAAAAAAywpgkAAAAAAG7AbZc0cWN0mgAAAAAAABggNAEAAAAAADDA9BwAAAAAANxAVparK3jw0GkCAAAAAABggNAEAAAAAADAAKEJAAAAAACAAdY0AQAAAADADbDlsPPRaQIAAAAAAGCA0AQAAAAAAMAA03MAAAAAAHADWUzPcTo6TQAAAAAAAAwQmgAAAAAAABggNAEAAAAAADDg8jVN3hpRy9UlALhFLr8EV5cA4CbxOw65ugQAt/B4pKKrSwBws/TfXV2BU7DlsPPRaQIAAAAAAGCA0AQAAAAAAMAAoQkAAAAAAIABl69pAgAAAAAA/pk5y10XNTG5uoC7RqcJAAAAAACAAUITAAAAAAAAA0zPAQAAAADADbjt7Bw3RqcJAAAAAACAAUITAAAAAAAAA4QmAAAAAAAABljTBAAAAAAAN2BmTROno9MEAAAAAADAAKEJAAAAAABwC0lJSRo6dKgiIyNVvXp1DRo0SImJibcdv2HDBrVo0ULVqlVTgwYNFBUVpaysrDv+eoQmAAAAAAC4gawss1u+7Om9997TuXPntGHDBm3cuFHnzp3T+PHjDccePHhQgwYNUv/+/bVnzx7NmjVLK1eu1Pz58+/46xGaAAAAAACAe15ycrLWrFmjvn37Knfu3MqbN6/eeOMNrVy5UsnJydnGnz17Vu3atVP9+vXl4eGhsLAwNW7cWLt3777jr8lCsAAAAAAAwGHS0tKUlpZmdczHx0c+Pj7ZxqakpCg2NtbwOsnJyUpPT1fZsmUtx8LCwpSS8v/t3Xt8zvX/x/HnzpvzoWXDkNXQynFGyGFyyoZiHYRKxPeXUyiSHJLSN2FWUSas+hKiSI4T33wdUsm3KL5EzjOb02bn6/37Q65c7WK7atvlyuN+u+12c70/78/n8/pc9rnen72u9yFDhw8fVp06dWzqd+jQQR06dLA59qZNmxQVFVXg2EmaAAAAAACAIvPuu+/qrbfesikbNGiQBg8enKfu7t271adPH7vHGTp0qCSpRIkS1jI/Pz9Juu68JpKUmpqqoUOHytfXV0888USBYydpAgAAAACAC3DVJYcHDBigJ5980qbMXi8TSWrSpIn27dtnd9vevXsVExOj9PR0lSxZUpKsw3JKlSp1zfP/8ssvGjJkiCpWrKj4+Pjr1v0j5jQBAAAAAABFxtvbW6VKlbL5uVbS5Hpuu+02eXl56cCBA9aygwcPysvLSzVq1LC7z+bNmxUdHa17771Xc+fOVdmyZR06J0kTAAAAAABww/Pz81OnTp00depUpaSkKCUlRVOnTlVkZKR8fX3z1P/+++/1zDPP6IUXXtCoUaPk6en4YBuSJgAAAAAAwCWMHz9eNWrUUFRUlDp27KiqVatq3Lhx1u2dO3fW7NmzJUmzZ89WTk6OJk+erAYNGlh/+vXrV+DzuRnj3FFRX3yX7czTA7CjrG+ms0MAcJWU9LzfnABwLvemoc4OAcBVOmfbnwPj72byolxnh/CnvPiIh7ND+NPoaQIAAAAAAGAHSRMAAAAAAAA7WHIYAAAAAAAXYHHVNYddGD1NAAAAAAAA7CBpAgAAAAAAYAdJEwAAAAAAADuY0wQAAAAAABdgLM6O4OZDTxMAAAAAAAA7SJoAAAAAAADYQdIEAAAAAADADuY0AQAAAADABRhjnB3CTYeeJgAAAAAAAHaQNAEAAAAAALCD4TkAAAAAALgAC0sOFzt6mgAAAAAAANhB0gQAAAAAAMAOkiYAAAAAAAB2MKcJAAAAAAAugCWHix89TQAAAAAAAOwgaQIAAAAAAGAHw3MAAAAAAHABFkbnFDt6mgAAAAAAANhB0gQAAAAAAMAOkiYAAAAAAAB2MKcJAAAAAAAuwDCpSbGjpwkAAAAAAIAdJE0AAAAAAADsIGkCAAAAAABgB3OaAAAAAADgAgxTmhQ7epoAAAAAAADYQdIEAAAAAADADobnAAAAAADgAiwsOVzs6GkCAAAAAABgB0kTAAAAAAAAO0iaAAAAAAAA2MGcJgAAAAAAuADDmsPFjp4mAAAAAAAAdpA0AQAAAAAAsIOkCQAAAAAAgB3MaQIAAAAAgAswFmdHcPOhpwkAAAAAAIAdJE0AAAAAAADsYHgOAAAAAAAuwMKSw8WOniYAAAAAAAB2kDQBAAAAAACw408Nz/nvf/+rQ4cOyfyha1C3bt0KIyYAAAAAAACnczhpMm3aNM2ZM0f+/v7y9Px9dzc3N5ImAAAAAAAUkT92XEDRczhpsmLFCs2ePVutWrUqingAAAAAAABuCA7PaZKWlqaWLVsWRSwAAAAAAAA3DIeTJq1bt9bKlSuLIhYAAAAAAHANFotxyR9X5vDwnMzMTI0ePVqzZ8/WLbfcYrMtPj6+0AIDAAAAAABwJoeTJiEhIQoJCSmKWAAAAAAAAG4YDidNBg0aZP13cnKyypYta7OKDgAAAAAAwN+Bw9mO7OxsvfHGG1qyZIkyMjLk7e2tLl266KWXXpK3t3dRxAgAAAAAwE2PFYeLn8MTwb7zzjvasWOHZsyYoc8//1wzZszQ7t27NWPGjCIIDwAAAAAAwDkc7mmycuVKzZs3T0FBQZKk4OBgBQcH67HHHtPzzz9f6AECAAAAAAA4g8M9Tc6fP6/AwECbssDAQGVkZBRaUAAAAAAAAM7mcNKkVq1aWrRokU3ZokWLWFEHAAAAAIAiZCzGJX9cmcPDc4YNG6a+fftqxYoVCgoK0pEjR3TgwAHNnTu3KOIDAAAAAABwCod7moSFhenTTz9V8+bNVbJkSbVr106ff/65GjZsWBTxAQAAAAAAOIXDPU0kqWbNmho6dGhhxwIAAAAAAK7BwprDxa7ASZOoqCitXLlSERERcnNzs1snISGh0AIDAAAAAABwpgInTZ5++mlJ0uDBg4ssGAAAAAAAgBuFQz1NJCklJUVPPfVUnu0zZswotKAAAAAAAACcrUBJk5SUFB08eFCSFBsbq3r16slcNZbq4sWLWrBggYYNG1YkQQIAAAAAcLNz9eV7XVGBkibe3t4aMmSIzp49K0nq1atXnu0PP/xw4UcHAAAAAADgJAVKmpQqVUrbtm2TJHXs2FFr1qwp0qAAAAAAAACczd3RHdasWaPFixcrMTFRkrRixQotWbKk0AMDAAAAAABwpgJPBHtFbGysli1bpvDwcElSyZIlFRMTo/Pnz6tfv36FHiAAAAAAAGBOE2dwuKfJkiVLFB8frxo1akiS2rZtq3nz5umjjz4q7NgAAAAAAACcxuGkSWpqqgIDA23KAgMDdenSpUILCgAAAAAAwNkcTpqEhobqvffesyl7//33Vbt27UILCgAAAAAA2LIY1/xxZQ7PaTJ69Gj17dtXixcvVkBAgE6dOqWcnBzFxcUVRXwAAAAAAABO4XDSJDQ0VOvWrdPGjRuVlJSkwMBAtW7dWqVLly6K+AAAAAAAAJzC4aSJJJUtW1YPPPBAYccCAAAAAABww3A4aVK7dm25ubnZ3fbTTz/95YAAAAAAAEBeLDlc/BxOmsTHx9u8TklJ0QcffKCuXbsWWlAAAAAAAADO5nDSJDw8PE9Zo0aN9MQTT+ihhx4qlKAAAAAAAACc7U/NafJHZcqUUWJiYmEcCgAAAAAA2GEMw3OKm8NJk08//dTmdXZ2thISElSnTp3CigkAAAAAAMDpHE6azJw50+a1h4eHgoODNX78+EILCgAAAAAAwNkcTpps3LixKOIAAAAAAAC4oRQ4abJz58586zRu3PgvBQMAAAAAAOyzsORwsStw0qR3796SJDc3N2tZ2bJldfHiRVksFpUrV07btm0r/AgBAAAAAACcoMBJk59//lmSNHfuXO3fv19jx45V6dKldenSJU2ZMkVly5YtsiABAAAAAACKm7ujO8ydO1cTJ05U6dKlJUklSpTQiy++qMWLFxd6cAAAAAAAAM7i8ESwFotFycnJqlKlirXs2LFj8vDwKNTAAAAAAADA74xhTpPi5nDSpGvXrnrqqafUr18/BQYG6ujRo4qLi9MjjzxSFPGhCF08n6zFcRN1YO9Oebh7qFGLSHXpNVIeHnl/Lfbu+rc+XzhdyaePqVzFAHV5bIRCG7a2bk9Y8b6+WvuR0tMuKKhmqB7qN163Vr5NknQm8aiWzX9Vv/5vt9w9PFW7XnM9+PgL8itZRpL0/fa1WrdstlKSjsuvZBmFt+qmDt3/T+7uDneEAv52LpxL0YJZr+jnH7+Vh4eHmra6Xw8/Mczuffrfb7doSfxMJSUeV8VbAhT9+FDVb9xSkpSVmaFF70/Td19vUk52lqrXrK1H+o5QUI07bI6RmZmuqeP+oVYdHlSLiC7Fco2AK/hp17+1atE0JZ8+pvIVAxXZc4TuvKodvJrFkqtVC6fr269WKDsrXbeHNlH3vuNVpry/pMvt79K4CTr40065/9b+Rj72XJ77+vD+7zV78pOasmCXtcwYo02fv6+tGz7WpdRzqlbzbnXpM1qBQbb3MoCC8b6lvJp99bH+O2CsUv79tbPDAXADcviv0ueee06dOnXSrFmzNGDAAM2dO1cPPfSQBg8eXBTxoQjFzxwpHx8/TXxno4a9slD7f9yuzV/E56mXdPJXzZ/+rDpFD9Krc7epY49ntCBmpM6lJEqSvt78mb5a+5EGjH5Xr7y3RUG3hWre9GetWdAPYp9XQNVgvTx7s0a/uVJnk07qsw/fkCSd+HWfPnx7tLr0Gqkp877W/704V9s2LtXOf39WfG8EcAOb/eZo+fiW0LT312jsP+P10+6vtW7Fv/LUSzxxRG//83k90PMfevujzer66ADNnjpaZ5NPS5I++/g9nTrxq16ZuUQz5q1XUI0QvTVlhM0xjh85qCkv9tfB/T8Uy7UBriLp5K9aMGOYOvYYrFfitqt9j2f0wcwROv9bO/hHG5a/q/0//EfDJn+sl976Ul5evlo8Z5x1+4exI+TjW0Lj3v5SQyct0v4ft+vfV7W/xhh9vWmZ5kzpr5zsLJtjb1n7kb5c+b4ee+Z1vfzeVoWGRWj2K08q7cLZorl44G+sfLOGavbVxyp5e3VnhwLgBuZw0sTT01NDhw5VQkKCfvzxR61fv15PP/20zao6uPElnTqiA3t3KqrnCHn7+OmWSkFq/+AAbVm3ME/dnf/+TLfVbqi7G7eVh4enGtzTUcF1wrQtYYkkafuXS9W83cMKDLpdXt4+inx0mM4mn9SBvZeXqU488YuMxVxOohgjN3c3eXn7SZIqV6+lV97botp1m8tisSjt4llZcnJUsnT54nszgBtU4smj+vnHbxX9+FD5+Pjp1oCqinqonzau/jhP3f98+blC6tRXwyZt5OHhqfDm7RUS2kib1y2TJJ08dsh6DxoZubu7y9vH17r/T//9Wm+MG6jmbSJV0T+g2K4RcAXffPWpatZupLt+awfrN+2omnXCtH3jErv1d3z5idpEPaVyFQPlW6KUuj4+Wvt2f6XkxKM6c+pXHdy7U51/a38rVgpSuwcG6j/rf0+GfvzuWO3YuFTtuz+T59i7tq5Si46PqUZIA3l4eKpFh8dUsnR57d6xtsiuH/g7qtK7m+rHT9W+cdOdHQrgEGMxLvnjyhwenmOMUXx8vD7++GMdP35c/v7+6tGjhwYMGEDixIWcOnZAJUqVVdkKt1rLKlUJ1tkzJ5WedsE6dOZK3cpBITb7B1QJ1okj+3/bflARUU9Zt3l4esk/oLpO/LpPd4SGq2P3/9PnC6fr32s+lMWSq+p31FNUz2et9X39SiorK0Nj+jZVbm6O6jftoDr1WxTVpQMu48SRgypZqqzKV/C3llUOuk3JSad0Ke2iSpQsbS0/fvSgqlS/3Wb/ykG36ejhy/dphy699PY/n9OQx9vK3d1DpcqU0/Mvv2utG1QjRG+897m8vH209rMPi/jKANeSeOygAv4w/KVSlWCd+HVfnrrply7qfMopBV7VbpYue4v8SpbRySP7JTe3y+1vedv299xV7W/H6MEqVzFAB/bmHSpgseTK26eETZmbm5tOnzj0Vy8TuKmcWbdFJ/61UiY3V/rXDGeHA+AG5nBPk/j4eM2bN0+9evVSbGysnnjiCS1atEhz5swpivhQRDLT0+Tt42dTduVb58yMSzblGRmX5O1rW9fLx9daLzM9TT5/OJaX9+/b3dzc1f7BgXp17ja9NHOdJGlx3ESb+p6e3poyf6demPa5Th07qGXzX/2LVwi4voz0S/Lx9bUp8/b2tW7LU9fOPZ2RkS5JyrXkqtE9bfVm3GrFfvilGoa3Vuxrw5WdlSlJKlWmnLy8fYrqUgCXZrfN9PZV1h/ayyt1JeWp7+Xtp8zMS8rMyHssrz+0v+UqXru3V93wdtqy9kMdP/yTcnOytXXDx0o6eVjZWRmOXxhwE8tMPHM5YQIA+XA4abJo0SK988476tmzp1q2bKlevXrpnXfe0ccf5+0ujhuXt6+fsjNtH7Cyfnvt41fSptzHx09Zmek2ZdmZGfL1vfxNl7ePn7Ky/rA9K0M+fiV09Jc9+mLxTLXt2k8+viVUwb+yujw2Qt/9Z5UyLqVa67u7u8vT00u3BtZQ+wcH6rv/fFFo1wq4Km9fX+t9eUXWb38Y+frZftPs4+Nn3Watm5khX78SysnJ1qw3RqlFRBeVr3ir/PxKqmf/53Q25bT27N5RtBcBuKCET9/TmCfDrD9GJk9SIisrI097Kf2eLPnj/ZidlS4f35KX28w/3NfZ12h/7WnV+UmF3dtV86cN0StD7lPSiV8UUre5/EqVyXdfAADgOIeH55w+fVq1a9e2Katdu7bOnTtXWDGhGARWvUNpqed08dwZlS53iyQp8fhBlatQSX4lStvUDQi6XccO/WRTdur4QQXVDLVuP3XsoHU1ndycbCWd+lWBQXfobPJJGYtFxmKRfluV2sPDS5Kb3D089P32tfr3mg81ZMIH1mPn5GSpRKmyRXPhgAupWu12pV48r/PnklW2XEVJ0omjh1S+YiWboTmSVKVasH795WebshNHD6nG7XWUmZGutNQLNhNKurt7yM3NXZ6eDjcDwN9e225Pq223p62vV38co2OH99rUSTx+UEG3hebZ9/LQ10pKPHbAuqLNhXNJupR6XgFBt8tYjC6lntPF82dUuuzv7W/ZCgF52l97zqecVnjr7uoYfXkC/tzcHL06tL0at+z2Zy8XAOBCXH1+EFfkcE+T6tWra/369TZl69evV/XqzDrtSvwDq+u2Wg21PP51ZaSnKfn0Ma1b9q6atHkwT92wFlE6uHendm1bo9zcHO3atkYH9+5U2L1RkqQmrR/QV2v/peO//qzsrEx9vnCGSpetqODajVSzVkN5+fjq0/jXlZ2VqYvnk7Vq0QzVDb9P3j5+qn5HXZ088j9tWrVAFkuuTh49oHWfzFKz+x4u7rcEuOFUqlxNd9Spr4Vz31R6epqSEo9r5eI43Xtf1zx1m7W+X/v2fKuv/7NOubk5+vo/67Rvz7dq1qqzSpYqozvq1NeSD2bqwrkUZWdlamn8TJUuU0531GnghCsDXEuj39rB77dfbge/3365HWx0r/1luRu37KYNn76r5NPHlJGephXxr6tmnca6pVI1a/v7WfwUa/u7fvlshbfO2/7a8/22LzR/2iClXTynzIw0fbFoujw9va+5/DEAAPhr3MyVdWELaMOGDRo2bJjatWunoKAgHTlyRAkJCZo5c6batGnjcABffJft8D4oHBfPndEn81/VgT1fy83dXWH3Rimq53C5u3to1BON9VC/8WrUIlKS9PPu/2jlwmlKTjyq8rdUVlTP4bqzQUtJlycH3rRqgbasX6S0CykKqnmXovuN062BNSRJR3/Zo5ULp+v4ob3y8vZVaKPWinp0uHxLlJIkHdq/Sys+nKpTxw6qdNmKat7uEd3b8TG5uzuc00MhKeub6ewQ8Jvz55L10Xuv6+cfv5Gbm7uatems6N5D5O7hoX882kJ9Bo7RPa3ulyT9uGurlsTH6vSpY7rFP1DRjw9R3UYtrMdZvCBGe77frtycHAXXukuPPDlCAVXyJryfezpSXR95Wi0i7P9BiOKXku6bfyUUqX27t2jVosvtYLlbKivy0RGq81s7+N2Wz7V07gS9Ou8bSZd7XK5ZEqvv/vO5MtPTFHxnuHr0m6DSZS/3GLt4/oyWz5usA3uvtL9d1PnRy+3v1Q7s/VqzX3lSU/+1x1qWm5Otzz6Yot071ik3J1u31WqoB554URX8qxTTO4Er3Jvm7WkE19Q5e5+2te2tlH/nnXwZrqNzdt7Juf+O+k487ewQ/pT3x9+af6UblMNJE0navn27li9frjNnzqhKlSrq0aOH6tat+6cCIGkC3HhImgA3FpImwI2HpAlwYyFpcmNz5aSJw4PZ//GPf+iNN95Q06ZNiyIeAAAAAABgh8XxPg/4ixwe/7Br1y55e3sXRSwAAAAAAAA3DId7mkRGRmrIkCGKioqSv7+/3NzcrNsaN25cqMEBAAAAAAA4i8NJkw8//FCStGnTJptyNzc3/fTTT3b2AAAAAAAAfxVLDhc/h5MmP//8c1HEAQAAAAAAcENxOGkiSYcOHdKqVauUlJSkKlWqKDIyUpUrVy7s2AAAAAAAAJzG4YlgN2zYoKioKG3ZskUXL17Uhg0b1LlzZ33zzTdFER8AAAAAAIBTONzTZPr06XrllVfUrVs3a9nSpUv12muv6ZNPPinM2AAAAAAAwG8MSw4XO4d7mpw4cUJdunSxKXvggQd0+PDhwooJAAAAAADA6RxOmtStW1fr1q2zKfv6669Vv379wooJAAAAAADA6RwenlO1alWNGDFCK1euVPXq1ZWYmKgNGzYoLCxML7zwgrXea6+9VqiBAgAAAABwM7Ow5HCxczhpYrFYrMNzzp49K29vb91///2FHhgAAAAAAIAzOZw0KUgPkgkTJvyZWAAAAAAAAK7p0qVLmjRpkjZu3KicnBy1bdtW48ePV8mSJa+73+nTp9WtWzeNHDlSDz74YIHP5/CcJgWxYsWKojgsAAAAAAC4iU2aNEknT57U2rVrtW7dOp08eVJTp0697j4Wi0UjR47U2bNnHT5fkSRNWAYJAAAAAIDCZSzGJX8KS3p6ulauXKkhQ4aoXLlyqlixokaOHKlly5YpPT39mvu9/fbbCggIUGBgoMPndHh4TkG4ubkVxWEBAAAAAICLycrKUlZWlk2Zt7e3vL2989TNyMhQYmKi3eOkp6crOztbISEh1rLg4GBlZGTo8OHDqlOnTp59tm/frlWrVumTTz5RVFSUw7EXSdIEAAAAAABAkt5991299dZbNmWDBg3S4MGD89TdvXu3+vTpY/c4Q4cOlSSVKFHCWubn5ydJSktLy1M/OTlZY8aM0cyZM/Od8+RaSJoAAAAAAIAiM2DAAD355JM2ZfZ6mUhSkyZNtG/fPrvb9u7dq5iYGKWnp1uTIFeG5ZQqVcqmrjFGzz//vHr37q277rrrT8dO0gQAAAAAABfgqvOHXmsojqNuu+02eXl56cCBA6pXr54k6eDBg/Ly8lKNGjVs6p48eVJff/21du/erbfffluSlJqaqokTJ2rt2rV69913C3TOIkmauOp/JAAAAAAAuDH5+fmpU6dOmjp1qmJiYiRJU6dOVWRkpHx9fW3qVq5cWT/88INNWUREhAYNGlR8Sw6npKTYLb8yzggAAAAAAKCwjB8/XjVq1FBUVJQ6duyoqlWraty4cdbtnTt31uzZswvtfG7GwW4hOTk5io2N1Ycffqjc3FytXLlSw4YN06xZs3Trrbc6HMAX32U7vA+AolXWN9PZIQC4Skq6b/6VABQr96ahzg4BwFU6Z9ufA+Pv5tHnjzg7hD9l4T+rOTuEP83hniaxsbHavn27YmJi5OXlpYoVKyogIECTJ08uivgAAAAAAACcwuE5TVauXKmFCxeqUqVKcnNzU4kSJfTaa6+pXbt2RREfAAAAAACAUzjc0+TSpUuqUKGCpN8nfPX19ZW7+1+aHgUAAAAAAOCG4nCmo379+nrrrbckSW5ubpKkDz74QHfffXfhRgYAAAAAAKwsFuOSP67M4eE5Y8aM0RNPPKHly5crLS1N999/v9LS0jRv3ryiiA8AAAAAAMApHE6aVKtWTatWrdKXX36pEydOKCAgQK1bt1apUqWKIj4AAAAAAACncDhpMmnSJEVHR+v+++8vingAAAAAAABuCA4nTZKTk/Xwww8rODhY0dHRioyMVOnSpYsiNgAAAAAA8Jsri7Gg+Dg8EeyMGTO0ZcsW9ejRQ8uXL9e9996rUaNGaefOnUURHwAAAAAAgFP8qXWCS5curZ49e2rx4sWaNWuWdu7cqT59+hR2bAAAAAAAAE7j8PAcSUpLS9OaNWv06aef6r///a9at26tSZMmFXZsAAAAAADgN8bFl+91RQ4nTUaMGKGNGzcqICBA0dHRiomJUYUKFYoiNgAAAAAAAKdxOGni6empOXPmKCwsrCjiAQAAAAAAuCE4nDR5/fXXiyIOAAAAAACAG0qBkyYNGzbUd999p9q1a8vNzc1unZ9++qnQAgMAAAAAAL9jTpPiV+CkyXvvvSdJWrBgwTWTJgAAAAAAAH8XBU6aXJnDpEmTJkUWDAAAAAAAwI2iwEmTiIiIfHuYJCQk/OWAAAAAAABAXhZjcXYIN50CJ00GDx5s8zopKUmSlJ2drcqVKxduVAAAAAAAAE5W4KTJAw88IElKTU3V888/r40bN1q33XPPPYqJiSn86AAAAAAAAJzE3dEdpk2bpkuXLmnVqlXavXu3VqxYIWOM3njjjaKIDwAAAAAAwCkcTpps3LhRb775poKDg+Xj46OQkBC98cYb2rBhQ1HEBwAAAAAAdHnJYVf8cWUOJ03S09NVunRpm7IyZcrIYmFCGgAAAAAA8PfhcNKkXr16iomJkTGXs0XGGMXExOjuu+8u9OAAAAAAAACcpcATwV4xcuRI9e7dWytWrFCVKlV0/Phxubm5ad68eUURHwAAAAAAgFM4nDQJCQnR2rVrlZCQoOTkZFWpUkWtWrVSqVKliiI+AAAAAAAgufz8IK7I4aSJJJUrV07du3cv7FgAAAAAAABuGA7PaQIAAAAAAHAz+FM9TQAAAAAAQPG6siALig89TQAAAAAAAOwgaQIAAAAAAGAHSRMAAAAAAAA7mNMEAAAAAAAXYLFYnB3CTYeeJgAAAAAAAHaQNAEAAAAAALCDpAkAAAAAAIAdzGkCAAAAAIALMBbj7BBuOvQ0AQAAAAAAsIOkCQAAAAAAgB0MzwEAAAAAwAUYw5LDxY2eJgAAAAAAAHaQNAEAAAAAALCDpAkAAAAAAIAdzGkCAAAAAIALYMnh4kdPEwAAAAAAADtImgAAAAAAANjB8BwAAAAAAFwAw3OKHz1NAAAAAAAA7CBpAgAAAAAAYAdJEwAAAAAAADuY0wQAAAAAABdgMRZnh3DToacJAAAAAACAHSRNAAAAAAAA7CBpAgAAAAAAYAdzmgAAAAAA4AKMxTg7hJsOPU0AAAAAAADsIGkCAAAAAABgB8NzAAAAAABwAcbCksPFjZ4mAAAAAAAAdpA0AQAAAAAAsIOkCQAAAAAAgB3MaQIAAAAAgAtgyeHiR08TAAAAAAAAO0iaAAAAAAAA2EHSBAAAAAAAwA7mNAEAAAAAwAUYY3F2CDcdepoAAAAAAADYQdIEAAAAAADADobnAAAAAADgAiwsOVzs6GkCAAAAAABgB0kTAAAAAAAAO0iaAAAAAAAA2MGcJgAAAAAAuABjYcnh4kZPEwAAAAAAADtImgAAAAAAANjB8BwAAAAAAFyAYcnhYkdPEwAAAAAAADtImgAAAAAAANhB0gQAAAAAAMAO5jQBAAAAAMAFGMOSw8WNniYAAAAAAAB2kDQBAAAAAACwg6QJAAAAAACAHcxpAgAAAACACzAW4+wQbjr0NAEAAAAAALCDpAkAAAAAAIAdDM8BAAAAAMAFGAtLDhc3epoAAAAAAADYQdIEAAAAAADADpImAAAAAAAAdrgZY1izCAAAAAAA4A/oaQIAAAAAAGAHSRMAAAAAAAA7SJoAAAAAAADYQdIEAAAAAADADpImAAAAAAAAdpA0AQAAAAAAsIOkCQAAAAAAgB0kTQAAAAAAAOwgaeLiMjMzderUKWeHAQAAAKAALl68qJSUFGeHAaCASJq4uJ49e2rr1q3ODgOAE3zzzTdq0KCBs8MAnC42Nla9e/d2dhgAfrNs2TJFRERI+nu1VbVq1dKOHTv+8nHatWun//3vf5KkFStWqHPnzn/5mACKDkkTF3f27FlnhwDAScLCwrRr1y5nhwEAwDXRVuV19fN7ly5dtGrVKidGAyA/JE1cWN++fXXixAmNHz9eL7/8svbs2aPevXurcePGat++vebPny9jjKTL38INHTpUo0aNUsOGDdWyZUutXr1ab7/9tpo1a6bw8HC988471mPXqlVLcXFxat26tRo0aKABAwYoMTGxQHGNHj1aL7/8sgYMGKAGDRqoXbt22rZtmyZNmqTGjRurefPmWrJkibX+kSNHNHDgQDVp0kRt2rTR9OnTlZWVJUkyxui9995TVFSUwsLC1LhxY40YMUIZGRnWc40bN04DBw5UgwYN1LZtW8XHxxfWWwz8KceOHVOtWrX0wQcfqHnz5mrUqJGee+45paamKjY2Vn379lX37t0VHh6unTt3KjU1VS+//LJatWqle+65R88++6zOnDljPd6Ve7tBgwZq0aKFYmJiZIzRjh07VKtWrXzPWRA7d+7Ugw8+qLCwMLVr106TJ09WTk6OJCkiIkLLli2z1rV33k8//VRt2rRR/fr19cILL+ibb75Rly5d1KBBAz3++ON0Q0aBxcbGqlWrVgoPD1f37t2VkJAg6fK31Y899pjCwsIUERGhGTNmWNuKqxWk3RgyZIg6deqkpk2b6siRI/nGlF/7OmTIEI0cOVJhYWFq2bKl3nzzTeu+WVlZiomJUdu2bRUeHq7+/fvr119/tW6vVauWXnnlFTVp0kQDBw6UJK1atUodOnRQWFiYnnrqKb300ksaPXq0EhMTdeedd+q7776z7n/mzBmFhoYW6DrWrl2rzp07q1GjRurUqVOedv/qb9Cv7imwY8cORUREKC4uzvr5Mm3aNCUkJKhDhw5q0KCBBg8ebPf/A39v+/btU//+/RUeHq6WLVtqwoQJunjxok2dq9uM559/XiNGjLDZPmzYME2cOFHS9Z8J8zN69GiNGTNGffr0Uf369dWpUydt2LDBut3evbZhwwY9+OCDatiwoTp06KD58+fLYrFIkrKzs/Xaa6+pSZMmatq0qeLi4mzOd722Ubp2292hQwdJUv/+/TVnzhybe026/mddfp83AIqIgUtr06aN+eSTT8ypU6dMo0aNzIcffmiysrLM//73P9OuXTuzcOFCY4wxM2fONLVq1TKrV682FovFvPHGG6ZOnTpmypQpJisry6xfv96EhISYY8eOGWOMCQkJMZ07dzZHjhwxFy5cMAMHDjSPPvpogWIaNWqUqVu3rtm5c6fJzc01w4cPN3Xq1DHx8fEmOzvbLFiwwNx1110mMzPTpKWlmTZt2pipU6eajIwMc+LECdOjRw8zdepUY4wxq1atMs2bNzeHDh0yxhhz4MABEx4ebhYvXmw9V2hoqNmyZYvJzs42CxcuNHXq1DGnTp0q5HcaKLijR4+akJAQ06tXL5OcnGxOnz5toqOjzciRI83MmTNN7dq1zdatW01qaqrJzs42gwcPNn379jVnzpwxqampZuzYsebhhx82FovFnD171oSHh5vY2FiTmZlpfv31V9OyZUuzcOFCs337dhMSEpLvOQuidevWZtmyZdZjtWjRwqxZs8YY8/vnzBX2zjts2DBz6dIls2/fPlOnTh3TpUsXc+rUKZOcnGzatWtnYmNjC/Mtxt/Utm3bTPPmzU1iYqKxWCxm4cKFpkmTJubgwYPmrrvuMvPnzzeZmZnm8OHDJioqykyaNMkYc7mN69WrlzGmYO1G/fr1zb59+8z58+fzjamg7evy5ctNTk6O2bRpk6lVq5bZtWuXMcaYKVOmmG7dupkjR46YjIwMExsbayIiIkxGRoYx5nJ7279/f3Pp0iVz/vx5891335nQ0FCTkJBgsrOzzbp168ydd95pRo0aZYwxpl+/fmbcuHHW+ObOnWsee+yxfK8jPT3d3H333Wb79u3GGGP27Nlj6tevb3bv3m2N48o2Y4z55JNPTJs2bYwxv9/zr776qsnKyjKbNm0yISEh5sknnzTnzp0zR44cMY0bNzbLly/PNw78faSkpJjw8HAzZcoUk56ebk6fPm369OljBg4caPf3xxhjdu7caerWrWsuXrxojDHm/Pnz5u677zY//vhjvs+E+Rk1apSpXbu2WbVqlcnOzjbLly83oaGh5sCBA8aYvPfatm3bTGhoqLX+jz/+aFq2bGnmzZtnjDFmxowZpn379ubIkSMmLS3NPPfcczb3yfXaxuu13VdiuXKcq9+rgnzWXe/zBkDRoKfJ38SKFSsUHBysxx57TF5eXrr99tv11FNP6aOPPrLWuf3229WxY0e5ubmpefPmys3N1cCBA+Xl5WXNcJ84ccJaf+jQoQoKClLp0qX1/PPP69tvv9WxY8cKFE/Tpk0VFhYmd3d3NW3aVCVKlFDv3r3l6empNm3aKCsrS2fOnNGmTZuUlZWl4cOHy8fHR4GBgRo6dKg17pYtW2rp0qWqUaOGUlJSdPbsWZUrV86m10uTJk3UvHlzeXp6qnv37srNzS3QN25AUXvhhRdUoUIF+fv7a8iQIVqzZo2ysrIUFBSke+65RyVLltT58+e1du1avfjii6pYsaJKliypMWPG6IcfftCePXv05ZdfysfHR88884y8vb1VrVo1zZs3T61bt3bonPnx8fHR6tWr9eWXX6pcuXLavHmz9duwgujbt6/8/PwUEhIif39/PfDAA6pUqZIqVKig+vXr6/jx4wU+Fm5ePj4+On/+vBYvXqy9e/cqOjpa27Zt08qVK1WrVi09/vjj8vb2VvXq1TVixAgtWbLE+q3wFQVpN+rXr6+QkBCVKVMm35gK0r7WqFFD3bp1k4eHh1q1aiV/f38dPnxYxhgtWrRIw4cPV1BQkPVezs7O1qZNm6z7R0ZGys/PT2XKlNEnn3yi9u3bKyIiQp6enmrXrp3uu+8+a93u3bvb3NfLly9X9+7dC/T++vr6aunSpdq2bZuCg4P17bffqm7dugXaV5IGDBggLy8vtWjRQpL06KOPqmzZsgoKCtIdd9xR4GcE/D0kJCTIy8tLI0eOlK+vr/z9/fXSSy9p48aNNr0lrxYWFqbAwECtXr1akvT555+rZs2aCg0NzfeZsCBat26t+++/X56enurWrZvuuusuffHFF9btV99ry5YtU9u2ba31Q0ND9fTTT2vRokWSpM8++0xPPfWUgoKCVKJECY0dO1Zubm4FisPRtvuKgnzWXevzBkDR8XR2ACgcx48f1549exQWFmYts1gs8vDwsL4uV66c9d/u7pfzZWXLlrV5ffXDZ/Xq1a3/rly5siQpKSlJVatWzTeeq8/l4eFh82B6pcGxWCw6fvy4UlJS1LhxY+t2Y4yys7OVnJwsb29vTZ8+XV9++aUqVKigOnXqKDs729otWpL8/f2t//by8spzHYCzXH0PBQYGKisrS+fPn9ett95qLb+STHjooYds9vXw8NCxY8eUlJSkwMBAmwe1mjVrSpJNF//rnfPcuXM257RnwYIFio2N1cSJE5WUlKR7771XEyZMUEBAQIGu9Xr3vLu7u809C1xLgwYNFBsbqw8++EBxcXHy9fVV7969lZSUpKCgIJu6VatWVUZGhpKTk23KjTH5thv53Q9XK0j7enU7JF1uiywWi1JSUnTp0iUNHTrU2s5Kl7v9X51IvDqekydP6s4777Q5XlBQkPWP0IiICI0fP16bN29W5cqVdfz48QIlOH19fbVw4UK98847GjFihFJTU9WhQweNHTvW+iyQn/Lly0uS9dq5z29uycnJqly5ss29UJBnxOjoaH322WeKjo7W8uXLFR0dLUn5PhNWrFgx32PXqFHD5nVgYKCSkpKsr6++15KTk1WnTh2b+lWrVrXem6dPn1ZgYKB1W5kyZQp8r1yv7b6e5OTkfD/rrvV5A6DokDT5mwgICFCTJk00d+5ca9nZs2eVlpZmfV3Q7PgViYmJCgkJkSTrt0dXkif5Kei5AgICVK1aNa1Zs8ZalpqaquTkZFWoUEETJkzQiRMntHHjRpUqVUqSFBUV5chlAE6TmJhofUg6duyY/Pz8VL58eZv7o1KlSpKk1atX2zwIHThwQEFBQVq7dq1OnjwpY4x1vw0bNig1NdXmYS6/c15PZmamDhw4oAkTJsjT01OHDh3S2LFj9eqrr2rmzJlyd3dXdna2tb69Cagd/XwB7Dlx4oQqVqyouXPnKisrS9u2bdOgQYP0f//3fzZzE0iX5z7w9vbO80fM1KlT8203HPl9LUj7ei3ly5eXj4+P3n//fdWvX99a/ssvv1jv/T/GU6VKFZten9Ll98Xb21uS5O3traioKK1atUqVK1dWp06dVKJEiXxjSU1N1enTp63zH/z0008aPny4Zs+erVGjRnGfw2FXfldzc3OtiZMrPX2v18PxgQce0IwZM7R161bt27dPkZGRkvJ/JiyIP86/d+zYMZv5Qv54r/2xZ/LRo0etbXFAQICOHj1q3Xbp0iWb+Vqud88EBARcs+3u1q3bNeOvUqWK1q1bZ1N2rc86AMWH4TkuztvbWxcvXlRUVJS+//57rVixQjk5OTp9+rQGDhyoKVOm/Oljv/3220pKStKFCxf0+uuv695777V5yCsMbdq0UVpamuLi4pSVlaULFy5o1KhRevbZZ+Xm5qbU1FT5+PjIw8NDmZmZev/997V//36bRgq4Ub355ptKTU1VYmKiZs6cqa5du8rT0zZXXalSJbVu3VqTJ0/W2bNnlZ2drVmzZqlHjx66cOGCWrdurZycHM2ePVtZWVk6cuSIXn31VWVmZhb4nFd6YF2Lm5ubhg8frvfff185OTny9/eXp6enNdkSHByshIQEZWRkKCkpicmWUWR++OEH9evXTz///LO8vb2t3yw3a9ZMBw8e1IIFC6z3wbRp0xQVFWVNJlxR2O3GX2lf3d3d1aNHD7355ps6deqULBaLli9frsjISLs9xaTL38KvX79eX331lXJzc7V58+Y8f0T16NFDX331ldavX68HH3ywQNeRlpam/v37a+XKlTLG6NZbb5W7u7vNfb527Vrl5OToyJEjWrp0aYGOi5tXq1atJF1OVF5pHyZPnqymTZte90u2ChUqqE2bNho7dqzat29vTQbk90xYEOvXr9fWrVuVk5OjpUuXav/+/dakzB91795dGzdu1OrVq5Wbm6u9e/dqzpw51uFu0dHRiouL08GDB5WZmakpU6YoNzfXuv/12sb82u4rz+9/1Llz5wJ/1gEoPiRNXFyPHj00ffp0TZ8+XXFxcfr444/VrFkzde3aVTVr1vxLSZPQ0FD17NlTERERKlOmjKZOnVqIkV9WqlQpzZ8/Xzt27FDLli113333yd3dXbNmzZJ0eUb1jIwMNWvWTBEREfr+++/VtWtX7d+/v9BjAQpbtWrVFBkZaV1FZsyYMXbr/fOf/1SZMmXUrVs3NW3aVJs3b1ZcXJz8/f1VpkwZzZ07V9u2bVOLFi3Uu3dvPfLII3r44Yf/0jmv5u3trVmzZikhIUFNmjRRRESE/P39NXLkSEnSyJEjlZaWpubNm6tPnz7q0qXLn39TgOvo0KGD+vbtq3/84x+qX7++hg4dqjFjxqhevXqKi4vT2rVr1axZM/Xs2VPNmzfXuHHj8hyjsNuNKlWq/KX2ddSoUapXr5569uypsLAwzZ8/XzNnzswzBOeKu+++WxMnTtSECRPUuHFjffTRR7rnnntskp+1a9dWtWrV5O7urkaNGhUojkqVKmnmzJmaM2eOGjZsqMjISDVt2lRPPPGEJGn8+PHas2ePwsPDNWzYMPXo0aNAx8XNq3Tp0po3b57279+vVq1aKTIyUlWqVFFMTEy++z700EM6fvy4ze9Zfs+EBREWFqY5c+YoPDxc//rXv/Tee+/lGe5yRb169RQTE6M5c+YoLCxMgwYN0qOPPmpdWad///7q0qWLevXqpRYtWqh06dI2Q1Gv1zbm13Y//PDDGjFihKZPn24TU9WqVQv8WQeg+LgZBqDCjlq1aik+Pl5NmjRxdiiAyzl27Jjatm2rhISEAo3vdtVzAih8hw4dksViUXBwsLVs8ODBqlmzpp599llr2aBBg1S3bl09/fTTzggTuOGMHj1akv7SF4YAYA89TQAAAG4QBw4c0OOPP26da2HHjh366quvrEMhjh49ah2CUNChOQAA4M9jIlg4ZN68eZo5c+Y1t0dFRenll18uxogA5Gfy5MnXnZ9gwIAB1u7IwM0kOTnZZjlfe3bt2lVM0VzWrl07HThwQH369NH58+dVpUoVTZo0SQ0bNpQkvfXWW0pISNCYMWN0yy23WPd75plntHXr1msed+LEiQytg8sqyPMnABQVhucAAAAAAADYwfAcAAAAAAAAO0iaAAAAAAAA2EHSBAAAAAAAwA6SJgAAAAAAAHaQNAEAAAAAALCDpAkAAAAAAIAdJE0AAAAAAADsIGkCAAAAAABgB0kTAAAAAAAAO/4fuKUcW9ej32UAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<Figure size 2000x2000 with 4 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAetCAYAAAAHNCvJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wN1//H8ff2wi6rt0S/q6zO6tG7RUSLnqKL6CUihGjReyIEESXRe5cguhCbSAghelvLstWW+f3hd+/XtcUuy3Lzej4eHsnOnJk5M3Nm7pz5zDnHzjAMQwAAAAAAAAAAAAAA2Cj7lM4AAAAAAAAAAAAAAAAvEoFxAAAAAAAAAAAAAIBNIzAOAAAAAAAAAAAAALBpBMYBAAAAAAAAAAAAADaNwDgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAAAABg0wiMAwAAAM/BMIyUzsJLE9++/peOQWJwPAAAeDXxGw0AAPDfRmAcAADgFXT48GF5e3vH+8/Hx0cVK1bUe++9p+3btz/39q5cuSJvb2+99dZbyZD7xJkxY4a8vb01ZcqUl7bN5Obv76+WLVsqKioqRbY/ePDgBMvJ4/+uXLnyzNu5efOm+vfvr0OHDllNj4iI0MyZM/X1118/764kyLyfK1aseGra1atXW/a5fPnyio6OTjD9b7/9Zkn/7rvvPlc+o6OjtWTJEo0ePfq51vMqqF69ury9vXXx4sWXul3zuXjWayql8/3kv0KFCqlkyZLy8/PTl19+qYCAgJear8eZf1eet5wnRVKu3ddNfL+bz1qG7969q1mzZqlly5YqW7asChcurAoVKujDDz/U6tWrFRkZGedycR1jW/h9fZ3FVTZS4jnrZUuufWzXrp28vb114MCBBKc9i5R+bgMAAEDKc0zpDAAAACB+7u7uqlGjRqzpQUFB+ueff3TgwAEdOHBAffr0UdeuXVMgh/9tLVq0eCVaHplMJnl7eyeYxt3d/ZnXP2DAAB0+fFhNmza1mv7NN99oxowZr2zZCwwM1JEjR1S+fPl402zatCnZtrdhwwaNHDlSfn5+ybZOvF5q1qwpNzc3y9+GYSgkJET+/v6aP3++1q9fr2XLlumNN95IwVziVbN582YNGzZMwcHBSpUqlYoVKyYPDw9dv35dBw8e1L59+7Rw4ULNmDFDOXPmTOnsAq+tV+W5DQAAACmHwDgAAMArzMvLSxMnToxzXkxMjBYuXKjx48drxowZaty4sbJmzfqSc/js2rRpo/r168vLyyuls/LMXpWXq7Vr19ZHH330wtaf0l2o9+3bV506dVKmTJkSvYynp6fu37+vLVu2xBsYj4mJ0datW+Xk5BRva8ykiImJee51/Ndt3rxZkuTo+GxV1YULFyoyMlLZsmVLzmwl2pAhQ5QjR45Y08PDw9WtWzcdOHBA48aN06xZs1Igdy/fs1y7r7ukluG1a9dq8ODBcnJy0qBBg9S2bVs5Oztb5l+7dk2TJk3Sxo0b1axZM61cufKpwXFb+H0FXoRX5bkNAAAAKYeu1AEAAF5T9vb2ev/991WkSBFFRUVp3759KZ2lJEmXLp3y5s2rdOnSpXRW8IrLlCmT8ubNKw8Pj0QvU758eaVKlUo7duyItzv1Y8eO6datW6pcuXJyZRXPKW/evMqbN+8zL//mm28qb968cnJySsZcPT9XV1cNHjxYkvTzzz/r4cOHKZyjl+NZrt3XXVLK8JUrVzR8+HA5ODho7ty5ev/9962C4pKULVs2TZo0SW3bttX9+/c1YMCApw4Rwe8rAAAAAMSNwDgAAMBrztwy8t69e7Hm+fv7q1evXipfvrx8fHxUo0YNjR07VoGBgYle/8GDB9WrVy+99dZb8vHxUYkSJdS4cWPNmTPHKrjztHHRnxzrOqExUNetW6fWrVurZMmSKlq0qPz8/DRnzhyFhYVZpTOPZ9m9e3fdvHlTQ4YMUcWKFVWkSBE1aNBACxYsiDOAEB0drWXLlql58+YqUaKESpQooZYtW2rNmjWJak1kHsfarHDhwlZ/e3t7q3Hjxjpy5Ijq1q2rIkWKqE6dOrp8+bKkR13hz5gxQ02bNlWpUqXk4+OjSpUqqVevXvL393/q9p9XeHi4FixYoFatWsnX11eFCxdWuXLl1KlTJ/3yyy+WdObje+TIEUnSe++9J29vbx0+fFjVq1fXzJkzJUlfffWVvL29NWPGDKvtPMt53LJli6pVq2ZJHxIS8kzjFDs7O6tatWqW7tTjsmnTJtnb26t+/frxruf+/fuaPHmy5TyWLVtWXbp00bFjx6zStWvXTkOGDJH0qEt1b29vSyDULKnX49WrV/XZZ5+pevXq8vHxUbly5dSjRw/99ttvsdKaj9GRI0f00UcfqWjRoipXrpwWL15sSXP27FkNGDBAlSpVspS5AQMG6Ny5c/Hu/5PCwsI0a9Ys+fn5qWjRoipZsqRat26t9evXx7vM2rVr1axZM5UoUULlypXTkCFDFBAQoFq1asUaAiC+8Zlv376t8ePHq3bt2ipatKiqV6+ufv366Z9//rFKl9Qxxp/3XpAUb775piQpKirKcr8230sWLlyoKVOmqEyZMipRooT69+9vWS4wMFDjx49XnTp15OPjI19fX33wwQfas2dPnNt5+PCh5s6dq/r166tYsWKqUaOGvv766zjvhU8bd9x8PM33bXN+n/bPLL5rNyoqSosXL1bTpk1VvHhxFS9eXO+8846+//77WOfenMfRo0fr/Pnz6tWrl8qWLauiRYuqadOmWrVqVZx5Dw8P19y5c9WoUSMVK1ZMpUqVUvv27bV79+4408fHMAz98MMPevvtt1W8eHFVrlxZX375pcLDw+NMn5QxxufPn6/w8HA1a9YswSEfpEdDWmTLlk0nT560uk/H5cnf1y+//FLe3t6aOnVqnOm3bNkib29v9erVy2p6cjxDPItnPedJvVYkaceOHXrvvfdUtmxZlSpVSk2bNtWyZcviPH8v6ngk9jlLSty9fuvWrercubMqVqwoHx8flSpVSi1atNCSJUuSpWeTpF4TUuJ/S5/F5s2b1a5dO5UqVUrFihVT48aNLb2HmCX2ue3BgwcaPXq0qlatKh8fH9WqVUtTp06N9dwiSTdv3tT48ePl5+enEiVKyMfHR1WrVtWgQYN0/vz5594vAAAAvBh0pQ4AAPAaCw4OtgT98ufPbzVvzZo1Gjp0qGJiYlSoUCGVKVNGf/31lxYuXKgdO3bou+++i7PL38ctWLBA48aNk5OTk0qWLKnixYvrxo0b8vf31+nTp3Xq1ClLcDRDhgzxjq18+vRpnT17VhkzZlTatGnj3V5MTIwGDBigjRs3ytnZWb6+vnJzc9PRo0c1depUbdu2TQsWLIjVPezt27fVvHlzhYaGqkSJEoqIiNDRo0c1btw4XblyRcOGDbOkjYyMVPfu3bV3716lTp1aJUqUkJOTk44cOaLBgwfr8OHDGjduXILH5c0335Sfn582bNggSWrYsKHs7Oys0ty5c0fdunVT1qxZValSJV29elU5cuTQnTt31KpVK126dElvvvmmypUrp8jISJ06dUrbtm3T7t27tWzZMhUpUiTBPDyriIgItWvXTv7+/sqUKZNKliwpOzs7nTlzRnv37tW+ffs0c+ZM1axZU+7u7vLz89OBAwd0584dlS9fXhkyZFCGDBlUs2ZNHTx4UH///bdljHPzS+ZnPY9///23+vfvr4IFCypfvnwyDEOpUqV65n2tV6+eNm7cqK1bt8YKOkVHR2v79u0qXbp0vN08X7t2Te3bt9fly5eVJUsWVapUSQ8ePNC+ffu0d+9ejRw5Us2bN5ckVahQQZGRkTpx4oRy5MhhCbKaJfV6PHnypN5//30FBwcrZ86cql69um7evKmdO3dq9+7dGjFihFq2bBkrz8OGDdOdO3dUuXJlnT17VgUKFJAk7dy5U3369NHDhw/l7e2tUqVK6cKFC1q/fr22b9+uqVOnqlq1agkez7t376pdu3Y6e/as0qZNq8qVKys8PFxHjhzRr7/+qv3792vcuHFW18IXX3yhxYsXy8XFReXKlVN0dLQ2bNigI0eOKDQ09Cln8JEzZ87ogw8+0O3bt5UjRw5VrVpVV65c0caNG7V79259//33Kly4cKLW9bjkuBckxdmzZyU9aj3+ZNlftmyZLl++rAoVKujBgwfKnTu3JOnSpUtq06aNbt26pcyZM6t69eq6e/euDh48qF9++UXdunVT7969rfapU6dOOnTokOUcBQYGasqUKc/VEt/MfO+Ly/Hjx3X16lXly5cvwXVEREToww8/1JEjR+Tu7q6yZcvKzs5Ohw8f1qhRo7Rr1y59/fXXsVpOnz17Vs2aNZOrq6tKlCihe/fu6cSJE/rkk08UFBSk999/35L2wYMH6tChg06dOqV06dKpbNmyioyM1LFjx3T48GH16NEjVhA4PoMGDdK6devk7u6ucuXKKSIiQosWLUow2JpYO3fulCQ1bdr0qWldXV3l5+enr7/+Whs2bFCVKlUSvZ23335b8+fP15YtW6zKi9nGjRslSY0aNbJMS45niOeVlHOe1GtFkj7//HMtXbpUTk5OKl26tNzc3HTs2DGNGDFCx44d08SJEy33sxd1PJLynPW4+O715nuuu7u7SpYsqVSpUunixYs6efKkTp48qUuXLlk+4npWSb0mkvJbmlSffvqpVqxYIVdXVxUtWlQeHh769ddfNXbsWO3du1dfffWVnJ2dE/XcFhYWptatW+vSpUsqUaKE8ufPr4MHD2rOnDk6ffq0vvrqK0va8+fPq02bNgoMDFT+/PlVqVIlhYaGyt/fX2vXrtWuXbu0YcOG12qIIwAAgP8MAwAAAK+cQ4cOGSaTyahWrVqsedHR0ca9e/eMAwcOGM2bNzdMJpPx9ttvG1FRUZY0586dMwoXLmwUL17cOHDggNWykydPNkwmk9GqVSvL9MuXLxsmk8moXLmyZdrNmzeNwoULG76+vsaFCxes8nD06FGjUKFChslkMq5fv57gvpw7d84oXbq0UbhwYePXX3+1TJ8+fbphMpmMyZMnW6YtWrTIMJlMRo0aNYyLFy9apj948MDo3LmzYTKZjJ49e8bKt8lkMlq3bm3cuXPHMm/Xrl2GyWQyChUqZAQFBVmmT5061TCZTEbbtm2t0t++fdto0qSJYTKZjB9//DHBfTIzbzsyMjLO6V26dDGio6MNwzAs/x01apRhMpmMUaNGGTExMZZlwsPDja5duxomk8kYOnRoorY/aNAgw2QyGdOnT09UesMwjG+//dYwmUxGjx49rPIdFRVljBgxwjCZTEbHjh2tlmnbtq1hMpmM/fv3W02P6xwaxvOdxxEjRlimm4+ZeT8Tc15WrVplmEwmo1+/fkZERIRRqlQpo3z58lbXh2EYxr59+wyTyWQsW7bMcr09fk0YhmG0bt3aMJlMxujRo42HDx9apv/222+WMn327Nk4t/24pF6P4eHhRuXKlQ2TyWTMmDHDqpz8/PPPRpEiRYxChQoZp06dskw3H6PixYsbly5dsjp+t27dMooVK2Z4e3sbK1eutMrbihUrDG9vb6NEiRLGjRs3LNOrVatmmEwm499//7VM69Gjh6VcBwcHW6b/+++/Ro0aNQyTyWR89913lukHDhwwTCaT8dZbb1ndQ86ePWtUrFjRcs4f9+Q1FR0dbTRu3NgwmUzG+PHjrc7j999/b5hMJqNRo0YJ5js+L+JecPny5TjnBwYGGs2aNTNMJpMxcOBAy3RzmTGZTMamTZss06Ojo42YmBjj7bffNkwmk/Hpp58aERERlvknT540fH19DZPJZOzatcsyff78+YbJZDLeeecd4969e5bpP//8s1G4cOFYZS2+sm9mPp7x7ZfZkSNHjMKFCxulS5e2OvZxXbtjxoyx5DEgIMAyPSAgwHjnnXcMk8lkjB07NlYeTSaT8dFHH1mVve+++84wmUxGuXLlrK6TAQMGGCaTyfj444+t0l+4cMGoWrVqnPezuGzdutVyL7t27Zpl+u+//26ULl061u+mYcT/u/Cka9euWX6jHj+3Cfnll18Mk8lk1KtXzzItrmMc173ZXKZ///13q3Xev3/f8PHxMXx9fS33uaTes5JbUs/5s1wr27dvt5y/c+fOWabfuXPHqFu3rmEymYwdO3Y80/GI65kquZ6zErrX//7774bJZDJq1qxpdU8zDMPYsGGDYTKZjGLFiln9niXVs1wTSf0tjeuZI65pK1asMEwmk9GwYUPLsTCMR88a77//fpzPJ097bqtXr57Vun7//XfLvfPMmTOW6V26dDFMJpPx7bffWq3n/v37lvvY7NmzEz6YAAAASBF0pQ4AAPAKu3r1aqwuagsWLChfX1917NhRJ0+eVOXKlfXNN9/IwcHBstx3332nyMhI9ezZ06qlrL29vXr37i2TyaTjx4/H2SWzmbmr4+7duytXrlxW80qXLm1poW7uYjcu9+7dU7du3XT//n0NHz5cJUuWTHB/Fy1aJOlRiydzt8OSlDp1ak2cOFEeHh7avn17nN0kDxs2zGo81erVqytHjhyKioqydGn58OFDLV68WE5OTpo4caJV+gwZMmjkyJGSHnVvmxzat28ve/tHj9zm/3p6eqpy5crq1auXVWslFxcXvfPOO5ISPqZxmTlzZrxdGpcuXdoqrZOTk6pUqaK+ffvK0fF/HUg5ODhYWiAndftPep7z2LFjR8v/m4/Zs3J2dlb16tV1584dHT161Gre5s2b5ejoqNq1a8e57MmTJ3Xs2DFLl+iPj1ldrFgxde3aVZGRkfruu++emo+kXo9btmzRzZs3VaZMGfXs2dOqnFSpUkWdOnVSVFSUFixYEGtbNWrU0BtvvGFZvyT98MMPCgsLU+PGjS1lzKxZs2Zq0qSJQkJCtGzZsnj34erVq9qxY4dSp06tCRMmWLXkz5kzp0aPHi1JmjdvntV+S49aFz5+D8mXL58GDRqU4DEzO3HihP766y/lz59fAwYMsLrPtWnTRqVLl1aqVKmS3JXxi7oXjB07Vv3797f869u3r9q3b6+qVavK399fuXLlinPfM2fObNWlv729vY4dO6ZTp07pzTff1PDhw61aUBctWtSynseP+fLlyyVJo0aNUpo0aSzTq1SpEm936c/r8uXL6tmzp6KjozV58mTlzJkz3rQRERFavny57O3tNXnyZKVPn94yL3369Jo8ebLs7e21dOlShYSEWC3r6Oiozz//3KrstWzZUs7OzgoMDFRAQICkR90bb9y4URkyZNCYMWOs0j9+/BNzbs3XxODBg61afvr4+KhHjx5PXT4hd+7ckSR5eHjEah0fn4wZM0p6tI9J1bhxY0mPhpB43LZt2/Tw4UM1aNDAcp9LjmeI5JDYc/4s18rSpUslPTq3j/emkC5dOvXp00d58uSx/Ba+qOPxPM9Zcd3r79+/rzp16qh3796xxpdv2LChPD09FRYWZil7zyKp10Ry/pY+yXwNjxkzxnIspEfPGmPGjJGTk5OWLFkSqzv6hPTt29dqXT4+PpZnV3OvH5KUNWtW1axZU+3bt7da3sPDw9KrxvM+SwEAAODFIDAOAADwCjN3Ze3n56eGDRtaBTnr16+vLVu2aN68eVbBBUk6dOiQJMU5ZqmdnZ0qV64sSfGOvSxJhQoV0pQpU9ShQwfLtJiYGF28eFEbN25UUFCQJFmN4fi4yMhIffTRR7p48aJat2791G4yr1+/ritXrsjLy0vlypWLNd/DwyPefLu5ucUaq1iSpYts89iQp06d0oMHD5QnTx5lzpw5VvoiRYooffr0unDhgm7fvp1gfhPDZDLFmtarVy/NmzdPnp6elmkPHjzQsWPHLOPGJuUlrnk75nLy5L8nx89u27at5s6dqzx58limhYWFyd/fXzt27Him7T/uec6jq6trgkG1Z1GvXj1Jj8ZcNXv48KF27typChUqxAoemJmvIV9f3zgD9OZujBO6hp5cV2KvR/N/zXl/kvmcxrXtuMqc+aOAZ1nfk+uoWLGiPDw8Ys0vW7asMmbMqBs3bujSpUsyDEOHDh2Sg4NDnF2016xZ0yrIHR9znqpWrRqr21tJWrJkiZYuXRrveYzPi7oX7Ny5Uxs2bLD827Ztm86cOaOCBQuqT58+WrVqVZx5jeu8mfe9Zs2aVh+xmNWtW1cODg46efKkHj58qJs3b+rixYvKmDGjChYsGCt9fB+BPI/g4GB17dpV9+7dU79+/SxlOT6///67wsPDVahQIauPZszefPNNFSlSRBEREfL397ealzNnzlhd0Ds7O1ummcc3Pnr0qKKjo1W0aFG5u7vH2kblypVlb2+vX3/9Nc5x181iYmJ07NgxOTg4qFKlSrHmP+/xNI/1/Hig8GnM14xhGEneXsOGDeXo6KitW7daLW8OlJsD51LyPEMkh8Se86ReK4Zh6OjRo7K3t4/z/lS7dm1t2bLF8qHWizoez/OcFdc9o0KFCpo+fboaNGhgmRYVFaVz585p5cqVljL3rL/xz3JNJOdv6eNu3bql8+fPy8PDI86hZzJnzqwCBQrowYMH+vPPPxO93seHQDF78llSkoYPH65Zs2ZZ/Y6Zu+4/fvy4pOd7lgIAAMCLwxjjAAAArzAvLy9NnDjRatqvv/6qzp07a/PmzSpYsKA6d+4ca7kbN25IejSuaEKuX7+e4Pzo6Ght27ZNmzZt0rlz53T16lXLC1pzkCq+F/QjR47UkSNHVKZMGX3yyScJbkd69JJTkrJnzx5vGvP4nU8Gqjw8POIMmplfkJvzaN7fM2fOxBlIf9z169ctrfOe1ePB78ddvnxZS5cu1YkTJ/Tvv//q7t27kp5+TONTu3ZtffTRR4lOHxAQoGXLlunw4cP6999/FRAQIMMwnnn7j3ve85jcKlasKE9PT+3YsUOfffaZ7O3t9csvvygoKMgqePAkc1lZvHixFi9eHG8687WWkKRej087hubWbObWko97vJWw2dPWF9/5SMo6zPNu376tW7duycPDQ6GhoUqfPr3c3NxipXVzc1O6dOmeGnQ2z0/ucVpf1L1g165dzzTOcELnLb71ubu7W45hYGCgJX2WLFniTJ/c40FHR0erd+/eOnfunBo2bKgPP/zwqcsk9v5w8uRJS1qz+O6n5vu8OehnPre7d+9O8NyGhYUpKCgo3o8q7t27p8jISKVLl06urq6x5mfLli1RH3fEx/xBxr179xQTE5OoHjLM10N85zghGTJkUMWKFbVnzx4dP35cpUqVUkBAgA4fPqxcuXKpWLFilrTJ9Qzxww8/xOqtQ5JatWoVqzeTuCT2nCf1WnF2drac27juT09KruMRl2d9zorrniE96pXBPMb1+fPndf36dUVFRT11fYnxLNdEcv6WxpX+wYMHibqHFy9ePFHrjavMPfksaXbmzBktW7ZMv//+uy5duqT79+9Lev7jDAAAgBeLwDgA4IUZPHiw1qxZk2Ca7Nmza/fu3S8pR0gu1atX19WrV62mOTs7K0uWLKpbt6569uwpFxeXF7LtGTNmaObMmTpz5kyyrrd69ery9fXVuHHjknW9zysyMlIDBw7UoUOHFBgYqAwZMqhkyZLq1q2bJkyYoEmTJilHjhyqX7++1T6YW8EVLVo0wRa4BQoUiHdeaGioOnToIH9/f7m7u8vHx0cVKlSQyWRSqVKlNHLkyDhfeEvSwoUL9eOPPypbtmyaPn16olrEmV8gxhXgfjLNk93OJrTM48wv0bNly6ZSpUolmPbxrlufVVyBjo0bN2rQoEGKiopSzpw5VbZsWeXLl08+Pj6KiYlR9+7dn3u7CTl8+LC6du2q0NBQZc2aVcWKFVPevHlVqFAhZc+eXc2aNXuu9T/PeXzertPj4uzsrJo1a2r16tU6cuSIypUrp82bN8vFxUU1a9aMdzlzWSlSpEisLm4fl5iyZ74eGzRokOA+mq/Hpx1D8/y4rqu41p/Y9SWmO+fEnldzIMZ8HBNKnxDzepLby74XPE1cxzUxx+fxY/60svgsQdyEWlSPHTtW+/btU+HChS1d6T/Ny7zP58uXL86W88npee5ZmTJlUsaMGXX79m399ddfKly48FOXMXfV/az71bhxY+3Zs0ebN29WqVKltHnzZkVHR1u1FpeSfs+Kz4kTJ7Rhw4ZY0ytUqJCowHhiz3lSr5WEynVckut4POl5nrPiysetW7fUtm1bXbx4UZ6enipSpIiqVasmb29v+fr6qkOHDrp27VqS8phUT+YrOX9LH2c+J2nTpn1qTxVJ+cgxsfmYN2+eJkyYIOlR6/233npL+fPnV5EiRXTx4kV9/vnnid7mi9SuXbtYrfGdnJyUIUMGVatWTb179473I4vkNHjwYB05coR6/zOK672Ko6OjvLy8VL58efXt2zfZPyA0O3z4sNq3b6/vvvtOZcuWTbb1vqplIjAwUPPmzdPu3bt17do1pUqVSiaTSS1btozVC9eT+/Cqvk8AAMRGYBwA8MJ0795drVq1svw9e/Zs/fnnn5o5c6ZlWmLHVMSrp0qVKlYBvIiICB0+fFizZ8/W1atXNXny5BTMXdLNnDlTqVOnTulsxHLr1i1duHBBvXv3Vo4cOXTjxg2tXLlSkydPVtGiReXv768RI0aoTJkyVstlzJhR165d06effmrVCiwpvv32W/n7+6tChQqaMWNGrONjbhnzpD179mj8+PFydXXVrFmzEt3FsbmryoTGZLx8+bKkRy3fnoX55WiWLFlitcR/GUJCQvTZZ59JenRPrFGjhtV8c1fmL4phGBo6dKhCQ0M1fPhwtW7d2mp+Urobjc/LOI9JVbduXa1evVpbt25ViRIltHv3blWpUiXBa95cVipWrKg+ffo81/YzZcqkq1ev6uOPP05UV/FPO4bm4/fkEAoJre/ChQu6cuWK8uXLF2u+eTsJrS+p59XLy0suLi4KCgpSaGhorC6tIyIiLD0lPC3vUvxjKh88eFABAQEqV65ckoIfKX0vSIynHfOQkBAFBgbKwcFBadOmtQSK4gt8PdkCW/pfECu+Dxjiu88vX75cixcvVrp06TRz5sw4W4/G5WXe5wsWLPhc59Zchu/du6eQkJBYH0jcvXs33qFEEsPOzk5+fn769ttv9cMPP1jGtY9PVFSUVq5cKUlq1KjRM22zZs2a8vDw0LZt2/Tpp59q8+bNsrOzi7W+pN6z4jNu3LiXEiB4lmvFyclJQUFBCg8Pj1V+IyIitHLlSuXNm1flypVLtuPxpGd9zorPlClTdPHiRTVq1EijR4+OVc9K6vqe9CzXRHL+lsa1XhcXl5d+D798+bImTZokDw8PffPNN7G6X398LPJXQaFChTR8+HDL35GRkTp16pQmT56sv/76S8uWLUvyhwlJ1b1791jjsSNpMmbMaPUeJSoqShcuXNDEiRN14sQJbdy4MdG/xa+CV7FMnD59Wh9++KEcHBzUoUMHFS5cWA8ePNCuXbvUr18/bdu2TRMnToz3g+9X9X0CACA2xhgHALwwb775pooXL275ly5dOjk7O1tNK1SoUEpnE88oXbp0VueybNmy6tWrl5o2barNmzfH+QL+VRbfeKcp5eLFi5Iedf+5fPlyNW3aVL6+vmrUqJG+++47tWnTRv7+/kqTJo2CgoJivXj29fWVJJ08eTLO9Q8cOFAtWrRI8Cv9EydOSJLatGkTq5J/8+ZN/fPPP5KsAypnz55Vnz59FBMTo9GjRyfpGs+WLZuyZ8+uu3fvxjnW5IMHDyxjcD/5IUBiFSlSRK6urjp9+nScZfTmzZuqV6+e3nvvPYWEhDzTNhJy9uxZhYSEKH/+/LGC4pIs+/eiut8MCAjQ5cuX5enpGSso/vj2E2rl+7i4XqS+jPOYVBUqVFDatGm1c+dO/fzzzwoJCYnV6uNJ5rzt27cvzuOxc+dONWzY0KpVWHwvls3r2rNnT5zzn7wezekfHxf9cZs3b5b0v+v8aczr27Zt2zOvr1SpUrKzs9P+/fsVHBwca765V4scOXIoW7ZscnR0VKlSpRQTE6O9e/fGSr9nz55Etdo0t+bet29fnPMnT56s/v37JyrI/riUvhckhvm87dq1K86W81u3blVMTIxKly4te3t7ZcyYUfnz59edO3f066+/xkr/888/x5pm/mDhzp07seadPn1aoaGhsaYfPHhQo0aNkpOTk6ZPn65s2bIlep98fHzk5uamP//80xIAf9ylS5d06tQpS+vZZ2E+bkePHrUaE9js1KlTqlu3rnr16pXgvdbOzk7ly5dXTEyMdu3aFWt+fNdzUnTs2FFp0qTRihUr4rxOHjdx4kRdvnxZhQsXjnN858RwcXFRnTp1dPv2bW3fvl2//fabSpUqFasL8qTes1JaUq8VJycnFS1aVNHR0Zbfo8cdOnRII0eO1NKlS63Wn9zH41mesxKzvg8++CBWUPzkyZOWe3di1/ekZ7kmnuW3NDHMvzU3b97U6dOnY80PCwtT06ZN1bZt2wQ/xHkW/v7+iomJUdmyZeMck/xFP8slVerUqa3qbGXKlFHHjh3VpUsXnThxIt66QnJ68803qfc/pyffo5QuXVrNmzfXkCFDdPny5TivyVfZq1YmwsLC1L17d6VPn17r1q3T+++/r7Jly6pmzZoaO3aspk2bpq1bt2rWrFnxruNVe58AAIgfgXEAQIr7+++/1aVLF5UsWVIlS5ZUjx49rF6WHj58WN7e3jp48KDatWunokWLqmrVqlqxYoVu3bqlnj17qkSJEqpSpYoWLlwYa7lffvlFbdq0UdGiRVWrVi19//33Sc7j4MGD9cEHH+jHH39UzZo1VbRoUbVq1UoXLlzQTz/9JD8/PxUrVkzNmzfXX3/9ZbXssWPH1LZtWxUrVky+vr4aNGiQAgMDrdIcPXpUH3zwgcqUKSMfHx9Vr15dM2bMsLxAunLliry9vbVlyxb16tVLJUqUUJkyZTR06NB4X9hHRESodOnSGjNmjNX0mJgYVapUyfIC6tSpU+rQoYNKlSqlEiVKqGPHjs/1gsTHx0eGYVjGFKxevbrGjBmjDh06qGTJkpbWsrdu3dKQIUNUpUoVFS1aVM2aNYtVoY+IiNDYsWNVsWJFlShRQkOGDFFERIRVmsGDB6t69epW08zHa/Xq1ZIedSPo7e0d5z9zmurVq2vw4MGWdTx48EBjx45VzZo1VaRIETVs2NDSUsusevXqmj59usaPH68KFSqoaNGi+uCDD3ThwgWrdIkpA09av369pEdjSMbV/e2AAQOULVs2S2vsjRs3Kjw83DK/Tp06kh69SN+0aZMKFiyoRYsWSXrU0m/dunX666+/1KtXL82bN8+yXEhIiGrVqiUfHx/LC9affvrJ6uXetWvX1LNnT8vLZ/M5CQwMVNeuXRUSEqKuXbuqYcOGCe5jXDp06CBJ+vTTT63uAyEhIRowYICCg4NVrVq1BMenTYi7u7tatGih0NBQDRgwwCoYFBISoiFDhuj8+fNyd3dPVPfJ5iEDHjx4kKjtm8/XhQsXdP78ect0wzC0bNky/fjjj5IUq5wnFw8PDzk5Oen+/fuxumfdvn27Zs+eLUl6+PCh1bz49tP84v3JQOmLPo9J5eTkpJo1a+r27duaOnWq3N3dVa1atQSXKVu2rAoVKqRTp07pyy+/tDomFy9e1BdffKGzZ89adQ1rPk5PHo927drJwcFB06ZN08GDB63mPX49Fi1aVJJUr149ZcqUSUeOHNGcOXOsrr+9e/dq3rx5cnBw0Lvvvpuo/W/RooXc3d21Zs0arV271mreqlWrtG7dOrm7uyc4fu4bb7yhGjVqKDg4WAMGDLAKmF6+fFmffvqpJKlt27aW6eaWQF9++aVVObh8+XKiW5GWK1dO+fPn159//qmvvvrKat6SJUvk7++vAgUKyGQyJWp9Zsl9L3gRfH19VahQIV28eFGjRo2yaon5xx9/6Msvv5RkfczN196wYcOsWtkfP35c8+fPj7WN3Llzy9nZWZcvX7YK6gUFBcUZqPr333/18ccfKyoqSsOGDUvyxy1ubm5q0aKFYmJi1K9fP6vfwsDAQPXt21cxMTF65513EjX2c1zMZfXGjRsaOnSo1fV4584dffLJJ7pw4YKyZMny1FaSHTt2lPSoDJuDlJJ0/vz5ZGmlmjlzZo0cOVJ2dnbq0aOHFi1aFOv+GxgYqCFDhmjBggVyd3fXpEmTnmtsc3O36WPGjJFhGGrSpEmsNEm9Z6W0Z7lWzP8/fvx4q+GBAgMDLV1km1vSv6jjYX4mSOxzVmLXt3PnTqvpf//9twYMGGD5+3meMZJ6TTzLb2lime93AwcO1KVLlyzTHz58qM8//1ynTp1ScHCw1YcfSX1ui4v5OJ88edLqtyMyMlJTp061fMj1op7lkov54yNzLyPt2rVT//791atXL5UsWVKdO3eW9Gg/vvzyS1WpUkU+Pj7y8/OzfFBnZhiGlixZogYNGljq3N98842lXD9ZX6tevbqmTJmisWPHytfXV76+vhowYECSP3KTHo1fX7duXRUpUkSVK1fWiBEjrO773t7emjFjhtUyM2bMsBqb/nnq+o97//3347yn9u7dWw0aNJD06B7Tv39/VaxYUUWKFFHjxo1jPZslRZEiRSTJch8bPHiwOnTooOHDh6t06dJ6++23FRUVpYiICM2aNctyrGrXrq25c+fG+mBl+fLlqlOnjooWLaq2bdvG6oVm9erV8vb2jvXByeN1afPxjeufOc2TZSI6OlpLliyRn5+f5X3PxIkTra6jwYMHq2PHjlq1apXq1KkjHx8fNWrUKNZHOdeuXVPfvn3l6+urYsWKqUOHDk/tFWv16tW6evWqhg8frrRp08aaX7t2bdWvX18LFy6M9/3L48egTp066tGjR6w0zZs3t1xb0qP7ddOmTVWkSBFVrFhRX3zxRZwfJQIAkhddqQMAUtSFCxfUqlUr5cmTxzIu8pw5c/Tuu+9q3bp1Vt269u3bV507d1a3bt00d+5cDR8+XG+++abq16+vli1batmyZRo7dqxKlixp9WKqT58+atKkibp27apdu3Zp1KhRMgxD7dq1S1Jef/vtN926dUuDBw9WeHi4RowYoc6dO8vOzk69evWSvb29xowZo/79+2vTpk2SHgW833vvPZUrV05Tp05VUFCQpk2bpvbt22vlypWW1modO3ZU3bp1NWXKFBmGoXXr1mnmzJnKlSuX/Pz8LHkYPny43nnnHc2ePVv+/v6aMmWK0qVLp379+sXKr7lV0JYtWzR48GBLd6mHDx/W7du31bhxYwUHB+vDDz9U2bJlNX36dEVGRmrOnDn64IMP9NNPP8nDwyNJx0iSJSj8xhtvWKYtWbJEbdq0UefOneXq6qqAgAA1a9ZMTk5O6tOnj7y8vLR69Wr16NFDX375peVF5IABA7R371717t1buXPn1g8//BDnWJVPM3z4cKsXJFFRURo8eLAiIyP11ltvxUofHh6u1q1bKyAgQB999JHeeOMN7dy5U0OHDlVAQIC6du1qSfvdd9+pVKlSGjt2rIKCgjR69GgNHjxYP/zwg6TElYEnxcTE6Pfff5cU//il5nGTFy9erNKlS+vYsWMKCgqyvNwwB4kePnyovn37KlWqVJo1a5ZWrFihs2fPysHBQU2bNtWPP/4oPz8/y0vk4OBgdezYUSVKlNDGjRu1Zs0arVy5UsePH1f+/PkVGBioEydOyDAM5c6dWxcuXFBAQIAk6fPPP9eVK1fk7u6uBw8e6JNPPlFkZGSsFjO1a9dW7dq149yvdu3a6cSJE9qyZYsaNGigMmXKyM3NTceOHdPdu3dVoECBWB97JFW/fv30119/6dChQ6pVq5aKFCkiNzc3nThxQvfu3VOuXLkS3XIpZ86c+vvvv9W+fXvlzp1b48aNi9Vl9OPefPNNVa9eXbt371aTJk3k6+srFxcX/fnnn7p27Zry5cunc+fOWY5pcnN1dVWrVq20ePFidejQQWXKlJGnp6fOnj2rCxcuWFp6P3jwwKp72Vy5cmnfvn0aNWqUNm3apPfee08lSpSwvMhesWKFbty4oapVq6p58+Yv5TwmVb169bRy5UqdP39efn5+T+1u0s7OTpMnT1aHDh20YMECbdq0SYULF1Z4eLiOHTumyMhI1a5d2yrQYu5i9+eff1aXLl1UokQJde3aVT4+Pvrkk0/0xRdfqGPHjipUqJBy5MihCxcuWK7HCRMmWLqOdnNz07Rp09S5c2dNnTpVa9euVYECBXTz5k2dOHFCDg4OGjp0aKKDMJkzZ9b48ePVt29fDRo0SAsWLLBcv6dPn5abm5smTJjw1A8VRo4cqX///Ve7d+9W9erVVbp0aYWFhenIkSN6+PCh/Pz8LEETSapWrZqaNWumlStXqmHDhipXrpykR60xzV0fx9cd5ePnYdKkSerYsaOmTJmidevWKX/+/Lp48aJOnz6t1KlTa8qUKYk6Dk9KznvBi/B4GVy+fLl+/vlnFStWTPfu3dOxY8cUHR2tzp07W91PmzVrpkOHDmnjxo2qW7euypcvr9DQUB05ckRFixa1fPBk5u7urjZt2mjBggXq0aOHfH195ebmpqNHjypt2rSW3xez/v37KygoSBkzZtSZM2c0ZMgQRUVFxbrPt2rVKt4xpPv27as///xTR48eVc2aNS09FRw5ckQhISEqV66c+vfv/1zHbtSoUbp48aI2bdqk/fv3q0iRIrKzs9OxY8cUGhqqEiVKqHfv3k9dT/ny5dWlSxd9/fXXatKkicqVKyc7OzsdPHhQBQoUiLOlfVLVrVtXqVOnVr9+/TRmzBjNmDFDxYoVk4eHh27evKnff/9dkZGRMplMmjp1qnLnzv1c2ytTpoyyZ8+uq1evysXFRXXr1o2VJqn3rJT2LNdK/fr1dfjwYS1fvlz169eXr6+v7O3t9euvv+rBgwdq2bKlatasKenFHY+2bdtqy5YtiX7OepqOHTvq119/1YwZM7R7927lyJFDN2/e1MmTJ+Xi4qIcOXLoypUrz/WMkdRr4ll+SxOrffv2OnnypDZv3qyGDRuqSJEiSps2rfz9/XXr1i2lT58+1tBOSX1ui4v5Q4w///xTderUsdzr/P39defOHeXPn19nz559Yc9yySWuOtuWLVtUt25dzZo1S9HR0TIMQz169NDx48fVq1cv5c2bVzt27FCfPn308OFDSxB48uTJmj9/vjp27KiKFSvq1KlTmjJlih4+fBhncFCSli5dqpw5c2rMmDEKDAzUpEmTdP78ea1YsSLe+s+TNm3apPHjx2vQoEHy9vbW+fPnNX78eIWHhyd5GIdnqes/qXHjxho4cKDOnz+vPHnySHr0sd1PP/1kOQ7mj/E+//xzpUqVSuvXr9egQYOUNWvWZxrD23weH2+pfOzYMdnZ2WnGjBkKCQmRg4ODOnXqpN9++009evRQwYIFdfjwYU2dOlWXL1/WqFGjJEnff/+9Ro0apXbt2qlq1ao6ePCghg0bluQ8NW/eXJUrV7aaNnfuXO3ZsyfejzA/++wzrV27Vh9++KF8fX31559/atasWfrrr780b948y4dsf/zxh27duqVevXopderUmjZtmnr16qW9e/cqTZo0CgwMVKtWreTm5qZhw4bJzc1NixYtUps2bSxDZMRl37598vLyUsmSJePdrwYNGmjz5s06cOCAatWqleAxaNy4sebMmaPg4GBLjyCXLl2Sv7+/5b60YcMG9e/fX35+furdu7euXr2qKVOm6Ny5c1qwYMELH+IAAP7LCIwDAFKUeVzKhQsXWioM5cuXV82aNTVv3jwNGjTIkvadd97Re++9J+nRi9yWLVuqaNGi6tWrl6RHL6127dql48ePWwULatasqaFDh0qSKleurFu3bmnOnDlq06ZNoivd0qOA4dSpUy2VqSNHjuiHH37QwoULVb58eUnSjRs3NH78eN2/f1+enp6aNGmScufOra+//trSuqdYsWJq0KCBVq1apTZt2uj06dOqUKGCJkyYYMlPxYoV9fPPP+vo0aNWgfEqVapYjkn58uW1f/9+/fzzz3EGxqVHFbKVK1fq2LFjlhfPGzZsUM6cOVW8eHH99ttvCgwMVLt27Szd1ebJk0fLly9XcHBwgoFxwzCsuqu8c+eO9u7dq+XLl6tevXpW40pnypTJKjg/YcIEBQYGasuWLZaXMVWqVFHHjh315ZdfqmHDhvrnn3+0bds2ffbZZ2rTpo2kR+fPz89P586dS9Q5M3tyTN0RI0bo9u3bWrJkSZwvMVevXq2///5bS5cutRyXypUrKyoqSrNnz1arVq0sX5J7enpq9uzZlvN76dIlzZgxQ3fv3pWXl1eiysCT7t27Z9X6Oz45c+aUYRjq2LGj/P399fDhQ/39999WaTp37qzz58/rwIEDCgoKkpubm+rVq6fOnTtr/PjxKleunDJnzmxpAZU6dWp99NFHkqRKlSrJ3t5ea9as0b1797R3715lzpxZtWrV0vvvv68bN27oo48+0k8//aSWLVtaWv6FhoZqyZIlCeY7vsC4vb29pkyZorfeeksrVqzQ8ePHLct8+OGHateunaW1z7NydXXVt99+q+XLl2v9+vXy9/eX9Khbznbt2ql9+/by9PRM1LpGjx6tESNG6OzZs7p165YuX75s1QIlLlOmTNH8+fO1adMmHT16VKlTp1b27Nn17rvvqkOHDmrWrJn+/vtv/fHHH8/clXBChgwZYvnQxN/fX87OzsqePbu6du2qDz74QAMHDtRPP/2kPXv2WHoe6N69u65evapDhw5p3759ll4catasqY4dO2rdunXau3evPDw81Lx585dyHpOqXLly8vLy0t27dy2tdp4md+7cWrt2rebNm6ddu3Zp//79SpUqlXx8fNSiRQs1atTIquVm4cKF1a9fPy1evFj79+9XWFiY5UOatm3bqmDBglqwYIF+/fVXnT17VpkyZbJcj092J1myZEmtWbNGc+fO1b59+7Rr1y55eXmpfv36eu+995LcMrF27dpauXKlvvnmGx0+fFj//POPMmbMqGbNmun999+P90Xh49KnT2/53duyZYv27t0rNzc3lShRQq1atYqze/pRo0apUKFC+uGHH3Tw4EG5u7urUaNG6tSpk2rVqpWosRi9vb21Zs0azZkzR3v37tXu3bvl4eGhhg0b6qOPPnqmloZS8t4LXpTcuXNrzZo1+uabb7Rr1y7t3r1bnp6eqly5stq3b6+KFStapbezs9PEiRNVpkwZLV++XPv375enp6c6duyoli1bxnnvHThwoLJmzWq5Vj09PVW/fn316dNHI0aMsEprvs+bf0PjU6FChXgD4+bjvnTpUq1fv16HDh2Sg4OD8ufPr6ZNm1ruIc8jffr0+vHHH7Vo0SJt2bJFR48elbOzs3Lnzq1GjRqpVatWiR6LtW/fvpZeV44dOyYXFxc1btxYAwYMsDz/Pa9KlSpp27ZtWr58uX766Sf99ttvioiIUObMmVWpUiU1atRINWvWjNU99rMwjyk+Z84cVatWLd5nvaTes1JaUq8V6dEHfaVLl9ayZct07NgxRUVFKW/evGrRokWsHjlexPEoVqyYli5dqhkzZujPP/986nPW09SuXVvz58/XV199pbNnz+rff/9V1qxZ9fbbb6tTp07as2ePxo0bp59++umZu+OXkn5NJPW3NLHs7e01efJkValSRStWrNDp06cVFRWlbNmyqX79+vrggw8sH2GZPctz25McHBy0cOFCzZkzR7t379aBAweUNm1a5cqVS7169dI777yjChUqyN/fXwEBASn+AcmTdbagoCBLjzTFixe3eta0t7fXqFGjLB8L7N+/X/v27dOUKVMsv/GVK1dWWFiYJk6cqIYNGyo0NFQLFixQu3btNHDgQEmP6rKBgYFxDuthZmdnpwULFljuQenSpVOPHj20d+9eVa1aNVH7dvjwYWXPnt1Sr/f19ZW7u/sztTx/lrr+k2rVqiV3d3dt3rxZPXv2lCTt2LFDERERljr9kSNH1L17d8uHN2XLllXatGkTdQ08fh6Dg4P1+++/a+zYscqePbuqVKlile7zzz+3fLC5Z88eHThwQBMmTLB8gF6xYkW5urpq2rRp6tChg/LmzavZs2erTp06ll6AKlWqpODgYC1fvjxJxzJLlizKkiWL5e/Nmzdr165dGj58eJzB/3PnzmnlypXq3bu3unXrZslfpkyZNHDgQO3du9eyfw8ePNDq1astHwK4u7urbdu2OnTokOrUqaNFixbp3r17WrZsmeWDz7feekv169fXtGnTNH369DjzfOXKlVjDijzJvM3HexmJT6NGjTR9+nTt2LHD8jHAhg0blCpVKtWoUUOGYWjixImqXLmyVW8buXLlUseOHbVnz55EXwcAgGdgAADwkgwaNMioVq2a1bQKFSoYvXv3NiIjI63+denSxWjUqJFhGIZx6NAhw2QyGTt37rQsd/nyZcNkMhnff/+91fpMJpMxffp0q+UOHjxolWbNmjWGyWQyzp07l6S8lylTxmra9OnTDZPJZISGhlqmrVq1yjCZTMbly5eN0NBQo0CBAsaECRNi7V/Dhg2Nbt26Wa0vPDzc+Pvvv40dO3YYU6dONYoXL24MHjw4wf0dMGCAUb169XjzHRMTY1SrVs347LPPDMMwjIiICKN06dLGjBkzDMMwjODgYKNcuXJGmTJljM8++8zYtWuX1f7Ep1q1aobJZIr1r1ChQsbHH39s3L171yrtBx98YLV8s2bNjLZt28Zar/n4nT171li6dKlhMpmM69evW6WZNm2aYTKZLH/HVa7Mx2vVqlWxtrFkyRLDZDIZGzZsiLVPgwYNMgzDMD7++ONY6zSM/5Wpn3/+2bJMr169rNKsWLHCMJlMxtWrV5NcBszu3LljmEwmY/LkyXHONzMfoz/++CPWPjx5DIKDg41ixYoZX3/9tWEYhnHr1i2jQIECxpo1a6zWdfbsWat8njx50jCZTMaOHTsSzAsAPOncuXPG1atXjZiYmFjzTp06ZZhMJqN58+YpkDMAAGxf27Zt46yzFShQwHjvvfeMK1euWKWtW7eu1fITJkwwvL29jeDgYKv6webNmw2TyWT8+eefxp49ewyTyWQcPXo03nw8WV+rVq2aMXDgQKs00dHRRuHChY0JEyYkev82bdpkmEwmo3HjxsasWbOMU6dOxXrmePz9gJm5Hv94/pJa14/PgAEDjHr16ln+/vDDD4127dpZ/v7ggw+MggULGr169TJWrVpl3L59+6n7OWjQoDjPo/k56q+//rJKW7RoUavj8OWXXxoFCxY0IiMjrdb7+DuGc+fOGSaTyVi7dq1VmoMHDxomk8k4dOhQgsfg8Xro4/744w+jaNGixrBhw2Ltk7lMmOvnT64zMjLSKFiwoDF+/HjLMuXKlbNKc+nSJcNkMlnqtM2bNzdatGgRq+79+eefG6VKlYr7ABuGUb9+faNly5bxzjcMw3KMvv3221j7ENcxaN26tdV7kHr16lne75jXtWTJklh5LVmypPHFF18kmBcAwPOhxTgAIEXdu3dPmzdvjjVOmSSrFseS4mxVlpjxJ59sKWDunv3+/ftJyWq8rdriy8P9+/cVExOjb775Rt98802s+ebWkuHh4Ro1apTWrVunqKgo5ciRQyVKlJCjo2Osrkmf3Ja9vX2sNI+zs7OTn5+ffvzxRw0bNkx79+7V/fv3LeNLpkqVSkuWLNGcOXO0efNmLV++XG5ubmrUqJGGDh2aYIvOatWqWbqEs7Ozk5ubm7Jnzx5nC6wnW0oEBQXF+UW2Od39+/cVFBQkKXY5yJgxY7x5eprDhw9r9OjR6ty5c4LjXwcFBcXZuuPx/JnFdU6kR92hJ7YMPMnLy0vu7u6xxm57knnM3qxZsyaYTnp0rmvWrKnNmzerc+fO2rRpk1xcXCzdwN27d0+S4m1J+/hYtQCQGHPmzNGGDRs0fPhwtW7d2jLd3NJMkqXFFAAASH6FCxe2DAtiZ2cnFxcXZc2aNc667ZP1n3v37skwjHi7l75161a8dbanebKObm9vr7Rp0yapjl6/fn3FxMRo6dKlmjlzpqZNm6bs2bOrX79+ie4dyCypdf34NGnSROvWrdPp06eVKVMmHThwQCNHjrTMnzJlir766itt2bJFW7dulb29vSpUqKARI0ZYdWv/pIwZM2rOnDmWv52dnZUlSxalSZMmVtr06dNbdcMdFBQkLy8vOTpahwHM9eoHDx68kLr37du31b17d/n4+CTYJbt5209uy9HRUV5eXnrw4IFl2pPnw7yf5uHE7t27p4sXL6pw4cJxbissLCzOc5o9e/YEx4+XZKmbZ8uWLcF0Zk2aNNGIESN09+5d3bhxQ//8848+++wzSz6lRz2XxDVsz61btxK1DQDAsyEwDgBIUR4eHqpQoYKli/THPVlxe1bmSoeZeey7x8cvfxFSpUolOzs7dezYMc6KublCNnr0aG3btk1Tp05VhQoVLF3XJVf3nI0bN9ZXX32lw4cPa+PGjSpZsqRVpTtPnjyaMGGCoqOj5e/vr3Xr1mnZsmXKkSOHOnfuHO9606ZNqyJFijxTntKkSRPnuHu3b9+W9Cgw7OXlJUkKCAiwqnw+eT7t7OwUHR1tNS00NDTWui9fvqxevXqpUqVK6tOnz1Pzd/HixQTzlxiJLQNPsrOzU7Vq1fTLL78oNDQ0zrEPo6OjtXPnTpUsWTLRL6IaN26sDz/8UP/++682bdqkmjVrKlWqVJJk6Q5w0aJFlmmPS+wLAAAwa9eunbZt26bPP/9cP/zwg3LmzKmwsDD99ttvun//vsqWLRvn7z8A4MX64YcfdPTo0SQt06pVq3iHSMCrK1WqVM9cZ/Pw8JC7u7u+++67OOfnzJnTMlxOYGCgZVxtSbp+/bouXrxoGZbqSU/W6aKjo3X37t0kB9gbNmyohg0b6sGDB/rll1/0zTffaMCAASpdurQyZ85sWffj4qorJhfzMFVbtmxR5syZ5ejoaBmaSHp0TAcMGKABAwbo/Pnz2rVrl2bPnq3PP/9c8+bNi3e9zs7Oz1X3vnv3rqKioqzesZiDr4/Xvc3vSsziqntL/wtEm4WEhFj9/fDhQ/Xs2VP29vaaMWOGnJycEsyf9Kiu/fjH85GRkZbhyRLLw8NDvr6+lm79nxTfkCTVq1fXnj17dOLECZUoUSLONFu3bpWrq2ucQ3PEpW7duho1apR27NihixcvKmvWrJbh7cx174EDB1qmPS6uDx4AAMnn+QbuAgDgOfn6+urcuXMqWLCgihQpoiJFisjHx0cLFy7Ujh07kmUbu3fvtvp769atyp49u2WMqBclderUKlSokM6fP2/ZtyJFiih//vyaOXOmDh8+LEn69ddfVbZsWdWsWdMSAP3jjz8UGBgYq8L5LPLkyaMiRYpo06ZN+vnnny2txaVHx6JcuXK6ffu2HBwcVKJECY0YMUKenp66cePGc287PmXKlNGJEycsLZ7N1q9fr4wZMypnzpwqV66cJY+P++mnn6z+TpUqle7evauIiAjLNPMLGrPg4GB169ZN6dKl06RJk546dmmZMmV09erVWOPirV+/Xk5OToke2zexZSAuXbp0UWhoqEaMGBFnOZg8ebIuXrxoGb84MSpUqKCMGTNq8eLF8vf3tyoLZcqUkSTdvXvXKq/37t3T1KlTY70UAYCnKVasmNasWaMWLVooLCxMe/bs0W+//aZcuXJp2LBhWrBgQYIvSgEAL8aJEye0YcOGJP27dOlSSmcbL5mvr69CQ0NlGIZV/eDs2bOaNWuWoqKiVLRoUTk5OWnXrl1Wyy5atEgff/yxVcvlx+3bt08PHz60/L1r1y5FRUUl6ePw3r17W8by9vDwUL169dS9e3dFR0dbgr6pU6eOVa99sq6YnOzt7dWwYUPt2rVLW7duVY0aNSyt0a9evaoqVapY6rd58uRRp06dVKFChRda9/b19VV0dHSsXvrWr18vSSpVqpRy5cqlrFmzPrXubd6X69evW6adP38+Vl1x2LBhOnPmjGbPnv3Ujx3MgeENGzZYTd+0aZOio6Pj/bgivnVduHBBuXPntiqz69ev14oVK+Idy71Ro0bKmTOnPvvsszjrvT/99JPWrl2rdu3axdu7wJM8PDxUrVo1S1nw8/OzvIfIkyeP0qdPrytXrljlM0uWLJo0aZL+/PPPRO8zACDpaDEOAEhR3bt3V6tWrdSlSxe9++67cnFx0Q8//KCdO3dq+vTpybKNhQsXytXVVcWLF9f27dv1008/adKkScmy7qfp27evOnfurH79+qlRo0aKjo7Wt99+q5MnT6pbt26SpKJFi2rLli1atmyZ8ubNq9OnT2vOnDmys7NTWFhYsuSjSZMmGjNmjOzt7VWvXj3L9JIlSyomJkY9evRQ586dlSpVKm3ZskUPHjxQ7dq1k2XbcXnvvfe0fv16vffee+rZs6e8vLy0du1aHTp0yJLPnDlzqmXLlpoyZYqioqJUsGBBrVu3TmfOnLFaV7Vq1bR48WJ98sknat68uc6ePatvv/3WqtLbv39/Xb58WZMnT9b58+etAs3p0qWL9ZFE06ZNtXTpUvXs2VO9evXSG2+8od27d2vVqlXq2bOn5QvvxEhMGYiLt7e3xo0bpyFDhujSpUtq1aqVcuTIoVu3bmn16tXav3+/+vfvrypVqiQ6Lw4ODvLz89OiRYuUMWNGVahQwTLPZDKpUaNGGjZsmK5evSofHx9duHBBU6ZMUY4cOZQrV65EbwcAzPLly6dRo0aldDYAAI8ZN26cxo0bl9LZwCuuSpUqKlOmjLp3767u3bsrb9688vf314wZM1SpUiVLwLN9+/ZatGiRnJ2dVa5cOf3+++/6/vvv1bdv33h7gbtx44a6deum9u3b6/r165o8ebIqVaqksmXLJjp/5cqV0/DhwzV+/Hi99dZbun//vmbOnKlcuXKpQIECkqSqVatq06ZNKlq0qHLnzq01a9bE2TNYcmrSpInmz58vBwcHq+7Ps2fPrixZsuiLL75QcHCw3nzzTf3xxx/as2ePunTp8sLy89Zbb6ls2bIaPny4bt26pUKFCunIkSP65ptv9PbbbytfvnySHtWZ+/Xrp08//VR169bVb7/9pmXLllmtq1y5cnJzc9O4cePUu3dvhYSEaObMmUqbNq0lzYIFC7R27Vr17dtX0dHR+u233yzznJ2dVahQIat15suXT2+//bZmzpyp8PBwlS1bVn/99ZdmzpypsmXLqnLlyone144dO2rdunXq2LGj3n//fXl5eWnz5s368ccfNWTIkHiXc3d314wZM9SlSxc1adJEHTt2VKFChRQWFqbdu3dr5cqVqlGjhj7++ONE50V6VBZ69Oih6OhoNWrUyDLdwcFBffr00WeffSYHBwdVq1ZN9+/f1+zZs3Xz5s14u4IHACQPAuMAgBRVoEABLVmyRFOmTNHAgQNlGIZMJpNmzZqlGjVqJMs2PvnkE61Zs0Zff/218uTJo+nTp1t1Z/YiVapUSfPnz9fMmTPVq1cvOTk5qXDhwlqwYIGKFy8uSRo8eLAiIyM1depUPXz4UDly5FC3bt107tw57d69O1bXb8+ifv36GjdunKpWrWrVLVemTJk0b948TZs2TUOHDlVYWJjy58+vGTNmWFpsvwgZM2bUsmXLNGnSJI0ePVqRkZEqUKCAZs+ebXXehw8frgwZMuj7779XUFCQKleurK5du2rq1KmWNBUrVtSgQYO0ePFibd++XYULF9bMmTPVqlUrSxrzl+7du3ePlZe333471otBNzc3LV68WJMmTdL06dMVHBysPHnyaPTo0WrWrFmS9jUxZSA+DRo0kLe3txYuXKjp06fr9u3bSpcunUqXLq1ly5Y9dfm4NG7cWN9++60aNGgQ64v5sWPH6uuvv9by5ct148YNpU+fXvXr11fv3r3j/boeAAAAgO2xt7fX3LlzNW3aNH399de6c+eOMmfOrI4dO6pHjx6WdAMGDFCGDBm0bNkyffvtt8qRI4c++eQTtW7dOt51N2jQQJ6enurdu7fc3d319ttvP3W4qye1atVKkZGRWr58uZYuXSpXV1eVL19eAwYMsPRIM2TIEEVFRWnChAlydHRU/fr1LcHfF8VkMqlgwYK6efNmrG63Z86cqcmTJ2vatGm6e/eusmbNqp49eyY4hNnzsrOz09dff63p06fru+++U2BgoHLkyKE+ffpYDWnTsGFD2dvba/bs2Vq3bp1MJpNGjhypvn37WtJ4eHho+vTpmjRpknr06KHs2bOrZ8+eWrt2rSWNuce+yZMna/LkyVZ5yZ49e6we/aRHw8vlzJlTq1at0vz585UpUya1a9dOPXr0eGpvb4/LnDmzli9frkmTJmnEiBGKiIhQrly5ElWP9/b21urVq/X9999r5cqVunLlilxdXVWgQAF9+eWXSR63XpIqV66sNGnSKEuWLMqfP7/VvObNmytVqlSaN2+efvjhB7m7u6tkyZKaOHFiguPNAwCen51hGEZKZwIAgBfh8OHDat++vb777rskfXkOAAAAAACSX/Xq1eXr60uvBQAAIEXQYhwA8J9lGEaiWmM7ODjEOzYaAAAAAABIHlFRUU9NY2dnR49WAADgmRAYBwD8Z61ZsybBcabMxo4dq6ZNm76EHAEAAAAA8N+VmPGVfX19tXjx4peQGwAAYGvoSh0A8J919+5dXbly5anpcuTIIS8vr5eQIwAAAAAA/rt+//33p6ZJlSqV8uTJ8xJyAwAAbA2BcQAAAAAAAAAAAACATbNP6QwAAAAAAAAAAAAAAPAiERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMcUzoDr6M7dx7IMBJOY2cnpU/vkai0wKuKcgxbQVmGLaAcwxZQjmELElOOzWmQPF70PYN7E5KC8oKkoLwgsSgrSArKC5KC8oLEep3LSlLq4ATGn4FhKNGFIilpgVcV5Ri2grIMW0A5hi2gHMMWUI5fnpd1rDmnSArKC5KC8oLEoqwgKSgvSArKCxLL1ssKXakDAAAAAAAAAAAAAGwagXEAAAAAAAAAAAAAgE0jMA4AAAAAAAAAAAAAsGmMMQ4AAAAATzAMQ1FRkSmdDbyC7Oyk6OjolM4GAAAAANiMmJgYRUdHpXQ2/tPs7KTw8HBFRj585cYYd3BwlL198rT1JjAOAAAAAI+JiorUnTs3ZBgxKZ0VvKLu3r0pZ2d3eXqmk52dXUpnBwAAAABeS4Zh6P79QIWFBad0ViApMNBeMTGv5rsQN7fUyVIHJzAOAAAAAP/PMAwFBQXK3t5eadJklJ0do0/BmmEYio5+qKCgQElSmjTpUzhHAAAAAPB6MgfFU6f2krOzCx8epzAHBztFR79azcUNw9DDhxEKDr4r6fnr4ATGAQAAAOD/xcREKzIyXGnSZJCzs2tKZwevKEdHN0VHGwoOvisPD69k69INAAAAAP4rYmKiLUHx1Kk9Uzo7kOToaK+oqFevxbizs4skJUsdnNo7AAAAAPw/c5dhDg58Q4yEmSvmjIMHAAAAAEkXHR0t6X91KyAhyVUHJzAOAAAAAE+g+zY8DWUEAAAAAJ4fdSskRnKVEwLjAAAAAPAaiYiI0K1bN1M6GwAAAAAA2Dzq4LaFwDgAAAAAvEZ69OikY8eOPNc6Ro8eodGjRzzTsjdu3FCtWpV148aN58oDAAAAAACvOurgtoWB8wAAAADgNXLv3t0U3X6WLFm0Y8e+FM0DAAAAAAAvA3Vw20KLcQAAAAB4TfTp00M3b97QxIljNXnyeJ05c1offdRFdetWU6tWb+uHH5bIMAxL+h9/XKaWLZuoVq239P77bfXrr0ct8+7eDdSnnw5SgwY11LhxXa1a9YNlXrNmflq8eIHee6+1atWqrPfea63jx49Jkq5fv6ZKlUrr+vVrkqSLF//VRx91Ua1aldW2bQstXrxAzZr5SZKOHz+mSpVKW+3Dk1/K79y5TR06tFKdOlX0/vttdeTIoWQ/bgAAAAAAJBV1cNtDYBwAAAAAXhNTpsxS5sxZ1L//ELVv/74+/rirqlatoY0bd2js2Elas2al1q1bLUnavHmDFi6cp2HDRmrbtp/19tvNNGhQH92/HyTpUYW5ceOm2rhxp7p27ampUycqIOC2ZVubNq3XqFHjtWHDDuXLZ9LEiWNj5ScqKkr9+3+sXLnyaOPGnRo+/AutWbMy0ftz8OAvmjhxrPr0GajNm3frgw+6aOjQgTp//p/nPFIAAAAAADwf6uC2h8A4AAAAALyGtm3brJw5c+udd1rI0dFRuXPn0bvvttPq1T9KkrZs2ajGjZvKx6eo7O3t5efXRFOmzJKLi4skqXTpsipTpqzs7OxUs2YdGYahq1evWtbfoEFj5cjxhlxdXVW7dl1dvnwpVh78/X/TrVs31LPnx3JxcVH+/Ca1atU20fuwatWPatKkmYoXLykHBwdVrFhZFStW1rp1q57z6AAAAAAAkHyog9sGxhgHAAAAgNfQ9evXdebMX6pbt6plWkyMIXv7R98/37kToMyZs1gtU6RIMcv/p0mTxvL/Tk5OkqTo6CjLtPTp01v+38HB0ap7OLO7dwOVNm1aubi4Wqa9+WbORO/DjRvXdeLEr1q79n9fuEdHR6tUqTKJXgcAAAAAAC8adXDbQGAcAAAAAF5DmTJlUsmSZTR58gzLtKCgewoNDf3/+Zl18+YNq2Xmzp2t2rXrJVsesmXLrnv3Hm3T3d1dknT79i3LfAcHB0lSZGSkpeIfFHRPadKklSRlzJhJdeo0ULt2HS3L3Lhxw/JFPQAAAAAArwLq4LaBrtQBAAAA4DXi7Oys4OBg1a5dT6dO+Wv79i2KiopSQECABg7soxkzpkiS6tdvpA0b1uivv04pJiZGmzat1+rVP1oqxMmhQIFC8vYuqKlTJygsLExXr17RkiXfWeZnz/6GHBwctHPnNknS0aOH9euvRy3zGzV6WytXLtdff52SJJ0+/ac+/LCtJT0AAAAAACmJOrhtocU4AAAAALxGGjZsrLlzZ+n06T81adIMzZkzQ1OmTJCDg4MqVKikjz/uJ0mqXbuuHjy4r5Ejh+nOnTvKlSu3Jk6cLi8vr2TLi52dncaOnagpUybonXcaKn369CpevISOHTsiScqQIYM+/ri/Fi6cpylTJqhUqdKqX7+RwsPDJEnVqtVUWFiYxoz5XDdv3pSnp6datGitZs1aJlseAQAAAAB4VtTBbYudEVcn9UhQQMADPe2o2dlJGTJ4JCot8KqiHMNWUJZhCyjHsAWvQzmOjHyoO3euK336rHJyck7p7LyWNm/eoG+/nauVKzekdFZeGEdHe4WFhcdbVsxlHcnjRd8zXod7E14dlBckBeUFiUVZQVJQXpAUr3J5of6dPJKzDu7oaK+oqJhkyFXyS6i8JKUOTlfqAAAAAAAAAAAAAACbRmAcAAAAAAAAAAAAAGDTGGMcAAAAAJBs6tf3U/36fimdDQAAAAAAbB518KShxTgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAAAABg0wiMAwAAAAAAAAAAAABsGoFxAAAAAAAAAAAAAIBNIzAOAAAAAP8hwcHBunv3bkpnAwAAAAAAm0cd/NVCYBwAAAAAklmUvZ3uRhu6FBKpu9GGouztXuj2bty4oVq1KuvGjRtPTduqVRNduPDPC82PJNWqVVknT5544dsBAAAAAPy3UQenDp5YjimdAQAAAACwJWF2dhq65g/tO3fHMq1y/gwa3biw3AzjhWwzS5Ys2rFjX6LS3rt374Xk4UmJzQ8AAAAAAM+KOvgj1METhxbjAAAAAJBMouztNHStdYVckvadDdDQdade2Ffr169fU6VKpS3/Xblyud59t6lq1XpL3bq9r3/+OSdJevfdppKk/v0/1pIliyRJR48eVqdO7VW3blW1bdtC27dvsax39OgRmjBhjAYO7KNatd5S8+aNtWLFcsv8n3/epbZtW6hOnSpq06aZFi6cZ5lXqVJpHT9+TBs3rtPbb9dXTEyMZd6aNSvVtm0LSdK//17QwIG91bRpA1WvXlFt2zbX/v1U6AEAAAAACaMOTh08qQiMAwCAV4a9vZ3sXmxPRwDwQj2IjIlVITfbdzZADyJj4pyX3Hbu3K6ZM+dqzZrNcnFx1axZ0yRJy5atliRNnDhNbdp00Nmzf2vw4L5q27ajNm3apUGDhmr69Ek6fPigZV2bN29Q8+YttWXLbrVp014zZ07R7du3FBERrpEjP1PfvgO1bdseDR/+hZYs+U5//XXKKi81atRWSEiIfv31iNU6GzZsJEn69NOBypMnn378cZ22bftZvr7lNGnSuBd9iAAAAIBnYmf36P0FgJRHHZw6eFIRGAcAACnKzk6KdArRdeNf7buzS2fD/1C4030qmQBeSw/Co55rfnJp1qyl0qfPoNSpU6t69Vq6fPlSnOnWrVutSpWqqEqV6nJwcFCRIsXk5/e2Vq360ZKmRInSKlOmnBwdHdWwYWNFR0fr6tUrkiQXFxdt2rROx44dUc6cubVt288qWLCw1Tbc3NxUs2Ztbd26SZJ08eK/Onfub9Wp00CS9OWXU/X++50VExOj69evycPDU7dv33oRhwUAAAB4Zvb2UrhTkM6E/659d3bphnFRkU6hfOAPpCDq4NTBk4oxxgEAQIoKc7qvAXv76VTg/75uTOeaTl/V+EqZ7N9QTMyLGQsIAF4ED9eEq1hPm59c0qVLb/l/R0dHGUbcX8nfuHFNx48fU926VS3ToqNjlD17Dsvf6dNbr0uSYmJi5OLiqjlz5mvRovn6/PNPFRISomrVquvjjwfI09PTajuNGr2tjz7qotDQUG3atF4VK74lLy8vSbJ8MR8YeEc5c+ZW2rRpZbygceAAAACAZ2FvL12LvqhuO7oqKCLIMr1YxmIaV/FLuTz0SMHcAf9d1MGpgycVgXEAAJBiDMdITT4+0SooLkmB4YHqtqubFtdZItcYz3iWBoBXj4eTvSrnz6B9ZwNizaucP4M8nOylV+iDn4wZM6tevYYaMOATy7SAgABJT89jSEiwAgJua/jwLyRJZ8+e0YgRQ7V48QL16PGxVdoCBQopR443tHfvT9qxY6sGDfr0/7d1W599NlijR09QpUpvSXo0ZtqePT8l0x4CAAAAzy/UIShWUFySTt4+qVknZ6hv0YFSJOEW4GWjDk4dPKnoSh0AAKSYEN3X7su745x3J/yOrodeo0syAK8VxxhDoxsXVuX8GaymV86fQWMa+8jxFaiQOzs7KyQkWJLUsGFj7dixTUeOHFJMTIwuX76knj07admyxU9dT1hYmAYM+Fjbt2+VYRjKkCGj7OzslSZNmjjTN2zYRPPmfSU7Ozv5+paTJIWGhig6Olpubm6SpAsXzmvBgnmSpMjIyOTYXQAAAOC52NlJl4IvxQqKm239d6tCjPsvOVcAJOrg1MGTjk+YAABAigmPjlBMPF0LSY+C43ld7P5T3fkAeP25GYa+bFJYDyJj9CA8Sh6ujvJwspdjTPz3u5epUaOmGjFiqFq0aK0uXXpoxIjR+vrrWRo2bJBcXd1Us2Ydde3a86nryZAho0aNGq9vvpmjCRPGyMXFRTVq1FLLlm3iTF+7dj3Nnj1NrVu3l739o2+033wzl7p3/1gjR36q8PBwZcyYWY0ava3Zs6fpn3/OqUCBgsm67wAAAEBS2dnZ6VZo/OPvRhlRehjzUKleYp4A/A918OSrg/v4FI5zXbbEzuBNc5IFBDzQ046anZ2UIYNHotICryrKMWwFZfnVFeZ0Ty02N1dIZEic83+o/6MyKkec8/5rKMewBa9DOY6MfKg7d64rffqscnJyTuns4BXl6GivsLDweMuKuawjebzoe8brcG/Cq4PygqSgvCCxKCuvvuvGv2qzpXWc89K4pNHSOsvlFhV3q83kRnlBUrzK5YX696vH0dFeUVGvxgcFT0qovCSlDk5X6gAAIMWkMtKqk0+nOOeVzlxaaZ3Sv+QcAQAAAAAAWMvgnElF0heJc17XIt2UWmlfboYAAM+EwDgAAEgxMVFS/Tf91K9kP3k6e0qSHO0d1ShvI31RfrScIt1SOIcAAAAAAOC/zjnKXRMqT1T9XPXlaPdohNo0Lmk0qPRg1cheS9FRr1hTXABAnBhjHAAApCjHSDc1yvGOqueoqbDoMLk4uCiVnaf00CGlswYAAAAAACDDkJwfeqhf0cHqVrS7IqIfys3BTamVRtGRKZ07AEBiERgHAAApLjpKclMauSmNFJXSuQEAAAAAAIjNLspRqZROqSQpSopO6QwBAJKErtQBAAAAAAAAAAAAADaNwDgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAAAABg0wiMAwAAAABeusuXL6V0FgAAAAAA+E+gDv4IgXEAAAAASGbRTuEKcrilqzHnFeRwS9FO4SmdpRfuu+++Vb9+vRKV9pdf9qpv349ecI6k7du3qG3bFi98OwAAAACAlEMdPGHUwf/HMaUzAAAAAAC2JML5vkYeGamD1w5YplXIVkHDfD+Ty0PPFMzZi9W+/fuJTnv/fpAMI+YF5uaR2rXrqXbtei98OwAAAACAlEEd/Omog/8PgXEAAAAASCbRTuGxKuSSdODaAY06MlKfl/lCDpGuyb7d+fO/1qZN6xUWFqbs2XOoY8cP5O6eSr16ddUvvxyzpBs9eoQkaejQEZo//2udO/e37O3tdfjwQXl5pVPbth3VuHFTSVJoaIi++mqmfvllrx4+fKhSpUrr44/7K1269Lp+/ZqaN2+kli3baNOm9apVq67Spk2rEyd+1cyZc7V58wZt2LBW3t4FtXPnVkl2qlTpLfXvP0T+/r9p4sSxioyMVK1albVs2WqlSZNWixbN17ZtWxQc/ECFC/uod+8BypHjDUlSpUql1bt3f61a9aMCAgKUL18+9e//ifLmzaeoqChNnTpRe/f+pOjoKOXMmVtdu/ZU0aLFtXnzBn377VytXLlBPXp0UtGixdWlSw/L8ejUqYOqVauh1q3ba+PGdVq9eoVu3LiuyMhIlShRUkOGDJeXl1eyny8AAAAAwPOjDp68dfBcuXJKsu06OF2pAwAAAEAyCY65H6tCbnbg2gEFx9xP9m0eP35M69ev0dy5i7R58y41bNhY48aNUnR01FOX3bdvj4oUKaatW3/WgAGfaOrUCTp27IgkacyYkbpy5bLmz1+sH39cJ3f31PrkkwEyDMOyfGhoqDZs2K7OnbvHWvfvv5+Ul5eX1q7dqgkTpmrXru36+eddKlmytPr3H6LMmbNox459ypAho+bOna0DB/Zp2rTZWrt2iwoXLqI+fXoqIiLCsr6dO7dr5sy5WrNms1xcXDVr1jRJ0rZtm/XHH/5asmSl1q/frmLFSmjSpPGx8uPn10Tbtm1WTMyjr+QvXvxXZ8+eUd26DfTnn39o6tQJ6t9/sDZv3qUlS1bo8uVLWrlyedJOBgAAAADgpaEO/j/UwROHwDgAAAAAJJPgyODnmv8snJ2d9eDBfa1fv1p//31Gfn5NtGHDDjk4PL2DsLx586tVq7ZydHSUr285ValSXdu2bdbdu4H6+edd6t27v7y80snd3V0ff9xPf/11SmfOnLYsX69eAzk5OcnDwyPWul1cXNS+/ftydHRUwYKFlS9ffl2+fClWOsMwtHbtSnXp0lPZsmWXi4uLOnb8UFFRkTp48BdLumbNWip9+gxKnTq1qlevZVmXi4uLrl+/qo0b1+nSpYvq1KmbFi1aFms71arVUGhoqI4ff/T1/qZN61W+fCWlS5deefPm0+LFP6pQIR/dv39fAQG3lTatl27fvvX0EwAAAAAASBHUwf8nOerg+/fbfh2crtQBAAAAIJmkdkr99PnRybtNH5+i+uKLL7Vy5XItXfqdXF1d1axZKxUpUuypy77xxhtWf2fOnEVnz57R9evXJEmdO3e0mu/g4Kjr168qTZo0kqQMGTLGu24vr3Sys7OzWtb8pfjj7t27q7CwMA0bNlj29v9LHxkZqevXr1v+TpcuveX/HR0dLeOj1axZR5GRkdq4cZ3mzp0lL690at/+PTVp0sxqOy4urqpdu662bt2kEiVKafv2LRo4cKgkyd7eQStWLNP27Vvl5uaufPnyKTQ0xOrLfAAAAADAq4U6+P8kTx38muVvW62DExgHAAAAgGSS2t5TFbJV0IE4unKrkK2CUtt7Jnul/MaNG0qXLp0mT56pyMhIHTt2WEOHDlTbth0lParcOjk5SZKCgu4pTZq0lmVv375tta7r168pc+YsypQpsyRpyZKVSp8+g2X+hQvnlS1bdgUG3pEkq0r3s0qTJq2cnV00efJM+fgUsUy/dOlfZciQ6anLX7p0Ud7eBVWvXkNFRIRr9+6dGj16hIoWLRErrZ/f2+re/UNVqVJNdnZ2Klu2vCTphx+W6MiRw/ruu+WWyv/AgX2ee98AAAAAAC8OdfCkS6gOniVLlqcu/7rXwelKHQAAAACSiUOkq4b5fqYK2SpYTa+QrYKG+Q6XQ6Rrsm/z9OlT6tfvI509+7ecnJzk5fWoUlmiRCk5ODho585tkqSjRw/r11+PWi176tTv2rZts6Kjo3Xw4H798sseNWjQSBkyZFSFCpU0bdokBQXdU1RUlBYtmq9OndorOPjBc+fZ2dlZ4eHhioqKkr29vRo2bKSvvpqhW7duKiYmRlu2bFS7di115Ursbt+etH//Pn3yyQBdv35NLi6uSpMmrRwcHJQ6deyWA/nzm5QzZy5NmzZJ9eo1lIODgyQpJCREjo6OcnR0UlRUlLZt26zDhw8oMjLyufcVAAAAAPBiUAdPnMTWwePqev1Jr3sdnBbjAAAAAJCMXB566vMyXyg45r6CI4OV2im1Utt7yuFh8lfIJalq1Rq6fPmSBg/uq6Cge/LySq9evfqqRIlS+vjj/lq4cJ6mTJmgUqVKq379RgoPD7Msmz+/Sfv27dGUKROUPn16DRs2Uj4+RSVJn346Ul99NUPvvddGISHByp07ryZNmqn06TNYda/2LIoXLyUvLy/Vq1dNX321QD169Na3385Vjx6dFBQUpGzZsuuLL8bLZCrw1HU1b95KAQG31LXr+woJCVaWLNk0cuRYyxf3T/Lza6KJE8eqQYNGlmnvvttW//xzTs2a+cnZ2VkmUwE1bdpCv/565Ln2EwAAAADwYlEHf7rE1sG9vQsoKip29+uPe93r4HYGg6YlWUDAAz3tqNnZSRkyeCQqLfCqohzDVlCWYQsox7AFr0M5jox8qDt3rit9+qxycnJO6ey8UPPnf60TJ37VzJlzUzorrx1HR3uFhYXHW1bMZR3J40XfM16HexNeHZQXJAXlBYlFWUFSUF6QFK9yefkv1b+l16MO7uho/9TAeEpJqLwkpQ5OV+oAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMYYxwAAAAA/oM++KBLSmcBAAAAAID/BOrgrwZajAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAgNdcRESEbt26mdLZAAAAAADA5lEHf30RGAcAAACAZOYaFa5U927K7co/ShV0S65R4S90ez16dNKxY0eSZV3Hjx9TpUqlJUk3btxQrVqVdePGjQSXSWy65NCzZ2fNn//1C98OAAAAAOD1QB38xbG1OrhjSmcAAAAAAGxJ6vD7ujViuEL377dMc69YUZlGfK5gV88Xss179+6+kPVmyZJFO3bsS7Z0AAAAAAAkJ+rgSAoC4wAAAACQTFyjwmNVyCUpdP9+3RoxXOm+GKtwR9dk3WafPj108+YNTZw4VsuWLVZISIiKFi2uQ4f2q23bjnr77WaaOXOqTpz4VQEBt5U6tYeaNm2u9u3flyQFBARowoTROnHiuNKkSauaNWtb1n39+jU1b95IK1as159//qFx40ZZbTssLEwdOnyghg0bW9JlzZpNN25c1+zZ03X8+DHZ29urVKky6tGjtzJkyKDjx49pzJjP5efXRGvWrFRERIRKliylTz4ZrlSpUisyMlJz587WgQP7dOvWLbm4uKhGjVrq3XuA7OzsrLZvGIZWrvxBq1f/qLt3A5UnTz716tVPBQoUTNZjDAAAAAB49VAHT946+O3bt+TsbNt1cLpSBwAAAIBk4hAcFKtCbha6f78cgoOSfZtTpsxS5sxZ1L//EPXpM1C3bt1Urly5tXHjTjVt2lxz5szUtWvX9M0332nHjn3q3bu/5s6drStXLkuShg8fIgcHR61du1kzZ36tQ4fizn+NGrW1Y8c+y7+mTVvojTfeVMuWra3SRUVFqXfvHrK3t9fy5Wu0ZMlKGYahQYP6KCoqSpJ048Z13b59Wz/8sEbffLNIf/zxu1avXilJ+vHHpTp0aL+mTftKO3bs1bhxk7R27Sr9+uvRWHlavXqFli//XqNGjdfGjTtVv76fevfursDAO8l5iAEAAAAAryDq4MlbB9+9+xebr4MTGAcAAACAZBITHPxc85NLgwaN5OjoKHf3VPrgg84aNWqsUqVKpVu3bsrZ2UWSFBBwWzduXNfJkyfUrdtHcndPpcyZs+j99zs/df2rVv2oTZvWa+LE6fL0TGM17+TJE7p+/aoGDBii1KlTy8PDQwMHfqJz5/7W6dN/WdK9996HcnFxVY4cb6hkydK6fPmiJMnP721NmzZH6dOnV0BAgCIiIuTunkq3b9+KlY81a1aoXbv3lC9ffjk6Oqphw8bKlSu3tm3b8jyHDwAAAADwGqAOntx18Ns2XwenK3UAAAAASCb2qVM/1/zkkiFDRsv/370bqGnTJunMmdPKli2bvL0LSZJiYmIsFd3MmbNY0mfPniPBde/Z85O++mqGpkyZHWfawMA7SpMmrVKl+t++urunkqdnGt24cU3p0qWXJKVPn8Ey39HRUYZhSJLCw8M0ZcqXOnHiuDJlyiSTqYAMw7DMf9z169c0a9ZUffXVDMu0qKio16obNwAAAADAs6EOnrx18MyZMyt/fm+broMTGAcAAACAZBKdOo3cK1aMsys394oVFZ06TRxLJb/HxwEbNmywKlZ8S5MmzZCjo6OCgu5pw4Y1kqSMGTNLkq5du6pcuXJLkm7div1VuNnvv5/UqFHD9Omnn8vHp0icabJmzaagoHsKCQm2VMyDg4MVFHRP6dNniLNy/bjx40fL09NT69ZtlYuLi2JiYlSvXrU402bMmFkffthFNWvWsUy7evVKrC/oAQAAAAC2hzp48tbBU6Vy08OHUTZdB6crdQAAAABIJuGOrso04nO5V6xoNd29YkVl+vxzhTu6vpDtOjs7KzieLuKCg4Pl4uIiBwcH3b17V1OmTJD06KvuLFmyyNe3nGbMmKL79+/rzp0Affvt3DjXc/Hivxo0qK86d+6hqlVrxJuXAgUKKVeuPJowYayCg4MVHBysiRPHKnv2HCpSpNhT9yUkJFjOzs5ycHBQaGiIZs2appCQEEVGRsZK26jR21q0aL4uXvxXknT48EG1a9dCJ08ef+p2AAAAAACvN+rgyVsHDwmx/To4LcYBAAAAIBkFu3oq3RdjlTE4SDHBwbJPnVrRqdMo+AVVyCWpYcPGmjt3ljw8PGPN++ST4Zo+fZKWL18iDw8P1axZWyaTt/7555x8fctpxIjRmjRpnJo181OqVKlUv76f/vzzj1jrWbJkkYKDH+i7777VvHlfyTBiJElFi5ZQ//6DLekcHR315ZdTNHPmVL37blNFRj5U6dK+mjJlthwdn14F7d17gL78crTq1asmd/dUqlChksqWraDz58/FStuyZWtJhgYN6qs7dwKUMWNG9ekzUJUqVUnC0QMAAAAAvK6ogydfHTxVqlQqX9626+B2xtPa0COWgIAHetpRs7OTMmTwSFRa4FVFOYatoCzDFlCOYQteh3IcGflQd+5cV/r0WeXk5JzS2cErytHRXmFh4fGWFXNZR/J40feM1+HehFcH5QVJQXlBYlFWkBSUFyTFq1xeqH+/ehwd7RUVFZPS2YhTQuUlKXVwulIHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAABPMAwjpbOAVxxlBAAAAACeH3UrJEZylRMC4wAAAADw/+ztH1WRoqOjUjgneNU9fBghSXJwcEzhnAAAAADA68fBwUHS/+pWQEKSqw5ODR4AAAAA/p+9vYOcnFwVHHxPDg4OsrPjW2JYMwxDYWEPFRx8V25uqS0fUwAAAAAAEs/e3kFubqkVHHxXkuTs7CI7O7sUztV/W0yMnaKjX60W/IZh6OHDiGSrgxMYBwAAAID/Z2dnpzRp0unOnRsKDLyZ0tnBK8rBwV5ubqnl6ZkupbMCAAAAAK8tc53KHBxHyrK3t1dMTExKZyNOyVUHJzAOAAAAAI9xdHRSpkw5FBUVmdJZwSvIzk7KlCmt7t4NFUPhAQAAAMCze/Rxenp5eHgxpFkKs7OTvLxS6e7dkFeuruvg4JhsvbURGAcAAACAJ9jZ2cnJyTmls4FXkJ3d/8bCAwAAAAA8P3t7e9nbUwdPSXZ2kqurq5ycIl+5wHhyYjA0AAAAAAAAAAAAAIBNIzAOAAAAAAAAAAAAALBpBMYBAAAAAAAAAAAAADaNwDgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAAAABg0wiMAwAAAAAAAAAAAABsGoFxAAAAAAAAAAAAAIBNS5HA+L179zRw4ECVLVtWZcqUUffu3XXr1i1J0smTJ9W8eXOVKFFC1atX14oVK6yWXbNmjWrVqqXixYuradOmOnHihGVedHS0xo8frwoVKqhEiRLq1q2bZb2SdOfOHXXv3l2lS5dW2bJlNXr0aEVFRb2cnQYAAAAAIAVQBwcAAAAAIIUC4x999JFCQ0O1Y8cO/fTTT3JwcNCwYcMUFBSkzp07q0mTJjp69KhGjx6tsWPHyt/fX5J0+PBhjRo1SuPGjdPRo0fVqFEjdevWTWFhYZKkOXPmaP/+/Vq1apX27dsnV1dXffrpp5bt9u7dW+7u7tq3b59WrlypgwcPauHChSlxCAAAAAAAeCmogwMAAAAAkAKB8T/++EMnT57UuHHj5OnpqdSpU2vUqFHq37+/tm/frrRp06pNmzZydHRU+fLl5efnpyVLlkiSVqxYoQYNGqhUqVJycnJSx44d5eXlpc2bN1vmd+rUSVmzZlXq1Kk1dOhQ7d27V5cvX9bFixd15MgRDRgwQG5ubnrjjTfUvXt3y7oBAAAAALA11MEBAAAAAHjE8WVv0N/fX/ny5dOPP/6oZcuWKSwsTJUrV9agQYN09uxZmUwmq/T58uXTypUrJUnnzp3TO++8E2v+6dOn9eDBA924ccNq+QwZMihNmjQ6c+aMJClt2rTKnDmzZX7evHl17do13b9/X56enoneBzu7xKdJTFrgVUU5hq2gLMMWUI5hCyjHsAWJKcevUhn/r9TBnwf3JiQF5QVJQXlBYlFWkBSUFyQF5QWJ9TqXlaTk+aUHxoOCgnTmzBn5+PhozZo1Cg8P18CBAzVo0CBlyJBBbm5uVuldXV0VGhoqSQoJCYl3fkhIiCTJ3d091nzzvCeXNf8dGhqapEp5+vQeLyQt8KqiHMNWUJZhCyjHsAWUY9iC16Uc/9fq4M/jdTmneDVQXpAUlBckFmUFSUF5QVJQXpBYtl5WXnpg3NnZWZI0dOhQubi4KHXq1Ordu7datGihpk2bKjw83Cp9eHi4UqVKJelRJTqu+V5eXpYKtnmssyeXNwwj1jzz3+b1J9adOw9kGAmnsbN7VHgSkxZ4VVGOYSsoy7AFlGPYAsoxbEFiyrE5zavgv1IHfx7cm5AUlBckBeUFiUVZQVJQXpAUlBck1utcVpJSB3/pgfF8+fIpJiZGkZGRcnFxkSTFxMRIkgoWLKilS5dapT937pzy588vScqfP7/Onj0ba/5bb72lNGnSKHPmzDp37pylK7fbt2/r3r17MplMiomJ0b179xQQEKAMGTJIkv755x9lyZJFHh5Je2FhGEp0oUhKWuBVRTmGraAswxZQjmELKMewBa9LOf6v1cGfx+tyTvFqoLwgKSgvSCzKCpKC8oKkoLwgsWy9rNi/7A1WqFBBb7zxhj755BOFhIQoMDBQU6ZMUc2aNdWwYUMFBARo4cKFioyM1KFDh7RhwwbLmGbNmjXThg0bdOjQIUVGRmrhwoW6c+eOatWqJUlq2rSp5syZo8uXLys4OFhjxoyRr6+v3nzzTeXKlUulSpXSmDFjFBwcrMuXL2v27Nlq1qzZyz4EAAAAAAC8FNTBAQAAAAB4xM4wXn7c/+bNmxo3bpyOHj2qiIgIVa9eXUOHDpWnp6d+//13jR49Wn///bfSpUun7t27q2nTppZl161bpzlz5ujmzZvKly+fPv30UxUrVkySFBkZqWnTpmn9+vUKCQlR2bJlNWrUKKVPn16SFBAQoJEjR+rw4cOyt7dXkyZN1L9/fzk4OCQp/wEBietKPUMGj0SlBV5VlGPYCsoybAHlGLaAcgxbkJhybE7zqvgv1MGfB/cmJAXlBUlBeUFiUVaQFJQXJAXlBYn1OpeVpNTBUyQw/rojMI7/CsoxbAVlGbaAcgxbQDmGLXgdA+OvOwLjeJVQXpAUlBckFmUFSUF5QVJQXpBYr3NZSUod/KV3pQ4AAAAAAAAAAAAAwMtEYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaQTGAQAAAAAAAAAAAAA2jcA4AAAAAAAAAAAAAMCmERgHAAAAAAAAAAAAANg0AuMAAAAAAAAAAAAAAJtGYBwAAAAAAAAAAAAAYNMIjAMAAAAAAAAAAAAAbBqBcQAAAAAAAAAAAACATSMwDgAAAAAAAAAAAACwaY4pnQEAAJKTvb2dwh2CdT/qnoIjg5XOJb1S23tI8kjprAEAAAAAAOA1Y29vpzCH+wqKvKfQqFBlcM0gd3nKPsoppbMGAEgiAuMAAJthb2+nIPvb6vNzb50POm+ZXidnHQ3yHSQ7uaZg7gAAAAAAAPA6cXCw123jqj7e1UtXg69Kkuzt7NU0X1N1KtxVTg/dUziHAICkoCt1AIDNCHN4oB67u1sFxSVp28Vtmus/V3aO0SmUMwAAAAAAALxugu3vqtOODy1BcUmKMWK08uxKbbiwVg40PQSA1wqBcQCAzbgZdl1Xgq/EOW/12dUKNu6/5BwBAAAAAADgdWRvb6dzQWd1N+JunPO/++s7BSvoJecKAPA8CIwDAGyCvb2droVci3f+w5iHCosOe4k5AgAAAAAAwOvK3t5OF57olfBx9x/eV6QR+RJzBAB4XgTGAQA2ISbG0Bseb8Q739XBVW6OjPsEAAAAAACAp4uONpTfyxTv/HSu6eRs5/wScwQAeF4ExgEANiOjSyblSZMnznmtC7ZWaqV5yTkCAAAAAADA68gwDOX2yKNM7pninP+hz4dKxbsmAHitEBgHANgMlygPTa86Q8UzFrdMc7RzVCvvVmpXqJ2MKLuUyxwAAAAAAABeK+7RaTS35jfy9vK2THO2d1Ynn06qkb22oqOMFMwdACCpHFM6AwAAJBfDMJQqyktflp+kEOO+QiPD5OHsqdR2nsrg5qWAkAcpnUUAAAAAAAC8JmJiDKVVJk2vPEsPooMUER0hT+c0Si1PGZEOKZ09AEASERgHANgUw5Aco9yURm5KYy8pSrKjoTgAAAAAAACeQUyMIacYd6WT+6M+eKMk2okDwOuJrtQBAAAAAAAAAAAAADaNwDgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAAAABg0wiMAwAAAAAAAAAAAABsGoFxAAAAAAAAAAAAAIBNIzAOAAAAAAAAAAAAALBpBMYBAAAAAAAAAAAAADaNwDgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAAAABg0wiMAwAAAAAAAAAAAABsGoFxAAAAAAAAAAAAAIBNIzAOAAAAAAAAAAAAALBpBMYBAAAAAAAAAAAAADaNwDgAAAAAAAAAAAAAwKYRGAcAAAAAAAAAAAAA2DQC4wAAAAAAAAAAAAAAm0ZgHAAAAAAAAAAA/B97dx5mZ13ej/99ziyZyZ6QkAAGUCBQlCUNEnYUjagsYghSS7FoBSVQi5WICFYLhkW+tJBSaBUxgrgU/CFLURHUisgSEQEVkFCBSICQPZlsM3PO7w/M1JBE5siZTOaZ1+u6uC7n+XzOzD0ztydzn/d5ngcACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBovRaM33777dl9990zYcKErv+mT5+eJHn44Ydz3HHHZcKECTnssMNyww03rPfYm266KZMnT87ee++dKVOm5KGHHupa6+zszMUXX5wDDjggEyZMyKmnnpr58+d3rS9cuDDTpk3LPvvsk0mTJmXGjBnp6OjYPN80AAAAbGbmbwAAAOjFYPzRRx/Ne97znjz00ENd/11yySVZunRpTjnllBxzzDGZPXt2ZsyYkQsvvDCPPPJIkuT+++/P+eefn4suuiizZ8/O0UcfnVNPPTWrVq1Kklx11VW555578u1vfzt33313Wlpacu6553Z93TPOOCMDBw7M3XffnRtvvDH33ntvZs2a1Rs/AgAAAOhx5m8AAADo5WD8TW960wbH77jjjgwfPjwnnHBCGhsbs//+++eoo47K9ddfnyS54YYbcsQRR2TixIlpamrKSSedlBEjRuT222/vWj/55JOzzTbbZPDgwTnnnHPyk5/8JHPnzs0zzzyTBx54INOnT09ra2vGjRuXadOmdX1uAAAAKBrzNwAAAPRSMF6pVPLrX/86P/7xj/PWt741hxxySD7zmc9k6dKlefLJJzN+/Pj19u+88855/PHHkyRz5szZ5Pry5cvzwgsvrLc+atSoDBs2LE888USefPLJDB8+PGPGjOla32mnnTJv3rwsW7asB79jAAAA2PzM3wAAAPCyxt74oosWLcruu++eww8/PDNnzszixYtz1llnZfr06Rk9enRaW1vX29/S0pKVK1cmSdra2ja53tbWliQZOHDgBuvr1l752HUfr1y5MkOHDu1W/aVS9/d0Zy9sqfQxRaGXKQJ9TBHoY4qgO328JfV4X5+/k57/eXpuohb6hVroF7pLr1AL/UIt9Avd1Zd7pZaaeyUYHzVq1HqXT2ttbc306dPzvve9L1OmTMnq1avX27969eoMGjSoa+/G1keMGNE1ZK+739krH1+tVjdYW/fxus/fHVttNaRH9sKWSh9TFHqZItDHFIE+pgj6Sh/39fk72Xw/677yO2XLoF+ohX6hu/QKtdAv1EK/0F1F75VeCcYff/zx3HbbbfnEJz6R0h9i/LVr16ZcLmfPPffMV7/61fX2z5kzJ7vsskuSZJdddsmTTz65wfohhxySYcOGZcyYMetd7u2ll17KkiVLMn78+FQqlSxZsiQLFizIqFGjkiRPPfVUxo4dmyFDuv+LXrhwearVP72nVHq5ebqzF7ZU+pii0MsUgT6mCPQxRdCdPl63Z0vQ1+fvpHsz+GvhuYla6BdqoV/oLr1CLfQLtdAvdFdf7pVaZvBeCcaHDx+e66+/PsOGDcsHP/jBzJ8/P5dcckne+9735vDDD8+ll16aWbNm5YQTTsiDDz6YW2+9NVdeeWWSZOrUqTnttNPyrne9KxMnTsz111+fhQsXZvLkyUmSKVOm5Kqrrsoee+yRESNG5IILLsi+++6b7bffPkkyceLEXHDBBTnvvPOyePHiXHnllZk6dWpN9Ver6XZT1LIXtlT6mKLQyxSBPqYI9DFF0Ff6uK/P38nm+1n3ld8pWwb9Qi30C92lV6iFfqEW+oXuKnqvlKrV3vn2HnjggfzLv/xLfvvb32bAgAE54ogjMn369AwYMCCPPvpoZsyYkd/+9rcZOXJkpk2blilTpnQ99uabb85VV12VF198MTvvvHPOPffc7LXXXkmS9vb2XH755bnlllvS1taWSZMm5fzzz89WW22VJFmwYEHOO++83H///SmXyznmmGNy5plnpqGhodu1L1jQvTPGR40a0q29sKXSxxSFXqYI9DFFoI8pgu708bo9W4q+PH+//Hl6/oxxz010l36hFvqF7tIr1EK/UAv9Qnf15V6pZQbvtWC8LxOM01/oY4pCL1ME+pgi0McUQV8Mxvs6wThbEv1CLfQL3aVXqIV+oRb6he7qy71Sywxe7uFaAAAAAAAAAKBXCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoTX2dgHAq2tsbEi5nHR0VFKpVHu7HAAAAAAAgD6pqakhSdLR0ZmqyKVfEYzDFqyzoT3Lsyh3PXNXFq5ekIO2PTg7Dd05LR1DPFkDAAAAAAB0U3vjyixon587nvx+qtVqJu/wjmw9YGya2gf2dmlsJoJx2EJVGtpzz0s/yufu+1zXsW8+8c3sNGynXPHWf8+AtUN7rzgAAAAAAIA+or1pZa781b/l5qdu7jp27WPX5vAd3pl/3PsTaWof1IvVsbm4xzhsoVZkSf75vn/e4PhTS5/KV35zTUqNlV6oCgAAAAAAoO8ol0t5avmT64Xi63z/me/l0cWPpFwu9UJlbG6CcdgCNTaW89N5P001G79e+s1P3ZyVpeWbuSoAAAAAAIC+pdLQnq89ft0m17/22HVpL6/ejBXRWwTjsAUqlUpZsmbJJtfXdK5JteqMcQAAAAAAgD+lo9qR5Ws3fbLhivYVqaRzM1ZEbxGMwxaoo6MzB2xzwCbX9xi1R5rSshkrAgAAAAAA6HsGpDVvfd1hm1w/dLu3ZEAGbsaK6C2CcdgCVavJtgNfl71G77XBWrlUzvSJn8yAiidpAAAAAACAP6Wzo5rDdzg8W7VstcHasAHD8t6d35tKRy8UxmYnGIctVHP7oFx84CU5+U0nZ0jTkCTJxK0n5trDr8vrmndIpbLx+48DAAAAAADwfwZ1jsisd3w1R73hqDSVm9JYasy7dnxXrj38ugzuHNnb5bGZNPZ2AcCmNa8dnL95wwczZaepqaaaxjSnubM1lU6hOAAAAAAAQHdUKtUMqozMx9/0yZy6x2lJkgHVgSl1NKYSmUt/IRiHLVxnRzIgQ7o+9gQNAAAAAADwZ+hoSEuG9nYV9BKXUgcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIXWq8F4Z2dnTjzxxHzqU5/qOvbwww/nuOOOy4QJE3LYYYflhhtuWO8xN910UyZPnpy99947U6ZMyUMPPbTe57v44otzwAEHZMKECTn11FMzf/78rvWFCxdm2rRp2WeffTJp0qTMmDEjHR0dPf+NAgAAQC8zgwMAANCf9WowfsUVV+TnP/9518dLly7NKaeckmOOOSazZ8/OjBkzcuGFF+aRRx5Jktx///05//zzc9FFF2X27Nk5+uijc+qpp2bVqlVJkquuuir33HNPvv3tb+fuu+9OS0tLzj333K7Pf8YZZ2TgwIG5++67c+ONN+bee+/NrFmzNuv3DAAAAL3BDA4AAEB/1mvB+L333ps77rgj73jHO7qO3XHHHRk+fHhOOOGENDY2Zv/9989RRx2V66+/Pklyww035IgjjsjEiRPT1NSUk046KSNGjMjtt9/etX7yySdnm222yeDBg3POOefkJz/5SebOnZtnnnkmDzzwQKZPn57W1taMGzcu06ZN6/rcAAAAUFRmcAAAAPq7xt74ogsXLsw555yTK6+8cr13iz/55JMZP378ent33nnn3HjjjUmSOXPm5Nhjj91g/fHHH8/y5cvzwgsvrPf4UaNGZdiwYXniiSeSJMOHD8+YMWO61nfaaafMmzcvy5Yty9ChQ7tdf6nU/T3d2QtbKn1MUehlikAfUwT6mCLoTh9vaT3eH2bw18JzE7XQL9RCv9BdeoVa6BdqoV/orr7cK7XUvNmD8UqlkunTp+eDH/xgdtttt/XW2tra0traut6xlpaWrFy58lXX29rakiQDBw7cYH3d2isfu+7jlStX1jSUb7XVkB7ZC1sqfUxR6GWKQB9TBPqYIugrfdzfZvDXoq/8Ttky6BdqoV/oLr1CLfQLtdAvdFfRe2WzB+P/+Z//mebm5px44okbrLW2tmb58uXrHVu9enUGDRrUtb569eoN1keMGNE1YK+719krH1+tVjdYW/fxus/fXQsXLk+1+qf3lEovN0939sKWSh9TFHqZItDHFIE+pgi608fr9mwJ+ssM/lp4bqIW+oVa6Be6S69QC/1CLfQL3dWXe6WWGXyzB+M333xz5s+fn3322SdJuobsO++8M5/85Cdzzz33rLd/zpw52WWXXZIku+yyS5588skN1g855JAMGzYsY8aMyZw5c7ou5fbSSy9lyZIlGT9+fCqVSpYsWZIFCxZk1KhRSZKnnnoqY8eOzZAhtb1gUa2m201Ry17YUuljikIvUwT6mCLQxxRBX+nj/jaDvxZ95XfKlkG/UAv9QnfpFWqhX6iFfqG7it4r5c39Bb/3ve/lF7/4RX7+85/n5z//eY488sgceeSR+fnPf57JkydnwYIFmTVrVtrb23Pffffl1ltv7bqn2dSpU3PrrbfmvvvuS3t7e2bNmpWFCxdm8uTJSZIpU6bkqquuyty5c7NixYpccMEF2XfffbP99ttnxx13zMSJE3PBBRdkxYoVmTt3bq688spMnTp1c/8IAAAAYLMwgwMAAMDLNvsZ43/KiBEjcs0112TGjBmZOXNmRo4cmXPPPTf77bdfkmT//ffPZz/72Xzuc5/Liy++mJ133jlf+tKXMnz48CTJaaedlo6Ojpxwwglpa2vLpEmTctlll3V9/pkzZ+a8887L2972tpTL5RxzzDGZNm1aL3ynAAAA0LvM4AAAAPQnpWq1yCfE94wFC7p3j/FRo4Z0ay9sqfQxRaGXKQJ9TBHoY4qgO328bg/10dPPGZ6bqIV+oRb6he7SK9RCv1AL/UJ39eVeqWUG3+yXUgcAAAAAAACAzUkwDgAAAAAAAECh1XSP8cWLF+c73/lO7r333jz//PNpaGjINttsk4MPPjjvfve7u+4zBgAAALw2ZnAAAACon26dMd7Z2ZmZM2fm7W9/e3784x9n9913zwknnJDjjjsu48ePz+23357DDz88V1xxRTo6Onq6ZgAAACgsMzgAAADUX7fOGP/ABz6QfffdN9/97nez9dZbb3TPCy+8kOuuuy4nnnhivvGNb9S1SAAAAOgvzOAAAABQf90Kxi+66KKMGzfuT+4ZO3Zspk+fnrlz59alMAAAAOiPzOAAAABQf926lPorB/KFCxfmkUceyfPPP/+qewEAAIDuM4MDAABA/XXrjPF1VqxYkU9+8pP54Q9/mCQplUrZf//9c9lll2Xo0KE9UiAAAAD0R2ZwAAAAqJ9unTG+zqWXXpqVK1fmv//7v/Pwww/n5ptvTqVSySWXXNJT9QEAAEC/ZAYHAACA+qkpGP/Rj36USy+9NDvttFMGDBiQ8ePH55JLLsmdd97ZU/UBAABAv2QGBwAAgPqpKRhftWpVhgwZst6xoUOHplKp1LUoAAAA6O/M4AAAAFA/NQXje+21Vy6//PJUq9UkSbVazeWXX5499tijR4oDAACA/soMDgAAAPXTWMvmT3ziE/nABz6QW265Jdttt12ee+65lEqlfOUrX+mp+gAAAKBfMoMDAABA/dQUjI8bNy7f//73c9ddd2XhwoXZbrvtcuihh2bw4ME9VR8AAAD0S2ZwAAAAqJ+agvEjjzwyt9xyS4499tieqgcAAACIGRwAAADqqaZ7jCfJqlWreqIOAAAA4BXM4AAAAFAfNZ0xPmnSpBx33HE55JBDsvXWW6+3dvrpp9e1MAAAAOjPzOAAAABQPzUF47///e8zbty4/O53v8vvfve7ruOlUqnuhQEAAEB/ZgYHAACA+qkpGL/uuut6qg4AAADgj5jBAQAAoH5qCsaT5L777suLL76YarWaJGlvb88TTzyRc889t+7FAQAAQH9mBgcAAID6qCkY//znP59vfvObGTRoUJKks7MzbW1tOfjgg3ukOAAAAOivzOAAAABQPzUF49/97nfzta99LatWrcott9ySCy64IBdffHFWrlzZU/UBAABAv2QGBwAAgPqpKRhftWpV9t5777z00kv59a9/nVKplNNPPz3vfve7e6o+AAAA6JfM4AAAAFA/5Vo2jx07NgsXLszo0aPzwgsvpL29PS0tLVmxYkVP1QcAAAD9khkcAAAA6qemM8YPPfTQnHTSSfnqV7+aN7/5zfn0pz+dAQMGZMcdd+yh8gAAAKB/MoMDAABA/dR0xvg//uM/5j3veU+ampryT//0T1m8eHHmzJmTz3/+8z1VHwAAAPRLZnAAAACon5rOGL/zzjvz4Q9/OEkyZMiQXH311UmSb33rW9l9993rXx0AAAD0U2ZwAAAAqJ9XDcZXrVqVxYsXJ0k+/elPZ++99061Wu1aX758eS666KIcf/zxPVclAAAA9ANmcAAAAOgZrxqMr1ixIkcccURWr16darWaww47rGutWq2mVCrl7W9/e48WCQAAAP2BGRwAAAB6xqsG46NHj86dd96ZVatW5aijjsptt9223vqAAQMyatSoHisQAAAA+gszOAAAAPSMbt1jfKuttkqSnHbaadluu+02WL/ssstyxhln1LUwAAAA6I/M4AAAAFB/rxqML1q0KE899VSS5Iorrtjo/c2++tWvGsoBAADgNTKDAwAAQM941WC8ubk5H/vYx7J48eIkyd/8zd9ssH788cf3THUAAADQj5jBAQAAoGe8ajA+ePDg3HvvvUmSd77znfne977X40UBAABAf2QGBwAAgJ5RrmXzuoF86dKl+dWvfpVKpZK1a9f2SGEAAADQn5nBAQAAoH5qCsZXrlyZT3ziE5k0aVL+5m/+Jk8//XQmT56c//3f/+2p+gAAAKBfMoMDAABA/dQUjF988cVZuXJlvvvd76apqSnjxo3LW9/61syYMaOn6gMAAIB+yQwOAAAA9fOq9xj/Yz/60Y9y6623ZtiwYSmVSmlqasqnPvWpHHLIIT1VHwAAAPRLZnAAAACon5rOGK9UKmlubk6SVKvVDY4BAAAA9WEGBwAAgPqpKRjfb7/9ct5552XVqlUplUpJkssuuyz77rtvjxQHAAAA/ZUZHAAAAOqnpmD87LPPzlNPPZU3v/nNWb58eSZMmJDZs2fnrLPO6qn6AAAAoF8ygwMAAED9dOse45VKJeVyOVtttVW+9a1v5dFHH81zzz2XsWPHZs8990xDQ0NP1wkAAAD9ghkcAAAA6q9bwfihhx6agw46KJMnT85BBx2UPffcM3vuuWdP1wYAAAD9jhkcAAAA6q9bl1L/3ve+l4MPPji33HJLDjvssJxxxhn57//+77S1tfV0fQAAANCvmMEBAACg/rp1xvigQYPy7ne/O+9+97uzdu3a/PSnP80dd9yRCy+8MG984xszefLkTJ06tadrBQAAgMIzgwMAAED9dSsY/2PNzc057LDDcthhh6WzszP3339/fvCDHxjKAQAAoM7M4AAAAFAfNQXj3/nOdzZ6fJ999sm9996bvffeO62trfWoCwAAAPo1MzgAAADUT03B+Le+9a388pe/zFZbbZXtttsuzz//fF566aWMHTs2q1atSqlUyjXXXJO/+Iu/6Kl6AQAAoF8wgwMAAED91BSM77rrrnnzm9+cM844I+VyOUlyxRVXZOnSpTnnnHNyzTXX5MILL8y1117bI8UCFEVDQykrOpNlazpSLiVDBjRmUDnp7Kz2dmkAAGwhzODFUy6XsqZayvL2jqztqGZoS2MGN5RS6az0dmkAAACFV65l85133pm///u/7xrIk+QjH/lIvvvd7yZJPvCBD+Q3v/lNfSsEKJhKqZRH5q/M+750f4684p68+9/uyd98ZXaeWrompXKpt8sDAGALYQYvlnK5lIXtlXzkGw/l8Mt/mqP+/Z4cdeU9+f5vF6S9ZA4AAADoaTUF40kyd+7c9T5+7rnn0tHRkSRZvXp1mpqa6lMZQAGVSslLqzvyoa/OzgvLVncdf2bhyvzNlx/Ikg5njAMA8H/M4MWxopL89dX359HnlnYdW7aqI5/+zq/yyPPL09BQ80s0AAAA1KCmqWvq1Kk55ZRTcsMNN+See+7JDTfckI9+9KOZMmVKFi5cmH/4h3/IoYce2lO1AvR5lVI5V/74qVQ2kn+v6ajkWz+fm4ZGL4gBAGAGL5JyuZRHnluaBSvWbnT9C99/Iis3NiQAAABQNzXdY/xjH/tYBg4cmKuvvjrPP/98tt122xx//PH527/92/zqV7/KG97whpxxxhk9VCpA37emUsmv5i3b5PpDzy7J2v22T8NmrAkAgC2TGbw4GhrK+cWzSza5/r8L2tJRTQZsvpIAAAD6nZqC8Wq1mlNOOSWnnHLKesd/+9vfZs8998yee+5Z1+IAiqa5XMq4Ea15dtHKja6/ftSgNJVLqThbBACg3zODF0elUs1Oowdtcn30kAHeHAsAANDDarpe75lnnplqdf2w5ktf+lKmTp1a16IAiqqhmpz21p03uf6B/XdIpaOyGSsCAGBLZQYvjs7OSg7caVQGbOK2Sae9ZacMbixt5qoAAAD6l5qC8WeffTaf+cxnkiRz587NX//1X+eaa67JxRdf3CPFARRNtVrN60e05DNH/EWaGv7vha+WpnL+9X17ZXRrTRfyAACgwMzgxTKkIbnuQ/tm+MCmrmOlUnLCvtvnHbttnQ5vkAUAAOhRNSUw11xzTT74wQ/mox/9aB544IEcdNBBueKKKzJy5Mieqg+gcBor1Ry1+9Y5bNet88yilWlsKOV1w1szqJzEJdQBAPgDM3ixVCvVvGHYgNx86gF5YfmarFjdnh23GpRBjaU0VITiAAAAPa2mM8aHDRuWa665Js8//3z23XffzJw500AO8GcoVaoZXKrmTaNas+vwlgxKVSgOAMB6zODFU61UMzDVvGFIc/baelCGlpMGcwAAAMBm0a0zxk888cSUSuvf6+p//ud/8v73vz9NTS9fAuzaa6+tf3UABVf1GhgAAK9gBu8fzAIAAACbV7eC8UmTJm1wbPLkyXUvBgAAAPo7MzgAAADUX7eC8VNPPTUNDQ3d+oSdnZ3d3gsAAACszwwOAAAA9dete4yfcMIJuffee191309+8pOccMIJr7koAAAA6K/M4AAAAFB/3Tpj/JJLLsnZZ5+dz3/+8znyyCMzYcKEjBkzJpVKJfPnz8+DDz6Y733vexk2bFi+8IUv9HTNAAAAUFhmcAAAAKi/bgXj48aNy9e+9rX8+Mc/zje+8Y188YtfzKpVq5Ikra2tOeigg3LmmWfmLW95S0/WCgAAAIVnBgcAAID661Ywvs5b3vKWvOUtb0m1Ws3ixYtTLpczfPjwHioNAAAA+i8zOAAAANRPTcH4OqVSKSNHjqx3LQAAAMArmMEBAADgtSv3dgEAAAAAAAAA0JME4wAAAAAAAAAUmmAcAAAAAAAAgEKrORhfu3ZtfvCDH2TWrFlZtWpVHn/88Z6oCwAAAPo9MzgAAADUR2Mtm5999tl86EMfSnt7e5YtW5ZDDz00xx57bK644oq89a1v7akaAQAAoN8xgwMAAED91HTG+IwZMzJlypT8+Mc/TmNjY17/+tfn85//fGbOnNlT9QEAAEC/ZAYHAACA+qkpGP/lL3+ZD3/4wymVSimVSkmS97znPZk7d26PFAcAAAD9lRkcAAAA6qemYHzIkCFZsGDBesdeeumlDBs2rK5FAQAAQH9nBgcAAID6qSkYP+qoo3L66afnnnvuSaVSySOPPJIzzzwzRxxxRE/VBwAAAP2SGRwAAADqp7GWzdOmTcvq1atz+umnZ9WqVfnABz6QqVOn5vTTT++p+gAAAKBfMoMDAABA/dQUjCfJWWedlbPOOiuLFi3KiBEjuu5zBgAAANSXGRwAAADqo6ZLqR900EG54IIL8tvf/jYjR440kAMAAEAPMYMDAABA/dQUjH/hC1/ISy+9lOOOOy7HHXdcvvWtb6Wtra2nagMAAIB+ywwOAAAA9VNTMH7ooYfmX//1X3P33Xfnve99b2666aYcfPDBOfvss3uqPgAAAOiXzOAAAABQPzXfYzxJhg4dmkMOOSTLli3L/Pnzc99999W7LgAAACBmcAAAAKiHmoLxFStW5Lvf/W6+853v5JFHHsmhhx6az372szn44IN7qj4AAADol8zgAAAAUD81BeMHHnhgxo4dm2OPPTaXX355Ro0a1VN1AQAAQL9mBgcAAID6qSkY/8///M/st99+PVULAAAA8AdmcAAAAKifbgXjt912W4488si88MIL+c53vrPRPcccc0wdywIAAID+yQwOAAAA9detYPw//uM/cuSRR2bmzJkbXS+VSoZyAAAAqAMzOAAAANRft88YT5If/vCHPVoMAAAA9HdmcAAAAKi/bgXjs2fP/pPrpVIp++yzT10KAgAAgP7MDA4AAAD1161g/MQTT/yT66VSKY899lhdCgIAAID+zAwOAAAA9detYPzxxx/v6ToAAACAmMEBAACgJ3QrGF9n6dKl+fGPf5z58+dn6623zlve8pYMGzasp2oDAACAfssMDgAAAPXT7WD8O9/5Tj73uc+ls7Mzw4YNy8KFCzNgwIB85jOfybHHHtuTNQIAAEC/YgYHAACA+upWMP6LX/wi//zP/5yzzz47733ve9Pc3JzVq1fnhhtuyOc///nsuOOOmThxYk/XCgAAAIVnBgcAAID661Yw/uUvfzlnnHFGjj/++K5jLS0tOfHEE9PR0ZEvf/nLhnIAAACoAzM4AAAA1F+5O5sefvjhTV6q7T3veU8eeuihuhYFAAAA/ZUZHAAAAOqvW8F4W1tbWltbN7o2bNiwrFmzpq5FAQAAQH9lBgcAAID661YwvvXWW+exxx7b6Npjjz2WsWPH1rUoAAAA6K/M4AAAAFB/3QrG3/GOd+QLX/hCOjs71zu+Zs2aXHzxxXnXu97VI8UBAABAf2MGBwAAgPpr7M6mj370o3nf+96XY445Ju9617syevToPPfcc7n99tvT2tqak08+uafrBAAAgH7BDA4AAAD1161gfNCgQfnGN76RK664IjfeeGPmz5+frbfeOocffnhOP/30tLS09HSdAAAA0C+YwQEAAKD+uhWMJ8nQoUPz6U9/Op/+9Kd7sh4AAADo98zgAAAAUF/dusc4AAAAAAAAAPRVgnEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKLSag/F77rknH/3oRzNlypS89NJLufjii9PR0dETtQEAAEC/ZgYHAACA+qgpGL/11lszffr07LrrrnnmmWeSJD/84Q/zL//yLz1SHAAAAPRXZnAAAACon5qC8S9+8Yu58sor8/GPfzzlcjmjR4/Of/7nf+a2227rqfoAAACgXzKDAwAAQP3UFIy/8MIL2WuvvZIkpVIpSbLDDjtk5cqV9a8MAAAA+jEzOAAAANRPTcH4jjvumLvuumu9Yz/72c+yww471LUoAAAA6O/M4AAAAFA/jbVs/vjHP55p06blbW97W9asWZPPfe5zue2223LppZf2VH0AAADQL5nBAQAAoH5qOmP8gAMOyDe/+c0MHTo0kyZNSqVSyTXXXJNDDz20p+oDAACAfskMDgAAAPVT0xnjSbLbbrvls5/9bE/UAgAAAPwRMzgAAADUR03B+IsvvpirrroqTz/9dCqVynpr1157bV0LAwAAgP7MDA4AAAD1U1MwfvbZZ2fBggV561vfmqampp6qCQAAAPo9MzgAAADUT03B+KOPPprvf//7GTlyZE/VAwAAAMQMDgAAAPVUrmXzkCFD0tzcXJcvfO+99+a4447LX/7lX+bAAw/M+eefn9WrVydJHn744Rx33HGZMGFCDjvssNxwww3rPfamm27K5MmTs/fee2fKlCl56KGHutY6Oztz8cUX54ADDsiECRNy6qmnZv78+V3rCxcuzLRp07LPPvtk0qRJmTFjRjo6OuryPQEAAEC91GsGN38DAABAjcH4tGnTcvbZZ+eRRx7JvHnz1vuvFosWLcpHPvKRvP/978/Pf/7z3HTTTXnggQfyxS9+MUuXLs0pp5ySY445JrNnz86MGTNy4YUX5pFHHkmS3H///Tn//PNz0UUXZfbs2Tn66KNz6qmnZtWqVUmSq666Kvfcc0++/e1v5+67705LS0vOPffcrq99xhlnZODAgbn77rtz44035t57782sWbNqqh8AAAB6Wj1mcPM3AAAAvKymS6mvG3B/8IMfJElKpVKq1WpKpVIee+yxbn+ekSNH5mc/+1kGDx6carWaJUuWZM2aNRk5cmTuuOOODB8+PCeccEKSZP/9989RRx2V66+/PnvuuWduuOGGHHHEEZk4cWKS5KSTTsq3vvWt3H777Tn22GNzww035Mwzz8w222yTJDnnnHNy0EEHZe7cualUKnnggQfyk5/8JK2trRk3blymTZuWSy65JB/+8Idr+VEAAABAj6rHDG7+BgAAgJfVFIzfdddddfvCgwcPTpIceuihefHFF7PPPvtkypQpueyyyzJ+/Pj19u6888658cYbkyRz5szJscceu8H6448/nuXLl+eFF15Y7/GjRo3KsGHD8sQTTyRJhg8fnjFjxnSt77TTTpk3b16WLVuWoUOHdqv2Uqn7e7qzF7ZU+pii0MsUgT6mCPQxRdCdPq5Xj9drBu/L83fS888ZnpuohX6hFvqF7tIr1EK/UAv9Qnf15V6ppeaagvHtttsubW1t+Z//+Z8899xz2XrrrfPWt761poH2le64444sXbo0Z555Zj72sY9lzJgxaW1tXW9PS0tLVq5cmSRpa2vb5HpbW1uSZODAgRusr1t75WPXfbxy5cpufx9bbTWkm99dbXthS6WPKQq9TBHoY4pAH1MEm6OP6z2D98X5O9l8zxmem6iFfqEW+oXu0ivUQr9QC/1CdxW9V2oKxp955pmcdNJJaW9vz7bbbpt58+bl4osvzle/+tXssssuf1YBLS0taWlpyfTp03PcccflxBNPzPLly9fbs3r16gwaNCjJy4P06tWrN1gfMWJE15C97n5nr3x8tVrdYG3dx+s+f3csXLg81eqf3lMqvdw83dkLWyp9TFHoZYpAH1ME+pgi6E4fr9vzWtV7Bu+L83fSvRn8tfDcRC30C7XQL3SXXqEW+oVa6Be6qy/3Si0zeE3B+IUXXph3vvOdmT59esrlciqVSi655JJcdNFF+fKXv9ztz/OLX/win/70p3PLLbekubk5SbJ27do0NTVl5513zj333LPe/jlz5nQN/bvsskuefPLJDdYPOeSQDBs2LGPGjMmcOXO6Luf20ksvZcmSJRk/fnwqlUqWLFmSBQsWZNSoUUmSp556KmPHjs2QId1/0aJaTbebopa9sKXSxxSFXqYI9DFFoI8pgs3Rx/WYwfv6/J1svucMz03UQr9QC/1Cd+kVaqFfqIV+obuK3ivlWjY//PDD+fjHP55y+eWHlcvl/MM//EMefvjhmr7orrvumtWrV+fSSy/N2rVr89xzz+Xiiy/O1KlTc/jhh2fBggWZNWtW2tvbc9999+XWW2/tuq/Z1KlTc+utt+a+++5Le3t7Zs2alYULF2by5MlJkilTpuSqq67K3Llzs2LFilxwwQXZd999s/3222fHHXfMxIkTc8EFF2TFihWZO3durrzyykydOrWm+gEAAKCn1WMGN38DAADAy2o6Y7yhoSErVqzIyJEju46tWLFig/uGvZpBgwbl6quvzgUXXJADDzwwQ4YMyVFHHZXTTjstzc3NueaaazJjxozMnDkzI0eOzLnnnpv99tsvSbL//vvns5/9bD73uc/lxRdfzM4775wvfelLGT58eJLktNNOS0dHR0444YS0tbVl0qRJueyyy7q+9syZM3PeeeflbW97W8rlco455phMmzatpvoBAACgp9VjBjd/AwAAwMtK1Wr3T4j/zGc+k9///vf5zGc+k9e97nWZO3duPv/5z2fcuHE577zzerLOLcqCBd27x/ioUUO6tRe2VPqYotDLFIE+pgj0MUXQnT5et+e1MoO/rKefMzw3UQv9Qi30C92lV6iFfqEW+oXu6su9UssMXtOl1D/xiU+ko6Mj7373u7PXXnvlyCOPTHNzc84888w/q1AAAABg48zgAAAAUD81XUp9+PDhue666zJ37twsXLgw2223XUaPHt1TtQEAAEC/ZQYHAACA+ulWMP7ggw9m4sSJmT179nrHn3766Tz99NNJkje/+c11Lw4AAAD6GzM4AAAA1F+3gvGTTz45v/jFL3LiiSdudL1UKuWxxx6ra2EAAADQH5nBAQAAoP66FYz/4he/SJI8/vjjPVoMAAAA9HdmcAAAAKi/ci2bzzrrrMybN2+D40cddVTdCgIAAADM4AAAAFBPNQXjN998c973vvfl0UcfXe/473//+7oWBQAAAP2dGRwAAADqp6ZgvLW1NaeffnpOOumk3HXXXV3HS6VS3QsDAACA/swMDgAAAPVTUzBeKpXyV3/1V7n44oszffr0XHvttV3HAQAAgPoxgwMAAED9NP45D3r729+ea665JqeeemrmzZuXlpaWetcFAAAAxAwOAAAA9VDTGePVarXrf++99975+te/nh/84AdZtGhR3QsDAACA/swMDgAAAPVT0xnjX/nKV9b7+PWvf33+67/+K9/85jfrWhQAAAD0d2ZwAAAAqJ+agvH29vbMnj17g+P77rtv3QoCAAAAzOAAAABQTzUF4yeeeOIGx8rlcrbZZpvcdddddSsKAAAA+jszOAAAANRPTcH4448/vt7HixYtyr//+79nu+22q2tRAAAA0N+ZwQEAAKB+yq/lwSNHjsz06dPz1a9+tV71AAAAABthBgcAAIA/32sKxpNk6dKlWbNmTT1qAQAAAP4EMzgAAAD8eWq6lPrZZ5+93sft7e158MEHc8ABB9S1KAAAAOjvzOAAAABQPzUF4680YMCAnHjiiTn++OPrVQ8AAACwEWZwAAAA+PPVFIxfeOGFPVUHAAAA8EfM4AAAAFA/3QrGr7jiilfdc/rpp7/mYgAAAKC/M4MDAABA/XUrGL///vuTJKtXr86jjz6a3XffPa973evy4osv5uGHH86BBx7Yo0UCAABAf2EGBwAAgPrrVjB+3XXXJUk+9alPZcqUKXn/+9/ftXbTTTfljjvu6JnqAAAAoJ8xgwMAAED9lWvZfMcdd+T4449f79jRRx+d++67r65FAQAAQH9nBgcAAID6qSkYHzlyZGbPnr3esZ/+9KfZeuut61oUAAAA9HdmcAAAAKifbl1KfZ2PfOQjOfnkk3P44Ydn2223zdy5c3PnnXfm4osv7qn6AAAAoF8ygwMAAED91BSMH3fccXnd616XW265Jb/61a8yduzYzJo1K3/5l3/ZU/UBAABAv2QGBwAAgPqpKRhPkv333z/jx4/Pc889l9GjR2ebbbbpiboAAACg3zODAwAAQH3UFIyvWLEiZ511Vn74wx92Hdt///1z2WWXZejQoXUvDgAAAPorMzgAAADUT7mWzZdeemna2tpy22235Ze//GVuvvnmVCqVXHLJJT1VHwAAAPRLZnAAAACon5qC8R/96Ee59NJLs9NOO2XAgAEZP358Lrnkktx55509VR8AAAD0S2ZwAAAAqJ+agvFVq1ZlyJAh6x0bOnRoKpVKXYsCAACA/s4MDgAAAPVTUzC+11575fLLL0+1Wk2SVKvVXH755dljjz16pDgAAADor8zgAAAAUD+NtWz+xCc+kQ984AO55ZZbst122+W5555LqVTKV77ylZ6qDwAAAPolMzgAAADUT03B+Lhx4/L9738/d911VxYuXJjtttsuhx56aAYPHtxT9QEAAEC/ZAYHAACA+qkpGD/yyCNzyy235Nhjj+2pegAAAICYwQEAAKCearrHeJKsWrWqJ+oAAAAAXsEMDgAAAPVR0xnjkyZNynHHHZdDDjkkW2+99Xprp59+el0LAwAAgP7MDA4AAAD1U1Mw/vvf/z7jxo3L7373u/zud7/rOl4qlepeGAAAAPRnZnAAAACon5qC8euuu66n6gAAAAD+iBkcAAAA6qfbwfgVV1yRX//61znooINywgkn9GRNAAAA0K+ZwQEAAKC+yt3Z9IUvfCFf//rX09TUlJkzZ+aLX/xiT9cFAAAA/ZIZHAAAAOqvW8H4bbfdlq9+9auZOXNmZs6cmVtvvbWn6wIAAIB+yQwOAAAA9detYHz58uXZZZddkiQTJ07Miy++2KNFAQAAQH9lBgcAAID661YwXi7/37bGxm7flhwAAACokRkcAAAA6q9bwXi1Wu3pOgAAAICYwQEAAKAndOut5x0dHfnOd77T9XF7e/t6HyfJMcccU8eyAAAAoH8ygwMAAED9dSsYHzVqVGbOnNn18YgRI9b7uFQqGcoBAACgDszgAAAAUH/dCsZ/+MMf9nQdAAAAQMzgAAAA0BO6dY9xAAAAAAAAAOirBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhdbY2wUAW6ZyuZT2hlWZv3JVqo0NaegYkGq12ttlAQAAAAAANWpoKGdVaUUq6UxLWpMOESH9j64HNtDRuDpPrfht/uPRq/L75b/PLiPG57Q9T8s2A16Xckdzb5cHAAAAAAB009qmttz34r259rGvZumapdlv7H75uzd9OMMzOtXOUm+XB5uNYBxYT7WhM9977r/zLw9e2nVs4fP35r7n780lB/+/vHnEAal09GKBAAAAAABAtyxavSgXP3hhfjj3h13HbvvdbfnBsz/Ite+8LluXxrlaLP2Ge4wD61lVXpaZD12+wfFSSvnyr67OmnJbL1QFAADAxpTLpZRKzvIBAGBDpVIyb8W89ULxddZ0rsmlP/9/6Whc3QuVQe9wxjiwnufbnk/HK04Jn7rL1By2/WF5etnT+eXCX2T3EW/MwOqQlDqbeqlKAACA/q29aWUWty/MkwufzKjWUdl+yA4ZWBmWamdvVwYAwJaioaEhP3n6J5tcf+DFB7KmuioDM2AzVgW9RzAOrKepvH7YPW2vaVm6dmlOu+u0VPPy5VQaSg05a5+z8tZtJqehwz+YAAAAm9Pa5hU5995P5+cv/rzr2JCmIbnybVfldU1vEI4DAPAH1bQ0tGxytbHU6OpD9CsupQ6sZ3Tr1hncNDhJMmbgmGwzeJtc/9j1XaF4knRWO3PB7Asyv/35+DcTAABg8yk1VXLNb65eLxRPkuXty/PRuz6SleUlvVMYAABbnI6OSg4dd+gm19+xwzvSmkGbsSLoXYJxYD0DK0Nz4UEXpqHUkHe9/l35zpzvbHLv1x+/PmmsbnIdAACA+mqrLtvknNbW3pY5S59MuewdzAAAvGzrgVvn1D1P3fjxvaYl7S4uTf+h24H1VDtLeePgvXPjkd/O71fMzV3P3rXJvc+3PZ+O6to0uP8IAADAZtFeXZu1lbWbXH+h7YXsPaSUxJuYAQBIhjQPyZQdj8uB2x6U/3ryv7Jw1YIcNu6w7D/2gAzsHJ6KvxvpRwTjwIY6GzIsW2fEiFHZe/Tembt87ka37TNmnzRnQNy+DgAAYPMYUGrJVi1bZeHqhRtd323kX6RSqWzmqgAA2JI1drZku4bX58w3fSqVdKZcbUxHe0UoTr/jUurAJlXXlPOhPT6UxvKG76FpbWzNUa8/Op0dvVAYAABAPzUow/KxCf+w0bXxI8ZnTMs2qXp9EwCAV6hWk472airt5XR0eCMl/ZNgHPiTth+yfa6e/OW8Ydgbuo7tPnL3zHrHrAyujuzFygAAAPqfzo5q9h99UP5pv89mxIARSZJyqZzJO7wjlx06MwM6BvVyhQAAAFsml1IH/qTmhua8vnl8rnrLf6atc0VKKWVgeUgGVAam0uk0BAAAgM2tsaMlb9v6ndnvnftnVefKNJWbMyhDUlrb5GKYAAAAmyAYB15VpVJNU+egDM8fzjyoxL1HgD6vobGcto5qqklaGkopdbqEFADQd3R2VNOSoWnJ0MSfMQD0c+VyKWtTSnulmnIpGVgupdOcD8ArCMYBgH5nTbmc/374+Vx737NZvqY9h+4yOn9/2M4Z2VROteKNPwAAANBXdJZK+d3SNfl/dzyRx55fnu1GtObv37pzJmw3NE1VMz4A/8c9xgGAfmVNqZSP3/BwLvzeE3luyaosW9WRWx95Pkf/+z1ZsLYzpVJvVwgAAAB0R0NDOb+Ytyzv++J9eeDpxVm+piOPv7A8p33joXzt579PZ9mQD8D/EYwDAP1GqVTK04tXZfbTizdYW91eyaU/+G06S/48AgAAgL5gRWc1n73lNxtd+4//eSptnc4YB+D/eOUXAOg3mprK+e6vXtjk+g8ffylrXEodAAAA+oRlazry0oo1G12rVJOnF7S5MhwAXXolGH/88cfzwQ9+MPvuu28OPPDAfPKTn8yiRYuSJA8//HCOO+64TJgwIYcddlhuuOGG9R570003ZfLkydl7770zZcqUPPTQQ11rnZ2dufjii3PAAQdkwoQJOfXUUzN//vyu9YULF2batGnZZ599MmnSpMyYMSMdHR2b55sGAHpdtZoMHtC4yfWWxrKBGYDCMYMDAEXV+CqXSm9paojbjAOwzmYPxlevXp0Pf/jDmTBhQn7605/mtttuy5IlS/LpT386S5cuzSmnnJJjjjkms2fPzowZM3LhhRfmkUceSZLcf//9Of/883PRRRdl9uzZOfroo3Pqqadm1apVSZKrrroq99xzT7797W/n7rvvTktLS84999yur33GGWdk4MCBufvuu3PjjTfm3nvvzaxZszb3jwAA6CXt7Z05as9tNrl+/JvHZWCDZByA4jCDAwBFNqS5IbuOGbLRtUHNDdlueOtmrgiALdlmD8bnzZuX3XbbLaeddlqam5szYsSIHH/88Zk9e3buuOOODB8+PCeccEIaGxuz//7756ijjsr111+fJLnhhhtyxBFHZOLEiWlqaspJJ52UESNG5Pbbb+9aP/nkk7PNNttk8ODBOeecc/KTn/wkc+fOzTPPPJMHHngg06dPT2tra8aNG5dp06Z1fW4AoH8Y2dKYaW/ZaYPjbxg1KCftv2MqHZVeqAoAeoYZHAAospZSculxe2bIK64O11Au5fK/2juD3EwWgD+y6WuJ9pA3vOENufrqq9c79v3vfz9vfOMb8+STT2b8+PHrre2888658cYbkyRz5szJscceu8H6448/nuXLl+eFF15Y7/GjRo3KsGHD8sQTTyRJhg8fnjFjxnSt77TTTpk3b16WLVuWoUOH1vX7BAC2TE3Vav5mn9flHbuPyTdnz83ile05as+x2XO7YRmYalxhDYAiMYMDAEVWqVSzzcDG3Hr6gbnz8fl54HeLsvPWg/PevbfNsKbyyzcaB4A/2OzB+B+rVqu57LLL8qMf/Shf+9rXcu2116a1df1Lm7S0tGTlypVJkra2tk2ut7W1JUkGDhy4wfq6tVc+dt3HK1eurGko7869R9ftcZ9S+jJ9TFHoZV6pOdW8bmBjzn77zqkmqXRWUvnDsLyl9ok+pgj0MUXQnT7eUnu8yDP4a+G5iVroF2qhX+guvfLaVCvVDC4lU/cYk6l7jk0pL99KLdVqUsCfqX6hFvqF7urLvVJLzb0WjK9YsSJnn312fv3rX+drX/tadt1117S2tmb58uXr7Vu9enUGDRqU5OUhevXq1RusjxgxomvAXnevs1c+vlqtbrC27uN1n7+7ttpq4/csea17YUuljykKvUwR6GOKQB9TBH2tj/vLDP5a9LXfKb1Lv1AL/UJ36RVqoV+ohX6hu4reK70SjD/77LM5+eSTs+222+bGG2/MyJEjkyTjx4/PPffcs97eOXPmZJdddkmS7LLLLnnyySc3WD/kkEMybNiwjBkzJnPmzOm6lNtLL72UJUuWZPz48alUKlmyZEkWLFiQUaNGJUmeeuqpjB07NkOG1PZLXrhweaqvcgWWUunl5unOXthS6WOKQi9TBPqYItDHFEF3+njdni1Ff5jBXwvPTdRCv1AL/UJ36RVqoV+ohX6hu/pyr9Qyg2/2YHzp0qX527/92+y3336ZMWNGyuVy19rkyZNzySWXZNasWTnhhBPy4IMP5tZbb82VV16ZJJk6dWpOO+20vOtd78rEiRNz/fXXZ+HChZk8eXKSZMqUKbnqqquyxx57ZMSIEbnggguy7777Zvvtt0+STJw4MRdccEHOO++8LF68OFdeeWWmTp1a8/dQrabbTVHLXthS6WOKQi9TBPqYItDHFEFf6eP+NoO/Fn3ld8qWQb9QC/1Cd+kVaqFfqIV+obuK3iulanXzfntf+cpXctFFF6W1tTWlV1z0/aGHHsqjjz6aGTNm5Le//W1GjhyZadOmZcqUKV17br755lx11VV58cUXs/POO+fcc8/NXnvtlSRpb2/P5ZdfnltuuSVtbW2ZNGlSzj///Gy11VZJkgULFuS8887L/fffn3K5nGOOOSZnnnlmGhoaavoeFizo3hnjo0YN6dZe2FLpY4pCL1ME+pgi0McUQXf6eN2eLUF/mcFfC89N1EK/UAv9QnfpFWqhX6iFfqG7+nKv1DKDb/ZgvAgE4/QX+pii0MsUgT6mCPQxRdDXgvEiEIyzJdEv1EK/0F16hVroF2qhX+iuvtwrtczg5VffAgAAAAAAAAB9l2AcAAAAAAAAgEJr7O0CAP5YQ0M55YZSUk3a2zt7uxwAAAB62bo5sZRk7VpzIgAA8OcRjANbhIaGUlaUF+f+F+7PvS/8LDsM2SFHvP7IDM3IlDo9VQEAAPQ35XIpKxuW5pcLHsqPf/+jjBk4Jke/4T0ZXh6Vhs7m3i4PAADoY6RNQK8rlUpZlBfzoe99MIvXLO46fs2vr8klB/+/TBj25qSzoRcrBAAAYHNb0bAoH77z7/JC2wtdx6577Lqcs++5ecuYyWnobOrF6gAAgL7GPcaBXtfesCr/fN/n1gvFk6RSreTsn34qK0vLeqkyAAAAekO1sSP/9suZ64Xi61zwwIyszNJeqAoAAOjLBONAr1tZXZ5fvvTLja6trazNU8ueSqlU2rxFAQAA0GtWZUXufPbOja5VU839L96fhgYvawEAAN1nggB6XUel80+ur2xfGbk4AABA/1GpVtJZ3fSs2Na+wpwIAADURDAO9LpBDYOy7aBtN7m+28jdUqlUN2NFAAAA9KaWcmt232r3Ta5PGrtfOjoqm7EiAACgrxOMA71uYHVYPr3vOSllw7f7H7fLcRlcGtYLVQEAANBbmjsH5lP7nJ2GUsMGa4dud2i2ahrdC1UBAAB9mWAc6HWdnZXsNvhN+erh12afMfuktbE1Ow7dMecf8PmcvPtH0tAxoLdLBAAAYDOqVKrZrnnHfP3d38hB2x2U1sbWbDto25y1z6fy6Tefm6aOgb1dIgAA0Mc09nYBAElS7mzKuMadc+GkL6Q9a1NOQ1qrQ9LZ7tJ4AAAA/VGpsyFbl16Xz038fNZmdUopZ2B1aDrXmhMBAIDaCcaBLUa1Wk1DR0sa0pIk6YwXOwAAAPqzajUpdzSnJc1JzIkAAMCfz6XUAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxgH6goaGUclMlDc3VlMul3i4HAAAAYLNpaCyl1NSZxiaviQBAf9bY2wUA0HNKpWR14/I8uuiR3PK/N6ep3JTjx/9VXj/4DWlqH9Tb5QEAAAD0mFJDsqK8KN97+nv5xfwHs/2Q7TN1l+MysmF0Sh1NvV0eALCZCcYBCmxN0/Kc8T8fyxOLn+g69qO5P8rbxr0t0//yU2kWjgMAAAAFVC6X8kLns/ngd0/Kqo5VSZJ7n783//Xb/8qFB12UfUccmHS6oCoA9Cf+5QcoqIbGUn7w7B3rheLr3DX3rjy94n9dVh0AAAAopDUNbfnMz87tCsXXqaaaz977T1lZWtZLlQEAvUUwDlBQK7M8Nzx5wybXv/XbbyaNlc1YEQAAAMDmsaJzWZ5c8uRG19Z0rsmzK55JyfkCANCvCMYBCqy90r7JtbWda1OtVjdjNQAAAACbR6X6p08GWNu5NolkHAD6E8E4QEG1ZlAO3+HwTa6/Z6djUq40bMaKAAAAADaPwQ1Dss2gbTa6Vi6V84Zhb3DCAAD0M4JxgIKqdJRy3C7vy1YtW22wtuuIXbPHyD3T2WkABAAAAIpnYHVYPjPpn1IubfgS+Cl7fCQDM7QXqgIAelNjbxcAQM8Z1Dki1x5+XW548r/y/We+n6ZyU6buMjWTtz88Le1DIhYHAAAAiqizs5Lxg96Yr7/r6/mPR/4jv1n0m4wdODYn73FKdh2ye8odTb1dIgCwmQnGAQqsUqmmtTI8J+18co7f+f1JyhmYwelcWxWKAwAAAIVW7mzMmNL2+cxf/nPWZHUa05jmysBUOrwqAgD9kWAcoB+odJQyIEOSJJ0icQAAAKCfqFaTUkdTWvLyGeIVr4sAQL/lHuMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAABbiFKptysAgGJq7O0CoK9qbCynklLKpaSjvbO3ywGAP1ulXEpbZzW/X7wqzY3ljB3aksHlpFqp9nZpAAB9UmNTQyrVl89I6ejwmgHw6jor1axMKfNXrMmKNZ0ZN6I1gxrLaahUers0ACgMwTjUqFwuZUUl+dlvF+QHj83P1kMG5K/3HZfRrU1prAoQAOhb2svlfPuXz+Xyu+ak4w9B+OABjbns+L2y55jBKQnHAQC6rVIqZfHazvzXfc/m6YUrs98bRuYdfzEmQxuSzk5/VwEbVyqX8stnF+fk6x7Mora1Lx8rJX8zaYecevDr0yQcB4C6EIxDDUqlZFln8ldX35cXl63pOv7N2XPz6XftlqPfNCYNAgQA+ohyuZTfvLA8l/7gyfWOr1jTkY987Rf57scOyogG1/ADAOiWcikPzF2aj33rl1n3vvkfPj4//3bXnHzzlP0ytqUhFa8ZABuxrDM54cv3Z3X7/wXg1Wpy3X3PZOfRg3LUX2ydzk7hOAC8Vu4xDjWolMr5wh2PrxeKr3PBdx/P8nZ/oALQd6ypJpf/cM5G1zor1Xz7F8+lqalhM1cFANA3rahUc+aNj+SVF5NbvqYjZ/1/j2S1TBzYiIaGcn721ML1QvE/9u8/fipt3lQDAHUhGIcatHVWcsdv5m9y/e45C9LQ4P9WAPQNHdXk94tXbnL9ty+uiCt+AgC8ulKplP99aWXWdGw82PrVc8vS5s30wEaUy6XMmb9ik+vzl68xlwFAnUjwoAbV6stn0G3KqrWdKbniLAB9RFM52W3skE2u77PD8LiSOgDAqyuVktUdnX9yz596PQHovyqVSvYeN3yT668fNSiN5jIAqAvBONSgpbGcCX/iD9WDdxmdjk28OxwAtjRN1eQfJ4/f6NrA5oa8+01j097+p1/gBQAgqVSq2XXMkE2+WX674a0Z3OwWNcCGOjur2XvcsGw1qHmj69PfMT4Dy5JxAKgHwTjUYECq+dxRu6d5I5dLf+cbx2Sr1sZeqAoA/jzVajXjhgzIFe+fsN6LMG8YNShf//CkDHW6OABAtw1qLOXkg16/wfFSKTn/PW/MIH9bAZswpJx86yP75Y3bDu06NrSlMecd/cbsvd3QdHY6EQcA6kGKBzWoVKrZdlBTbj7tgFzxozm5938XZcTA5nz4oB1zyM6j0lzxRyoAfUtDtZoDxg3LTR/dP8vWdKShXMqQ5oa0ll7+dw8AgO5prFRz0n47ZO9xw/PvP34q85asyh7bDcvH3z4+2w5qEmwBm1SpVLPz1kPyxb+ekBXtnVnbUcnQlqYMbiil4rkDAOpGMA61qlQzurmcz75zt6yuVFMuJYMaSi6hDkCf1dlZSWuS1gF/uLxntRqZOABA7Zoqlez3uqHZ668npLNaTXO5lMZqNdWqP66AVzcg1TQ3lpPGcpJqKp2eOwCgngTj8GeoVpNS9eUQIdWko8MfqQAAAMDL9wvuuklNpRqvGAAAwJbBPcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBoB9pbGxIU1NDb5cBAABAL2poKKWpqSHlcqm3SwEA2Gwae7sAAKDntZdKWby6I3c+/Hwq1WoO23XrjBrYlOZqtbdLAwAAYDMpN5SyvDP55TNL8vjzy/PGbYdmz+2GZUhDKZ2dld4uDwCgRwnGAaDg2kulfOlnz+QrP3u669jld83JMXtvm+mTx6e54sUPAACAomtoKOX3bR054er7s3xNR9fxEQOb8vUPT8rWAxpSqXjzNABQXC6lDgAFViqV8rvFq9YLxdf5zi/n5eHnlrp0HgAAQD/QVklOvf4X64XiSbJ4ZXtO/8Yvs0omDgAUnGAcAIqsobTRUHydq3/6u6zdfNUAAADQS5as6shzS1ZtdO2pl1Zk2ZrOzVwRAMDmJRgHCqmxsZzm5oY0Njb0dinQqzoq1Sxe2b7J9SUr29PhSuoAAGzhGhpenvGamsx48Oda3fGng+81r7IOANDXucc4UCgNpWpaly/Oih/elTWPPJwBb9ojg9/+9qweupXwj36puVzK23fbOg8+s3ij64fuOjqtDaVUO10zDwCALU+5XMrAtiVZ9cD9Wf7Tn6Zp3LgMOfrorB06Mu3lpt4uD/qUrQY1p7FcSsdG7iM+oLGc4a3+PwUAFJtgHCiMhoZymp95Ms986EOprnr50mDLv39HFl5xRV539dWpvGG3VDYy/EGRdXZU8q43jc2Xfvq7LGpb/6Lpgwc05sRJ26fa6V0jAABseUqlZOCS+Zn7t3+bzgULuo4vuvrqbHPJJWna94C0l7y0Bd01qKGUDx64Y7509+82WDvtLTtlSGPZfAgAFJpLqQOFMWDl0jz/iU90heLrVNesyfP/+I9pWbm0lyqD3jW0IbnhlP3y7jeNTUO5lFIpeeuuo3PjR/bPsMZSb5cHAAAbNaBjTebP+Px6oXiSpFrN82efnQErl/dOYdBHlSvVfHC/HXLe0btn9JABSZJthrXk4il7ZOre2wrFAYDC87ZaoDiWLknHvHkbXep46aVkyeJk7NDNXBT0vs7OaoY1JJ9712755OG7Jklay0lDtZqKS6gDALCFali5PCt/du/GF9vbs+Y3v0l50kGuDAY1aKpUctRfbJ237DI6ndVqGkqlDGkspcP95wCAfkAwDhRGtb3jVdbbN1MlsOWpVpNStZJB6w5UEi8fAgCwJat2dP7J9crKtpRcAAlq1tFRSWuSlJKkmo4O0yEA0D+4lDpQGOURI1IaOHCja6UBA1LeaqvNXBEAAAB/toGD0rT99ptcbtljj3S6AhIAANBNgnGgMNYOGprR//iPG10b9bGPpX2gy6gDAAD0FWsGDs2Yf/qnbOy08KHveU86h47ohaoAAIC+yqXUgcJor5bT8rZ3ZLvXvS4LZ87Mmv/93zTvsEO2+vuPpfzGPbI6Db1dIgAAAN3U2VlJeZe/yPbf+EYW/Ou/ZtUjj6Rx9OiM/Lu/y4CDD8nKxpbeLhEAAOhDBONAoaxubEl5j4kZdcWVaehoT6WxKWtbBmWty+sBAAD0Oe3lpnS8bqeMvPiSNLSvTaVUTvugoVnZUent0gAAgD5GMA4UTqVSzeqmgUnTHw4IxQEAAPqsarWa1Q0tScMfzhAXigMAAH8G9xgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKH1ejC+aNGiTJ48Offff3/XsYcffjjHHXdcJkyYkMMOOyw33HDDeo+56aabMnny5Oy9996ZMmVKHnrooa61zs7OXHzxxTnggAMyYcKEnHrqqZk/f37X+sKFCzNt2rTss88+mTRpUmbMmJGOjo6e/0YBAACgF5m/AQAA6M96NRh/8MEHc/zxx+fZZ5/tOrZ06dKccsopOeaYYzJ79uzMmDEjF154YR555JEkyf3335/zzz8/F110UWbPnp2jjz46p556alatWpUkueqqq3LPPffk29/+du6+++60tLTk3HPP7fr8Z5xxRgYOHJi77747N954Y+69997MmjVrs37fAAAAsDmZvwEAAOjvei0Yv+mmm3LmmWfm4x//+HrH77jjjgwfPjwnnHBCGhsbs//+++eoo47K9ddfnyS54YYbcsQRR2TixIlpamrKSSedlBEjRuT222/vWj/55JOzzTbbZPDgwTnnnHPyk5/8JHPnzs0zzzyTBx54INOnT09ra2vGjRuXadOmdX1uAAAAKBrzNwAAACSNvfWFDzrooBx11FFpbGxcbzh/8sknM378+PX27rzzzrnxxhuTJHPmzMmxxx67wfrjjz+e5cuX54UXXljv8aNGjcqwYcPyxBNPJEmGDx+eMWPGdK3vtNNOmTdvXpYtW5ahQ4d2q/ZSqft7urMXtlT6mKLQy/QlnaVSVnRW8+KyNRnU3JARA5syuJxUq9Uk+pi+zfMxRdCdPt7Serwvz99Jz/88PTdRC/1CLfRL0lEuZ0V7JS8uW52hLY0Z3tqUQeWkUqn2dmlbFL1CLfQLtdAvdFdf7pVaau61YHz06NEbPd7W1pbW1tb1jrW0tGTlypWvut7W1pYkGThw4Abr69Ze+dh1H69cubLbg/lWWw3p1r5a98KWSh9TFHqZLd2CFWty5V1P5rr7nsm614nGDB2Qqz/w5rxx25f/TtHHFIE+pgj6Uh/35fk72Xw/6770O6X36Rdq0V/7Zf6y1bngvx/LLQ/P6zq2/ciB+fLf7pNdxvTPn8mr6a+9wp9Hv1AL/UJ3Fb1Xei0Y35TW1tYsX758vWOrV6/OoEGDutZXr169wfqIESO6hux19zt75eOr1eoGa+s+Xvf5u2PhwuWpvsqbGkull5unO3thS6WPKQq9TF/Q0FjOzY++mK/e+8x6x19ctiZ//aX7cuvpB2bH0YP1MX2a52OKoDt9vG7Plq4vzN9J92bw18JzE7XQL9SiP/dLqaGcL97zzHqheJI8u2hlTrj6/tz4kf0yMP3sh/In9OdeoXb6hVroF7qrL/dKLTP4FheMjx8/Pvfcc896x+bMmZNddtklSbLLLrvkySef3GD9kEMOybBhwzJmzJjMmTOn63JuL730UpYsWZLx48enUqlkyZIlWbBgQUaNGpUkeeqppzJ27NgMGdL9Fy2q1XS7KWrZC1sqfUxR6GW2ZMvbq7nqf57a+Nqajjw0d0l2HD1YH1MI+pgiKEIf94X5O9l8P+si/E7ZfPQLteiP/bKivZLr7392o2vzl6/JM4tW5S9GtvS7n8ur6Y+9wp9Pv1AL/UJ3Fb1Xyr1dwCtNnjw5CxYsyKxZs9Le3p777rsvt956a9d9zaZOnZpbb7019913X9rb2zNr1qwsXLgwkydPTpJMmTIlV111VebOnZsVK1bkggsuyL777pvtt98+O+64YyZOnJgLLrggK1asyNy5c3PllVdm6tSpvfktAwCko1rNghVrN7n+5IvLN7kGAH8O8zcAPWVNZyWr2js3uf7swpUpl7e4l6YBgILb4s4YHzFiRK655prMmDEjM2fOzMiRI3Puuedmv/32S5Lsv//++exnP5vPfe5zefHFF7PzzjvnS1/6UoYPH54kOe2009LR0ZETTjghbW1tmTRpUi677LKuzz9z5sycd955edvb3pZyuZxjjjkm06ZN64XvFADg/zSWStl2WEvmLV290fU9thu2mSsCoOjM3wD0lAENDRkyoDHL13RsdH2nrQelUqls5qoAgP6uVK0W+YT4nrFgQffuMT5q1JBu7YUtlT6mKPQyfUFjYzl3PrUo0298ZIO1UYOb8+2P7p8dRg3Wx/Rpno8pgu708bo91EdPP2d4bqIW+oVa9Od+KTeW8/VfzMulP/jtBms7bDUwX/vgm9PS334of0J/7hVqp1+ohX6hu/pyr9Qyg7teDQDAFqCjo5IDdxyRsw7fNa1NDV3Hdxs7JNf/3aQM8VcbAADQR1Q6Kpmy9zY55eDXp7nh/4aZv9x+eGb97ZszsNSLxQEA/dYWdyl1AID+qqlazXF7bZN3vXFslq5uz4DGcoY0N6SllFQqfeytmgAAQL/WXKnm5P13yF+9eVyWr+5IS1NDhjSV0xzzDQDQOwTjAABbkGpnJYNKyaDWP/yZVq2mUn35kkAAAAB9SmclQ0rJkD+ab0TiAEBvcVFOAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wD0G+UGspZm1Kq5XJKpVJvlwMAAADAFqJUSvKH147SIDoBKKLG3i4AAHpaqVzKUy+tyFd++rv8/JnF2WZYS045+A3ZcXhLGqvV3i4PAAAAgF7UWSpl/qr2fPHu3+XJF1dkt7FD8uGDX5+tWxpT9toRQGEIxgEotHK5lGeWr837v3R/1nRUkiSPv7A8P3ripUx/x/gcu+c2aTDgAAAAAPRL5YZS7p+7LH//zYey7iWiJ15cnlsemZer/vovs892Q1PtrPRukQDUheuBAFBoq6vJ2f/fr7pC8T926Q9+m7ZOoTgAAABAf7WiMzn7/3s0rzxvolpNPnXTo147AigQwTgAhbaivZInXly+0bVKNfn1vGUpl91vvLGhlEGrlmbgkvkZtHJJmsuGPgAAAIptQDoyqG1xBi6Zn4Frlqex0cvl/dGile1ZvqZjo2tLVrZnyar2zVwRAD3FpdQBKLRXi7xLMvG0dqzKmjvuzO///d/TuWhRSgMGZNjUqRn2ob9LW/Pg3i4PAAAA6qpUKmXQyiVZeNm/ZvkddyQdHWnabtuM/uRZGbDXX2ZNw4DeLhEA6AHeAgdAoQ1qKme3sUM2ulYuJbtvOzSVSv89O7qpnKz+7n9n/vnnp3PRoiRJdc2aLLn++iz458+mpWNVL1cIAAAA9dW6elnmffQjWX777UnHy2cKtz83L/P+4R+Sx36VhgYvm/cnIwc2ZWjLxs8hHDGwKSNamzZzRQD0FP/CA1BoLaXkoil7ZMBGLof2ycN3zaB+fhn15hVLsvDKKze61vaTu9OwdPFmrggAAAB6TqlUSuczT2ft//7vRtdf+sLFaV65bDNXRW8aXH75taNXXlWwXEq+cOyeGdTQv187AigSl1IHoNAqlWrGDW7K9844ONf+7Jk88PSibDOsNacc/PqMGzYgDa/xbPF19yfvq2edV9vaUlmxYpPra59+JuXR2/XZ7w8AAAD+WENDOasffHCT62t/93TK7WsTV1PvNyqVaiZuNzS3nnZgrv7p7/Lk/BXZbeyQ/N2Br89WLQ2pdFb+rM9bKr38ulFnp9dUALYUgnEACq9aqeb1o4bk9IN3zOoDdkhTuZRypZLqawh7q+VS2jqTJ+Ytz7LV7dlju2EZ1tyQpmrfGnZKAwa8PKltou7GkSPS1rAiSyuLs7ayNiOaR2ZQhqTa0bCZKwUAgGIqlZL2xlVZ0bksbR1tGdo8NINKQ1Nub+7t0qCQqtVqGrfZZpPr5UEDkwYzb39TrlQzZkBDznnH+KytVDOgXEq1s5L8Ga8dNTSUsrwzeXbRqjy3ZFV2Hj0oY4cMSEte7j8Aeo9gHIB+o9pZSXM1SWc1r2UMqZZLeej55fnYN3+ZNR3/967ho/faJme9Y9c0V/68dxL3ho7BQzLo4IPS9pO7N1hrGDkyHWNH5kN3/m3mtc1LkjSXm/ORPT+ao3Z4TxrbWzd3uQAAUCilUrKycUnO/dk5eeilh14+llLevsPkfGLCmWleO7iXK4Ti6eysZNCb35w0NSXt7RusDzv+r7J24NC8phcO6Ls6K2lOUv0zz/Iul0t5cXVnPnDN7Ly0Yk3X8fFjBudLJ07MoE2fmwDAZuAe4wBQo2Ud1Uz7+kPrheJJcsvDz+f7j72Yxo3cz3xLtbZhQEaf+5k077TTesfLw4Zl2y/+R0595JyuUDxJ1lbW5t9+OTMPLfx5Ghr6zvcJAABborWNKzP97jO7QvEkqaaaH/z/7N13mNTU/sfxd5KZ2d7oTUDpvYMCFlBsKCJiRexeC17LtV/vtV5Rf9ar2Gj2rugVRBEbNopgwQpSVASkLsv2mUny+yPsssPMbKEtDJ/X88wDO8lkvklOMuecb3Ly+/s8uvARXH+4FqMTSVyladk0ffRRjEDkyAwpffuSNepMQq6eKS3bp9CF856ZH5EUB1i8poCb3/6R0LYPMhcRkd1Kd4yLiIjUgM9nMeObldhxhtJ68tNlDGnfgOTdHNf2cl0oTM2h0ZMTcFatJLhoEb6mTQi0bsPnoR/5YcOPMT/36HeP0nVQD5LQHSwiIiIiItsrL5zLTxt/ijlt+vLpXNj5b6RTdzdHJZL4wpjQoSvN355K8KefsDduILlrV9x6DSjwp9Z2eLIXW5cfZHVeScxpsxavpyDkkG0pOS4iUluUGBcREakB0zT4fWNR3Onr8kv3utHWXNelKCkd44B2mK07EHZd8Jl8+eOcuJ/5I/8PXMPejVGKiIiIiCQWw4B1RWvjTrddm8JQIemGEuMiu0IYk3BaDma/gRiGQZG99zwWTfZMhgEbi4KVzlMScvQMexGRWqQxUEVERGrAtm0GtKoXd3qXpll77VVnrus9a81xXGzbpVOdTnHnbZ7RHNPdW9dURERERKT2uS7UT20Qd7plWKT5NUKTyK7mtYGVFJcd57qwX05K3Okpfov0JCXFRURqkxLjIiIiNWDbLt2bZdEwMynm9BuPaU9SAoyIZdsOfRr1Jc2fFnP6pd3GkOJm7OaoREREREQSS5Yvh451OsacdkzLY0gzMndzRCIisiMyk3wMalc/5rS/HbI/GT6lZEREapPOwiIiIjWUbsKL5/fj4NZbhzRslpPChNG9aJmVjBPn+eN7mzQnh4lDJtI4rXH5ewEzwN+7/52edXvrinoRERERkR0UCKdy78H30b1+9/L3DAyOaD6Ey7pdjhHSKE0iInsTv+Nwx7BOjOrbnKQtSfDMZB/XHdWWU3o2xVVfiohIrVLtWkREpIYcxyXLgntP7EJB2MG2HVL9FmmWkVDJYteGJlZLJh/xNJtDeQSdIDlJdUh1MyCkob9ERERERHaU60JqOJt7+t9Pob2ZglABmYFM0o0szGCgtsMTEZHtkOQ4XHnYAVwwsCWlYYdkn0WmL7H6jERE9lZKjIuIiGwH1wXLdcgyAdMEvOdyJxrbdkmyM6hPhjfOTKi2IxIRERERSSyuC/5QCtmkkG01BLu2IxIRkR1mO6QbkO5P3D4jEZG9kYZSFxERERERERERERERERGRhKY7xkVERBKQaRkU2JBXHMIFslP8pJskzPPPRUREREREYjEtkwLbZVOxN9xVdoqfNMvQc31FRERERIlxERGRROOaBgvXFnLNawvZUBgEIDPFx50ndKbPfllYSo6LiIiIiEgCckyDb1fnc90bC8kt2pIYT/Vz94ld6NE4A9NVW0hERERkX6ah1EVERBJMbtDhgmcXlCfFATYXh/n7y9/yV2EIw6jF4ERERERERHaR9SU2Fz2/oDwpDrCpKMQlL37NupJwLUYmIiIiInsCJcZFREQSiOkzeXbO79hx7gp/7JOlOKZ+/kVEREREJLEYlsnEz5cTqynkujDhs+VgqS0kIiIisi9TbVBERCSBBG2Xn1dvjjv917UFlNoaPlBERERERBJLqeOyeE1+3OmL1uQT1GOlRERERPZpSoyLiIgkEL9p0K5hRtzpB9RPI6BffxERERERSTABy6BNg/S401s3SCdg6rlSIiIiIvsydY2LiIgkENd2OOvAFsTr7xlzaCssV3dJiIiIiIhIggk7nD9wf4wYbSHDgL8dfACG4+z+uERERERkj6HEuIiISIKpm2zx5Jm9yErxl7+XnuTjwVO60SQjgPLiIiIiIiKSiBqk+Hj09B5kJvvK38tM9vHIaT1okOJTW0hERERkH+erehYRERHZmxiOS4/GGbx9aX9yi0I4rkudtADpJrh6pp6IiIiIiCQo03Hp1zSTqWMGsLEohItL3dQAaRa4ttpCIiIiIvs6JcZFREQSkGs7pAKpqWU/9S6uRg0UEREREZEE5zhudFvIrs2IRERERGRPoaHURUREREREREREREREREQkoSkxLiIiIiIiIiIiIiIiIiIiCU2JcRERERERERERERERERERSWhKjIuIiIiIiIiIiIiIiIiISEJTYlxERERERERERERERERERBKaEuMiIiIiIiIiIiIiIiIiIpLQlBgXEREREREREREREREREZGEpsS4iIiIiIiIiIiIiIiIiIgkNCXGRUREREREREREREREREQkoSkxLiIiIiIiIiIiIiIiIiIiCU2JcRERERERERERERERERERSWhKjIuIiIiIiIiIiIiIiIiISEJTYlxERERERERERERERERERBKaEuMiIiIiIiIiIiIiIiIiIpLQlBgXEREREREREREREREREZGEpsS4iIiIiIiIiIiIiIiIiIgkNCXGRUREREREREREREREREQkoSkxLiIiIiIiIiIiIiIiIiIiCU2JcRERERERERERERERERERSWhKjIuIiIiIiIiIiIiIiIiISEJTYlxERERERERERERERERERBKaEuMiIiIiIiIiIiIiIiIiIpLQlBgXEREREREREREREREREZGEpsS4iIiIiIiIiIiIiIiIiIgkNCXGRWSPZBhGbYcgIiIiIiIiexDD8F4iIiIiIiLbw1fbAYiIVGT7Sih08/k9/3cyAhk0SmlEipOFa9d2ZLK9DMMgbBUTMoIYGKS6Gdjh3fv9fr+uAxMRERER2VtZAYd8NlFqBwk5ITL9mSS5qRhhf22HJiIiCcY0DXw+E8eBcFgdkiIiiUaJcRHZY4QChYz77mGmLp9a/l5WUhaPHDaO5oEDcGzdGrDXscKsCv/JA1/dz9drvyYjkMEZ7Ucx/IATCQTTd/nXlxoGKzaV8O4Pf5GW7GNo50bUTfHhc9xd/t0iIiIiIrLjgkkFTPvtbV78+UVyS3LpXK8z53Y6F8d16ZbTAyuUXNshiohIAjAMg2Lgp9X5zFq8jibZKRzVsSGZfhNT/UgiIglDiXER2SNYPoO3fp8WkRQHyCvN46IP/8ZrQ18n1c6ppehke5imwR/B3znn/bNxXAeAzcHNPLHwceb9NZexB91DIJS2y76/1DS59o2FzF62sfy9xz9ZyiWHHsDoPvvhd9WoERERERHZk4V8RYyd9x8+Xflp+Xvfr/+eq2ddzdiBY1lV8ict/G1wlLAQEZHtZFkmvlAJIcPg+v8t5sulG8qn3T9zMf89tTv99stSclxEJEFobFkR2SMUksczPz0dc1pxuJhv132LZemUtTcJWkXcM//u8qR4RV+v/Zq/ilftsucDWpbJ+z+viUiKl3l81jL+Kgjq2YQiIiIiInu43PCGiKR4GReXJxc+yV9FqwmZJbUQmYiI7O0MA9JK8zE+/YDca6+i4Np/cEf2GiYf15IUvwWA68JVr35Hoa2kuIhIolCWSUT2CDY2eaV5caf/tvk3TFOZzL1JyCnkxw0/xp0+e/WXWJa1S7670HF5Zvbvcae/9NUfWL5d890iIiIiIrLjLMvk23Xfxp3+2+bfSPGlECa4+4ISEZGEkVqSz19/v4y/briBonlfUTR3LsF/30CLR8fy2NHNy+ezHZcFf2zCstQvKSKSCJQYF5E9gg8/TdObxp3etV5XbDv6zmPZM1mWgVFUTMAMxJ0nKykL2DVX3Lou5JeE407PLQrtom8WEREREZGdwXVdsgKZcaebhkmqP5WAkbIboxIRkUTg85kUfzqL0p9/jpoW/OZrmq9azAH1tj7+L68ohKGhB0VEEoIS4yKyR0gjk8u7XxFzWsPUhrTO0nPj9ia+cBBz+iyOb3ZUzOkGBgMb9ycc3jUXO6RYBoe0qRd3+tAujUHlSURERERkj+U4Lp3rdsFn+GJOP6TZIdRPboAZjj1dREQkHl9xAXmvvhp/+tQpHHVARvnffVrm7LI+LBER2b2UGBeRPUI47NCjTm9u6nsTmRXuCuhevzsTjphIqp1Vi9FJTRmuS3j2V5yTcwz7Z+4fNf3mLteQZafuugBshzGHtSp/JlRFzeuk0qt5tkYgEBERERHZw6W6mdw18G5MI7L7qml6Uy7vcTkZbjaurncVEZGacgEnfr+Qazv4ttwgfmibetRL8++euEREZJfTZbUissfwhZMZ0mgo/Y8ZSEEon4AVIM3IxG+n4Ki3Y68S8ieTMex41l98Hf+9658sb1HKZ/nfUt+XzeFZfcleX4phZYC96/Zrjt/kzUsP4r73F/PxonUELJORvZpxwcCWpLKrBnEXEREREZGdxbB99Mzuy5vHv8WHKz5gdcFqDmxyIO1z2pPp1iMUtms7RBER2QuFU9LIOOEESu+9N+Z0+5hhzFsb5JohbTmxexMClSTRRURk76LEuIjsUZwwpJBFClmwpY/DVQpzr2PbDml9+uFr2JCSS65jv0aNOLdtW5yi3wmv/5DMCRMp2IVJcQDXcannN7nzuI6UDnXx+y0CjoMTdlSiRERERET2EobtI4N6jNxvFKbpjTbmBF1CKCkuIiLbJ2y7pB91FHmvvELojz8ipiW1bUuDwwZyb1Im6T4DW0Ooi4gkFCXGRURklyhKzqDRo49R/MnH5L36KqFVq8gcfgLpRx1DYUoWu2PMQ9cF03VINaBeVgrr1+fv8u8UEREREZGdL6y7w0VEZCcqTM6i6aRJFMyYwea33sIwTTJHjiRt8OEUJmeQ4rrYYd1aISKSaJQYFxGRXcJ1oTApA+vY4dQfdATgEk5J9+4U19D4u5VlGRiGieM4OI62vYiIiIiIiIjs21zXpSA5C9+IU2lwzFDAIJSSToHt6Pl7IrLPqNhv7O4jffZKjIuIyC5l2w52IHXLH/vGj+uewrBcCs1NfLPuG/7MX0HXet3YP7MVqXamEuQiIiIiIiIiss8L2y7hQJr3h61h00Vk3xCr3/iAzFZARm2HtsspMS4iIpKADNPlt9JfueTDiymxS8rfb5LWhCePGE+6W0c37ouIiIiIiIiIiIjsQyrrN5541ERSjeyE7jc2azsAERER2fmKrM1c/vHfIyo3AKsKV3HnvP8Q9pXWUmQiIiIiIiIiIiIiUhsq6ze+Y/YdhK3E7jdWYlxERCTBGAasLFhBfig/5vQ5q+dQ5MSeJiIiIiIiIiIiIiKJxzDgz0r6jWevnk1hgvcbKzEuIiKSYAzDIC+4udJ5Sp3gbopGRERERERERERERGqb12+cV+k8wQTvN1ZiXEREJME4jssBWQfEnZ6dlE2albYbIxIRERERERERERGR2uQ4Lq2yWsWdnpOUQ5ovfTdGtPspMS4iIpKAMsxsjmxxZMxpV/S4knSyd29AIiIiIiIiIiIiIlKrMsxshjQfEnPaVb2uIo2s3RzR7qXEuIiISALyhZO5use1XNr1UjIDmQA0S2/GvQffy4AGh2CH3VqOUERERERERERERER2J184mWt6XsfFXS/Z2m+c0Yz7Drmfwc0H4yR4v7GvtgMQERGRXcMfTOPUlmdy3P7DsN0wPgKkupnYYae2QxMRERERERERERGRWuAPpnF6y9EM2/8Er9/YCJDmZpKVlMb6/PzaDm+XUmJcREQkgdlhSCZz698oKS4iIiIiIiIiIiKyL4vqNzb2jX5jJcZFEoThdyl28wGDVNJxwkZthyQiIiIiIiK7iOlzKaYAF9QGFBERERERqQYlxkX2cqZpUGjl8vwvz/Heb+9hGibDWg3j5DankBrOxnES+3kQIiIiIiIi+xLTNCjybeLlRS8xbfk0AI5teSyntzuDNDtHbUAREREREZE4lBgX2csVWrmcNWM0G0o2lL/31I9PMfP3mYw/YiLJwcxKPi0iIiIiIiJ7kyJfHufNPJe/Cv8qf+/5X55n5h8zeerIp0kOZtVidCIiIiIiInsus7YDEJHtZ/ng7WX/i0iKl/mz4E++WPUZPp8OcxERERERkURg+Qw+XDEzIileZk3RGt777T0sn4ZUFxERERERiUUZM5G9WLFbyPt/vB93+vTfplNK8W6MSERERERERHaVUop577f34k6f8ft7lFC4GyMSERERERHZeygxLrIXMwyTFCsl7vRkXzKWoScmiIiIiIiIJAITkxRf5W1AE2s3RiQiIiIiIrL3UGJcZC+W7KZxWrvT404/o90oTFuJcRHDMMgP5lNqFYDfru1wRERERES2i89J4vR2Z8Sdfka7UQTc5N0YkYiIiIjsTJYPgr5CQr4iPSZVZBdQxkxkL2bbDn0b9KNfo37M/WtuxLQhzYfQNrMdTsitpehE9gy2r4SlRcuYOH8CqwtX06luJ87rdD51zYZg624aEREREdl7OI5L55wuHNr0UGatnBUxbUCTgXSr2x1bbUARERGRvY5pGhRauby97G3e/30GASvAae1O46BGAwgE02s7PJGEocS4yF4uEErntn53sDx/Gf9b+hamaXFS6xE0S22BP5Ra2+GJ1CrXF+KdFVN56JsHy9/7I/8P3v/9fR4//AnapXTBtp1ajFBEREREpGb8oTRu7P0vzuwwmjeXTsF1XU5sPYLmaS0JhNJqOzwRERER2Q6FVi7nvH8264rXlb9325zb6NmgJ2MPuptASMlxkZ1BiXGRBBAIpdMhtRude3QHIBxycXWXgAhF5PPItw9HvW+7NrfNuZWJh08myc6ohchERERERLZfIJRG66RO3NitC+CqDSgiIiKyFzN9Li8vfjkiKV7m67Vf8+vmxXRJ64XjqL4nsqP0gAKRBOE4LqGgQyjo4Lr6gRQxDIPlm5dju7GfKb6yYCWF4YLdHJWIiIiIyM7hui6hoK02oIiIiMherogC3v1tetzpby6dgmGpvieyMygxLiIiCcrFMit/hrhhGLspFhEREREREREREZFoBgaWEb8f02f41I8pspMoMS4iIgnJdaFFRkv8pj/m9P2z9ifN1DDqIiIiIiIiIiIiUntSSWd4q+Fxp49sPRI7tPviEUlkSoyLiEjCSnUy+He/m6PeT7KSuP2gO0h20mshKhERERERERERERGPHYbhrU6keUbzqGmDmw2mefr+enSOyE7iq+0AREREdhnbon+9g3n52Jd5cdGL/LH5D7rX786JrUeQ6dbFsVWhFBERERERERERkdqVHMriicHjmbtmNu8sf4eAFeD0dmfQJrMdgVBabYcnkjCUGBcRkYRm2gEaGs255aBbyM3Px+8mYYddlBIXERERERERERGRPYHruiSHMjm8wTEc3HAQJham7cMJqRdTZGdSYlxERPYJASuAFQ5ga9ghERERERERERER2QOFww4mAQAc3dojstPpGeMiIiIiIiIiIiIiIiIiIpLQlBgXEREREREREREREREREZGEpsS4iIiIiIiIiIiIiIiIiIgkNCXGRUREREREREREREREREQkoSkxLiIiIiIiIiIiIiIiIiIiCU2JcRERERERERERERERERERSWhKjIuIiIiIiIiIiIiIiIiISEJTYlxERERERERERERERERERBKaEuMiIiIiIiIiIiIiIiIiIpLQlBgXEREREREREREREREREZGEpsS4iIiIiIiIiIiIiIiIiIgkNF9tB1AbNmzYwL///W/mzZuHZVkMGzaM66+/Hp9v794chgHJZpCAU4QLFFvZhMKx5/X7IMXehIFL0EyjxAngursuNtM0SKEAnxvEMSwcXzq+UB4uBiVmNkF7x2OqyfrvbAELkp2y2NMpcfzVit2yDFLczVhuGNvwU2xkYNvxPxjwOSTbmzFwKbUyKAlvf5lNsUIEnAJcDEL+HJLDGzCxcQwfhWZdwrZLKgWwOZ90w6XIzMbC2bKeEDRTq72PvH1TumXfGBRbOYTC21fgAj6XZDvP2wZmOraZTIa7HtMJ4WJS5K9PcWnly062bJKczV75szIJhk0MwyDFKMJPCSbgWn6csE2xmU2okn0Sz7ZlvsjIxrYdAHw+kxR7EyY2YSNAMek4juvFYBbhd0pwMCmxsnFcgxQnD4swNn6KjAwcp/J4LMsk1d2E6UYuPzK2Inyu9z3FVg4Aqc4mLMIY/mTMUAEAji+NsGtg2EEsw8EwLQgHCSXlQGmBV+Z9mZh2KT63FAeLYstb12QzSIBSLDeEi0HYtSgyt26HrbEU4qcU07VxfCmUOj5KnCRM0yTFzdtyfAQo2mY9tlfZd3rxmoQCOSSFcrEI4Ro+QvgoJjMizjLblr+wkUSKnYtlmRhOEAeLUiODoOsjzSzG7xQBDq6VhOHa4IQJk0ShkRWx/LLzV5JbhGmaGKaLES7BxaTYV4+ioLFd65lKgbdPcTEMMJwwji+ZoOOj2EnGMLbM43qxF5nZOI7rHQtl5cPMIVwhVr/PIMXOxTBcwlY6hu3tY9vwUWxkVnoOq0rk9k2jxA5s97Kqy2cZpDibMHEIG8kUk4ppGKQ4uZg4OL40TLsI3MrPe8lWiKQt59QSK4tguOb7rCqWZULBOrKMYsLVPB9s7/fsimMPys5/uVu2dxLFpO2SdRCRxOTV14rxu8XldaXtrVPK7pOo7W/w6lsZZj4+p9hr5/gbUFwaXYcs49X5trbDytrCO8KyTFIdr22xs3+3dyav7ZuPjxAYJi4mrmOXtw3j1aWSrTBJTn5E2y2yPu+1Pyw3RLKzGRcoNbMwsElyCsAwcK0UfEYpRrgEDIsSI4Mie9f2gVTk9xkk21vqm740r221pf4c9GWTFMr12uK+FHDCmE4IxwzgGj4su6i8zRYOxy9b+5qtbXpvf5fa8e/7iSxDu6aeXsayTDLIxXKDuFgEA9kEgrmwcT2ZvmQKnK3tzHjH7rZ9W/HOE/E+X94OrNDGs2O150wTDAPDCWO7W8tYef+NW4TrGhSbOVX2iViWQaaRh+WUePsk0ICCkpptu5q2pyzL3NpXYvgpInbbKGJ7GD6KtrTFy87HSW6hd/yZSYQdopYTuT19FJlb2/Jb91UhLgal/hz84ejv2jaeNLMIv1MIQNCXRWEogLsTTkhl51nv/OLHtlIJ2HlYODj+VIxQMS4mtunHcB0MJ7zT+4STLIckJw/T5wc7hOsS9zsCPkje0g8c9qVj2sWYro3tS8OwSzG3aY8mWTZp5Hn9f1YSJWY6hcHtr0uUnZstw8E0LQw3hOMaFFk5WHYpftfbXsVx6ps+n0mau6m836/UyKDY9u223xapfTXtw9qe81xldTzvfL4JY8sxboaKAKqVM9i2Thr2ZeELl61LBiW29/l4fdh7m93RZ5eoqqpX7K32/pbodrjyyitp2LAhn332GevXr+eSSy7h6aef5oILLqjt0Labz3TJDK3E/OQ/GEs/hEA6/t7nY3c7kzwnu/xH2TAgy9iE9e3zmPMnQbAAf6vDSTnsX2z2NyXs7PyTQrJZSmrez5gf3Ybx10LIbIrb9yIMyw+f3IW/5znQ40z48S3MOY9CaT7+AwaTcthN5AeaEXKqHthg6/rfibH0g7jrv7OVb8+vn8b85mkIFuFvcyQph97IZl+TSrdnmllI8l/zMT+5EzYsgXptSDrsX5Q06EWhkxoxr2kaZLEBc87jmAtfBjuEv8MwUgZczWarEXYNfpB8JmSGV2F+cjfG4vfAn0Kg+xkYrQbDmxdj5rQg85DrcXNaYv7vUlj9Lcn125N0wmPw41sYXz8FwUL8rbesZxXlxm/aZARXYn58B8ayjyE5E3+fC7G7nMEmO6vacRuGQbaxAXPeBMxvnwc7iH/4k2CA8cldsP5XjLqtSRtwBanN+pFL/agfassyyLLXYHz6AOZPb4Fp4e96Gu6BY6BwHeaHt2L8OQ/SGkCP0VCvNf7cFdidRtYo1mSzhNS8XyLKfGDgNQRbDgYXAss/xPz8fti8En+jriQdfiulWW1JKl6F+eFtGH98Aal1CfS7FFoNxnzrYli/COq1Jemwf1FcvwdF25SRMhlmAYHfP8L87L6tyx98C0VZ7SlxkkkySkkrWIb50a0YK+dDeiOS+l8OTXpgfPkwHHYjzH0Uvn8V7CBWu2Mx+1yI8d4NkLscep4N3U4n8OmdGD+87pXF9sdBz7Mw3r0WgkUEjrgDo94BsPRLjNQcmPMorPkRX9Z+BA6+luB+h5LvpHvnhvwlmB/egrH6G8hojNXzbHz125Natw2s+gFz1t3e99ZrR2DQvyip14MiJ6Xa+2JbSUaF79ywGE58kqQ/5mJ8/QwEC2D/Q/D1u5SA6xDM6UiBkxZZ/uaOx/zuBa/8tTsO+l/mdbB98xz89DY4YfxHjYXG3TDWL4bZ46BpL9j/EPjyEVjzA1ZmUwIHX0Np88HkO+n4TIfM0CrMT+/C6DQCclrCvAnw89sYQGqnE0ntfzkbjUbVrnx6ZfBnrCUzofmBMPtRWDkf0hpg9TwLX+OupGS1hII1mB/dCmt+hKxmBA6+Fpr0xJj+D4w/v4K0BgQO+jvhtseRZ2eSZW3G98OrmPOehB6j8dc5AGP2I7D+V6jbmsBh/6S0YR8Kt2y36vLOpblY8ydjfvMMhErwtzuG1IOv33IurdHiqi3Tyse/5F3ML/8LBX/hb9aP5KH3Yyz5wCsTR9yK+9sXGAtfijzvBZoStr3znmVCVngV5qz/w1g0HfzJ+LufhdPrfDa5dXZKBwdAullIYNU8mDUW/4al+Ou1JWnQvyiu3zPu+WC7v2flbKxPKx57/6akXrcd/p5MMx//kvcwv3jI295NepJ0+G0Uprei1EnaOSsgIgkrYIZJL/kd86PbMX7/3Ksr9b2EcMeTyLMzazs8qUQitr8BUqxS0gqWwIe3e/XqtAak9b2Q1A7D2ejUiWqD+kyXzPBKzI/uxvj1fQik4u95LnaPs7e7zerV/T/B/PxeyPsTGnYmcPitFGV1oMRJ3jkruhOkmUUkr9nS9t1Sb6TfRVC0EX9yNkaLAfDx/RiLpoEVwN/9TJy+l2CEijE/uQ/jl6lg+b22W9+LoXAt5vs3Yfz1HTTrR9JRd8K88Rg/vQWGSaDLydD1VIy3LoVgPu7IpzF+/wK+mgjFuaS0PJiUwf8iL6kFIWfXdotlWZvx/fQm5tzHoPuoyPrz0AdJxsX44iHodjqk1Yc5j22pg7XFPegyjHW/wI9vERhwFaH9h7DZydil8e7pytv0nz2E+dObYJj4u5xKar8x5Bn1ItpLlmmQZa+uUIYC+LuNwunzNza5dXdaPb1MplVI4I+PMT6/H+wgnPAoyT89grHwNXDCBNodiG08hQABAABJREFUQ86AKyhNagiOHfPYLcnpSHLpOsxZd2EseR8Cafh7nofd46yI84R37M/a8vkV0KATgcG3EM5pi2/Tr1gV23gDryPY3GuDZ1t5WN+9iFmwGg44DHf2oxirv8Wf0ZhA/ysJtzoSq2Sj13+zfBYkZ+HvexF251Pj9olkWEUkFfyG8fGdsGIORmo9kvteSHLHE8mlLnYVF/9YJt5++nhLe8oK4O9R1p6KvZ+2tlnugtzfoH57Aof9i5J63SP6C1LMYlJyf8T66DZY+xNkN8d/8HWE9zsYXygP86O7vPOxPwWry0j87Y4lYIcpqdOFIieVVLOI5A3fY318O6z7BbJb4D/kBoJNB1BCSoV+yA+h3yUEmvTA+Ox+WPdzhXn7U+CkA17/aHrBr/DhbRirvoaMxiT3Pp+ktseQb9Yj5G7/+ai8j3HWWO/8Uq8Nbv8rMHKXQ3oDLMf2zi+bV+Jr2Bmj/99h+Wf48/+qUf9rPKZpkOWuw5w7AfOAg+H3L2DhKzH7eMvb/wuexvz6aQgV4299BEafC2DzStxgEca8J2DTH9CgI4Ej78JIr4/x+cMYP04Bw8Rofzwpvc4hJb0BuW69GidpsqzN+H7e0g9dtB72OxAOvARz4atkZDaGzidhvHIW4OCPUd/MtPIJLJvpnb83r8Rs1BXr4H+QUqcteWaDXdK/LnuOmvZhbT3P3Yux6J0tdZ3ROL0vjNtvFF3H60Rg8K0UZ3Wk2E0my8rD9+MUzB9fh8Nvxv35He/4cML4Og4ndcBV5JmxcwYRddJVX8NxDxFYPANjS1+wv/3xpA68hrAvHf/yjzA/j93HvDfwtv1fW7b9tF1eF0g05f3LH94Ka37wchwHX0uw+SDyt/y27a0Mdx/b+7///jtHHnkkn376KQ0bNgRg+vTp3HvvvXz88cfVWsb69flVNloNA+rVy6jWvDvKMCAnvAJr4iAIR16S6TbuTnDkC2x2vApspplH4PVRGKu/jVyILxn7go/J9e23U+P1WQaZqz/Cem109MTuZ0BSJsx9ArdBR4wBV8CbF1X4cBL2+R+R629RaUyVr383gie9yGa3+knNmsgyN+F/5VSMtT9GTvCnYl/wMRvNpjE/F7BsMn56FvODf0dNc468i/z2ZxC0rfL3so2N+J8/Hjb9HjlzSg7h8z4il/rVjrmOu9rbVsGCyAn128HB18CUC72/hz8BuPDWJTD8MZj9mHcCjFjPFOzzPybX1yzmPjIMg5zgMqxJh3sNwwrcZn0Jnvg0m53qdWRmGbkEXjwBNi7z3mg/1Ku4zozehhxyHXaPs9kYjtzvOcZ6fJMPh6INW9+scwAcfjO8fh6429Rc2h4FzfrgLv2Y0mETyK9GrD7LJHPVTKzXz46a5vb9G27TXpgVyzlA1n64wx/DeG44ONu0Gg84DFofAe//q/wt5+h7yW97KsFtropPNUtImXMv5ldPRn23PfIZCvY7kvS1X2K9OJKoHdZhGBz+b3jx1K3buExyFpz8NLx4Cox8yosl97fIeVJy4KRJ8Mb5cNJE+OK/0P44ePe6qFicAy+juN8/SFn7FeZLp0ZNp8vJXjyvRp83nKEPsrnVSEJ2zRoZZedkZ9EMzJdO8d4c9gjMnwyrvomc2ZcMpz6Ps+YHCjucTYnjJ9vMxf/CCbG3zanPw/MjwA7Bfv2g/99hw1L44BZo1ge6nQbvXB0Vk9v3Ygr7XUNKaD3WpEFw0GXQajC8fi7k/xU5c3oDnHNnsMGp+lj3WQaZK9/HmjUWDr0BplwQvb/bDYUDL4FnjoteQK9zwTBh/qStsXYYjj3kP1hvX4Lx22fQ7lho3BU+uTvq484Rt5Pf8eyIc1hVssxcAi+dBOsXR04IpHvnUqNxtZdVXWlmIckf/wvzh9e2vnn4zfDHbPh1ZrXPe3Xcv7z9V5ofOV+9NgRPm0Kem7PDsSZZYdJ/fBrzw1ujpjlH/x/5bU+LOh9sj2QzRNr34zE/uSv6e7bz2CuTZhaRPOsWzIUvRU4wDOzTXiOvfv+EuOJUqrY768iSOEzTILvgJ6xnjo6qK7mtDqfk2HEU7MZkUXXKcdk8+7qd0f6G6rXBd0RNz02WZZCzcR7GCyOi6lluu2NwjrqHjXadiPfrOCu9dtiWu3nK52/YmdApL5PnZNco5hSzhNR592POfTxqmn3SU2xueiThHRjJZ2cJWDYZv7yA+f4/oyceegO0GuS1M0rytr5v+mD0m/DqWVCcG/mZnJZw5H/glTO9HTfqda8foXB95HyZTWDoA14b+se3vDpeRaYP57z3yU1pV+M7n6pbXtLNApLfvdxLcG5bf+59nld2FjwFnU+CrP3gi4eiF3L4zfD7l7DkA5zuoyk++N879aLIvU3MNj1AZlPCZ71Lrrv1uMthDb5JgyPLFkCdAwid8Rab3MhjdEckm6WkL3gI48tHvDdOexHevd5LWleUWgf37Gm4Xz/vXSxRUVIG7llTMZ4+BkLFEZPcRl0JnfwieU42KWYpqfMfwpz9SFQc7gmPYXzzXFR5dw4cg93nYnxTzsMIF8NBl8Jbl0Z/vuvpGFlN4LP7I99v3p/SEyZG9Ykk+Q0yNi7AeP7E6L6MVofjDn2A9XbdqO+pqA5rvHNj6ebICXVbETzjLfKcyPZUshUi7bvxmLNitFmO+y+bDxhByDbwW5D5xzuYb10UNZ/b/3KMUDF8NSFyQoOOMOAKnNICitqeTOrS/2FO/Xv09xx8HXQ9FfPJAV4/5P6HQpshEf025fMOvIbCnpcSIpnsdZ9v7Y+oqNOJOAdfy6ZAC+rUSa/xb17Assn4+XnMmTdFTxz8bwikw3vXR08b+gB89yL89T32eR+SG2i53b+1OcYGfM8c7d1sseBpWPV15AwV+ngzjU34XzkFY+1PkfP0Ph8CafDlw1vfMww44zWvb7JwXeT8GY1h+GO42S1Y7zSodqzpZgHJ712B8euMyAmmtaXP699g+eCI27zfGsA9YBClQx8j38kg1Swm9cuxGAueil74sIexmx9MLvV3Sz5A7araUdM+rJqe57w63oOYcx+N+m5nxCRCzQYQmHoxxvJP4LQX4L0bvQtJIhaSQ/j8j8h1vX7EiuUlx65QJz3lWfjg1uj+zgFXeBepbHuexOtj3txkSMToknuqOqzBilcXGPU/Njk73meXaMrKyqbcAjL+nIn1xjlR8zh9L6ao3zUU72EXSNSkDb7PPWP8119/JTs7u7xRDtCqVStWrVrF5s2bK/nknivZLMX8+D9RSWEAY/W3+Db8gmkamKaBb8PP0UlxgHAJ5sf/Idks3amxpTobsd67NvbEb1+E1od7Qzet/cmLP7t5hZhKMT+6lZQqYko2g5Ws/3f4Nv6Mae78K/VM08BauzA6KQ4QKsL89B5SrFDMz6baud7V8rGW+/HtpDpbG/8+n4m1/OPopDhAcS7mgkkErOr9ECVbIe9O4m2T4gDrFnk/0Dn7e39/dAc07Aj12oIdjk4OAYSKMT+9m2Qz9nqmmEWYH9wclRQHMP6ch2/TUgyj6n1jWSbWn19G/kj3/Rt8Mjb2B758GLNwDT7f1lNcwOd6V/Ft24Duc77XObFtUhxg8Qxo0BFj5QL8+b9TjVBJczZgvRedDAYwvpqAmVqXqAX1Phfj/X9HNyQBln0C2S28hswW5ke3RpSRMkl2Lub88TG/23rvOtLDa7CmXxOdJAXY8Cv8MTe6IgRe5eH71+HAMd6Vx9smxcHrsPp5qtfo+mqiNwrErHtixmLOfYyU8HrMd+OcG75/zUtOm9GJVfODm0lzNsb+XFXyV2O+e433//SG3vK3TYqDdy6Z+wRm4TpSnE1e+fv98/jbZuEr0P547+/e53n/fnaf929Z+YrB+OpJb0jpT+4EJ+xdAPHrzOikOEDBWowfXsPvq7oQpjkbvTLY+3yYdXfs/b3oHa8CbMUY5unrZ6DdMZGx/vwWVvE6jBVzvTe6n+Fd/BCD+clYUu3o8hmPZRlYqxZENygAggWYXzxIsm/nPxcjKbghMinuS/YuEPp1JmQ29Y7HeOe9WXeRbAZJ9oUxvnwoOikOsP5XrNXzsawd//1JtTfF7PgBMD+6Leb5YHukOJu834hY37Mjxx6QFNoQnRQHcF2s964lbSetg4gkplQKsGZcH7OuZCz9kEDhymrV02T3S8T2N0AGuRjvXR+znmUsehezcG1EGzTFCnkjIW2TFAcw1vyAtfb7GrdZk+1NmPOeiDnNmnH9Dv1u70ypTi7mx3fEnpj7G3z3UnRnZbtj4Yc3opPiZZ/ZsAQadYVWh8OSD6KT4gCbV3l1/Xrto5PiAE4Y4/2bSKGwpqtUbYGiVV5SHKLrz+2Oga+f9v7fZaQ3ylYsnz0APc8CwPz2OZJDe8Z+rQ0By9sGUW168O7Y/PVdfJbXB5BkOd7xsW3ZAti4DOuPL7zHFO0kqc4mjNlb9mHTnt7d2tsmxQGKNmJ8+xLmpuXR07qeivHp/0UlxQGMvxZirfsJ09wyLH+c8mLM/Df0PjfqffP71/DlLsFY+RX0uSB+G3XhS97F3tu0xY0/vsS/+beo39o0Z733nbH6MpZ+CAVrSLLi3zKeZNneCArbJosANizF+nNO1H5KsTdhfnZvzOWZM/9d3q5IdTZizrgh5nzG7HHQ9sjoCWt/8tp7X00kNbwOc2Z0ohvA/OIBjMI1W/she50Nn8ZpR335ICn2JtKc3Ph9ID++iVm4lhQ3RruyGio9z352H2Q3iz1t1t1ev0G4FPPj20gxazj+/RZ+n4H5y9vg2uALRCfFobyPN9UqxVrzXXRSHLybU2aPi3zvgEGw7OPopDhA/mrvzvS/vic5qfrHc6BodXRSHLxy/Nn93jG0Yan321K/PQDGso/xb6lvJodzYyfFAT65G3PDYpLN6H5QSQw17cPanvOcV8d7LHp+wPz4DgIFv3tJ8SY9YO0v0Ulx2JIzmEzAF1lXTTZDmJ/e49VJG3aC3N+j+zsNA1oOxJg/MfY2mHE9aU6M3+I9TJLPwZjzWNy6gLniy51aF0g0qfZGrBmxcxzmV0+SbG/avQHtZPvcni8sLCQlJXIY3rK/i4qiG6mxGEb1XjWZd0deSW7R1sZWDOZPb+L3W/j9FubP/4u/Xkve95a1E2OzgptjJ3nK5P7mDVsNXgKwaa9tYvqQgFtYxfoXYiyZGX/9f/TWf2dvd7/fxPzxjfjb89f3CTgFMT9rFq+LmcgHvEp40fqt30MJ5k/xv8dcNI0kJ796ZcUpqLSssOwTaNbb+//mlVCS73VK/PZpJes5I+4+CrjF3g91vM8umobfb1a9rc0wVsUEFnidUDEajACESzAK13hloywWOx/zl6nR82bt5w2JFc/q76BuK4zF71WrHJnBPChYE3tZruuV+dR6ke/XbQ2xLlgps3K+l7ArEyzELN4Q+b2mgbF+UewkKHhDZgfzvWH5YmnWB356M34MSz+C5v29MlLZPI06e/P4kmN3WAC4DsaGpVBSSWfo+kWQGaPxVpofte7VPieX5G2tLDbpDr99Hv/7l30MTXthFPxFwAx5QxNVtt779fH+70/xLrIoS5T6U2M34ABcF3PDYm/Youzm3vaoZPsaP71Nshv7nBJVBgvXeVdPr/81ftyrvvFGTIiKy/GO/5ScyPd/+3zr/K5T6fFnFq+r/rnUAuvH12IvCzB+fY+AXfV61+i3yTK87V5RvTaw6lvv/017wfJZ8WNa8j4Bp9A7ryx+N+581g+v4rfcHY+5aC2E41wkFiyM+M3YoVfBam/kg1hK8zGLN2739o55EUqZ3OVY4er9jumVGC+o/Rj02rtePqcwdidr2Xl52cf4fFXXKXfmqzrlWHZO+xv2nH1a9rJCBbE7RMv8/jlJSVvbDgGnoIo26+v4a1CGTdPA2PBrJXX/tZilm2r92DUMMIs2xK83Nu3hXYy8rf36wtJKRhRY+rE3T7M+Vcz3IRTHTyQbf8wmsJ19IFD5dL/f9EZaKlOx/pySA5tXe/vPtCBUEr8Otu1F7X8t9Oqye8C+3d2vgJOPuWha3P1p/vQGSXh9AElOPuai6fHn/fF1AkZw55RxE4zcZVsvtm/Wx2tPxrPoHWjWN/r9Kj5n/vi61ydR8bu2VbTBa4tvq3FX+GXLtkutEzuJUmbdIq+fZBvG4nej+kTMUJHXZxKHsewTkq3SuNsuyamqPfUafjMc+bmCVd6F5bGUbi7vL7BKN8W+uAa87VewxhvFclvLZ0GDDhjFG2MnU8C7sGbzn1u3tWFByaY489oYeSvwhfNj3/BS5q+F+PHafDU/z66vtI8RO872Kljr3aENW/pfi7fz2CzE/PlNaNyt0n4W7zuKYvevBNK9foxty3azPlX2QxlF60lyNlcrVu/cHL+Pk9Xfbb1h6Jdp3veXxb/0Q+8YWBcjqV9m8yoMOxjRH7krX1D75+Z97VXTPqyanudME4yNS+PX8dIbev2Q4PXhV/a78cs0kuytfS2wpU7665bcQLzjK7WelzCPF0P+X5jBvFrfF1W9kuzNmIvj1wWsH14lYIZqPc498QVgBfO834lYXBdj/WKvTbIHxLtt7NWxzz1jPDU1leLiyEZZ2d9padV7JmrdutUfEq8m8263zfleBSJOhc9IySEzc0tnRHIlQ4oH0vH7fdTL3Ikxr6/imaH+1K2d/YF077kuETGl4ff7K49pc75XkSuOfTWekZq9df13tuSc+NMCaQSS/NTLiBH76sq3ixVI3jrsQ6gEApWsfyCd5JRkktOqsd/yC71tHq9xEEiPbHhbAe9vfyXHRiCdQLxyk7cZfCkx74wAMFNyyMqqxjBwdii6wRLjbuIIVoDUtFRSk7bcaV0Uirjrupxheq94DcukDC/Rl1rNWKsq84G02Aku0xe/cRfjM5Y/KXpokE2VlwHD8sefGK6inCWlg10KgUq2QVK61+Dyp1a5f4xAWsyRBMoF0uI27CKOj5rYUGH9w6XlDcDY358O4VKsQArp6aleOahiXiB6vauzHUzL+7zlq3L7JqekkJxSxbqvC2z9bsOIX5FNSo+fbK14bi6LNTkz/npuw/LXYB85TpW/TUlJAZJinUt3xOptlhcu2XqOCJd4HUZxY0ojEPB7545AevyLQJKyychII8PcwesQgzX4zdgRpZX/VlqBGOed6lpT+aMofIEk6tXRkMP7kt1SR5bEsSkXLH/cxJGZmk12dvXacjuTynHVdkb7G3bftq7296z3VVrPMpIySE9PIb2s+bG5wKvnxRq5CzBS6pBZnbZGRZsrf66fb2fVD3bUXzFGKCoTr04eLqmirr6lrVBlnT6j8nqrLwmf30+9rO3bTlWWl+QK9Z+KcYRLvQtqwbtDsbJ22jaftVIyqVNn736m43YrClXRN5FBanoaqYE0KCiuvGwkZZCekUa6r5LyWRP5Fb6rqnK5pY8hStnn4lxIYqTU8fq2NlZx7oxV5sOlGGVtLqOKtkmcGGL236yzKu/LSM4i4PPFP8byiyrfVslZXnvKqtB9XVJVm2XLuW9tNfojY/VJBNK8O/tjja627eedLfUSq/LudSspDfxV9RWl4/N554Ia/+ZV0cdYaXxl5SWQtv19wqXG1n6RKs7dPp8vdl+qE9p6XqwoXOpt67jLzAAMAoFk6mVXM/aUSvofyvpRAJKyIo5VMzXbOwbWVnEOtvw7v3+9EqqP7mY17cMqqOI8l5QZfZ7bXMn84VKMsj7yKn9vonMGgYDf+0ywYEt9K8bxZQcr759kD6pnVqbKukCWVxeoqh62j7Kq+N2yktOpW3fvrZPuc4nxNm3asGnTJtavX0+9et5dm0uXLqVRo0ZkVLPTfcOG6j1jvG7djGrNu6MCVjrpPc/F/OKBmNPtzqeQu967ezGn86lY2w5Ls4XT8xwK7HSC67dv6J5Y0oxMkpv2wli5IHqiP9X7ISm7qrLtUZHPGAecHmdT4FQek99KJ6PXuZifx1v/U8vXf2fL6TYKK86wIk6v88i30wnF+O7MQB0CGY29YX+2ldWMoD+bzVs+ZxgG2X3+hrXondjf0+ci8oIp2MVVr6PfSiejzwWYH94We4Z2x8D/xnj/368v+JK8oe1OfNIbXjneejqx1zNgpZPe46y4Q/zZ7YdVa98YBmT3vgDrxylb3yxYC1nNIO/P6A9kNMZNa0BuITj53vItK4msfpdEP1/qt8+2DGEd40560/Lu1N6wFLv10dWKNc3MJKVJz9h3NQXSvM6RbYfPWfIhbvvjMH56K/ozhuENjVPxmb/ZLSj1Z5O/TTxZWS3xB9IgGGM4wCY9Cfkz8R0wCCPW1YTLZsGICRArBvCe+73gaeh6MiyKc6Vjl5O9z3c9BTYsg4adYw9FnZSBnbUfZpOeGL/HuJrYl+TdLR7rzvs6B1Dqi173qhgG1E2tg9tyIMZvn3vDKfa7COZFPyunfF2WfUJwv4Hk5wXJ7nMhVmXb5ue3vf9vWAoZjbw7qzcug3WLoXH32CMCBNIJZ++P2eVUbyg4w+c9XzDOFdZu34vILbZwCitf93Qzk+TG3bxnEZYNL7kt0/L2T6wRBJIyvH1Q8YIW08JtfhBG7hXe30UbKz3+goGc8nNYVQwDsnuci/XtizGnO70uYLOdRngnn8ezG3bFVzHJsv5X7/ERhumdF0ZM8Mp8rJh6eud31zDI7HNh3CH27F7nsim3cIfrAZlJdQikN4x9TGQ3j3k+2B5ZyfXwp9WLPRzpdh57ZbLrd8ZnBWJ2Prn7H0ox6RTtot9q2bPszjqyJI5kK520jiMwvn8leqJhYLc8bJfV92OpTjkum2dftzPa31C9NviOqOm5Kd2XQ1LrIVvvuKnItHBbDGBDhTLp96WT0et84j0axe52Ro3LcFZGc/zbXthcpnF3iq0MCveA39ZMfw6BzKbeiETb+v1L6HVO9HN5f57q1bHjtVs7nuB9JiXHe5RRrP4GgM4jokdBqsDtcioFTjql29O2qEZ5yW5xML6yCygq1p9DRV59OynDG2kqWAhp9WOPNJWzP+RvqQP6kgjXbc+mPWC/1gbLSiKz7yVYb10Yc7rd92LyClwcJx+fL43MPhdhvnt17Hl7X8CmvCCuu3MeJ5iV0Qx/cpZ3h/Hi97xnw/8aZ5SI3ufD189Fv//z29D1VCgbkn3bmLueTu76fLLSm+JPitGvAF4bb8PS6PfX/oR71FiMzx/wRslqMcAbgnpbVgAyG8dsd9htj406T2X5M/C3GwqxRqc0DNz9DyYvmEw4Tn+Vz0r32lMzbow53e51Pps2FUccZ1kp9fGn1o19cXLdVpT6sshfn0+6lUlyg47e8OjbSs7y2n2xLlBocxR8chd2UjZWvTaxR2FLycFNrYtRNoR83p/eYwhjjSSSkkMopQEhI4WUlgdHjiRRxgrg1m9PkZNCGjX/zfPOs028R0hETWwaf7S+smGY2dL/aqdtV5+waRpk970E8/Wz4cBLYe6TMecr6+NN6z4aa8HkyInhUm+flB1HZX6Z5j1K8c+vYn955xG4OQewqTSAXVS92LObVzg3b6vdsVtHIuly0tY+UsDef7B3DOa0xu9PiX0RS7M+uBhstjNi9pPuTGpX1Y6a9mFt13kuYz/8ZXWEWN/Regjm+zd5o+4ccWvs0XcAp8/F5AWTsYvzy8vLZied9F7neXXSX2fC0Xd79a6KSvK8G9Qq6WMuNveMemZlfNaWukCcx/zavS9g06YSXHf7HiORqMrKSomVQXLcPu00QpktyNvDykBN2uD73FDqLVu2pFevXowdO5aCggJWrFjBY489xsiRI6u9DNet3qsm8+7IqzRsYPc6D7dBp6hYnUNuoCS5Yfm8JcmNcA65PnqdGnTC7nU+pWFjp8ZWRBrO8Y9G33lnWnDsveWVJffAMbDy64iTrVu/A3afiygNVR5TMGxg9zwPt2Hn6PU/+DpKkhvvsm1fktoUp/9V0duzcTfsbqMIhmJ/roAc7JHPRF8N6U/FPukpCow65fM6jkswpx1O91HR37P/YYQPOJxw2KlWvMGwi93pFNwmvaKWRa9z4K/vvR/dtHpw1F1eUihY6FVA+/4t+vsbdcXuPjruepaGTZx+Y7wGwrb7ZvAtFAcaVCtux4FgZiucXudtXcCse2D4E9FXjvpTcIc9TCilIbbtli8jHHYI73cwbqsjIuf/9iXcg6+GzCaR7xsGHPkf+PpZnCF3UuSvV70y76ZjD4tV5n04Jz2Fk1Qn+grupR/A4Ju84bS3dfgt3jOsy04qgTTsk56i0MiO+u5CIxvnpKe9K7YrSsnBHvYo+W4W9tH3esPubLuuh17nNUBilDP26wd122x5Rtg66HJK9DwtBngNrq8mwP6H4i77BI64BZKzI+ez/NgjnyHfqIdz7ANeB1BELCYce793bPi2uTItkI49YhKFRtZ2Ha+k5Gz9znApLP8U+v89el0adIC2R2H3OJtCI8c7BjNb4fQ6N3re5v29i0hWbrkQYu4TXlk6+m6vo2veeG/fbtshZ/pwRj7tnQt6nI3bqCvMGed1ZLQ9Oupr3HbHEG7SN6JMx3sVkoF9whPwyzteozSj8Tbb2ICj7gZ/esy4GPpAZGeMYeCc8DglVg7OUVueG//lI946xjj+7JHPUEBOtfeL40BpenOcvpdEr3fTPtidTiIUqnq9a/oqNHKwh4+PHGfnm+fhqDu9Bm5l570eZxEMQyjkYnc4ETfGUIhO34sIprfAcXY81gLqYI98NnpYxEAa9klPU2hUf3tX+j1GzpbviXXsTaaA7Tv2ys5P9okTou9QSW+Ac8x9FDkpO30f67XnvqD2Y9Br73oVh/3Yh/4TsltEn2+PuZ8iq85uj6k65Vh2Tvsb9px9WvYqCCfBkXfGrGe5Qx8g6Iv8bQ6GwO42Crdxt6h1cwb8g5KUpjWOt9DIwR75dJy6/2MUuRm1fuy6LhQYdbw4Y9Qb6XEm1G2Nu9+BkdNWf4fbrA9uy0Oiy0L3Ud7F9YXrvCRUUjq0GhxdaNoP9ep0C1+Fw2J0Rtc5AGfg1ZSErV1WXoqsOjhD/+vNvG39efajcOx93v6bPc77f1RdLx2OHutNN0ycEydSsJPqfXvjy2vTD8BtHf1saKfzSYTqdS5vL4VCDuE2R+O2GBg9b89zCGa1xnF2XhujwMjBHfm0d/d//l9QvAk6Do8ud/sfgtO8P86h10cfuyu/xu19vtc23DbmgddQktK4wjH1TPRIA8nZuCc8Ct+9HPm+6cM+cTzFSY1wBt8MCybDwf+I2RZ3R0yITpAAzpD/xOwT2Wxn4g7+V8y+DPeYe3GSsglV0l8VCjuE2w3DbX5g9Hf2voBgxv5R7akCcrBPjtFmScqIaLMUkum197a9s9Py4458CndxjAub+lwAa370+k+s+tgnTowePc4KYJ/8LHZmy639sLMfgyPviB7p0Apgj3yWAqMORU4q7rEPQHqDqO3OsffiZDaj2Pb26faUv3h9jBz3oBdXjN8KBv0TvpqAW7+91/8aNrer/Nu2S7BBd9x2x3rDOg+4ImrTVuzjLU1tinPQ5dHbf9F7MGJiZNnesASSMnBj9JPQ7hjc9IY42S2r3S/qulBkZuMc93D08rL2g17nwvevev+uW1Q+4qZz7P0UWXW9smXk4Jw0ObpvL7Uu7uB/EW7QhWB495wXt6e86LVjr5r2YVV+njufYGaM85yRg33SU/HreL56OMfc613EVLQBOo2IjmX/wwi3HBRxbAAEwxXqpEUbvAsXu0b387rLP8M9aVJ0DKl1sIc9SpGbXuv7oqpXKOwQbnssbov+0du+13kEMw/YKX12ifgCKCID+4THY/dp78S+yF0Re3UYrluT2RPD+vXruf3225k7dy6maTJ8+HCuueYaLKuKoZnLP1+9O8br1cuo1rw7g2FAprEJa90PmD9OwU2pg9vtdEqSm1DkRFaMUs1ikktWYXz3EkbxRpyOI7AbdGazm71LYrUsk0xnHeZvs7znuNRr412Bt+xj3E0rcLuNwk6pj1WyEWPhSxhF63A6nojdoGu1Y/LWPw9r3fdb1j8Ht9sZMdd/Z0s1i0guXoXx3QsYJXk4nU8mXK8j+W5WpbH7TJcMZx3m4ncxVn+N26QXTpujybfqE7ajH4iQbhYQKFiBufAFCAdxup5GKLs1+U7lw9NuyzAgw8jDt+FnzB9e9zoSup7qDWP//eteEvSAwTj+FIxfZ2L+/jlO/fa4nU7CKMmDhS9hFOfidBqJXb9jlfvIMAwyjVysNQsxf34TN7U+btfTKUluVON9k24WEij809sGoWLcXudhpObAounec4Dqd4D2Qwkl1SUvFHvIlwxzM/5NyzAXvgSmhdNtFKGs/bHsEsw/52IumQFZTaHNkbi5v+M27EpxUkOKaxCrZRpkuuvLy7xbry1OxxEUWt5dMmn2OsyfpmCs/xW35SE4LQ8l32pAmr0ea/V8zMXTcTOa4HY9FfypGD9PxfjrW5ymvXHbHE2+UZ9wnJHfA2aYNHv9luUvxm15ME7Lw9hs1MN2XEzTINPdgLniC8ylH+Lm7I/b+SQwA5g/vgFtDveG71/4inf1dJeTIb2Rl+A1La+DKSXHSyx//5r3b9dTvE6brybh5rTA7TQSx0rCzPsD0zK9pPGqr3Hrd8DpMJwCX31CtrUllvVYf3zu3cWetR+0PRLHBSerJUa4GPOXaRhrvsNt1g+n9ZBK170yZefkjRsLyHDWY/3xBcayj3A7nYiR2cRb36IN3ugBdQ7ATq5HgVWXkL01ieeVvxWY370I4RLcLidDdguMvBVgl8DP08CxcXqdh5HR0Hsm2bJPvIsJOp/oPWP5j9lQry1OxxMpsBoSdKzy85dv/Q8YG5fDAYd6V5yXPfO92+mEs1qxya7+sV5eBlfOw8hqAuuXwO+fe0n7NkfiumBnH4Bhl2Iu+xjjjy9w67fH7TAc15eC8ceXmEtm4Ga3wO18MoX+BpQ6AVLMElKCa7xztT/Fu1tn2Sxv/zbuidP2mLjnsKqkGYUkFa/C/O4FCBZ459K67as8l+6IJDNIWngdxg+vY+Qux2l1OG6LgRjBQozvX8Wo1wrqtIIfp0DxprjnvUwzD9/GRZjfvwqBNJxuoyhNbUqhs/OG9S37zfD9Oh131Te4TXp7vxnm9h0T8fgth3R7PeYvUzHWLNx67Jn1Cds7tuwkM1Rhey/DaXU4zn792WzUw3H2ueroPmt315ElcZimQQYbsVZVqCt1OZWiQENKnCqGEN3JqlOOy+aRHW9/e8vY9XeM1/TcZFkG2e5ajD++9J71mNEEup5KaVI98u3oYQXL22Hrf8L84TXc5CzcbqMoSWlCkVPDYdS3CJj2lrbFmxjrF+G2GIiz/2FsNupj70G/rT7LJcNeh/nrDIxV86FRV2jeD3flt7gtB+IGsjA2LsH84VXwp+B0PYNg2n4Y2Pg3LcFc+DL4knC6nkEoozmWU4L1+6cYy2fh1mvv3Rmevxrju5e85F630yEpHWPuE17yrOc53qg1P7zu1fnbD8Vu1JNNbl22p0usJuUl2SwlNbQW4/tXvEdbdTjBe4bxqq9x2x2H0bAD7s/TMOwwtD/Gaz/8tRCa9vYuPv7pf7imD7fTSRT6GlDq7HMDP0bJMDfjz1uG+d3WNn0wozkFTvQ5N9PcjC93sVdP9yXjdDuDYFozCpydP/Sn37TJtNd4I8Ft+BV6jPYSfN+9jGGX4nYcjluvHZuNuhiuG/PYzTfrk+bmYq37CfPH172+ra5nUJLSOOI84bds0sPrMH9+C2Pdz7jNB+IcMIhCqwFp9lrM5Z9g/P45bv32OB2GU+irT9C2vP6rkjUYS97HaHGQdzf0b5/h1mmF2+kkivwNSHILsP76BvOXt3HTGuB2PZ3ipEYUOzGeXQ74fCbZzl/wxxzvYvr0RtDtNOzkuuSGq9eGjWxPpeJ0HUVpWrO47anoNsuBOK2PiGqzeO3idZjLPsL440vcBh1w2p9Aoa8+yW4B/g0/YfzwundXZPvjcTFwslqUt7F8Ft65a+kHGH/OwW3QBaf98RT46hN2zMh+2AYdMdod612Av2IOboNOW+ZtUN6vYJoG2azD/P0z71jPbAqdRxBOrsdmNwfXdbe7nrz1PPsexqoF0KQntBrkXegQyIADDvH6LDYsgRb9vYvyf56K0/ygGvW/VibdzCeQ/wfmpuVe38Oi6VC0YUu/c5eI74joSy3dDJ1O9C5iWPGV1yey5ANY+zNu84NwDjgc20wikLdky4UfLnQYBtnNsf0Z5NqVPOYyjrJzs/n9K15isNXh3qgeSz6Adsfimn6MuY/jpjfC7XoaRYEGlFQ4BgJmmAx7DcaPU7xt2qwPtDyEUFIdNtvpuy0XoHZV7alpH5Z3nlvslblAqvfbldqMgjjnuYBlk1Z+nv9ly+/EoPL+3WSzhNTgWoyFr2A07QGpdeHHN7bkDE4nlN0qImdQsbxAxTrp69DheO8muYWvQLgUp8sphHPaUkJqhd+qCn3MZn1seyd2RO1imeZm7zfmh1fBl7KlLrBf3G2/r6tYVkyjLMfxCcZvn+HWa4fT8UQKrfoEneq35XaXmrTB98nE+I7aExPjZUzTwOezAJdgsPIe7EDAAgzCYXu3dEhblollmbiui207MePc0Zhqsv472/bG7vOZmKaJ4ziEq8huGAb4/d73hEL2djXiy2y7rZKSfFiWiW07lJaGy2PLyUlj06YiQiFve27veu6sfVNxG5TFkJLix+ezcByHoqJgNY5PY8sy3C3b0Xu/rIyWjajkum75em+PimV+2+X4/RaGYWDbTkRlwrIMLMuK+ExNykhVy68sNr/fwrIMDMPbV64LoVAY2/YS6qYJ5pZnJZeUhPD5TMrKomkaUcsr2+emyZYr8GJvz7JYLMvAtt2IsrU96x7Ltufkbdc/ELCwLBPHAdu2435XrPJXtq1N08Bx3PJj0+czI/ZD2TyhkB1zO5RtL8syMM2y7VG9Mh3PtmW6sm1ccf9UVnZha/kKh+0tZWPH91GZ3f3bBLGPl4rvWZZRZUy74/enrBxv3lyMbe+c7R2Pd+waO22/VlTV+UkSmzpwZEfFqivtbkqM7357YmK8jN9v4vf7cF2X4uJQlfPvijrD3vLbWlbvBBcwYrYdtm2jVdV2K1vG1vm8NkxZmwZcbNurs/t8Jo7jUlIS2qF65vaUl637yN7SLthafy6b5jjOlm3hTStrt9Tm+W5Pte3+rupi/VhlaFfx+y38fq9/IhgMk5TkJz09mby8QoJBJ2reWMdudc8TFctOxTp7rDZeRWVtLtd1MQwjar6y769J2QsELJKS/LiuS1FRsMbHWLxzQGWq22aJtz229ll4bfl4y9naL+G1pePFHQzalc5bxrJMkpJ8uC4EgyFs21vZnVFPrtiHUnbuK+sHKFvP6rZxt4fXZxJ5AU9l31Gx/e/1XXjHg2kaUWXbMAwCAYtAwIdtOzt8Lgcq9Od4517b9o5br4+r6mNg6/HuEgyGd+sF32pX7Rlq0oe1Pee5eOf56On2ljpW7JxBrPKybTzxcg57Sz2zMtuz7fdVscpKVf3EewolxnexPTkxLrIzqRxLolBZlkSgciyJQOVYEoES47vfnpwYl32PyovUhMqLVJfKitSEyovUhMqLVNfeXFZq0gbf554xLiIiIiIiIiIiIiIiIiIi+xYlxkVEREREREREREREREREJKEpMS4iIiIiIiIiIiIiIiIiIglNiXEREREREREREREREREREUloSoyLiIiIiIiIiIiIiIiIiEhCU2JcREREREREREREREREREQSmhLjIiIiIiIiIiIiIiIiIiKS0JQYFxERERERERERERERERGRhKbEuIiIiIiIiIiIiIiIiIiIJDQlxkVEREREREREREREREREJKEpMS4iIiIiIiIiIiIiIiIiIglNiXEREREREREREREREREREUloSoyLiIiIiIiIiIiIiIiIiEhCU2JcREREREREREREREREREQSmhLjIiIiIiIiIiIiIiIiIiKS0JQYFxERERERERERERERERGRhKbEuIiIiIiIiIiIiIiIiIiIJDQlxkVEREREREREREREREREJKEpMS4iIiIiIiIiIiIiIiIiIglNiXEREREREREREREREREREUloSoyLiIiIiIiIiIiIiIiIiEhCU2JcREREREREREREREREREQSmhLjIiIiIiIiIiIiIiIiIiKS0JQYFxERERERERERERERERGRhKbEuIiIiIiIiIiIiIiIiIiIJDQlxkVEREREREREREREREREJKEpMS4iIiIiIiIiIiIiIiIiIglNiXEREREREREREREREREREUloSoyLiIiIiIiIiIiIiIiIiEhCU2JcREREREREREREREREREQSmhLjIiIiIiIiIiIiIiIiIiKS0JQYFxERERERERERERERERGRhKbEuIiIiIiIiIiIiIiIiIiIJDQlxkVEREREREREREREREREJKH5ajuAvZFhVH+e6swrsqdSOZZEobIsiUDlWBKByrEkguqUY5XxnWtXb0+dm6QmVF6kJlRepLpUVqQmVF6kJlRepLr25rJSk5gN13XdXReKiIiIiIiIiIiIiIiIiIhI7dJQ6iIiIiIiIiIiIiIiIiIiktCUGBcRERERERERERERERERkYSmxLiIiIiIiIiIiIiIiIiIiCQ0JcZFRERERERERERERERERCShKTEuIiIiIiIiIiIiIiIiIiIJTYlxERERERERERERERERERFJaEqMi4iIiIiIiIiIiIiIiIhIQlNiXEREREREREREREREREREEpoS4zvRxo0bGTJkCHPnzo2atnbtWvr378+UKVNqITKR6otVjm+55RY6d+5Mjx49yl+vvPJKLUYpUrlY5fiXX37h7LPPpkePHvTv35+77rqLcDhci1GKVG3bsnzzzTdHnIt79OhBhw4dOP/882s5UpH4Yp2T33nnHY455hh69uzJUUcdxUsvvVSLEYpULVY5njVrFsOHD6dHjx4MGzaMmTNn1mKEsr02bNjApZdeSu/evenXrx933nmn6oj7sF9++YVzzz2Xvn37MmDAAK677jo2btwIwHfffcfJJ59Mjx49GDx4MK+99lrEZ998802GDBlC9+7dGTFiBN98801trILsZrZtM3r0aG644Yby91RWZFubNm3iuuuuo1+/fvTp04dLL72UtWvXAiovEu3HH39k1KhR9O7dm4EDB/Kf//yHYDAIqLzIVrHaJztSPmzb5p577qF///706NGDSy65pPw8JXu3WGVlxowZnHDCCfTs2ZPBgwczbtw4HMcpn57wZcWVnWL+/PnuEUcc4bZt29adM2dOxDTbtt3Ro0e77du3d994441ailCkavHK8YknnuhOmTKlFiMTqb5Y5XjDhg1uv3793CeeeMINBoPuihUr3COPPNKdOHFiLUcrEl9ldYsyn332mdu3b1938eLFuzk6keqJVY4XLVrkduvWzf3mm29c13XdBQsWuJ06dXK/+uqrWoxUJL5Y5fiHH35wO3Xq5L766qtuKBRyv/rqK7dHjx5xz9ey5zrzzDPdq6++2i0qKnL/+OMPd+jQoe6ECRNqOyypBcXFxe6AAQPc//73v25paam7ceNG98ILL3Qvuugid9OmTW7fvn3d559/3g2FQu6XX37p9ujRw/3uu+9c13XdOXPmuD169HDnz5/vBoNB96mnnnL79evnFhUV1fJaya720EMPue3bt3evv/5613VdlRWJ6cwzz3THjBnj5uXlufn5+e5ll13m/u1vf1N5kSi2bbsDBgxwn3nmGde2bXf16tXuUUcd5Y4bN07lRcrFap/saPl45JFH3OOPP95dtWqVm5+f71555ZXuhRdeWGvrKDtHrLLy/fffu127dnU/+ugj17Ztd8mSJe6gQYPcSZMmua67b5QV3TG+E7z55ptcc801XHXVVTGnP/roozRq1IjGjRvv5shEqi9eOQ4GgyxevJjOnTvXUmQi1RevHL/11lu0bNmSiy66CL/fT7NmzZg8eTLHHHNMLUUqUrmq6hbgXfF5zTXXcNNNN9GmTZvdGJ1I9cQrx7/99hvhcBjHcXBdF8MwsCyLQCBQS5GKxBevHL/77rv07NmTk08+GZ/PR+/evTn++OM1+sFe5vfff2fevHlce+21pKSksN9++3HppZfywgsv1HZoUgtWrVpF+/btGTNmDIFAgJycHE499VS++uor3n//fbKzsxk1ahQ+n4+DDjqI448/vrysvPbaawwdOpRevXrh9/s555xzyMnJYfr06bW8VrIrzZ49m/fff58jjzyy/D2VFdnWDz/8wHfffcfdd99NZmYm6enp3HHHHVxzzTUqLxIlLy+PdevWlbeVAEzTJCUlReVFgPjtkx0tH6+99hoXXnghjRs3Jj09nZtuuolPP/2UFStW7PZ1lJ0jXllZuXIlp512GoMGDcI0TVq1asWQIUP46quvgH2jrCgxvhMMHDiQmTNncuyxx0ZNmzNnDu+88w633HJLLUQmUn3xyvEvv/xCOBzm4Ycfpn///hx11FGMHz8+YmgNkT1FvHK8cOFC2rZty80338yAAQM44ogjePvtt2nUqFEtRSpSucrqFmXuu+8+OnfuzLBhw3ZjZCLVF68cDxw4kO7du3P66afTqVMnTjvtNK644gq6du1aS5GKxBevHNu2TWpqasR7pmmybNmy3Rme7KBff/2V7OxsGjZsWP5eq1atWLVqFZs3b67FyKQ2HHDAAUycOBHLssrfmzFjBp06deLXX3+lbdu2EfO3bt2aX375BYAlS5ZUOl0Sz4YNG7jpppu4//77SUlJKX9fZUW2tXDhQlq3bs2rr77KkCFDGDhwIPfccw/169dXeZEoOTk5nHPOOdxzzz106dKFQw89lJYtW3LOOeeovAgQv32yI+UjPz+fv/76K2J6vXr1yMrKYtGiRbtoTWRXi1dWjjrqKG688cbyv0tKSvjkk0/o1KkTsG+UFSXGd4L69evj8/mi3t+wYQP//Oc/ue+++0hLS6uFyESqL145zs/Pp2/fvowePZpZs2Zx77338txzzzF58uRaiFKkcvHKcV5eHlOmTKFr16588sknjBs3jldeeYWnnnqqFqIUqVq8slxmxYoVvP3221x99dW7MSqRmolXjoPBIM2aNeOpp57iu+++48knn+SRRx7h888/r4UoRSoXrxwPGTKEzz//nBkzZhAOh1mwYAHTp0+ntLS0FqKU7VVYWBiR0ALK/y4qKqqNkGQP4bouDz74IB9//DE33XRTzLKSnJxcXk6qmi6JxXEcrr32Ws4991zat28fMU1lRbaVl5fHokWL+O2333jzzTd56623WLNmDddff73Ki0RxHIfk5GT+/e9/8+233zJt2jSWLl3Kww8/rPIiQPz2yY6Uj8LCQoCoC3+Tk5PLp8nep6q+RYCCggLGjBlDcnIy55xzDrBvlBUlxncR13W57rrrGD16tIaglr3agAEDePbZZ+nbty9+v5+uXbty9tlnaxge2asEAgG6dOnCyJEj8fv9tG/fnjPPPJN33323tkMT2S5vvPEGPXr0oEOHDrUdikiNPfLIIwQCAfr374/f7+ewww5j6NChvPLKK7Udmki19ezZk//7v/9j3LhxDBgwgEmTJjFixAgyMzNrOzSpgdTUVIqLiyPeK/tbF7fvuwoKCrj88suZOnUqzz//PO3atSMlJYWSkpKI+UpKSsrLSVXTJbE8+eSTBAIBRo8eHTVNZUW2Vfa4oJtuuon09HTq1avHlVdeyaxZs3BdV+VFIsycOZMZM2ZwxhlnEAgEaNOmDWPGjOGll17S+UUqtSPloywJum29WOUnsS1btozTTjuNcDjMs88+S3p6OrBvlBUlxneR1atXM2/ePB599FF69+5N7969WbVqFbfddhsXXXRRbYcnUm0ffPABL7/8csR7wWCQ5OTkWopIpOZatWpFMBiMeK/i85pE9jbvv/8+J5xwQm2HIbJdVq1aRSgUinjP5/Ph9/trKSKRmtu0aRNt2rRh6tSpzJ07l8cee4zVq1froui9TJs2bdi0aRPr168vf2/p0qU0atSIjIyMWoxMassff/zBSSedREFBAa+//jrt2rUDoG3btvz6668R8y5ZsoQ2bdoAXlmqbLoklv/973/MmzevvL9v2rRpTJs2jd69e6usSJTWrVvjOE5E/bfs8YQdOnRQeZEIq1evjuq/Kmsr6fwildmR8pGVlUXDhg1ZsmRJ+bR169axadOmqCG1JTHMmjWLk08+mYMPPphJkyaRlZVVPm1fKCtKjO8iTZo04fvvv2f+/PnlryZNmnDLLbfw5JNP1nZ4ItXmui533XUXs2fPxnVdvvnmG5599llOPfXU2g5NpNpOOukkFi9ezIQJE7Btm0WLFvH8888rsSh7pdzcXJYuXUqfPn1qOxSR7TJ48GCmT5/OZ599huu6zJs3j7fffpvjjz++tkMTqbbff/+dU045hV9++YVwOMz06dP5+OOPOeOMM2o7NKmBli1b0qtXL8aOHUtBQQErVqzgscceY+TIkbUdmtSCvLw8zj77bHr27MmkSZOoU6dO+bQhQ4awfv16nn76aUKhEHPmzGHq1KmcdNJJAIwcOZKpU6cyZ84cQqEQTz/9NBs2bGDIkCG1tTqyC7333nt8/fXX5f19xx13HMcddxzz589XWZEo/fv3Z7/99uOf//wnhYWFbNy4kQcffJAjjjiC4447TuVFIgwcOJB169bxxBNPYNs2K1as4PHHH+f444/X+UUqtaPlY8SIETz++OOsWLGCgoICxo4dS9++fWnevHltrpbsAt9++y1jxozhxhtv5Prrr48abn1fKCuVDzAvIvu8IUOGcOONN3LrrbeyZs0a6tWrx9///nclFGWv0qpVK55//nn+7//+j/Hjx5OcnMzpp58ec+g7kT3dn3/+CUDDhg1rORKR7XPyySdTUlLCf/7zH9atW0eTJk249dZbGTRoUG2HJlJt3bp147rrruPSSy8lNzeXAw44gCeeeEJ35OyFHn74YW6//XYOP/xwTNNk+PDhXHrppbUdltSCKVOmsGrVKt59913ee++9iGnffPMNkydP5s477+Thhx+mTp06/Otf/+LAAw8E4KCDDuKWW24pbze3bt2aCRMmkJ2dXQtrIrUpJydHZUUi+P1+nnvuOe6++26OOuooSktLGTx4MDfddBOZmZkqLxKhdevWPPnkkzz00ENMnDiRjIwMhg0bxpgxYwgEAiovEteO/v6MGTOGcDjMqFGjKCwspF+/fjz00EO1t0KyyzzxxBOEw2HuvPNO7rzzzvL3e/XqxcSJE/eJsmK4GkdWREREREREREREREREREQSmIZSFxERERERERERERERERGRhKbEuIiIiIiIiIiIiIiIiIiIJDQlxkVEREREREREREREREREJKEpMS4iIiIiIiIiIiIiIiIiIglNiXEREREREREREREREREREUloSoyLiIiIiIiIiIiIiIiIiEhCU2JcREREREREREREREREREQSmhLjIiIiIiIiIiIiIiIiIiKS0Hy1HYCIiIhU380338zUqVMBCIfDhEIhUlJSyqdPmDCB3r1711Z4IiIiIiIiIgln8ODBrFu3Dp/P6053XZf09HSOP/54rr32Wkxz591/9sQTTzB//nwmTpy405YpIiIiHsN1Xbe2gxAREZGamzJlCuPGjeOjjz6q7VBEREREREREEtbgwYO57LLLGDFiRPl7ixYt4pxzzuH000/n8ssvr8XoREREpLp0x7iIiEiC+OOPPxg7dizffPMNqampDBs2jDFjxhAIBJgyZQqvv/463bp144033sA0TcaMGUNSUhKPP/44mzdvZujQodx+++2A1+gfMWIEU6dOZe3atXTs2JHbbruN1q1bVxnHI488wpIlS0hOTmbmzJmkp6dz4403smzZMl544QXC4TDnnHMOl156KQDr16/n7rvvZvbs2RiGweDBg7nuuutIT08H4PXXX+fFF19k5cqVBINB+vbty1133UWdOnV45JFH+PXXXwkEAnzyySekpqZywgkncPXVV++6DS0iIiIiIiL7vHbt2tGnTx9++uknRo8eTdOmTZk7dy6u6zJt2jQ2btwYt40OMHXqVJ588klWrlxJo0aN+Pvf/86xxx7LI488wrx583juueeYMmUKL7/8Mu3bt2fatGmkpqZyxhlncMkll2AYRpUxvvjii0yePJlNmzbRuHFjzjrrLE4++WT+/PNPDj/8cD788EOaNWsGEPW9NelDEBER2VvoGeMiIiIJoKioiHPOOYc2bdrw6aef8uKLL/Lll1/yyCOPlM+zYMECGjZsyJw5c7j88su56667mDt3LtOnT+fpp5/m9ddf56uvviqf/5VXXuGhhx5i9uzZtGrViosvvphQKFSteGbMmMGgQYNYsGABw4YN4+qrr6agoIBZs2YxduxY/vvf/7Jy5Uocx+HSSy/FNE1mzJhRnoi/+eabAVi4cCH/+c9/uPXWW5k7dy7vvvsuv/32G88++2z5d73//vsMHDiQuXPncscddzBhwgS+/fbbnbNhRURERERERLYRCoWYO3cuc+bMYcCAAQB8+eWXvPzyy7z99tuYpllpG33u3Ln885//5Nprr2XBggXceOONXHfddSxZsiTqu7777jtSUlKYPXs2jz/+OM888wyvv/56lTGuWLGCu+66i/HjxzN//nyuu+467rjjDtauXVutdaxpH4KIiMjeQIlxERGRBPDJJ58QDAb5xz/+QVJSEo0bN+aKK67ghRdeKJ8nNTWVs88+G9M0GThwILZtc/7555OSkkKXLl1o0KABK1euLJ///PPPp0OHDiQnJ3PjjTeyevVqvv7662rF07p1a44++mgMw2DAgAHYts3FF1+M3+9n8ODBAKxatYoffviBH3/8kVtuuYX09HRycnK4/vrreeedd8jNzaVt27ZMmzaNrl27kpeXx9q1a6lTpw5r1qwp/66WLVsyfPhwLMvi0EMPpX79+vz22287Z8OKiIiIiIiIALfddhu9e/emd+/eHHTQQdxxxx2ce+65nHnmmQAccsghNGzYkMzMzCrb6G+99RZHHnkkhx56KKZpcsghh/Diiy/SsGHDqO/Nzs7mmmuuISkpiS5dunDqqafy9ttvVxmvZVm4rsvLL7/MggULOOigg/j2229p0KBBtda3pn0IIiIiewMNpS4iIpIAVq5cycaNG+nTp0/5e67rEgqF2LBhA+A1psuGWjNN79q4zMzM8vlN08RxnPK/W7RoUf7/lJQUsrOzWbduXbXiyc7OjlguQFZWVsTfjuPw559/Yts2hx56aMTnA4EAK1asoH379jz77LNMnTqV1NRU2rVrR0FBAa7rls9bv379iM/6/f6I9RARERERERHZUbfcckvEM8a3VTHhXFUbveyRZRV17do15nKbNm2K3+8v/7tx48bMmDGjynibNGnCc889x8SJE7n44ouxbZsRI0Zw7bXXVvlZqHkfgoiIyN5AiXEREZEE0KhRI5o3b857771X/l5BQQEbNmygTp06ANV6/lhFFe/KLiwsJDc3l8aNG1frs9X9rkaNGpGcnMzcuXOxLAuAYDDIihUraNGiBZMnT+aLL75g6tSp1KtXD4CLL764RushIiIiIiIisqtVbAdX1UZv3Lgxq1ativj85MmT6d69e9Ry165di+u65cv/888/adKkSZXxbNiwAdu2efTRR3Ech6+//prLL7+c/fffv3wkt4qPS8vNzY27PiIiIolCQ6mLiIgkgEGDBlFYWMjEiRMJBoNs3ryZ66+/nquuumq7G7NPPfUUv//+O8XFxdx1110ccMAB9OjRY6fG3bVrV1q0aMHdd99NYWEhJSUljB07lnPOOQfbtikoKMDn8+H3+wmHw/zvf//js88+q/azzkVERERERER2t6ra6CeeeCIzZ87k888/x3EcPvvsMx555BEyMjKilrVu3TrGjx9PKBRi4cKFvPbaa5x88slVxrBq1SrOO+88Zs+ejWma5cO05+TkULduXbKysnjnnXdwXZcff/wxIokvIiKSqHTHuIiISAJIT0/n6aef5u6772bixIk4jkO/fv14/PHHt3uZvXr1YsyYMaxatYo+ffowfvz48uHTdhafz8eTTz7JPffcw5FHHklpaSldu3blqaeeIikpifPOO4/FixczaNAgkpKS6NixI2eccQZz5szZqXGIiIiIiIiI7CxVtdF79erFPffcwz333MPKlStp2rQpDzzwAG3atIlKUNevX58///yTgQMHkpaWxhVXXMGxxx5bZQxdunTh5ptv5tZbb2Xt2rVkZGRwxhlncMwxx2AYBnfccQcPP/wwkyZNonPnzpxyyiksWLBgl2wPERGRPYXhVnxIp4iIiAgwePBgLrvsskqfnyYiIiIiIiIiu86UKVMYN24cH330UW2HIiIikhA0lLqIiIiIiIiIiIiIiIiIiCQ0DaUuIiIi1TZjxgxuuOGGuNN79erFxIkTd2NEIiIiIiIiIvueESNGsHz58rjTJ0yYQO/evXdjRCIiIns+DaUuIiIiIiIiIiIiIiIiIiIJTUOpi4iIiIiIiIiIiIiIiIhIQlNiXEREREREREREREREREREEpoS4yIiIiIiIiIiIiIiIiIiktCUGBcRERERERERERERERERkYSmxLiIiIiIiIiIiIiIiIiIiCQ0JcZFRERERERERERERERERCShKTEuIiIiIiIiIiIiIiIiIiIJTYlxERERERERERERERERERFJaEqMi4iIiIiIiIiIiIiIiIhIQlNiXEREREREREREREREREREEpoS4yIiIiIiIiIiIiIiIiIiktCUGBcRERERERERERERERERkYSmxLiIiIiIiIiIiIiIiIiIiCQ0JcZFRERERERERERERERERCShKTEuIiIsXryYq666igEDBtC5c2cGDhzIlVdeyU8//VTjZT3yyCO0a9duF0Qp+5KyclTx1bFjR/r168eYMWP49ddfd9l3//nnn7Rr144pU6bs1OXuqcdGYWEhjz32GMOGDaN79+707duX0047jVdeeYVwOBwx77brMHr0aEaPHr27QxYRERERkb3ADTfcwODBg+NO35PbE2qT7j5qk4qIyO7kq+0ARESkdv3666+ceuqpdO3alZtuuol69erx119/8fzzz3Pqqafy3HPP0b1799oOU/ZRr7zySvn/bdtm1apVPPjgg4waNYp33nmH+vXr12J0NXPyySdz8MEH13YYEVavXs25555Lbm4uo0ePplevXpSWlvLll19y5513Mm3aNB577DEyMjJifv6WW27ZzRGLiIiIiIjsPmqT7lpqk4qIyO6mxLiIyD7uqaeeIjs7m4kTJ+L3+8vfP+KIIzjmmGN47LHHGD9+fC1GKPuybS/K6NWrF40bN2bUqFG8+eab/O1vf6udwLZDo0aNaNSoUW2HUc51XS6//HKKi4t58803adKkSfm0ww47jGOOOYazzjqL22+/nXvvvTfmMlq3br27whUREREREdnt1CbdddQmFRGR2qCh1EVE9nHr168HvAZJRampqdx4440cc8wxEe9Pnz6dESNG0KNHDwYMGMDNN99MXl5e3OXbts348eM57rjj6Nq1K927d+e0005j9uzZ5fM88sgjDBkyhHHjxtGvXz+OOOIIcnNzq70Oixcv5qKLLqJnz5707NmTMWPGsGLFivLpc+fOpV27dsyePZvzzjuPbt260b9/f+65556IYbkcx2H8+PEMGTKEzp07c9RRR/Hcc89FfNfo0aO55ppruPzyy+nZs2d5I3jt2rVcddVV9O3blz59+nDzzTfz4IMPlg8bd88999C1a1fy8/Mjljd+/Hh69OhBUVFRtdd3+vTpDBs2jK5du3LggQdyzTXXsHbt2vLpgwcP5oYbboj4zJQpU2jXrh1//vkn4G3zo48+mg8++IDjjjuOLl26cMIJJ/DNN9/w7bffcvLJJ9O1a1eOO+64iH21rX//+98ceOCBUcOb3XvvvfTt25dgMEhpaSm33XYbhxxyCJ07d+boo49m8uTJ1V7fbXXu3BmAlStXlq9LrPJj2zYvvPACxx9/PF27duWwww7jvvvuo7S0NGJ577//fvn2PPHEE/nll18ippeVn7lz50a8X3HItrLtG+tVNk+sYeuqOp7K1u2TTz7h+OOPLy+Xb775ZsRyNm3axM0330z//v3p0qULp5xySqX7DWDWrFksXLiQa665JqIDokyPHj04++yzefvtt/njjz9iLqPiNjjvvPMYPnx41DxXXnklQ4cOLf97/vz5nHnmmXTr1o2+ffty/fXXs3HjxkpjFRERERGRxFed/oNtqU2qNqnapCIiUhNKjIuI7OMOO+wwVq1axWmnncYLL7zA0qVLy5PkRx99NCeeeGL5vI899hhXXXUV3bp14+GHH2bMmDHMmDGD0aNHU1JSEnP59913H48++iinnnoqEydO5Pbbbyc3N5crrrgiIhm8atUqZs6cyQMPPMCVV15JTk5OteJfvnw5p512Ghs2bODuu+/mzjvvZMWKFZx++uls2LAhYt5rrrmGXr168cQTT3D88cczefJkXn/99fLpt956Kw8//DDDhg3jiSee4Oijj2bs2LE8+uijEct599138fv9PProo5x11lkEg0HOPvtsvv76a/75z39y11138csvv0Q0tEeOHElpaSnvvfdexLLeeustjj76aFJTU6u1vgsWLOCaa67hyCOPZMKECdx4443MmTOHq6++ulqfr+ivv/7irrvu4uKLL+ahhx4iLy+Pyy+/nH/84x+ccsopPPDAAziOw1VXXRV3/55wwgnk5uZGNHhd12X69OkcffTRBAIB7rzzTmbNmsX111/PpEmTOPzww7nnnnu2+3lpy5cvB6B58+bl78UqPzfffDNjx45l8ODBPP7444waNYrnn3+eSy+9tLyMf/TRR1x++eW0adOGcePGccwxx3DttdfWOKbDDjuMV155JeJ12mmnAd5wdbFU93hat24dt99+O2eddRbjx4+nWbNm3HDDDSxduhSA0tJSzj77bD788EOuuuoqxo0bR6NGjbjgggsq7Yj47LPPME2TQYMGxZ2nrPPgo48+qnIbnHDCCfz8888sW7as/L3CwkI+/vhjTjjhBAC++uorzjnnHJKTk3nooYf45z//ybx58zjrrLPiljEREREREdm7hcPhmK9tL9Cvbv9BRWqTetQmVZtURESqR0Opi4js48444wzWrVvHpEmTuP322wHIyclh4MCBjB49mm7dugGQl5fH448/zsknnxzxDKe2bdsyatQopkyZwhlnnBG1/LI7qcuu4AVITk7m73//O4sWLaJHjx6A11C+/vrr6d+/f43iHzduHMnJyTz99NOkp6cDcNBBB3HEEUcwceJErr/++vJ5Tz75ZMaMGVM+zwcffMAnn3zCaaedxvLly3n11Vf5xz/+UX4X+MCBAzEMgyeffJIzzjijPFlvmiZ33HFHeTL79ddfZ9myZbzxxhvlV44feOCBHHHEEeXf3apVK3r06MH//ve/8kbpwoULWbp0afl2r44FCxaQlJTEhRdeSFJSEgDZ2dl8//33uK6LYRjVXlZxcTG33HILhxxyCABLly7l/vvv584772TkyJGAd8X+5ZdfzvLly+nQoUPUMnr16kWzZs2YPn16+bPKFixYwKpVq8obnvPmzaN///7lDdp+/fqRmpparYsfKl71X1JSwi+//MLYsWPJyMhg2LBhEfNVLD9Llizh9ddf58orr+SSSy4BYMCAATRo0IDrrruOTz/9lEMPPZRHH32UTp06cf/99wOUb4uyv6urTp061KlTp/zv+fPn88Ybb3DBBRdExFmmJsdTcXExd955JwcddBAALVu2ZNCgQcyaNYtWrVrxv//9j19++YVXX321/Hg95JBDGD16NPfddx9vvPFGzJj//PNPsrOzy4+bWMo6espGGqjMkCFDSE1NZfr06Vx22WUAzJw5k9LSUo4//njA2677778/Tz75JJZlAdCtWzeGDh3KG2+8wahRo6r8HhERERER2XusXLmSTp06xZ3et2/f8v9Xt/+gIrVJPWqTqk0qIiLVozvGRUSEK664gs8++4z777+fkSNHkp6eztSpUzn11FN55plnAPj2228JBoPljYkyvXv3pmnTplFDepW5//77Oeecc9i4cSPffPMNU6ZM4e233wYgFApFzNu2bdsaxz5nzhz69etHcnJy+VXn6enp9O7dmy+//DJi3m0b0Y0aNSq/6nzOnDm4rsvgwYMjrmAfPHgwpaWlLFiwoPxzzZo1i7jDe86cOey3337lSXGA9PT0qKueTzrpJObPn1/eoJsyZQrNmzend+/e1V7fPn36UFJSwvHHH8+DDz7IggULGDhwIJdddlmNkuJlevbsWf7/evXqAZHPUMvOzgZg8+bNMT9vGAbDhg1j5syZBINBAKZNm8Z+++1Hr169AK/T4bXXXuPCCy/kxRdfZOXKlYwZM6bSq8LLdOrUqfzVq1cvRo0aRWlpKY888gj169ePmLdi+Zk3bx5AVHkdOnQolmUxd+5cSkpK+PHHHzn88MMj5tn28QE1tWrVKi6//HIOOuiguHfy1/R4qrhPyp4JV1Z2Z8+eTf369enUqVN5ubVtm0GDBvHDDz/EfdSB67r4fJVfI1nV9IpSU1MZMmQI06dPL3/vnXfeoW/fvjRu3Jji4mK+++47Dj30UFzXLY91v/32o1WrVnzxxRfV/i4REREREdk71K9fn9dffz3ma9uEeU36D8qoTRpNbVK1SUVEJD7dMS4iIgBkZWVx3HHHcdxxxwHw008/cd1113HfffcxbNiw8oZMWfK0onr16kU9O7vM999/z2233cb3339PcnIyrVu3pmnTpkD0c81jLbsqmzZtYvr06RENnzIVr5YG70rzikzTLI9h06ZNABHPnapozZo1cePMzc2lbt26UZ/Zdr5jjz2WsWPH8vbbb3PBBRfw7rvvcvbZZ8dZs9h69OjB+PHjefrpp5k0aRJPPPEE9evX58ILL6zxsoCYV2Zvu52qMnz4cB577DE+/fRTDjvsMN57772I0QNuuukmGjVqxNtvv81tt91Wvh4333wzHTt2rHTZFYe69/v91K9fP+a2hsjtXVZet+2o8Pl85OTkkJ+fT15eHq7rRpWTBg0aVGOtYysqKuKSSy4hMzOTBx54ANOMfQ1iTY+nlJSU8v+XLbNi2V23bl3cuzDWrVtHVlZW1PtNmzbliy++oKSkJO4+X7FiBUDM573FMnz48PK7BRo0aMCXX35ZPiLC5s2bcRyHCRMmMGHChKjPlo2AICIiIiIiiSMQCNClS5eY09LS0iL+rkn/QUVqk26lNqnapCIiUjklxkVE9mFr1qzhpJNO4oorroh65lTHjh258sorGTNmDCtWrChvxKxfv55WrVpFzLtu3Tr222+/qOUXFBRwwQUX0K5dO6ZNm0arVq0wTZNZs2YxY8aMnbIOGRkZ9O/fn3PPPTdqWk2uLM7MzATgmWeeiWqcQ+WNsIYNG/L7779Hvb/tM87T0tI4+uijeffdd+nQoQObN29m+PDh1Y6xzMEHH8zBBx9McXExc+bM4dlnn2Xs2LF07969fNgy27YjPhPveWw7Q4sWLejevXv5s9dzc3MjhmoLBAJccsklXHLJJaxatYqPP/6Yxx57jKuvvpp333230mXH60CpSll5XbduHc2aNSt/PxQKkZubS05ODtnZ2Zimyfr16yM+W3aRRJmyO/Edx4l4v7CwMKKsuK7L9ddfz8qVK3nttdfIyMioMr6aHE/xZGRk0LJlS+67776Y0yuuf0WDBw/mxRdf5IMPPii/IGZb7733Xvm81XHggQfSsGFD3n33XRo2bIjP5+Ooo44CvPJvGAbnnHNOzAtQKna0iIiIiIjIvmVH+g/UJvWoTao2qYiIVE1DqYuI7MPq1auHz+fjxRdfpLS0NGr6smXLSEpKokWLFnTr1o1AIMDUqVMj5pk/fz6rVq2KGJK74uc3bdrEWWedRZs2bcqvKv7000+B6Ebd9ujbty9LliyhQ4cOdOnShS5dutC5c2eefvppZs6cWe3l9OnTB/Du/i5bTpcuXdi0aRMPPfRQVMN02xhWrFjBzz//XP5eaWlp+XpWNHLkSBYvXszkyZM58MADq33Vc5l77rmHkSNH4rouKSkpDBo0qPw56qtXrwa8u8D/+uuviM99/fXXNfqemho2bBiffvop06ZNo3v37rRs2RLwnsF21FFHMXnyZMC7wGDUqFEMHTo0Ksadqew5dduW13feeQfbtunVqxdJSUn06NGD999/P+Lug48++ijiM2V31ZdtX/Curl+6dGnEfA8//DAffvghDzzwAPvvv3+l8W3P8RRP3759Wb16NXXr1o0ou7Nnz2bixInlz03b1oABA+jVqxf33HMPK1eujJr+/fffM3HiRI499tjy/VkV0zQ57rjj+PDDD3nvvfc4/PDDy7dfeno6HTt2ZNmyZRFxtmnThnHjxsV9HIOIiIiIiCS+He0/UJtUbVJQm1RERKqmO8ZFRPZhlmVx6623MmbMGE466SRGjRpFq1atKC4u5osvvuCFF17giiuuKL+S+G9/+xvjxo3D7/dz+OGH8+eff/Lf//6X1q1bM2LEiKjl77///qSnp/PEE0/g8/nw+XzMmDGjfCiy4uLiHV6HSy+9lNNOO42LLrqI008/naSkJF555RU++OADHn744Wovp23btgwbNox///vfrFy5ks6dO7N8+XIefPBBmjVrVmkj7LjjjmP8+PGMGTOGK664gszMTCZPnsyGDRuiEt+9evXigAMOYN68eXGvpq7MQQcdxFNPPcUNN9zAsGHDCIVCTJw4kezsbA488EAABg0axJNPPskTTzxB9+7d+eSTT5g9e3aNv6smhg4dyl133cU777zDTTfdVP5+cnIynTp1Ki837dq1Y/ny5bz55pvlV23vCq1bt+bEE09k3LhxlJSU0K9fP37++WfGjRtHv379OPjggwH4xz/+wdlnn81ll13Gqaeeym+//cbjjz8esax27drRuHFjxo0bR0ZGBqZpMn78+IiryWfMmMHjjz/OqFGjqFu3Lt9++23EMio+jw28Z7fX9HiKZ8SIETz//POce+65XHzxxTRu3Jgvv/ySCRMmcOaZZ+L3+2N+zjRN7r//fv72t78xYsQIzj77bHr06IHjOHz55Ze88MILdOzYsXyoweoaPnw4kyZNwrKsqG35j3/8g7/97W9cffXVDBs2DNu2mTx5Mt999x2XXHJJjb5HREREREQSx472H6hNqjZpGbVJRUSkMkqMi4js4w477DBeffXV8udVb9y4kUAgQMeOHXnwwQc58sgjy+f9+9//Tr169Xj++ed57bXXyM7O5uijj+bKK6+MOeRURkYGjz32GP/3f//HFVdcQVpaGh06dOD555/nwgsvZP78+dUeDiue9u3b88ILL/Dggw9y3XXX4boubdu25dFHH+Xwww+v0bLuuusunnzySV5++WX++usv6taty7HHHsuVV14Z9wpn8IZsnzRpEnfeeSe33norPp+PYcOGkZOTw/Lly6PmP+yww1i3bh1Dhgyp8foecsgh3HfffUyePJnLLrsMwzDo1asXzz77LNnZ2QBcdNFFbNy4kcmTJxMKhTjssMO48847d2kjLzs7m0MPPZRZs2Zx7LHHRky7/fbbeeihh5g8eTLr1q2jbt26jBw5kiuuuGKXxQNw55130qJFC9544w0mTZpEgwYNGD16NGPGjCm/+6B3795MmDCBBx54gMsuu4xmzZoxduxYLr744vLlWJbFww8/zNixY/nHP/5BvXr1OPvss1m2bFn5/v34449xXZfnn3+e559/PiqWRYsWRb1X0+MpntTUVF544QXuv/9+7r33XvLz82natClXX3015513XqWfbdy4Ma+88govvfQS06ZNK7+av1WrVtxwww2MHDmyRo8kAO8ikw4dOrBmzRoGDBgQMW3gwIFMmjSJcePG/T979x0uV13nD/w9t6T3BBJAFCWgojSDIL1IQCChhAAqZdEVlIASlwSkrQiEIiBlERQFQZdFKdI7KIpICUVAlxYUjJCQAgnJTbtlfn/wy11jUHLJ3Nx7z7xez+OzueecmfOZ+XyfYT/znjmTb3zjG6mvr88nPvGJ/OQnP1nujRoAAKB6rOz7B2ZSM+lSZlIA/pVS+e+v0wIAtNlLL72UP//5z9lll11af/srSfbdd9/WT3UvVS6XM3r06GyxxRY5+eSTO6JcAAAAAACoOr4xDkCnUy6X09zc/J7H1dTUtH7KuiMtWLAgRx99dL74xS9m5MiRaW5uzm233ZY//elPmThxYpJk/vz5ufLKK/Pss8/mlVdeySWXXLLMfTQ3N+e9PqtWKpX+5TfXAQAAAACAd+cb4wB0Oo8++mgOOeSQ9zzuqKOOyte//vVVUNF7u+uuu3L55Zfn5ZdfTrlczgYbbJAjjjgi22yzTZKkqakpO+ywQ1paWnLcccdlr732Wub2O+20U1577bV/eY611lorv/rVr9rtMQAAAAAAQFEJxgHodObPn/+uv839j1ZfffUMHTp0FVTU/l544YUsWbLkXx7TrVu3fPSjH11FFQEAAAAAQHEIxgEAAAAAAAAotI7/YVYAAAAAAAAAaEeCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAotLqOLqArmj17Xsrljq2hVEoGD+7bKWrh/dPHYtDHrk8Pi0Efi0Efi0Efuz49XDlLnz8qwzqsDl53qFbWPtXK2qdaWftUs/Za/22ZwQXj70O5nE7zgtWZauH908di0MeuTw+LQR+LQR+LQR+7Pj2kM7AOq4t+U62sfaqVtU+1svapZh25/l1KHQAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKzW+Mt4OWlpY0Nze16zlKpWTRokVpbFzidyi6mNrautTU+EwKAABAJayKGZz2117vc5jBAQCApQTjFVQul/P2229m4cL5q+R8b75Zk5aWllVyLiqrZ88+6ddvUEqlUkeXAgAA0CWt6hmc9tde73OYwQEAgEQwXlFLB/I+fQamW7fu7T5w1daW0tzs6+JdSblczpIlizN//ltJkgEDBndwRQAAAF3Tqp7BaX+Vfp/jH2fw/v3N4AAAUM0E4xXS0tLcOpD36dNvlZyzrq4mTU2+Md7VdOvWPUkyf/5b6ddvYAdXAwAA0PV0xAxO+2uP9zn+fgbv23egy6oDAEAVMw1USHNzc5L/G7jgX1m6TvwOHgAAQNuZwWkLMzgAAJAIxivOpdtYEdYJAADAyjNbsSKsEwAAIBGMV53Fixdnxow3OroMAAAAKDwzOAAAQOchGK8yRx55WB5//LGVuo9Jk07JpEmnvK/bTp8+PSNHbpvp06evVA0AAADQ2ZnBAQAAOo+6ji6AVWvOnLc69PzDhg3Lvfc+2KE1AAAAwKpgBgcAAOg8fGO8inzzm0fmjTem59xzz8z3vnd2Xnjh+Xz961/N5z63Yz7/+X3yi19cnXK53Hr8tddekwMO2DsjR26XL3/5oDzxxOTWfW+99WZOOum47LHHZ7PXXp/LDTf8onXf2LGj87Of/SRf+tIXM3LktvnSl76YJ598PEkybdrr2WabzTJt2utJkldffSVf//pXM3LktjnooP3zs5/9JGPHjk6SPPnk49lmm82WeQz/+En5++67O//2b5/Prrtuny9/+aA89tgjFX/eAAAAoK3M4AAAAJ2LYLyKnH/+9zN06LBMmHB8Djnkyzn66K9lhx0+m9tuuzdnnnlebrzx+tx88y+TJHfccWuuvPLHOfnkU3P33Q9kn33G5rjjvpm3356b5J2Bea+9xuS22+7L1752VC644NzMmjWz9Vy3335LTjvt7Nx6670ZPnz9nHvumcvV09TUlAkTjs4663wkt912X7797dNz443Xr/Djefjh3+Xcc8/MN795bO6441f593//ak488dj8+c8vr+QzBQAAACvHDA4AANC5CMar1N1335EPfejD2Xff/VNXV5cPf/gj+cIXDs4vf3ltkuTOO2/LXnuNySc/uVFqamoyevTeOf/876d79+5Jks022yKf/vQWKZVK2XnnXVMul/Paa6+13v8ee+yVD3xg7fTo0SO77PK5TJ361+VqeOaZP2TGjOk56qij071796y33vr5/OcPWuHHcMMN12bvvcdmk00+ldra2my99bbZeuttc/PNN6zkswMAAACVYwYHAADoeH5jvEpNmzYtL7zwXD73uR1at7W0lFNT885nJWbPnpWhQ4ctc5sNN9y49d/9+/dv/Xd9fX2SpLm5qXXb4MGDW/9dW1u3zOXhlnrrrTczYMCAdO/eo3XbBz/4oRV+DNOnT8tTTz2Rm276v0+4Nzc3Z8SIT6/wfQAAAEB7M4MDAAB0PMF4lVp99dXzqU99Ot/73n+1bps7d04WLFjw//cPzRtvTF/mNpdddkl22WW3itWw5pprZc6cd87Zq1evJMnMmTNa99fW1iZJGhsbWwf/uXPnpH//AUmS1VZbPbvuukcOPvjQ1ttMnz699RP1AAAA0BmYwQEAADqeS6lXmW7dumX+/PnZZZfd8qc/PZN77rkzTU1NmTVrVo499pv5r/86P0my++575tZbb8xzz/0pLS0tuf32W/LLX17bOhBXwsc+tkE++tGP54ILzsnChQvz2mt/y9VX/7R1/1prrZ3a2trcd9/dSZLJkx/NE09Mbt2/55775Prrf57nnvtTkuT55/83X/nKQa3HAwAAQEcygwMAAHQevjFeZUaN2iuXXfb9PP/8/+a88/4rl176Xzn//HNSW1ubrbbaJkcffUySZJddPpd5897OqaeenNmzZ2eddT6cc8+9KAMHDqxYLaVSKWeeeW7OP/+c7LvvqAwePDibbLJpHn/8sSTJkCFDcvTRE3LllT/O+eefkxEjNsvuu++ZRYsWJkl23HHnLFy4MGec8Z288cYb6devX/bf/4sZO/aAitUIAAAA75cZHAAAoPMold/th6f4l2bNmpd/fNYaG5dk9uxpGTx4jdTXd1slddTV1aSpqWWVnGtVueOOW3PFFZfl+utv7ehS2tXS9TJkyBpZY43B77qm6DpKpWTIkL762IXpYTHoYzHoYzHoY9enhytn6fNHZXSWGbyIOtsM3l7vc1gvdGb+m0u1svapVtY+1ay91n9bZnCXUgcAAAAAAACg0ATjAAAAAAAAABSa3xinU9l999HZfffRHV0GAAAAFJ4ZHAAAqCa+MQ4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4zTJvPnz89bb73V0WUAAABA4ZnBAQAAKkcw3gk11ZTyVnM5f21ozFvN5TTVlNr1fNOnT8/Ikdtm+vTp73ns5z+/d/7yl5fbtZ4kGTly2zz99FPtfh4AAACqmxncDA4AAFSHuo4ugGUtLJVy4o1/zINTZrdu23a9IZm01yfSs1xul3MOGzYs99774AodO2fOnHap4R+taD0AAADwfpnB32EGBwAAqoFvjHciTTWlnHjTsgN5kjz40qycePOf2u1T69OmvZ5tttms9f9ef/3P84UvjMnIkdvliCO+nJdfnpIk+cIXxiRJJkw4OldffVWSZPLkR3PYYYfkc5/bIQcdtH/uuefO1vudNOmUnHPOGTn22G9m5Mjtst9+e+W6637euv+BB+7PQQftn1133T4HHjg2V17549Z922yzWZ588vHcdtvN2Wef3dPS0tK678Ybr89BB+2fJHnllb/k2GPHZ8yYPbLTTlvnoIP2y0MPGegBAAD418zgZnAAAKC6CMY7kXmNLcsN5Es9+NKszGtsedd9lXbffffk4osvy4033pHu3Xvk+9+/MElyzTW/TJKce+6FOfDAf8tLL72Yb33rP3LQQYfm9tvvz3HHnZiLLjovjz76cOt93XHHrdlvvwNy552/yoEHHpKLLz4/M2fOyOLFi3Lqqf+Z//iPY3P33b/Jt799eq6++qd57rk/LVPLZz+7SxoaGvLEE48tc5+jRu2ZJDnppGPzkY8Mz7XX3py7734gm2/+mZx33lnt/RQBAEC7qakppba2JqX2vZozVD0zuBkcAAA6m9ramtTWekOgvQjGO5F5i5pWan+ljB17QAYPHpI+ffpkp51GZurUv77rcTff/Mtss8322X77nVJbW5sNN9w4o0fvkxtuuLb1mE033Syf/vRnUldXl1Gj9kpzc3Nee+1vSZLu3bvn9ttvzuOPP5YPfejDufvuB/Lxj39imXP07NkzO++8S+666/YkyauvvpIpU17MrrvukST57ncvyJe/fHhaWloybdrr6du3X2bOnNEeTwsAALSrmppSFtbPzbMNT+T2aTfm5cX/m8X181KSkEO7MIObwQEAoLNoqluYmflb7pp+cx6c/as01L2Zcu2qmUmqid8Y70T69vjX7Xiv/ZUyaNDg1n/X1dWlXH73T8lPn/56nnzy8Xzuczu0bmtubslaa32g9e/Bg5e9ryRpaWlJ9+49cumll+eqqy7Pd75zUhoaGrLjjjvl6KMnpl+/fsucZ88998nXv/7VLFiwILfffku23nq7DBw4MElaPzH/5puz86EPfTgDBgxIuZ1+Bw4AANpLTU0pb7RMzeH3Hpa5i+e2bl+779q5dKcfpHfTwPh/c6GyzOBmcAAA6Awauy3IuU+enXv/em/rttpSbU7d8tRsMXib1DTXd2B1xSIY70T61tdk2/WG5MGXZi23b9v1hqRvfU3S0nkGztVWG5rddhuViRNPaN02a9asJO9dY0PD/MyaNTPf/vbpSZKXXnohp5xyYn72s5/kyCOPXubYj31sg3zgA2vnt7/9de69964cd9xJ//9cM/Of//mtTJp0TrbZZrsk7/xm2m9+8+sKPUIAAFg1FtTOzVH3H7lMKJ4kU+dNzXceOSWTPnN26hp7dFB1UExmcDM4AAB0tNramtzz2v3LhOJJ0lxuzkm/Pyk3jPplBmRoB1VXPC6l3onUtZQzaa9PZNv1hiyzfdv1huSMvT6Zuk4wkHfr1i0NDfOTJKNG7ZV77707jz32SFpaWjJ16l9z1FGH5Zprfvae97Nw4cJMnHh07rnnrpTL5QwZslpKpZr079//XY8fNWrv/PjHP0ipVMrmm38mSbJgQUOam5vTs2fPJMlf/vLn/OQnP06SNDY2VuLhAgDAKjFr0czMXDjzXfdNfmNyFrTMW8UVQfGZwc3gAADQ0RaU3s5V/3vlu+4rp5w7Xrk99fW1q7aoAvON8U6mZ7mc7+79icxrbMm8RU3p26MufetrUtfy7pdSW9X23HNMTjnlxOy//xfz1a8emVNOmZQf/vD7Ofnk49KjR8/svPOu+drXjnrP+xkyZLWcdtrZ+dGPLs0555yR7t2757OfHZkDDjjwXY/fZZfdcsklF+aLXzwkNTXvfJ7jgx9cJ+PGHZ1TTz0pixYtymqrDc2ee+6TSy65MC+/PCUf+9jHK/rYAQCgPZRKydtL5v7LYxY1L06/f3kE8H6Ywc3gAADQkcqllsxeOPuf7n99/usplUqrsKJiK5X9GFSbzZo1b7nf92tsXJLZs6dl8OA1Ul/fbZXUUVdXk6amzjGs0zZL18uQIWtkjTUGv+uaousolZIhQ/rqYxemh8Wgj8Wgj8Wgj203t3ZG9rl173fd17OuZ67b/Yb0ahqwyurRw5Wz9PmjMjrLDE77a6/3OawXOjP/zaVaWftUK2uff9RcvzgnPnJcHnvjsXfdf8bWZ2brQTumubnr54Httf7bMoO7lDoAAEAH61Pql5EfHPmu+77yya+kT979cscAAABA11XX1CNHf2p8akrLR7ZDew3NJkM2LUQo3lkIxgEAADpYbVOPTPjUsTl0gy+lZ907v987qMegfOvT38roD+2dliaXTQMAAICiKZfLGVb3gVy284+y7oB1kyQ1pZrs8IEd8uOdL0+vZh+UryS/MQ4AANAJ1C/pnUOHfyVjh++XxnJjupe6p3f6p7nR9fUAAACgqErNdVmvxwa5ZPsfZGHLgtSWatOz1De1TfVpcc39ihKMAwAAdBItTaX0yoDWv5tjAAYAAICia24up765d+rTu3WbdwQqz6XUAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4zTJU2d+teOLgEAAACqghkcAAAoAsF4J9Rcvyhza2fktZY/Z27tjDTXL+roktrdT396RY455hsrdOzvfvfb/Md/fL2dK0ruuefOHHTQ/u1+HgAAADqOGfxfW5Uz+Be+MLbdzwMAAFSvuo4ugGUt7vZ2Tn3s1Dz8+u9bt2215lY5efP/TPcl/TqwsvZ1yCFfXuFj3357bsrllnas5h277LJbdtllt3Y/DwAAAB3DDP7eVuUMvvvue6Spqf3PBQAAVCfBeCfSXL9ouYE8SX7/+u9z2mOn5jufPj21jT0qft7LL/9hbr/9lixcuDBrrfWBHHrov6dXr975xje+lt/97vHW4yZNOiVJcuKJp+Tyy3+YKVNeTE1NTR599OEMHDgoBx10aPbaa0ySZMGChvzgBxfnd7/7bZYsWZIRIzbL0UdPyKBBgzNt2uvZb789c8ABB+b222/JyJGfy4ABA/LUU0/k4osvyx133Jpbb70pH/3ox3PffXclKWWbbbbLhAnH55ln/pBzzz0zjY2NGTly21xzzS/Tv/+AXHXV5bn77jszf/68fOITn8z48RPzgQ+snSTZZpvNMn78hNxww7WZNWtWhg8fngkTTsi66w5PU1NTLrjg3Pz2t79Oc3NTPvShD+drXzsqG220Se6449ZcccVluf76W3PkkYdlo402yVe/emTr83HYYf+WHXf8bL74xUNy220355e/vC7Tp09LY2NjNt30Uzn++G9n4MCBFe8XAAAAK88MbgYHAACqi0updyLzW95ebiBf6vev/z7zW96u+DmffPLx3HLLjbnssqtyxx33Z9SovXLWWaelubnpPW/74IO/yYYbbpy77nogEyeekAsuOCePP/5YkuSMM07N3/42NZdf/rNce+3N6dWrT044YWLK5XLr7RcsWJBbb70nhx8+brn7fvbZpzNw4MDcdNNdOeecC3L//ffkgQfuz6c+tVkmTDg+Q4cOy733PpghQ1bLZZddkt///sFceOEluemmO/OJT2yYb37zqCxevLj1/u67755cfPFlufHGO9K9e498//sXJknuvvuO/PGPz+Tqq6/PLbfck4033jTnnXf2cvWMHr137r77jrS0vPPJ9VdffSUvvfRCPve5PfK///vHXHDBOZkw4Vu54477c/XV12Xq1L/m+ut/3rZmAAAAsMqYwf+PGRwAAKgGgvFOZH7j/JXa/35069Yt8+a9nVtu+WVefPGFjB69d2699d7U1r73xQTWXXe9fP7zB6Wuri6bb/6ZbL/9Trn77jvy1ltv5oEH7s/48RMycOCg9OrVK0cffUyee+5PeeGF51tvv9tue6S+vj59+/Zd7r67d++eQw75curq6vLxj38iw4evl6lT/7rcceVyOTfddH2++tWjsuaaa6V79+459NCvpKmpMQ8//LvW48aOPSCDBw9Jnz59stNOI1vvq3v37pk27bXcdtvN+etfX81hhx2Rq666Zrnz7LjjZ7NgwYI8+eQ7n96//fZbsuWW22TQoMFZd93h+dnPrs0GG3wyb7/9dmbNmpkBAwZm5swZ790AAAAAOoQZ/P+YwQEAgGrgUuqdSJ/6Pu+9v7my5/zkJzfK6ad/N9df//P8z//8ND169MjYsZ/Phhtu/J63XXvttZf5e+jQYXnppRcybdrrSZLDDz90mf21tXWZNu219O/fP0kyZMhq//S+Bw4clFKptMxtl35S/O/NmfNWFi5cmJNP/lZqav7v+MbGxkybNq3170GDBrf+u66urvX30Xbeedc0NjbmtttuzmWXfT8DBw7KIYd8KXvvPXaZ83Tv3iO77PK53HXX7dl00xG55547c+yxJyZJampqc9111+See+5Kz569Mnz48CxY0LDMJ/MBAADoXMzg/8cMDgAAVAPBeCfSp6Zftlpzq/z+XS7lttWaW6VPTb+KD+XTp0/PoEGD8r3vXZzGxsY8/vijOfHEY3PQQYcmeWe4ra+vT5LMnTsn/fsPaL3tzJkzl7mvadNez9Chw7L66kOTJFdffX0GDx7Suv8vf/lz1lxzrbz55uwkWWbofr/69x+Qbt2653vfuzif/OSGrdv/+tdXMmTI6u95+7/+9dV89KMfz267jcrixYvyq1/dl0mTTslGG2263LGjR++TceO+ku233zGlUilbbLFlkuQXv7g6jz32aH7605+3Dv/HHvvNlX5sAAAAtB8zeNuZwQEAgK7MpdQ7kdrGHjl58//MVmtutcz2rdbcKidv/u3UNvao+Dmff/5POeaYr+ell15MfX19Bg58Z6jcdNMRqa2tzX333Z0kmTz50TzxxORlbvunPz2bu+++I83NzXn44Yfyu9/9JnvssWeGDFktW221TS688LzMnTsnTU1Nueqqy3PYYYdk/vx5K11zt27dsmjRojQ1NaWmpiajRu2ZH/zgvzJjxhtpaWnJnXfeloMPPiB/+9vyl337Rw899GBOOGFipk17Pd2790j//gNSW1ubPn2W/+bAeuutnw99aJ1ceOF52W23UamtrU2SNDQ0pK6uLnV19Wlqasrdd9+RRx/9fRobG1f6sQIAANA+zOArxgwOAAAUhW+MdzLdl/TLdz59eua3vJ35jfPTp75P+tT0S+2Syg/kSbLDDp/N1Kl/zbe+9R+ZO3dOBg4cnG984z+y6aYjcvTRE3LllT/O+eefkxEjNsvuu++ZRYsWtt52vfXWz4MP/ibnn39OBg8enJNPPjWf/ORGSZKTTjo1P/jBf+VLXzowDQ3z8+EPr5vzzrs4gwcPab3M2/u1ySYjMnDgwOy22475wQ9+kiOPHJ8rrrgsRx55WObOnZs111wrp59+dtZf/2PveV/77ff5zJo1I1/72pfT0DA/w4atmVNPPbP1E/f/aPTovXPuuWdmjz32bN32hS8clJdfnpKxY0enW7duWX/9j2XMmP3zxBOPrdTjBAAAoH2Zwd+bGRwAACiKUtmPMLXZrFnz8o/PWmPjksyePS2DB6+R+vpuq6SOurqaNDUt/5tfq8Lll/8wTz31RC6++LIOOX9Xt3S9DBmyRtZYY/C7rim6jlIpGTKkrz52YXpYDPpYDPpYDPrY9enhyln6/FEZnWUG70jVMoO31/sc1bZe6Fr8N5dqZe1Trax9qll7rf+2zOAupQ4AAAAAAABAoQnGAQAAAAAAACg0vzHO+/Lv//7Vji4BAAAAqoIZHAAAYOX5xjgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcbJ48eLMmPFGR5cBAAAAhWcGBwAA6BiC8U6oR9Oi9J7zRnr+7eX0njsjPZoWtev5jjzysDz++GMVua8nn3w822yzWZJk+vTpGTly20yfPv1f3mZFj6uEo446PJdf/sN2Pw8AAABdgxm8/ZjBAQCAzqSuowtgWX0WvZ0Zp3w7Cx56qHVbr623zuqnfCfze/Rrl3POmfNWu9zvsGHDcu+9D1bsOAAAAKgkMzgAAED1EIx3Ij2aFi03kCfJgoceyoxTvp1Bp5+ZRXU9KnrOb37zyLzxxvSce+6Zueaan6WhoSEbbbRJHnnkoRx00KHZZ5+xufjiC/LUU09k1qyZ6dOnb8aM2S+HHPLlJMmsWbNyzjmT8tRTT6Z//wHZeeddWu972rTXs99+e+a6627J//7vH3PWWactc+6FCxfm3/7t3zNq1F6tx62xxpqZPn1aLrnkojz55OOpqanJiBGfzpFHjs+QIUPy5JOP54wzvpPRo/fOjTden8WLF+dTnxqRE074dnr37pPGxsZcdtkl+f3vH8yMGTPSvXv3fPazIzN+/MSUSqVlzl8ul3P99b/IL395bd5668185CPD841vHJOPfezjFX2OAQAA6HzM4GZwAACguriUeidSO3/ucgP5Ugseeii18+dW/Jznn//9DB06LBMmHJ9vfvPYzJjxRtZZ58O57bb7MmbMfrn00ovz+uuv50c/+mnuvffBjB8/IZdddkn+9repSZJvf/v41NbW5aab7sjFF/8wjzzy7vV/9rO75N57H2z935gx+2fttT+YAw744jLHNTU1Zfz4I1NTU5Of//zGXH319SmXyznuuG+mqakpSTJ9+rTMnDkzv/jFjfnRj67KH//4bH75y+uTJNde+z955JGHcuGFP8i99/42Z511Xm666YY88cTk5Wr65S+vy89//t857bSzc9tt92X33Udn/PhxefPN2ZV8igEAAOiEzOBmcAAAoLoIxjuRlvnzV2p/peyxx56pq6tLr1698+//fnhOO+3M9O7dOzNmvJFu3bonSWbNmpnp06fl6aefyhFHfD29evXO0KHD8uUvH/6e93/DDdfm9ttvybnnXpR+/fovs+/pp5/KtGmvZeLE49OnT5/07ds3xx57QqZMeTHPP/9c63Ff+tJX0r17j3zgA2vnU5/aLFOnvpokGT16n1x44aUZPHhwZs2alcWLF6dXr96ZOXPGcnXceON1OfjgL2X48PVSV1eXUaP2yjrrfDh3333nyjx9AAAAdAFmcDM4AABQXVxKvROp6dNnpfZXypAhq7X++6233syFF56XF154PmuuuWY++tENkiQtLS2tg+7QocNaj19rrQ/8y/v+zW9+nR/84L9y/vmXvOuxb745O/37D0jv3v/3WHv16p1+/fpn+vTXM2jQ4CTJ4MFDWvfX1dWlXC4nSRYtWpjzz/9unnrqyay++upZf/2PpVwut+7/e9OmvZ7vf/+C/OAH/9W6rampyWXcAAAAqoAZ3AwOAABUF8F4J9Lcp396bb31u17KrdfWW6e5T/93uVXl/f3vgJ188rey9dbb5bzz/it1dXWZO3dObr31xiTJaqsNTZK8/vprWWedDydJZsxY/lPhSz377NM57bSTc9JJ38knP7nhux6zxhprZu7cOWlomN86mM+fPz9z587J4MFD3nW4/ntnnz0p/fr1y80335Xu3bunpaUlu+2247seu9pqQ/OVr3w1O++8a+u2117723KfoAcAAKB4zOBmcAAAoLq4lHonsqiuR1Y/5TvptfXWy2zvtfXWWf0738miuh7tct5u3bpl/j+5RNz8+fPTvXv31NbW5q233sr555+T5J1PdQ8bNiybb/6Z/Nd/nZ+33347s2fPyhVXXPau9/Pqq6/kuOP+I4cffmR22OGz/7SWj31sg6yzzkdyzjlnZv78+Zk/f37OPffMrLXWB7Lhhhu/52NpaJifbt26pba2NgsWNOT7378wDQ0NaWxsXO7YPffcJ1dddXleffWVJMmjjz6cgw/eP08//eR7ngcAAICuzQxuBgcAAKqLb4x3MvN79Mug08/MavPnpmX+/NT06ZPmPv0zv50G8iQZNWqvXHbZ99O3b7/l9p1wwrdz0UXn5ec/vzp9+/bNzjvvkvXX/2hefnlKNt/8MznllEk577yzMnbs6PTu3Tu77z46//u/f1zufq6++qrMnz8vP/3pFfnxj3+QcrklSbLRRptmwoRvtR5XV1eX7373/Fx88QX5whfGpLFxSTbbbPOcf/4lqat77+U6fvzEfPe7k7LbbjumV6/e2WqrbbLFFlvlz3+estyxBxzwxSTlHHfcf2T27FlZbbXV8s1vHpttttm+Dc8eAAAAXZUZ3AwOAABUj1L5va6LxXJmzZqXf3zWGhuXZPbsaRk8eI3U13dbJXXU1dWkqalllZyLylq6XoYMWSNrrDH4XdcUXUeplAwZ0lcfuzA9LAZ9LAZ9LAZ97Pr0cOUsff6ojM4yg9P+2ut9DuuFzsx/c6lW1j7VytqnmrXX+m/LDO5S6gAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGK6xcLnd0CXQB1gkAAMDKM1uxIqwTAAAgEYxXTG1tbZJkyZLFHVwJXcHSdVJbW9fBlQAAAHQ9ZnDawgwOAAAkiYmgQmpqatOzZ5/Mn/9WkqRbt+4plUrtes6WllKam33quSspl8tZsmRx5s9/Kz179klNjc+mAAAAtFVHzOC0v0q/z2EGBwAA/p5gvIL69RuUJK2DeXurqalJS0vLKjkXldWzZ5/W9QIAAEDbreoZnPbXXu9zmMEBAIBEMF5RpVIp/fsPTt++A9Pc3NTO50oGDuydt95qiJ/K6lpqa+t8Sh0AAGAlrcoZnPbXXu9zmMEBAIClBOPtoKamJjU13dr1HKVS0qNHj9TXNwrGAQAAqFqrYgan/XmfAwAAaG8+MgsAAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKF1SDA+Z86cHHvssdliiy3y6U9/OuPGjcuMGTOSJE8//XT222+/bLrpptlpp51y3XXXLXPbG2+8MSNHjswmm2ySMWPG5Kmnnmrd19zcnLPPPjtbbbVVNt100xxxxBGt95sks2fPzrhx47LZZptliy22yKRJk9LU1LRqHjQAAAB0ADM4AAAAdFAw/vWvfz0LFizIvffem1//+tepra3NySefnLlz5+bwww/P3nvvncmTJ2fSpEk588wz88wzzyRJHn300Zx22mk566yzMnny5Oy555454ogjsnDhwiTJpZdemoceeig33HBDHnzwwfTo0SMnnXRS63nHjx+fXr165cEHH8z111+fhx9+OFdeeWVHPAUAAACwSpjBAQAAoAOC8T/+8Y95+umnc9ZZZ6Vfv37p06dPTjvttEyYMCH33HNPBgwYkAMPPDB1dXXZcsstM3r06Fx99dVJkuuuuy577LFHRowYkfr6+hx66KEZOHBg7rjjjtb9hx12WNZYY4306dMnJ554Yn77299m6tSpefXVV/PYY49l4sSJ6dmzZ9Zee+2MGzeu9b4BAACgaMzgAAAA8I66VX3CZ555JsOHD8+1116ba665JgsXLsy2226b4447Li+99FLWX3/9ZY4fPnx4rr/++iTJlClTsu+++y63//nnn8+8efMyffr0ZW4/ZMiQ9O/fPy+88EKSZMCAARk6dGjr/nXXXTevv/563n777fTr12+FH0Op1OaHXXFLa+gMtfD+6WMx6GPXp4fFoI/FoI/FoI9dnx6unM70vJnB6Sq87lCtrH2qlbVPtbL2qWbttf7bcn+rPBifO3duXnjhhXzyk5/MjTfemEWLFuXYY4/NcccdlyFDhqRnz57LHN+jR48sWLAgSdLQ0PBP9zc0NCRJevXqtdz+pfv+8bZL/16wYEGbhvLBg/uu8LHtrTPVwvunj8Wgj12fHhaDPhaDPhaDPnZ9etj1mcHpavSbamXtU62sfaqVtU8168j1v8qD8W7duiVJTjzxxHTv3j19+vTJ+PHjs//++2fMmDFZtGjRMscvWrQovXv3TvLOEP1u+wcOHNg6YC/9rbN/vH25XF5u39K/l97/ipo9e17K5TbdpOJKpXcWTmeohfdPH4tBH7s+PSwGfSwGfSwGfez69HDlLH3+OgMzOF2F1x2qlbVPtbL2qVbWPtWsvdZ/W2bwVR6MDx8+PC0tLWlsbEz37t2TJC0tLUmSj3/84/mf//mfZY6fMmVK1ltvvSTJeuutl5deemm5/dttt1369++foUOHZsqUKa2Xcps5c2bmzJmT9ddfPy0tLZkzZ05mzZqVIUOGJElefvnlDBs2LH37tu0Ni3I5neYFqzPVwvunj8Wgj12fHhaDPhaDPhaDPnZ9etj1mcHpavSbamXtU62sfaqVtU8168j1X7OqT7jVVltl7bXXzgknnJCGhoa8+eabOf/887Pzzjtn1KhRmTVrVq688so0NjbmkUceya233tr6m2Zjx47NrbfemkceeSSNjY258sorM3v27IwcOTJJMmbMmFx66aWZOnVq5s+fnzPOOCObb755PvjBD2adddbJiBEjcsYZZ2T+/PmZOnVqLrnkkowdO3ZVPwUAAACwSpjBAQAA4B2lcnnVZ/JvvPFGzjrrrEyePDmLFy/OTjvtlBNPPDH9+vXLs88+m0mTJuXFF1/MoEGDMm7cuIwZM6b1tjfffHMuvfTSvPHGGxk+fHhOOumkbLzxxkmSxsbGXHjhhbnlllvS0NCQLbbYIqeddloGDx6cJJk1a1ZOPfXUPProo6mpqcnee++dCRMmpLa2tk31z5rV8Ze4KJWSIUP6dopaeP/0sRj0sevTw2LQx2LQx2LQx65PD1fO0uevszCD0xV43aFaWftUK2ufamXtU83aa/23ZQbvkGC8q+sML1hePItBH4tBH7s+PSwGfSwGfSwGfez69HDldLZgvKuzDquD1x2qlbVPtbL2qVbWPtWsMwTjq/xS6gAAAAAAAACwKgnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjACynVOroCgAAAAAAqoP3Y2HVqOvoAgDoHGpqSllQOzczF83IvCVv5wN91k7vUr/UNnXv6NIAAAAAAApl6fuxsxbNzNtL5matPh9In5p+qW3s0dGlQWEJxgFIqTZ5rekv+cZ9X8/sRbNbt4/+8OgctfHRqV/SqwOrAwAAAAAojlJNMr35rznq/iMza+Gs1u27rbNbxm/yH6lf0rsDq4Picil1ALKgZk4Ov++wZULxJLn1L7fm5r/cmFofowIAAAAAqIiGmrk5/L7DlgnFk+TOV+7MdVN+kZr6DioMCk4wDlDlampK+d83/5SGxoZ33f/fz/0sDaW3V3FVAAAAAADF9OKcF/L2knd/z/WaF65JQ3nuKq4IqoNgHKDK1dSU8srbr/7T/W8veTtNLY2rsCIAAAAAgOL667y//tN9DY0NaSwvWYXVQPUQjANUuZaWcjYYtME/3T+019DUl7qtwooAAAAAAIrrYwM/+k/3De4xON1K3VdhNVA9BOMAVa6lpZyP9PtIhvUe9q77j9z4qPQq91/FVQEAAAAAFNMH+6yTtfqs9a77jthoXHrH+7HQHgTjAKRnc/9c9tkfZZPVNmnd1ru+d44ZMSGfWX2rNDe3dFxxAAAAAAAF0qulX37w2csyYvUR/7etrlfGbzo+266xQ5qbyh1YHRRXXUcXAEDHa2kpp295SL671fcyv/ntLGlZnL51fdM7/dPSWOro8gAAAAAACqOlpZw+LQNz5mfOSUP57SxuXpw+9X3Tp+z9WGhPgnEAkiTlcjl1jT0yID3e2dCU+J44AAAAAEDllctJXVOP9F/6fmyj92OhvbmUOgAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQuuwYPyOO+7IBhtskE033bT1fxMnTkySPP3009lvv/2y6aabZqeddsp11123zG1vvPHGjBw5MptssknGjBmTp556qnVfc3Nzzj777Gy11VbZdNNNc8QRR2TGjBmt+2fPnp1x48Zls802yxZbbJFJkyalqalp1TxoAAAAWMXM3wAAANCBwfizzz6bvfbaK0899VTr/84555zMnTs3hx9+ePbee+9Mnjw5kyZNyplnnplnnnkmSfLoo4/mtNNOy1lnnZXJkydnzz33zBFHHJGFCxcmSS699NI89NBDueGGG/Lggw+mR48eOemkk1rPO378+PTq1SsPPvhgrr/++jz88MO58sorO+IpAAAAgHZn/gYAAIAODsY/+clPLrf9nnvuyYABA3LggQemrq4uW265ZUaPHp2rr746SXLddddljz32yIgRI1JfX59DDz00AwcOzB133NG6/7DDDssaa6yRPn365MQTT8xvf/vbTJ06Na+++moee+yxTJw4MT179szaa6+dcePGtd43AAAAFI35GwAAADooGG9pacmf/vSnPPDAA9lxxx2z3Xbb5eSTT87cuXPz0ksvZf3111/m+OHDh+f5559PkkyZMuWf7p83b16mT5++zP4hQ4akf//+eeGFF/LSSy9lwIABGTp0aOv+ddddN6+//nrefvvtdnzEAAAAsOqZvwEAAOAddR1x0jfffDMbbLBBdt1111x00UV56623ctxxx2XixIlZbbXV0rNnz2WO79GjRxYsWJAkaWho+Kf7GxoakiS9evVabv/Sff9426V/L1iwIP369Vuh+kulFXyg7WhpDZ2hFt4/fSwGfez69LAY9LEY9LEY9LHr08OV05met64+fyed6/mk/XjdoVpZ+1Qra59qZe1Tzdpr/bfl/jokGB8yZMgyl0/r2bNnJk6cmP333z9jxozJokWLljl+0aJF6d27d+ux77Z/4MCBrUP20t87+8fbl8vl5fYt/Xvp/a+IwYP7rvCx7a0z1cL7p4/FoI9dnx4Wgz4Wgz4Wgz52fXrY9XX1+TuxDquNflOtrH2qlbVPtbL2qWYduf47JBh//vnnc9ttt+WYY45J6f/H+EuWLElNTU022mijXHXVVcscP2XKlKy33npJkvXWWy8vvfTScvu322679O/fP0OHDl3mcm8zZ87MnDlzsv7666elpSVz5szJrFmzMmTIkCTJyy+/nGHDhqVv3xVvwuzZ81Iuv++HXxGl0jsLpzPUwvunj8Wgj12fHhaDPhaDPhaDPnZ9erhylj5/nUFXn7+TzjGD0/687lCtrH2qlbVPtbL2qWbttf7bMoN3SDA+YMCAXH311enfv3++9KUvZcaMGTnnnHOyzz77ZNddd815552XK6+8MgceeGCeeOKJ3HrrrbnkkkuSJGPHjs2RRx6Z3XbbLSNGjMjVV1+d2bNnZ+TIkUmSMWPG5NJLL82GG26YgQMH5owzzsjmm2+eD37wg0mSESNG5Iwzzsipp56at956K5dccknGjh3bpvrL5XSaF6zOVAvvnz4Wgz52fXpYDPpYDPpYDPrY9elh19fV5+/EOqw2+k21svapVtY+1crap5p15Povlcsdc+rHHnss3/ve9/Liiy+me/fu2WOPPTJx4sR07949zz77bCZNmpQXX3wxgwYNyrhx4zJmzJjW295888259NJL88Ybb2T48OE56aSTsvHGGydJGhsbc+GFF+aWW25JQ0NDtthii5x22mkZPHhwkmTWrFk59dRT8+ijj6ampiZ77713JkyYkNra2hWufdasjv8kT6mUDBnSt1PUwvunj8Wgj12fHhaDPhaDPhaDPnZ9erhylj5/nUVXnr/fuR/rsBp43aFaWftUK2ufamXtU83aa/23ZQbvsGC8K+sML1hePItBH4tBH7s+PSwGfSwGfSwGfez69HDldLZgvKuzDquD1x2qlbVPtbL2qVbWPtWsMwTjNZU7LQAAAAAAAAB0PoJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGh1HV0AAADAqlJTU0pdXW2Schobm1Mud3RFAABAEf397LFkSXNHlwNABOMAAECVWFI/P3+e93LueOX29Kjtkb3W3Turd1sj9U09O7o0AACgIEqlZFHdvLw494Xc/erd6detX/b6yF4ZXL966pp6dHR5AFVNMA4AABTekm7zc9xDx+bpmX9o3Xb9S9dn//X3z79//KupbxSOAwAAK29x/bwc/cDX8+KcF1u3/fyFa3LYhodnvw9/XjgO0IH8xjgAAFBodXU1uf9v9y0Tii917YvX5vWFU1Mqrfq6AACAYqmpS6576dplQvGlfvTsZXmzaWYHVAXAUoJxAACg0Brydn7+wjX/dP+1L/0itfWScQAAYOUsyLxc99J1/3T/HX+5PfX1tauwIgD+nmAcAAAotHLKWdi08J/un79kflrKLauwIgAAoJBK/3r2eHvJ2ym5XBVAhxGMAwAAhdYzvbPDB3b4p/v3+PColFp8awMAAFg53co9s+1a2/7T/bt8aNc0NTWvwooA+HuCcQAAoNDKTTU55OP/lr71fZfbt06/dbLx4E3S3Owb4wAAwMqpba7PkRsflR61PZbb94lBn8hH+q6blpZyB1QGQCIYBwAAqkC/lsH5792uzuiPjE6vul4Z2H1g/v0T/55Ld/pBejT16+jyAACAAiiXk0Globl692sy8kO7pGddzwzuMThHbDwu5213fro39enoEgGqWl1HFwAAANDeWlqSvi1D8s0Nj80RnzwypZTSM33TsuSd3yAHAACohHJzKYNKQ/OtTU7K4k0WpFQupVf6pnlJTB4AHUwwDgAAVI/G2vTIO98Qd/F0AACgPZTLSamxrnX28KviAJ2DS6kDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGiCcQAAAAAAAAAKTTAOAAAAAAAAQKEJxgEAAAAAAAAoNME4AAAAAAAAAIUmGAcAAAAAAACg0ATjAAAAAAAAABSaYBwAAAAAAACAQhOMAwAAAAAAAFBognEAAAAAAAAACk0wDgAAAAAAAEChCcYBAAAAAAAAKDTBOAAAAAAAAACFJhgHAAAAAAAAoNAE4wAAAAAAAAAUmmAcAAAAAAAAgEITjAMAAAAAAABQaIJxAAAAAAAAAApNMA4AAAAAAABAoQnGAQAAAAAAACg0wTgAAAAAAAAAhSYYBwAAAAAAAKDQBOMAAAAAAAAAFJpgHAAAAAAAAIBC69BgvLm5OQcffHC+9a1vtW57+umns99++2XTTTfNTjvtlOuuu26Z29x4440ZOXJkNtlkk4wZMyZPPfXUMvd39tlnZ6uttsqmm26aI444IjNmzGjdP3v27IwbNy6bbbZZtthii0yaNClNTU3t/0ABAACgg5nBAQAAqGYdGoxffPHFefzxx1v/njt3bg4//PDsvffemTx5ciZNmpQzzzwzzzzzTJLk0UcfzWmnnZazzjorkydPzp577pkjjjgiCxcuTJJceumleeihh3LDDTfkwQcfTI8ePXLSSSe13v/48ePTq1evPPjgg7n++uvz8MMP58orr1yljxkAAAA6ghkcAACAatZhwfjDDz+ce+65J7vsskvrtnvuuScDBgzIgQcemLq6umy55ZYZPXp0rr766iTJddddlz322CMjRoxIfX19Dj300AwcODB33HFH6/7DDjssa6yxRvr06ZMTTzwxv/3tbzN16tS8+uqreeyxxzJx4sT07Nkza6+9dsaNG9d63wAAAFBUZnAAAACqXV1HnHT27Nk58cQTc8kllyzzafGXXnop66+//jLHDh8+PNdff32SZMqUKdl3332X2//8889n3rx5mT59+jK3HzJkSPr3758XXnghSTJgwIAMHTq0df+6666b119/PW+//Xb69eu3wvWXSit8aLtZWkNnqIX3Tx+LQR+7Pj0sBn0sBn0sBn3s+vRw5XS2580MTlfgdYdqZe1Trax9qpW1TzVrr/Xflvtb5cF4S0tLJk6cmC996Uv52Mc+tsy+hoaG9OzZc5ltPXr0yIIFC95zf0NDQ5KkV69ey+1fuu8fb7v07wULFrRpKB88uO8KH9veOlMtvH/6WAz62PXpYTHoYzHoYzHoY9enh12fGZyuRr+pVtY+1crap1pZ+1Szjlz/qzwY/+EPf5hu3brl4IMPXm5fz549M2/evGW2LVq0KL17927dv2jRouX2Dxw4sHXAXvpbZ/94+3K5vNy+pX8vvf8VNXv2vJTLbbpJxZVK7yyczlAL758+FoM+dn16WAz6WAz6WAz62PXp4cpZ+vx1BmZwugqvO1Qra59qZe1Trax9qll7rf+2zOCrPBi/+eabM2PGjGy22WZJ0jpk33fffTn22GPz0EMPLXP8lClTst566yVJ1ltvvbz00kvL7d9uu+3Sv3//DB06NFOmTGm9lNvMmTMzZ86crL/++mlpacmcOXMya9asDBkyJEny8ssvZ9iwYenbt21vWJTL6TQvWJ2pFt4/fSwGfez69LAY9LEY9LEY9LHr08OuzwxOV6PfVCtrn2pl7VOtrH2qWUeu/5pVfcK77rorTz75ZB5//PE8/vjjGTVqVEaNGpXHH388I0eOzKxZs3LllVemsbExjzzySG699dbW3zQbO3Zsbr311jzyyCNpbGzMlVdemdmzZ2fkyJFJkjFjxuTSSy/N1KlTM3/+/JxxxhnZfPPN88EPfjDrrLNORowYkTPOOCPz58/P1KlTc8kll2Ts2LGr+ikAAACAVcIMDgAAAO9Y5d8Y/1cGDhyYK664IpMmTcpFF12UQYMG5aSTTspnPvOZJMmWW26Zb3/72znllFPyxhtvZPjw4fnRj36UAQMGJEmOPPLINDU15cADD0xDQ0O22GKLXHDBBa33f9FFF+XUU0/NZz/72dTU1GTvvffOuHHjOuCRAgAAQMcygwMAAFBNSuWyizW01axZHf/bD6VSMmRI305RC++fPhaDPnZ9elgM+lgM+lgM+tj16eHKWfr8URnWYXXwukO1svapVtY+1crap5q11/pvywy+yi+lDgAAAAAAAACrkmAcAAAAAAAAgEJr02+Mv/XWW7npppvy8MMPZ9q0aamtrc0aa6yRbbfdNrvvvnvr74wBAAAAK8cMDgAAAJWzQt8Yb25uzkUXXZSdd945DzzwQDbYYIMceOCB2W+//bL++uvnjjvuyK677pqLL744TU1N7V0zAAAAFJYZHAAAACpvhb4xfsghh2TzzTfPnXfemdVXX/1dj5k+fXp+9rOf5eCDD84111xT0SIBAACgWpjBAQAAoPJWKBg/66yzsvbaa//LY4YNG5aJEydm6tSpFSkMAAAAqpEZHAAAACpvhS6l/o8D+ezZs/PMM89k2rRp73ksAAAAsOLM4AAAAFB5K/SN8aXmz5+fY489Nr/61a+SJKVSKVtuuWUuuOCC9OvXr10KBAAAgGpkBgcAAIDKWaFvjC913nnnZcGCBbn99tvz9NNP5+abb05LS0vOOeec9qoPAAAAqpIZHAAAACqnTcH4r3/965x33nlZd911071796y//vo555xzct9997VXfQAAAFCVzOAAAABQOW0KxhcuXJi+ffsus61fv35paWmpaFEAAABQ7czgAAAAUDltCsY33njjXHjhhSmXy0mScrmcCy+8MBtuuGG7FAcAAADVygwOAAAAlVPXloOPOeaYHHLIIbnllluy1lpr5bXXXkupVMpPfvKT9qoPAAAAqpIZHAAAACqnTcH42muvnbvvvjv3339/Zs+enbXWWivbb799+vTp0171AQAAQFUygwMAAEDltCkYHzVqVG655Zbsu+++7VUPAAAAEDM4AAAAVFKbfmM8SRYuXNgedQAAAAD/wAwOAAAAldGmb4xvscUW2W+//bLddttl9dVXX2bfUUcdVdHCAAAAoJqZwQEAAKBy2hSM/+1vf8vaa6+dv/zlL/nLX/7Sur1UKlW8MAAAAKhmZnAAAAConDYF4z/72c/aqw4AAADg75jBAQAAoHLaFIwnySOPPJI33ngj5XI5SdLY2JgXXnghJ510UsWLAwAAgGpmBgcAAIDKaFMwfvrpp+fnP/95evfunSRpbm5OQ0NDtt1223YpDgAAAKqVGRwAAAAqp03B+J133pn//u//zsKFC3PLLbfkjDPOyNlnn50FCxa0V30AAABQlczgAAAAUDltCsYXLlyYTTbZJDNnzsyf/vSnlEqlHHXUUdl9993bqz4AAACoSmZwAAAAqJyathw8bNiwzJ49O6uttlqmT5+exsbG9OjRI/Pnz2+v+gAAAKAqmcEBAACgctr0jfHtt98+hx56aK666qp8+tOfzgknnJDu3btnnXXWaafyAAAAoDqZwQEAAKBy2vSN8f/4j//IXnvtlfr6+vznf/5n3nrrrUyZMiWnn356e9UHAAAAVckMDgAAAJXTpm+M33ffffnKV76SJOnbt29+/OMfJ0l+8YtfZIMNNqh8dQAAAFClzOAAAABQOe8ZjC9cuDBvvfVWkuSEE07IJptsknK53Lp/3rx5Oeuss3LAAQe0X5UAAABQBczgAAAA0D7eMxifP39+9thjjyxatCjlcjk77bRT675yuZxSqZSdd965XYsEAACAamAGBwAAgPbxnsH4aqutlvvuuy8LFy7M6NGjc9ttty2zv3v37hkyZEi7FQgAAADVwgwOAAAA7WOFfmN88ODBSZIjjzwya6211nL7L7jggowfP76ihQEAAEA1MoMDAABA5b1nMP7mm2/m5ZdfTpJcfPHF7/r7ZldddZWhHAAAAFaSGRwAAADax3sG4926dcs3vvGNvPXWW0mSgw46aLn9BxxwQPtUBwAAAFXEDA4AAADt4z2D8T59+uThhx9Oknzuc5/LXXfd1e5FAQAAQDUygwMAAED7qGnLwUsH8rlz5+aPf/xjWlpasmTJknYpDAAAAKqZGRwAAAAqp03B+IIFC3LMMcdkiy22yEEHHZRXXnklI0eOzJ///Of2qg8AAACqkhkcAAAAKqdNwfjZZ5+dBQsW5M4770x9fX3WXnvt7Ljjjpk0aVJ71QcAAABVyQwOAAAAlfOevzH+937961/n1ltvTf/+/VMqlVJfX59vfetb2W677dqrPgAAAKhKZnAAAAConDZ9Y7ylpSXdunVLkpTL5eW2AQAAAJVhBgcAAIDKaVMw/pnPfCannnpqFi5cmFKplCS54IILsvnmm7dLcQAAAFCtzOAAAABQOW0Kxo8//vi8/PLL+fSnP5158+Zl0003zeTJk3Pccce1V30AAABQlczgAAAAUDkr9BvjLS0tqampyeDBg/OLX/wizz77bF577bUMGzYsG220UWpra9u7TgAAAKgKZnAAAACovBUKxrfffvtss802GTlyZLbZZptstNFG2Wijjdq7NgAAAKg6ZnAAAACovBW6lPpdd92VbbfdNrfcckt22mmnjB8/PrfffnsaGhrauz4AAACoKmZwAAAAqLwV+sZ47969s/vuu2f33XfPkiVL8rvf/S733HNPzjzzzHziE5/IyJEjM3bs2PauFQAAAArPDA4AAACVt0LB+N/r1q1bdtppp+y0005pbm7Oo48+mnvvvddQDgAAABVmBgcAAIDKaFMwftNNN73r9s022ywPP/xwNtlkk/Ts2bMSdQEAAEBVM4MDAABA5bQpGP/FL36RP/zhDxk8eHDWWmutTJs2LTNnzsywYcOycOHClEqlXHHFFfn4xz/eXvUCAABAVTCDAwAAQOW0KRj/6Ec/mk9/+tMZP358ampqkiQXX3xx5s6dmxNPPDFXXHFFzjzzzPz0pz9tl2IBAADoGmpra9LQUs7cRU1pbilnQM/69KktpaW5paNL6zLM4AAAwKpSKiVLUsq8xpYsWNKc/j3r0reuJjHDUSBtCsbvu+++/PrXv24dyJPkq1/9anbccceceOKJOeSQQ3LJJZdUvEgAAAC6jlJNKVPmLMr4X/whr89dlCTp37M+p+75iWzxwf6pbSl3cIVdgxkcAABYFUqlUua1JMdc/3Se/OucJEl9bSkHbvGhHL71OqlvEY5TDDXvfciypk6duszfr732WpqampIkixYtSn19fWUqAwAAoEua01TOwVc81hqKJ8nchY05+hd/yNS3F6dUKnVgdV2LGRwAAGhvC5P8+08fbw3Fk6SxuZwrf/9Krp48NaW6NseJ0Cm16RvjY8eOzeGHH56vfvWrWXPNNfP666/n8ssvz5gxYzJ79uwce+yx2X777durVgAAADq5uvqa3PTo1CxuevdvFFxw30s5b8yGqS371vh7MYMDAACrwhvzFufPsxredd9Pfv9K9vvUWunt880UQJuC8W984xvp1atXfvzjH2fatGlZc801c8ABB+Tf/u3f8sc//jEf+chHMn78+HYqFQAAgM6uuZw887e5/3T/izPmZ0lLOT1XYU1dlRkcAABobzU1pfxl9oJ/un/BkuYsbGpJ73rfGqfra1MwXi6Xc/jhh+fwww9fZvuLL76YjTbaKBtttFFFiwMAAKBrqU0pHx3WN799ada77l9nUK/U1yTxE3XvyQwOAAC0t3K5nA8M+OcfXe5eV5MedbVJXPWLrq9NH++YMGFCyv9wubsf/ehHGTt2bEWLAgAAoGtqamrO2E99ILU1736dvW98dr10W8U1dVVmcAAAoL2Vy8laA3pkzf493nX/5zdfO33rXUedYmhTMP7Xv/41J598cpJk6tSp+eIXv5grrrgiZ599drsUBwAAQNczsFtNfnzIiPTvWd+6rXtdTU4ZvUGGD+6ZlhbfNFgRZnAAAGBV6F1KrvrS5ll3td7LbB+10Ro5fOsPp9zkkl8UQ5supX7FFVfkS1/6Ur72ta/lscceyzbbbJOLL744gwYNaq/6AAAA6GJKLeVsuHqf3DJuq8xuWJKmlnJW79stvWtrkmZvqKwoMzgAALAqtLSUM6i+lCv/bbPMXdSU+YubMqR39/Spr0ltixmO4mjTN8b79++fK664ItOmTcvmm2+eiy66yEAOAADAcsrNLemVctbuXZ8P9+2W3olQvI3M4AAAwKrS0lJOj3I5Q7vXZt1+3dO/NkJxCmeFvjF+8MEHp1Ra9vcDfvOb3+QLX/hC6uvfuTTeT3/608pXBwAAAFXGDA4AAACVt0LB+BZbbLHctpEjR1a8GAAAAKh2ZnAAAACovBUKxo844ojU1tau0B02Nzev8LEAAADAsszgAAAAUHkr9BvjBx54YB5++OH3PO63v/1tDjzwwJUuCgAAAKqVGRwAAAAqb4W+MX7OOefk+OOPz+mnn55Ro0Zl0003zdChQ9PS0pIZM2bkiSeeyF133ZX+/fvnu9/9bnvXDAAAAIVlBgcAAIDKW6FgfO21185///d/54EHHsg111yTyy67LAsXLkyS9OzZM9tss00mTJiQHXbYoT1rBQAAgMIzgwMAAEDlrVAwvtQOO+yQHXbYIeVyOW+99VZqamoyYMCAdioNAAAAqpcZHAAAACqnTcH4UqVSKYMGDap0LQAAAMA/MIMDAADAyqvp6AIAAAAAAAAAoD0JxgEAAAAAAAAoNME4AAAAAAAAAIXW5mB8yZIluffee3PllVdm4cKFef7559ujLgAAAKh6ZnAAAACojLq2HPzXv/41X/7yl9PY2Ji3334722+/ffbdd99cfPHF2XHHHdurRgAAAKg6ZnAAAAConDZ9Y3zSpEkZM2ZMHnjggdTV1eXDH/5wTj/99Fx00UXtVR8AAABUJTM4AAAAVE6bgvE//OEP+cpXvpJSqZRSqZQk2WuvvTJ16tR2KQ4AAACqlRkcAAAAKqdNwXjfvn0za9asZbbNnDkz/fv3r2hRAAAAUO3M4AAAAFA5bQrGR48enaOOOioPPfRQWlpa8swzz2TChAnZY4892qs+AAAAqEpmcAAAAKicurYcPG7cuCxatChHHXVUFi5cmEMOOSRjx47NUUcd1V71AQAAQFUygwMAAEDltCkYT5Ljjjsuxx13XN58880MHDiw9XfOAAAAgMoygwMAAEBltOlS6ttss03OOOOMvPjiixk0aJCBHAAAANqJGRwAAAAqp03B+He/+93MnDkz++23X/bbb7/84he/SENDQ3vVBgAAAFXLDA4AAACV06ZgfPvtt8/555+fBx98MPvss09uvPHGbLvttjn++OPbqz4AAACoSmZwAAAAqJw2/8Z4kvTr1y/bbbdd3n777cyYMSOPPPJIpesCAAAAYgYHAACASmhTMD5//vzceeeduemmm/LMM89k++23z7e//e1su+227VUfAAAAVCUzOAAAAFROm4LxrbfeOsOGDcu+++6bCy+8MEOGDGmvugAAAKCqmcEBAACgctoUjP/whz/MZz7zmfaqBQAAAPj/zOAAAABQOSsUjN92220ZNWpUpk+fnptuuuldj9l7770rWBYAAABUJzM4AAAAVN4KBeM/+MEPMmrUqFx00UXvur9UKhnKAQAAoALM4AAAAFB5K/yN8ST51a9+1a7FAAAAQLUzgwMAAEDlrVAwPnny5H+5v1QqZbPNNqtIQQAAAFDNzOAAAABQeSsUjB988MH/cn+pVMpzzz1XkYIAAACgmpnBAQAAoPJWKBh//vnn27sOAAAAIGZwAAAAaA8rFIwvNXfu3DzwwAOZMWNGVl999eywww7p379/e9UGAAAAVcsMDgAAAJWzwsH4TTfdlFNOOSXNzc3p379/Zs+ene7du+fkk0/Ovvvu2541AgAAQFUxgwMAAEBlrVAw/uSTT+Y73/lOjj/++Oyzzz7p1q1bFi1alOuuuy6nn3561llnnYwYMaK9awUAAIDCM4MDAABA5a1QMH755Zdn/PjxOeCAA1q39ejRIwcffHCamppy+eWXG8oBAACgAszgAAAAUHk1K3LQ008//U8v1bbXXnvlqaeeqmhRAAAAUK3M4AAAAFB5KxSMNzQ0pGfPnu+6r3///lm8eHFFiwIAAIBqZQYHAACAyluhYHz11VfPc8899677nnvuuQwbNqyiRQEAAEC1MoMDAABA5a1QML7LLrvku9/9bpqbm5fZvnjx4px99tnZbbfd2qU4AAAAqDZmcAAAAKi8uhU56Gtf+1r233//7L333tltt92y2mqr5bXXXssdd9yRnj175rDDDmvvOgEAAKAqmMEBAACg8lYoGO/du3euueaaXHzxxbn++uszY8aMrL766tl1111z1FFHpUePHu1dJwAAAFQFMzgAAABU3goF40nSr1+/nHDCCTnhhBPasx4AAACoemZwAAAAqKwV+o1xAAAAAAAAAOiqBOMAAAAAAAAAFJpgHAAAAAAAAIBCE4wDAAAAAAAAUGhtDsYfeuihfO1rX8uYMWMyc+bMnH322WlqamqP2gAAAKCqmcEBAACgMtoUjN96662ZOHFiPvrRj+bVV19NkvzqV7/K9773vXYpDgAAAKqVGRwAAAAqp03B+GWXXZZLLrkk3/zmN1NTU5PVVlstP/zhD3Pbbbe1V30AAABQlczgAAAAUDltCsanT5+ejTfeOElSKpWSJB/60IeyYMGCylcGAAAAVcwMDgAAAJXTpmB8nXXWyf3337/Mtt///vf50Ic+VNGiAAAAoNqZwQEAAKBy6tpy8De/+c2MGzcun/3sZ7N48eKccsopue2223Leeee1V30AAABQlczgAAAAUDlt+sb4VlttlZ///Ofp169ftthii7S0tOSKK67I9ttv3171AQAAQFUygwMAAEDltOkb40nysY99LN/+9rfboxYAAADg75jBAQAAoDLaFIy/8cYbufTSS/PKK6+kpaVlmX0//elPK1oYAAAAVDMzOAAAAFROm4Lx448/PrNmzcqOO+6Y+vr69qoJAAAAqp4ZHAAAACqnTcH4s88+m7vvvjuDBg1a6RM//PDD+d73vpeXX345PXv2zOc+97lMnDgxPXr0yNNPP53TTz89U6ZMycCBA3PEEUdkv/32a73tjTfemEsuuSQzZ87MRz7ykZx88snZdNNNkyTNzc0599xzc/PNN2fhwoX5zGc+k+985ztZffXVkySzZ8/OySefnMceeyy1tbXZc889c9xxx6Wurs1XlQcAAIB2U6kZ3PwNAAAASU1bDu7bt2+6deu20id9880389WvfjVf+MIX8vjjj+fGG2/MY489lssuuyxz587N4Ycfnr333juTJ0/OpEmTcuaZZ+aZZ55Jkjz66KM57bTTctZZZ2Xy5MnZc889c8QRR2ThwoVJkksvvTQPPfRQbrjhhjz44IPp0aNHTjrppNZzjx8/Pr169cqDDz6Y66+/Pg8//HCuvPLKlX5MAAAAUEmVmMHN3wAAAPCONgXj48aNy/HHH59nnnkmr7/++jL/a4tBgwbl97//fcaMGZNSqZQ5c+Zk8eLFGTRoUO65554MGDAgBx54YOrq6rLllltm9OjRufrqq5Mk1113XfbYY4+MGDEi9fX1OfTQQzNw4MDccccdrfsPO+ywrLHGGunTp09OPPHE/Pa3v83UqVPz6quv5rHHHsvEiRPTs2fPrL322hk3blzrfQMAAEBnUYkZ3PwNAAAA72jT9cuWfvL73nvvTZKUSqWUy+WUSqU899xzbTpxnz59kiTbb7993njjjWy22WYZM2ZMLrjggqy//vrLHDt8+PBcf/31SZIpU6Zk3333XW7/888/n3nz5mX69OnL3H7IkCHp379/XnjhhSTJgAEDMnTo0Nb96667bl5//fW8/fbb6devX5seAwAAALSXSs3g5m8AAABoYzB+//33V7yAe+65J3Pnzs2ECRPyjW98I0OHDk3Pnj2XOaZHjx5ZsGBBkqShoeGf7m9oaEiS9OrVa7n9S/f9422X/r1gwYIVHsxLpRV8cO1oaQ2doRbeP30sBn3s+vSwGPSxGPSxGPSx69PDlVOp563SM3hXnL8T67BaeN2hWln7VCtrn2pl7VPN2mv9t+X+2hSMr7XWWmloaMhvfvObvPbaa1l99dWz4447rtQnvXv06JEePXpk4sSJ2W+//XLwwQdn3rx5yxyzaNGi9O7dO8k7g/SiRYuW2z9w4MDWIXvp75394+3L5fJy+5b+vfT+V8TgwX1X+Nj21plq4f3Tx2LQx65PD4tBH4tBH4tBH7s+PexYlZ7Bu+L8nViH1Ua/qVbWPtXK2qdaWftUs45c/20Kxl999dUceuihaWxszJprrpnXX389Z599dq666qqst956K3w/Tz75ZE444YTccsst6datW5JkyZIlqa+vz/Dhw/PQQw8tc/yUKVNa73+99dbLSy+9tNz+7bbbLv3798/QoUMzZcqU1su5zZw5M3PmzMn666+flpaWzJkzJ7NmzcqQIUOSJC+//HKGDRuWvn1XvAmzZ89LubzCh7eLUumdhdMZauH908di0MeuTw+LQR+LQR+LQR+7Pj1cOUufv5VViRm8q8/fSeeYwWl/XneoVtY+1crap1pZ+1Sz9lr/bZnB2xSMn3nmmfnc5z6XiRMnpqamJi0tLTnnnHNy1lln5fLLL1/h+/noRz+aRYsW5bzzzssxxxyTmTNn5uyzz87YsWOz66675rzzzsuVV16ZAw88ME888URuvfXWXHLJJUmSsWPH5sgjj8xuu+2WESNG5Oqrr87s2bMzcuTIJMmYMWNy6aWXZsMNN8zAgQNzxhlnZPPNN88HP/jBJMmIESNyxhln5NRTT81bb72VSy65JGPHjm3L05ByOZ3mBasz1cL7p4/FoI9dnx4Wgz4Wgz4Wgz52fXrYsSoxg3f1+TuxDquNflOtrH2qlbVPtbL2qWYduf5L5fKKn3rLLbfMb37zm9ZPmSfvXCZtm222yeOPP96mE0+ZMiVnnHFGnn322fTt2zejR4/OkUcemW7duuXZZ5/NpEmT8uKLL2bQoEEZN25cxowZ03rbm2++OZdeemneeOONDB8+PCeddFI23njjJEljY2MuvPDC3HLLLWloaMgWW2yR0047LYMHD06SzJo1K6eeemoeffTR1NTUZO+9986ECRNSW1u7wrXPmtXxn+QplZIhQ/p2ilp4//SxGPSx69PDYtDHYtDHYtDHrk8PV87S529lVWoG78rz9zv3Yx1WA687VCtrn2pl7VOtrH2qWXut/7bM4G0KxrfZZpvccsstGTRoUOu2WbNmZZ999smDDz7Y9kq7qM7wguXFsxj0sRj0sevTw2LQx2LQx2LQx65PD1dOpYJxM/g7rMPq4HWHamXtU62sfaqVtU816wzBeE1b7njHHXfMMccckz//+c9ZsmRJXn755UycODE77rjj+yoUAAAAeHdmcAAAAKicNgXjxxxzTJqamrL77rtn4403zqhRo9KtW7dMmDChveoDAACAqmQGBwAAgMqpa8vBAwYMyM9+9rNMnTo1s2fPzlprrZXVVlutvWoDAACAqmUGBwAAgMpZoWD8iSeeyIgRIzJ58uRltr/yyit55ZVXkiSf/vSnK14cAAAAVBszOAAAAFTeCgXjhx12WJ588skcfPDB77q/VCrlueeeq2hhAAAAUI3M4AAAAFB5KxSMP/nkk0mS559/vl2LAQAAgGpnBgcAAIDKq2nLwccdd1xef/315baPHj26YgUBAAAAZnAAAACopDYF4zfffHP233//PPvss8ts/9vf/lbRogAAAKDamcEBAACgctoUjPfs2TNHHXVUDj300Nx///2t20ulUsULAwAAgGpmBgcAAIDKaVMwXiqV8vnPfz5nn312Jk6cmJ/+9Ket2wEAAIDKMYMDAABA5dS9nxvtvPPOueKKK3LEEUfk9ddfT48ePSpdFwAAABAzOAAAAFRCm74xXi6XW/+9ySab5H/+539y77335s0336x4YQAAAFDNzOAAAABQOW36xvhPfvKTZf7+8Ic/nGuvvTY///nPK1oUAAAAVDszOAAAAFROm4LxxsbGTJ48ebntm2++ecUKAgAAAMzgAAAAUEltCsYPPvjg5bbV1NRkjTXWyP3331+xogAAAKDamcEBAACgctoUjD///PPL/P3mm2/m+9//ftZaa62KFgUAAADVzgwOAAAAlVOzMjceNGhQJk6cmKuuuqpS9QAAAADvwgwOAAAA799KBeNJMnfu3CxevLgStQAAAAD/ghkcAAAA3p82XUr9+OOPX+bvxsbGPPHEE9lqq60qWhQAAABUOzM4AAAAVE6bgvF/1L179xx88ME54IADKlUPAAAA8C7M4AAAAPD+tSkYP/PMM9urDgAAAODvmMEBAACgclYoGL/44ovf85ijjjpqpYsBAACAamcGBwAAgMpboWD80UcfTZIsWrQozz77bDbYYIN84AMfyBtvvJGnn346W2+9dbsWCQAAANXCDA4AAACVt0LB+M9+9rMkybe+9a2MGTMmX/jCF1r33XjjjbnnnnvapzoAAACoMmZwAAAAqLyathx8zz335IADDlhm25577plHHnmkokUBAABAtTODAwAAQOW0KRgfNGhQJk+evMy23/3ud1l99dUrWhQAAABUOzM4AAAAVM4KXUp9qa9+9as57LDDsuuuu2bNNdfM1KlTc9999+Xss89ur/oAAACgKpnBAQAAoHLaFIzvt99++cAHPpBbbrklf/zjHzNs2LBceeWV+dSnPtVe9QEAAEBVMoMDAABA5bQpGE+SLbfcMuuvv35ee+21rLbaalljjTXaoy4AAACoemZwAAAAqIw2BePz58/Pcccdl1/96let27bccstccMEF6devX8WLAwAAgGplBgcAAIDKqWnLweedd14aGhpy22235Q9/+ENuvvnmtLS05Jxzzmmv+gAAAKAqmcEBAACgctoUjP/617/Oeeedl3XXXTfdu3fP+uuvn3POOSf33Xdfe9UHAAAAVckMDgAAAJXTpmB84cKF6du37zLb+vXrl5aWlooWBQAAANXODA4AAACV06ZgfOONN86FF16YcrmcJCmXy7nwwguz4YYbtktxAAAAUK3M4AAAAFA5dW05+JhjjskhhxySW265JWuttVZee+21lEql/OQnP2mv+gAAAKAqmcEBAACgctoUjK+99tq5++67c//992f27NlZa621sv3226dPnz7tVR8AAABUJTM4AAAAVE6bgvFRo0bllltuyb777tte9QAAAAAxgwMAAEAltek3xpNk4cKF7VEHAAAA8A/M4AAAAFAZbfrG+BZbbJH9/h979x0nV1X/f/x97r3Tt296SEinBggJhEDoBFCKdFCkKE2aooKo4E+kinxtqKB0FFAEBATpHQKE3kJJoSQhIaRtLzNz7/39cZMlm5nZlt2d3dnX8/HI45GdM3PnM/ecW8753HvukUdqt91205AhQ1qVnXXWWd0aGAAAAAAAAxl9cAAAAAAAuk+nEuNLlizRqFGj9Mknn+iTTz5ped0Y0+2BAQAAAAAwkNEHBwAAAACg+3QqMf6Pf/yjp+IAAAAAAADroQ8OAAAAAED36XBi/M9//rPmzp2rmTNn6thjj+3JmAAAAAAAGNDogwMAAAAA0L2sjrzpN7/5je644w6FQiFdffXVuu6663o6LgAAAAAABiT64AAAAAAAdL8OJcYffPBB3Xrrrbr66qt19dVX64EHHujpuAAAAAAAGJDogwMAAAAA0P06lBivra3VxIkTJUlTp07V8uXLezQoAAAAAAAGKvrgAAAAAAB0vw4lxi3rq7c5TocfSw4AAAAAADqJPjgAAAAAAN2vQ4lx3/d7Og4AAAAAACD64AAAAAAA9IQOXXqeTqd13333tfydSqVa/S1JhxxySDeGBQAAAADAwEQfHAAAAACA7tehxPigQYN09dVXt/xdXl7e6m9jDJ1yAAAAAAC6AX1wAAAAAAC6X4cS40899VRPxwEAAAAAAEQfHAAAAACAntChZ4wDAAAAAAAAAAAAANBfkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFzcl3AAAAAMBAYDm+GlQnyVfMJOSn7HyHBAAAAPQIYyTPSavZb5CRUVwlctN+vsMCAAADHIlxAAAAoAcZY9QUqta/59+p+xfer7SX1qxNZ+nELb+jYrdSnscAIQAAAAqHsX2t0Ze69q1r9eLS2SoKFenoScfo62MOUDhZlO/wAADAAEZiHAAAAOhBjU61TnvyFC2uXdzy2j3z79GTi57UbfvfrrhXnsfoAAAAgO5jjLTaX65jH/6WmtwmSVJ9ql5Xv/VHPfv5M7py56sUTpEcBwAA+cEzxgEAAIAeYtuWXlk+p1VSfJ2q5ir9e96dspyBfce4ZRnZNt0SAACAQuA5KV395h9bkuLre3vF21pU/5mMMXmIrH22bcm2+2ZsAACgezACBQAAAPSQtJXUI589nLP8qcVPqVF1vRhR3+HbadU7qzV79dN65Iv79aUWKxVqzHdYAAAA2AjNatQLS1/IWf74oscVCvWtIem006TV1jI9uvwBPb3iMdU6q+TZqXyHBQAAegBTqQMAAAA9xJalmBPLWR5zYjID8FpVz07p1TUv6cLZF8j13ZbX9xq1l86f+jOFkok8RgcAAICuMjKKOlHVp+qzlheHiuX3oQmTUqEG/W3utfrPgntaXjMyOm/aTzRrxP6y05E8RgcAALrbwBuFAwAAAHqJn7Z1zKRv5iw/ZrNvKq7iXoyob6jRGv38hZ+1SopLwR30Ty55XI5DNwUAAKA/ivlFOmzCYTnL9x+zv1IpN2d5b7JtS2+tfqNVUlySfPn6zWtXakXqizxFBgAAegojTgAAAEAP8X1fY4rG6cBxB2aUTR0yVbsMn6l02stDZPkTCtl65NOH5Sv7rUK3vn+r6lXTy1EBAACgO3hpo29tdqzGlo7NKDtt8vdUblfmIarsmkydbp57U87yf8+7U06IZ44DAFBImEodAAAA6EGhVFxnTz5HR048Svcu+I+SblIHjTtYY4vHKZwsynd4vc4Yo6X1n+csX9W0Sr4ZWBcLAAAAFJJoqlTX7PFXfVD1vh759GGVRcp16PhDVRkaIjsdzXd4LVy5Wt20Omf58sblcuWKe8sAACgcJMYBAACAHhZKxTXamaBzJ/9ckq902pOX6kMPV+xFrutq5ohd9eDHD2Yt33bQtgr5PMsRAACgv/J9X5FUsbYv3kk7TNlZRlIy6UrpfEfWWkQxTRk8RY9+9mjW8l2G7yLbd5QWF20CAFAouNwNAAAA6AW+LyWTaSWTrjxvYCbFJcl1fW1Tua2GxodmlBkZ/XD7H8lx+86dRAAAAOgaz/OVSrpBUrwPMmlHp0w+VY6Vee9YaaRUe2yy14B77BEAAIWOxDgAAACAXhV3S3XDrBu116i9ZJmgSzK2dKyu2+d6DQuNku8P3AsHAAAA0HsqzVDdvO8t2rxi85bXdho+Q7fse6uKvYo8RgYAAHoCU6kDAAAA6FWe56vIr9DPt/+lfjjlR3J9VzETV9QvkuuSFAcAAEDv8F1Lo5zx+uOuf1aj1yDLWIopIceNyPW5WxwAgEJDYhwAAABAr/N9yUqFlNBXd+K4GrhJcdu21OD68oxkS4pZ4iIBAACAXuB5vkJeXCHFW17jLAwoELalxrX9qphtJJcLXoCBjsQ4AAAAAORRyrL0/Cdr9Men5mvx6gZNHFKs8/adpK2GFckZwM+jBwAAAICusCyjGk/661ML9N+3l8mXrwMmD9eZe0xQmcNFyMBAxjPGAQAAACBPPMvotlcX60d3va3PVjXI86WPltfq5H+8rqfnr5Jl02UDAAAAgM6o86SjrntZd762RI0pV00pT/e88bmO/NtLqnHzHR2AfGKUBQAAAADypN719bfnPs5adsXDH6qOOxkAAAAAoMNsx9KD7y7TitrmjLJV9Und+9bnshxSY8BAxdYPAAAAAHmyrLpJbo7p0mub06pqTPVyRAAAAADQfzW5vh59f3nO8sfeX64mLkAGBqy8JMY//PBDfec739GOO+6oXXbZRT/5yU+0evVqSdLbb7+tI488UlOmTNFee+2lu+66q9Vn7733Xs2aNUvbbbedDjvsML355pstZa7r6sorr9TOO++sKVOm6PTTT9eXX37ZUr5q1SqdccYZmjZtmqZPn67LLrtM6XS6d340AAAAAGwgGrLbLA8xlTq6AX1wAAAADBS2MUpEnJzlibAjy/RiQAD6lF4fZWlqatLJJ5+sKVOm6IUXXtCDDz6oqqoq/fznP1d1dbVOPfVUHXLIIXr11Vd12WWX6YorrtA777wjSZozZ44uueQS/frXv9arr76qgw8+WKeffroaGxslSddee61mz56te+65R88//7yi0aguvPDClu8+55xzFI/H9fzzz+vuu+/WSy+9pFtuuaW3VwEAAAAASJIGJ8Iqj4eylo0fXKSSSNuJc6A99MEBAAAwkDjy9d2dx+Qs/+4uYxTuvXAA9DG9nhhfunSpNt98c5155pkKh8MqLy/X0UcfrVdffVWPPfaYysrKdOyxx8pxHM2YMUMHHXSQbr/9dknSXXfdpQMOOEBTp05VKBTSiSeeqPLycj300EMt5aeccoqGDx+uoqIiXXDBBXruuee0ePFiffbZZ3rllVd03nnnKRaLadSoUTrjjDNalg0AAAAAvS1uSX89dntFNnjGXUnU0dVHb6sYdzJgI9EHBwAAwEDieb62GFqkg7YZnlG2/1ZDte3IUnk5HmcFoPDlnk+ih4wbN0433HBDq9ceffRRbbXVVpo/f74mTZrUqmzChAm6++67JUkLFizQ4YcfnlH+4Ycfqra2Vl988UWrzw8aNEilpaX66KOPJEllZWUaOnRoS/n48eO1dOlS1dTUqKSkpFt/JwAAAAC0x/d8jS+L6uHvz9RTH63QB8tqNHV0uXYeX6liSwzYYKPRBwcAAMBAE/F9/XTfSTpx5zG6762l8n1f39h2hIaXRBT2vHyHByCPej0xvj7f9/WHP/xBTz/9tG677Tb9/e9/VywWa/WeaDSqhoYGSVJ9fX3O8vr6eklSPB7PKF9XtuFn1/3d0NDQqU656QN3bayLoS/Egq6jHgsD9dj/UYeFgXosDNRjYaAeO8n3VWJJR0weKmvb4XJdT67ryffztw6pw43TV9cbfXD0Zex3MFDR9jFQ0fbR0yLyNaY4pHP3HCdJSqdd+b4v5bnN0fYxkPVU++/M8vKWGK+rq9PPfvYzzZ07V7fddps222wzxWIx1dbWtnpfU1OTEomEpKAT3dTUlFFeXl7e0sFe96yzDT/v+35G2bq/1y2/oyorizv1/p7Ul2JB11GPhYF67P+ow8JAPRYG6rEwUI/9H3VYOOiDo7+gvjFQ0fYxUNH2MVDR9jGQ5bP95yUxvmjRIp1yyikaMWKE7r77blVUVEiSJk2apNmzZ7d674IFCzRx4kRJ0sSJEzV//vyM8t12202lpaUaOnSoFixY0DKV24oVK1RVVaVJkybJ8zxVVVVp5cqVGjRokCRp4cKFGjZsmIqLO1cBq1bVys/zjIbGBA2nL8SCrqMeCwP12P9Rh4WBeiwM1GNhoB77P+pw46xbf30FfXD0B+x3MFDR9jFQ0fYxUNH2MZD1VPvvTB+81xPj1dXVOuGEE7TTTjvpsssuk2VZLWWzZs3SVVddpVtuuUXHHnusXn/9dT3wwAO65pprJElHHHGEzjzzTH3ta1/T1KlTdfvtt2vVqlWaNWuWJOmwww7Ttddeq8mTJ6u8vFyXX365dtxxR40ePVqSNHXqVF1++eW6+OKLtWbNGl1zzTU64ogjOv0bfF99ZofVl2JB11GPhYF67P+ow8JAPRYG6rEwUI/9H3XY/9EHR39DfWOgou1joKLtY6Ci7WMgy2f7N77fu199880369e//rVisZjMBpO+v/nmm3r33Xd12WWXad68eaqoqNAZZ5yhww47rOU9999/v6699lotX75cEyZM0IUXXqhtt91WkpRKpfTHP/5R//3vf1VfX6/p06frkksuUWVlpSRp5cqVuvjiizVnzhxZlqVDDjlE5557rmzb7tRvWLky/1fyGCMNGlTcJ2JB11GPhYF67P+ow8JAPRYG6rEwUI/9H3W4cdatv76APjj6C/Y7GKho+xioaPsYqGj7GMh6qv13pg/e64nxQtAXdljsPAsD9VgYqMf+jzosDNRjYaAeCwP12P9RhxunLyXGCwHtcGBgv4OBiraPgYq2j4GKto+BrC8kxq323wIAAAAAAAAAAAAAQP9FYhwAAAAAAAAAAAAAUNBIjAMAAABAJzkhIyvkyXHoUgEAAAAoHLZtBX2dsJEx+Y4GALqXk+8AAAAAAKC/cO2kVrtf6u7379LS+qWaMXyG9txkLyXccnkeD4gDAAAA0D8ZY9TkVOv1Fa/r0c8eUXG4WEdNPFrDo5solI7lOzwA6BYkxgEAAACgAzw7rRdWPK1fvfyrltdmL52t6969Trfsd6vKzTD5PslxAAAAAP1PY6hKpz15qhbXLm557aFPHtK3NvuWTtzsJDkkxwEUAOb9AwAAAIAOaDQ1unTOpRmv1yRrdNmcS5V2GvMQFQAAAABsHMvxdfuHt7VKiq9zx0d3aGXqyzxEBQDdj8Q4AAAAALTDsozmrp4r13ezlr/+5etq8Op6OSoAAAAA2HgNpk73L7w/Z/n/PnlQoZDdixEBQM8gMQ4AAAAA7TBGanab23yP53u9FA0AAAAAdCdfSTeZs7Qp3SRjejEcAOghJMYBAAAAoB2u62vyoMk5y8eVjlPcTvRiRAAAAADQPSJ+XHuO2jNn+f5jvqZUiguBAfR/JMYBAAAAoAOKTZmOnnR0xuu2sXXh9F8o6hXlISoAAAAA2Dgm7ej0bU5XIpR5se+0odM0KrGpfN/PQ2QA0L2cfAcAAAAAAP2BnY7opC1O0dSh03TT3Bu1omGFthuynU6bfJoqreFyXQaKAAAAAPRPpRqif37tX7r1g1v07JJnlQgl9K3NjtXuI/dQOMnsWAAKA4lxAAAAAOggJxXX9LJdte3MKXLlKqKoLDck3813ZAAAAADQdb4rFalSZ235Q520xakyshT3i+UmmUIdQOEgMQ4AAAAAneC6nkKKK7T2b+4TBwAAAFAo/JSlqIolSa5IigMoLDxjHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAAAAAAAAAAAAFDQS4wAAAAAAAAAAAACAgkZiHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAAAAAAAAAAAAFDQS4wAAAAAAAAAAAACAgkZiHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAACATrBCvjynWXYo35EAAAAAfYPjWPKcpBRKy7JMvsMBACArJ98BAAAAAEB/4DkprUgv0+3v3qbFtYs1uXKyjph4pEpUKblccwwAAICBxxijRqdaL33xov73yYMK22Eds9k3tXnplgqnEvkODwCAVkiMAwAAAEB7HE9zVr6gC168oOWlt1e8rTvn3anrZ92gseHN5LpeHgMEAAAAel9TqFqnPXmKFtcubnnt5WUva/eRu+tn0y4kOQ4A6FO4rQEAAAAA2tFganTxnIszXk95Kf3ixQvVaGryEBUAAACQP7Yj3bfwvlZJ8XWe/fxZfVr3MdOqAwD6FBLjAAAAANCOz+uWqNltzlq2uHaxal0S4wAAABhY6lWr+z++L2f5PfPvlrH93gsIAIB2kBgHAAAAgDYYI/lqe0DP9xnwAwAAwMDj+bkfJ+T6rrhfHADQl5AYBwAAAIA2+L60SdEmciwna/mwxDAVh0p6OSoAAAAgv+Iq0tfGfD1n+aETDpPnkhoHAPQdJMYBAAAAoB0xr1g/nnpuxuu2sXXRThcp7pXmISoAAAAgf7y00VETj9KQ+JCMsu2HbK+JJZPkecysBADoO7Lf8gAAAAAAaGFcR/sM30+b77uZbnjvBn1e97m2qNhC393qJFVaQ+W6uaeQBAAAAApVwi3XzbNu1f8+fVCPfPqwInZEx2z2TU0fupPCyaJ8hwcAQCskxgEAAACgA+x0RGNCm+tXO1yutJ9UWBEp7UhuviMDAAAA8sPzfMW8Uh296bE6eNNDZGQp6ifkJrlwFADQ95AYBwAAAIAO8n1fViqksEL5DgUAAADoM9y0FFYi+L9IigMA+iaeMQ4AAAAAAAAAAAAAKGgkxgEAAAAAAAAAAAAABY3EOAAAAAAAAAAAAACgoJEYBwAAAAAAAAAAAAAUNBLjAFBALMvImHxHAQAAAAAA0HmMawAAgJ7k5DsAAMDGSxmj6qSrhV/WqTwR1iZlMSUsyff8fIcGAAD6MWMkY1tK+1LISG7ay3dIAACgAKWMUU3S1YIv61SWCGsU4xoAgAHGdiylPClk0ffuSSTGAaCfS1qWLvrfB3r8/eUtr5XFQ7rp+GkaXRymEwkAALqkpjGlRXVp/f2lT7Wspkm7jK/UgZNHqMSWPM4vAABAN0lali5+6AM9OvercY2SmKObjt9BY0oj8l2SAwCAAmYZrU56uvPlTzV3aY02H16sb+0wWhVhS6Lv3e2YSh0A+jFjW/r7nEWtkuKSVNWQ0nE3vaI6+o4AAKALXGN01+uLdei1L+ret5bq5Y9X67ePz9c3rpmtL5tdGeY4BQAA3cByLP3ztcWtkuKSVNOY1vE3v6I6kuIAgAJm2UYfrmrQAX96QTfN/lRzPlmtW1/8TF//0wt6b0W9LIs0bndjjQJAP1aX9nXby59lLatPupq7tEaWxcA1AADonLq0r0v/90HG6zVNaV30wPtKkRgHAADdoC7t69YXs49rNCRdvb2EcQ0AQOGqc6Uf/vttpTe4M9z1fP3o32+rjjvGux2JcQDox9Kep/qkm7P8s9UNdCABAECn2LbRm4ur5Ofof8/5ZLUaeN4ZAADoBmnPV21zOmf5Z6vqGdcAABSs6qaUVtYls5ataUhpTWOqlyMqfCTGAaAfC9uWhpVEc5ZPHlkq1+WqMgAA0BlGqXamLfVyZc0BAAA6IWQZjSyL5SzfdlQZ4xoAgILltXPNuccd492OxDgA9GNFttG5+07KWjamMq4xFTH5DFwDAIBOcF1P248uz1m+1YgSxR26kgAAYOMVO7nHNUZVxDSuMs64BgCgYJXHQyqOOFnLEmFblYlwL0dU+BjNAIB+zHU97TymXBcfvJVKYyFJkjHSbhMH6ZYTd1Dua64BAAByKwlb+s7OYzJeD9uWLj54K0WZ0RQAAHSDdNrT9NFluuyQrVUWD7W8vuuESv39xB0U55wDAFDAErZ08Te2ylp20cFbKcHjRLpd9ssQAAD9Rsj3dcAWg7X7xEGqT6YVdmwVOZYc38v5bFAAAIC2hHxfZ+09QTuNq9Bfn/1YK+qatcOm5fre7uNVEbaYzg0AAHSbkO9r/0mDNHN8ZTCuYdtKhIxCvs85BwCgoPmurxmblunu02boz0/P14IV9Ro3KKGz95ygTUoj8tubax2dRmIcAAqAl/YUlxQP22tf8ETXEQAAbIzKREQ7jCjW5KO3letLUdtIricxQA0AALqZ5244ruEzrgEAGBBsz9eY4rB+/Y2tlfI8hSwjx5d8+t49gsQ4AAAAACArz/MV8qWQJLl0ygEAAAAA6G6+78v2fdkSF4f1MJ4xDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAAAAAAAAAAAFjcQ4AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQXPyHQAAAACA3mfblmzbyPN8pdNevsMBAAAACo4xRqGQJd+XUik33+EAADDgkRgHAAAABhDLMqr1pDkLV+mtRVXafFixdps4WMW25Ht+vsMDAAAACkKzMVpc1aSH3/tC0ZClA7cZrkGxkEI+59wAAOQLiXEAAABggLAso2WNaX3rhjmqaUq3vB4NWbrtu9M1tiQsj+Q4AAAAsFGaLUvn/+ddzV64quW1657/RCftMkYnzdiU5DgAAHnCM8YBAACAAaLRl35w51utkuKS1JTy9L3bX1c9M6oDAAAAG8VxLD310YpWSfF1bpz9qT6vbZYxeQgMAACQGAcAAAAGippmVwtX1GctW1mX1OrGVC9HBAAAABSW+rSvW1/6NGf5bXMWyXbs3gsIAAC0IDEOAAAADBBJt+1bwptSbi9FMjCFHEsRy5Pj0A0DAAAoVJ6k2g1maFpfdWNKPL0I/YVlGUVsKWIH/weA/o5njAMAAAADRFkspETYVn0yMwHuWEZDi6OSGKXrbiHfVbh6pWr+8x8lFyxQdLvtVPz1r6uxuEKuz+ASAABAIYnZRntuNlh3vrYka/mBk4fL8Ixx9APx5jq5C+er+q67JN9XyRFHyJm4mRoiRfkODQC6jMQ4AAAAMEAU2Ubn7beZLnrg/YyyU3Ydq7it4BYXdBvH+LLefVOfnX225AYXJNQ//7xW33CDRt18s5pHj5frMjAKAABQMFxPp+w6Tg++syzjgtRNymPacUy53HZmcgLyLd5cp5W//IUaZs9uea3uyScVmz5dQy67QvUkxwH0U8zhBwAAAAwQvutp380H69pjt9f4wcFAxqiKmP7viG103I6jZTGnY7eLNNRo2XnntSTF1/EbG7Xs/PMVaajNU2QAAADoKWWO0X9O31n7bTVUjmUUC9k6bqfRuv2kHZVgwiD0cbZtlHrn7VZJ8XUa58xR8xuvybZJLQHon7hjHAAAABhAQp6v6SNLdOsJU+VJMr5U5Bil09y10hPc5V/Iq6/PWpb67DOptlribgsAAICC4nu+KkNGlxywhS742uaSL8VtI9/1eL44+jwn1azVd9yes7z6jjtUucNOcp1oL0YFAN2DxDgAAAAwwLiup8h6f6fTjM71FD+VavsNbubz3gEAAND/+b5kXE+xdX/z+Bz0E8bz5CeTOcu95mbJ48JqAP0T810AAAAAQA8JjRghOdmvR7YrKqSSst4NCAAAAADakIrEVXzggTnLiw84QOlYohcjAoDuQ2IcAAAAAHpIMlaiQWefnbVsyC9+oWSipJcjAgAAAIDcXNdTYs89Fdpkk4wyZ8QIFe27n9LMgACgn2IqdQAAAADoIUnLUfTgQzVy88216i9/UWrJEkU220yVZ58td8RopZiBEAAAAEAf0xAv08ibb1bNPfeo5v77Jd9XyUEHq+TII9WQKJM8EuMA+icS4wAAAADQg5qcqKytt9egP/5ZViopNxxRkxOV7zOYBAAAAKDv8TxfddFSRY7/roYffqQkKR0vVp0nkuIA+jUS4wAAAADQwzzPV5MTlZxo8AJJcQAAAAB9XMqVUtHi4A9muwJQAHjGOAAAAAAAAAAAAACgoJEYBwAAAAAAAAAAAAAUNBLjAAAAAAAAAAAAAICCRmIcAAAAAAAAAAAAAFDQSIwDAAAAAAAAAAAAAAoaiXEAAAAAAAAAAAAAQEEjMQ4AAAAAAAAAAAAAKGgkxgEAAAAAAAAAAAAABY3EOAAAAAAAAAAAAACgoJEYBwAAAAAAAAAAAAAUNBLjAAAAAAAAAAAAAICCRmIcAAAAAAAAAAAAAFDQSIwDAAAAAAAAAAAAAAoaiXEAAAAAAAAAAAAAQEHLe2J89erVmjVrlubMmdPy2ttvv60jjzxSU6ZM0V577aW77rqr1WfuvfdezZo1S9ttt50OO+wwvfnmmy1lruvqyiuv1M4776wpU6bo9NNP15dfftlSvmrVKp1xxhmaNm2apk+frssuu0zpdLrnfygAAAAAAHlE/xsAAAAAMJDlNTH++uuv6+ijj9aiRYtaXquurtapp56qQw45RK+++qouu+wyXXHFFXrnnXckSXPmzNEll1yiX//613r11Vd18MEH6/TTT1djY6Mk6dprr9Xs2bN1zz336Pnnn1c0GtWFF17YsvxzzjlH8Xhczz//vO6++2699NJLuuWWW3r1dwMAAAAA0JvofwMAAAAABrq8JcbvvfdenXvuufrhD3/Y6vXHHntMZWVlOvbYY+U4jmbMmKGDDjpIt99+uyTprrvu0gEHHKCpU6cqFArpxBNPVHl5uR566KGW8lNOOUXDhw9XUVGRLrjgAj333HNavHixPvvsM73yyis677zzFIvFNGrUKJ1xxhktywYAAEDXGZPvCAAA2dD/RqEwhvMNAAAAAF3n5OuLZ86cqYMOOkiO47TqnM+fP1+TJk1q9d4JEybo7rvvliQtWLBAhx9+eEb5hx9+qNraWn3xxRetPj9o0CCVlpbqo48+kiSVlZVp6NChLeXjx4/X0qVLVVNTo5KSkg7F3hc6Yeti6AuxoOuox8JAPfZ/1GFhoB7zJ22M6tO+PllZr3jE0cjSqIpsyff8Ti+LeiwM1GP/Rx1unL623vpz/1vqe+sTPaPN/Y5lVOdKS1Y3qtn1NLYyroRjZHfhXAPoazjmYqCi7WOgou1jIOup9t+Z5eUtMT548OCsr9fX1ysWi7V6LRqNqqGhod3y+vp6SVI8Hs8oX1e24WfX/d3Q0NDhjnllZXGH3tcb+lIs6DrqsTBQj/0fdVgYqMfetaquWX99aoFufelT+WvHposjjv563FTtMKZcYcfu0nKpx8JAPfZ/1GFh6M/9b4l2ONBsWN8NybSem7dCP7zzbTWmXEmSbRl9f68JOn7GGJUnwvkIE+h27OswUNH2MVDR9jGQ5bP95y0xnkssFlNtbW2r15qampRIJFrKm5qaMsrLy8tbOtnrnne24ed9388oW/f3uuV3xKpVtS0Dv/liTNBw+kIs6DrqsTBQj/0fdVgYqMfe5ziWHp+3Sre8+Gmr12ub0zrx5lf0yPd3VWkn8+LUY2GgHvs/6nDjrFt/fV1/6H9LfaMPjp6Xa7+zMunp9NvfaPWa6/n6/RPztdXwEm0/vEged46jH+OYi4GKto+BiraPgayn2n9n+uB9LjE+adIkzZ49u9VrCxYs0MSJEyVJEydO1Pz58zPKd9ttN5WWlmro0KFasGBBy3RuK1asUFVVlSZNmiTP81RVVaWVK1dq0KBBkqSFCxdq2LBhKi7u+KCF76vP7LD6UizoOuqxMFCP/R91WBiox95Tm/b156cXZC1Lub6e+GC5jtp2uNJpr9PLph4LA/XY/1GHha0/9L8l2uFAs359O46tO19flLP+//T0Al17zHYK0T5QANjXYaCi7WOgou1jIMtn+7fy87W5zZo1SytXrtQtt9yiVCqll19+WQ888EDLc82OOOIIPfDAA3r55ZeVSqV0yy23aNWqVZo1a5Yk6bDDDtO1116rxYsXq66uTpdffrl23HFHjR49WmPGjNHUqVN1+eWXq66uTosXL9Y111yjI444Ip8/GQAAoF/yJS2tasxZPn9FnSyrz51uAgDWov+Nvs6Vr49X1Ocs/7yqUWlGlAEAAAB0UJ+7Y7y8vFw33XSTLrvsMl199dWqqKjQhRdeqJ122kmSNGPGDP3yl7/URRddpOXLl2vChAm6/vrrVVZWJkk688wzlU6ndeyxx6q+vl7Tp0/XH/7wh5blX3311br44ou19957y7IsHXLIITrjjDPy8EsBAAD6N1vSFsNLNHdpTdbyHcdUyHU7f7c4AKB30P9GX2dLmrZpmZ6dtyJr+ZbDSxSxjMRU6gAAAAA6wPg+l9Z21sqV+X/2gzHSoEHFfSIWdB31WBiox/6POiwM1GPvsyyj91Y06IRbXs0oK4+HdO/pOyuhzlUG9VgYqMf+jzrcOOvWH7oH7XBgyLXfqfWlA/88Ww1JN+P9//nezhqVcGgf6Nc45mKgou1joKLtYyDrqfbfmT44c1sCAACgSzzP16RBcf3uyG1UkQi3vL71yBL98+SdVGKbPEYHAAAKQYlt9M9TpmvikKKW14aWRPS3b0/ViKIQA8oAAAAAOqzPTaUOAACA/sPxfe0+tkJTvzdDtc1phWxLRSFLUSOmUQcAABvN93xtEg/p5uOnqjbpyvN8FUccFdmS65IVBwAAANBxJMYBAACwUTzXU1xSPGIHL/g+j/oEAADdxvN8RSRFQusmPvTlum19AgAAAAAyMZU6AAAAAAAAAAAAAKCgkRgHAAAAAAAAAAAAABQ0EuMAAAAAAAAAAAAAgIJGYhwAAAAAAAAAAAAAUNBIjAMAAAAAAAAAAAAAChqJcQAAAAAAAAAAAABAQSMxDgAAAAAAAAAAAAAoaCTGAQAAAPQO21KTjFzLyLJMvqMBAADYaMZI3tpzHM+yZAznOAAAAH2Vk+8AAAAAABQ23zJa1ezqb08u0OuL1mhocVSn7zFeWwxOKOT7+Q4PAACgS1xjtLQuqT8/s1DzltdqwuCEztxzokYVh2VzjgMAANDnkBgHAAAA0GMsy2hhdbO+dcMcpb1ggHjx6kaddOtr+t5u43Ti9FGyPQaOAQBA/2LZRi9+Vq0f3PlWy2tL1jTqmXkrddUR22jPsRXyPS9/AQIAACADU6kDAAAA6DGNvnTBfe+1JMXX97fnP1ZdmqQ4AADof+pc6Rf3v5e17KL/zlUdF/4BAAD0OSTGAQAAAPSYhpSn+V/WZS3zfemdJdU99rxxyzKKJeuVWLNciarliqUaeLY5AADoFmsaUqppSmctq0+6WlWf7OWIgMJhjFE03aREzQrFV3+heFOtHIdUBgBg4zGVOgAAAIAeY9rJQzs9lKh25Cm06BMt/8UvlFywQJIUmTRRQy6+RKlNxirtkyAHAABd1945jt3eGwBkZVlG8TXLtfxXF6nx1dckSc7w4Rpy4YUKb7WtknY4zxECAPozLrMCAAAA0GMSjqVtNinNWmZbRluPLJHXA1ONRqpXasnxx7ckxSWped58LTnhBEWrV3b79wEAgIGlPBbSoKLsCbqyeEjl8VAvRwQUhlj9Gi0+4YSWpLgkpZct09Izz5S9+BNmgAIAbBQS4wAAAAB6TMRIVxyytRJhO6Ps/x2whRI9MLAVNr6qb/uH/FQqo8xvblbVv/6lsOG5nwAAoOsStvS7o7bNmP3Gtox+e8S2Stgk74DOsm1LTa++KnfVqqzlK3/3W4WTDb0cFQCgkDCVOgAAAIAe43m+hsUdPXDWLrr/raV66ZPVGlEa1YkzxmhYIiTL7/4EtdXcqMY33sxZ3vTG6ypKNkmhWOZnLSPLMnJdTz0QGgAAKBCe62uLyrj+d/ZM/fPVxXp/WY0mDSnSt6ePVkXEke96+Q4R6Hds21Ldyy/lLG96b67sVEpyMs/jAXSebQf3zrocszCAkBgHAAAACpCxfTVYNVrVvFJpL60hsSGK+yVSOvPO7Z7mub6KjXTCDpvom1M3UciSfNeT30OZZz8UljN8mJrnzcta7gwbJj/UeupTY1mqc329/3mNllY1aeuRJRpZGlVMPglyAMCAYNlSg1WjNc2r1OQ2B+cOKpFJM3yYk+erwjH6/q5jlPSksCW5aU/ySDAAXeH7vkJjxuYsd4YOlWcxCS6wsZLGaE1TWq98skLxiKMdNi1XkW165MJ1oK/hzBYAAAAoNLaruXVv62cv/Ey1qVpJUtgK64fb/0h7j9hXTjqal7DctCdbPT9WnLRCKv/uSap/9rms5eXf+a6ajC2t7fMby+iTmiadePOrqk+6Le/bbGiRrjtumuJicBsAUNiM7euz5EL96NkfalVTMIWxYxydsOUJOnrCt+SkuDuzLevOcbjhDtg4qZSrov3206q//CVrp6HilFOUSpRIaTY2oKuSlqVfP/qRHnhnWctrlpEu/cbW2mtipWyP5DgKG5dXAQAAAAWmSiv1g2d+0JIUl6Skl9SVr/1anzYskNUDz/XuS3zfl0aP1aAf/Uha/44S29bg838ib+Smre4Cr/Ok797yWqukuCR9tLxOv37kQ3kFvr4AAKi3qnTaE6e2JMUlKe2ndePcGzVnxUtyHIYQAfSOZEmFRvzxjzKRSKvXSw8/TJFdd1eapDjQZY5j6dn5K1slxSXJ86Wf3/eeVje5OT4JFA7uGAcAAAAKiOMY/WfePXL97B3av77zV1054/9ke/m5a7y3NDlRhb9xmMbsM0vNH34gGaPI5psrGS9RsxVqeZ8xRp+sqFdtczrrch6d+4XOmzVJxeQDAAAFynEszV46W01uU9byv73zV+2w144Kq6iXIwMwEKWMI2e7aRp9/3+V+niBvLoGRTbfXG5xqRqcwu7DAD2t3vV1/Quf5Cz/9+tL9MPdxyqZJEGOwkViHAAAACggrklrYfXCnOWLaxcr7adkq/AHlZJWWMniSlnTd5Uk1WWZEs4YaWVdc85leL7U7Hoq5lmGAIACZVlG86vm5SxfUrdEnuEOTQC9Jy1b6US5zDY7yhipnqmdgW7h+r5WtdH/XVbdKB4zjkLH6A4AAABQQGyFtHXl1jnLJ5RPVEiRnOWFyPN8eTkG0zzP1+bDSnJ+tjIRVjxk91RoAADknev6mjxom5zl40rHyfY5FgLofb6f+zweQOdFbEtTNy3PWb7nZkPY5lDwSIwDAAAABSSd8nTguIMUtsJZy0+ffLpsd2AlxttTGQtp5/GVWcvO228zFTs8YxwAULhc19O0IdNUEs5+odjZ231fUb+4l6MCAADdzfE8/XjWJNlWZh93SHFEM8ZWyHWZJQaFjcQ4AAAAUGBK/EpdN+t6jUiMaHmtLFKm3+x6lUaER8lnbrRWQr6n3xw2WSfM2FTRUNBFGlYS1W+P3Ea7jauQm2ZgAABQ2BJuuW6cdZPGlo796rVQQj/b4WfaqnQbBskBACgAvi8NiTn658nTtcXw4KI3y0h7bz5Ed5w8XUVkDDEA8IxxAAAAoMD4rtHY8Ga6cZ+bVZuukeu5KgmXKuGVynPzHV3fFPE8nb3rWH1nxqZKeb4itqUi25AIAAAMCJ7na7A1Utfufp1q3WqlvJRKw6WK+6Xy08ycAgBAoTCer/GlEd1w7PZqTHuyLaOYbcnxPaZRx4BAYhwAAAAoQK7rKeIWK6JiyUhKSaR42+a7nhJGkm0k+XJdBgUAAAOH5/kKewlVKtFy7sCREACAwuN5vsKSwrZZ9wLHfAwYTIwAAAAAAAAAAAAAACho3DEOAMAA4dtG9WlpRV2zQralynhIcUvymSYJAACgXzGWpTrP18q6pCRpcFFYCc7rAAAAAKBNJMYBABgAUpbRA+8s128fn6fk2ufllsdD+vM3p2hSRUxiEBUAAKBfcI3Ry4vW6IJ731N90pUkJcK2Lj90sqaPLpXNeR0AAAAAZMVU6gAAFDjLMnr/izpd8ciHLUlxSVrTkNJ3bnlNNWkGTwEAAPoDY6TljSmdc+fbLUlxSapPuvrBnW/py4a0jMljgAAAAADQh5EYBwCgwDX50u+fnJ+1LOl6euCdZQqF7F6OCgAAAJ3lW5auf+7jnOXXP/+xfIuhHgAAAADIht4SAAAFzvWlRasacpa/v6xG3DMOAADQ9yU9XwtX1ucs/3hlvZJMpQ4AAAAAWZEYBwCgwIUsacKQopzl240qE5lxAACAvi9sGW0xrCRn+ebDihWxmEsdAAAAALIhMQ4AQIELS/rxrElZy2IhW/tvNVTptJu1HAAAAH2I6+mkmWOVLfdtGemkXcbKd73ejwsAAAAA+gES4wAAFDjP8zW+IqYrD5+s4ojT8vom5THddtKOKnE4HQAAAOgvBkVsXX/cNA0qCn/1WlFYNxw/TYOidh4jAwAAAIC+zWn/LQAAoL9zfF/7jK/UTmftojWNKYUso5Koo4Rl5HJXEQAAQL9h+b62G5bQPafNUHVTWpJUFnWUsCXP5fk4AAAAAJALiXEAAAYIz/UUlxSPrT38+75cBk8BAAD6Hc/1g/O6ljvEfXk8GQcAAAAA2sTcqQAAAAAAAAAAAACAgkZiHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAAAAAAAAAAAAFDQS4wAAAAAAAAAAAACAgkZiHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAAAAAAAAAAAAFDQS4wAAAAAAAAAAAACAgkZiHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAAAAAAAAAAAAFDQS4wAAAACAvLMsI2NMvsMAAADrsSwjy+L4DAAACoOT7wAAAAAAoD9yHEuWZeT7Uirl5juc1kJpNapevu8rYmJy0lH5vp/vqLJKO42qdtdo3pp5KouUaUzxGMW9Uvkug/AoHKGQLWMkz/OVTnvdtlwT8tWoGrm+p4iJKuzG5Xl9c1sH0L94dlqNpkbzquYp7aW1ecUWSqhYVjqc79AAAAC6jMQ4AAAAAHSCZRnVetKzH3ypOZ+s1qQhxTpwm+EqdYyU54SUZRnV2at1zdt/0WOfPaa0n9b0YdP146nnarA9os8lm1Phel3x2mV6ZskzLa/Fnbj+tOefNC66eZ+LF+gs3zKqTnl64M3FWrCiTjPGVmrXiYNUbGmjEtjGSM2hWt36wa26d8F/1OQ2acuKLfWTHc7XJuGxslyGewB0neck9fQXT+jKV3+ttJ+WJBkZnTr5VB0+7mg5qWieIwQAAOgaekoAAAAA0EGWZfRFk6tvXv+yapqCgeKH9IX+/PQCXX/8VE0enJCfx+R4g12lkx7/rpY3LG95bc4Xc3TcI9/Wv75+p0o1pFPLsywjJ9Usk07LjcaU8rovUW050j0L72qVFJekhnSDznjqDN19wH+UUHm3fR/Q6yyjd5fX69TbXpe7dr/w0LtfqDQW0r9Oma4hEbvLyfFmp04/ePb7+mjNRy2vvb/6fX3n0RN18363aExoEneOA+gSY6QvU8t02SuXtnrdl6+/vfs3bTd4O20R3459TDexbUuh5nrJl1LRhFy3+2YVAQAAmXjGOAAAAAB0UJMvnXv32y1J8XXSnq+z//mW6vI4luk4ll7+4uVWSfF1mt1m3fjeDZKTzvLJ7NKrV8t5702t+el5WnH6qWq64a8qqlslu5t6kQ2mRnd8eEfWsma3WW+tfEN2d30ZkAf1nnT2v95sSYqvU92Y0nn3vKOmLuaUjDFaVP9Zq6T4Or58XfXab5S0G7q2cAADnnF83f7hbTnLb5x7o9JWcy9GVLgSzbXS049q5Q/O1sqzT5f3wD1KNNXIGGbMAQCgp3DHOAAAAAB0UG3S1QfLarOW1TWntbSqURPL8jO9qGfSenrJUznLX1r2kpomNyqq4naXFUk3aeWN12vNP/7R8lrzvHmq/ve/Ner229UwaORGP7M87adVl6rLWb6kdonMIAaG0T8ZIy1e3aCGpJu1/L3Pa1SXclXhdP7iD8ex9NKnL+Ysn7tqrpJ+sxzFOr1sAEj7KS2rX5azfHnDcqWUVEQ8a3xjJJprtfzcH6vprbdaXmua+75Ct9+ukTfeqLpoaf6CAwCggHH5PQAAAAB0ULqdaUMbU57ydZOPJVvl0Yqc5aWRUlmyO7Qsu2p1q6T4Ol59vVb85kpF0k1djnOdkMIaVTwqZ/m2g7eT5zGdKPorkzMpvk57+5NcfN9XZXRQzvKYE5NlGO4B0DUhhTV1yNSc5dsM2kYRLrzZKLZtlHznnVZJ8XVSixap7qGH5NhcHAgAQE+gpwQAAAAAHVQccVSZyH6HlGWkMZVxbeSN1F3mpn0dNfGonOXHb3G8Yn5Ru8txHEsNL72Us7zhxZdkN9Z3Kcb1xf0SnTPlh1nLNinaRGOLx/H8UvRbvu9r/OCinBfKDC6OqDjctUn80mlPM0fsKqPsCz9y4pGK++3PDAEA2bhp6eBx31DMyUx+O8bRd7Y6SUp37EI7ZOe4KdXcfVfO8pr77lOoMfsMRQAAYOOQGAcAAACADip2jH550JZZy06eOU4JJ3939/i+NCQ8XGdsc0ZG2Z6b7KkZw3aR6/adO7Bd19M2ZVN02S6XqzJaKUkyMpo5cqb+uvffFHNL8hwhsHGKHKMTZ4zJWvarg7ZU0UbcDVikUl26y2UZyfEtK7bUtzb7trw0dxoC6Lpiv0I373uLtqjYouW1sSVjdf2s61VhhuQxsgLS1m7amHbeAAAAuopnjAMAAABAB7lpTztsUqo7Tp6uqx79SB98UaORZXGdvdd47Ti6XHaep/520lEdMuZI7T16Hz33+bNqSjdpt01216DwEIWS8Q4tI532lNh555zl8V12UTqW6JZ47XREMyv31JT9tldDukEhO6SEimWnw/Lydes90E1sz9fJu4zR5JGl+sszC/R5VaO2Gl6q8/abpE1Loxt1oYrlhjS9Yhfdd9D9mr30Ba1qWq2dR8zQyPgoRVJFYusBsDE8VxpmjdYfZv5JDX6dfN9X3C5SzCuS67KH2VgpK6SSI49S/ewXs5aXHHaoUrEiiXUNAEC3IzEOAAAAAJ3g+L42K4/qL0dvq7QfTKEet0yfuRvbSUdUrmE6fNQ3ZYxROu3KT3VuGW5JuSq+c6JW33xLq9etoiIN/sn5anAi6q7Mm5v2FVWJoiqR0sFrDAOjUIQ9T3uMLdeOm06T50uOJUWkbnlMgOWGVKxBOnDkYWu3dU9+ymf7AdAtPM9XyIurVGsvrPMklz1Mt/A8X9GtJyu2/fZqfOONVmXhsWNUtN/XVEdSHACAHkFiHAAAAAA6yfN8hSSFJMlXn7x7Kp3ueqK+ORRV5amnKj5zV625+Wa5a1YrvvNMlRx+mBqLK+T3jWsAgH7BdT1F1v3hSd29+WzMtg4AyI+GSLGG/OYqNb/xuqr/+U/56bRKDj1U8V13U32sNHhGDgAA6HYkxgEAADBgOY4la+2dvn0xsQnkk1NeruTm26js8t/IpFNyozHVuer+rB4AAMAAVB8plj1zL1XsMENGvtLRuOrSHklxoA+zbSPbtuR5PhcnAv0UiXEAAAAMOMb2VWfW6KUvXs9wKJcAAFz9SURBVNTH1R9ru8FTNLlyGxV5ZSTIgfX4vq9m40ghR3LzHQ0AAEBhcV1PrrN2XhGSbECfZVlG9XaV3lv1jt5c8abGlozTzsN3VpFfLt81+Q4PQCeQGAcAAMCAYixfnzR9pO89+T0lvaQk6V8f/UsV0QrdOOsmlVtDu+XZrwAAAAAAoH8zxmiNWa6THz1Jq5pWtbwetsK6du9rNT6yuTyP5DjQX1j5DgAAAADoTY12jc559pyWpPg6q5tW64IXf66k3ZCnyAAAAAAAQF+Sshv0i5cubJUUl6Skl9Q5z5yjersmT5EB6AoS4wAAABhQvmj8QjXJ7B3X91e9rzqXTi0AAAAAAJDqvFq9t/K9rGW1qVp90bCslyMCsDFIjAMAAGDAMEaqT9a3+Z4N7yQHAAAAAAADU8pLtVlel6qTYSZ1oN8gMQ4AAIABw/el0cWjZZS911oaKVVJqKSXowIAAAAAAH1RUahYpZHSnOWbFo+R7/diQAA2ColxAAAADChxU6wjJx6ZteyH2/9ICS93hxcAAAAAAAwcRX6pfrz9j7OWHT7xCCUMF9cD/QmJcQAAAAwodjqik7c6VT/f4ecaEh8iSRpXOk5/3ONq7Tx4V7lungMEAAAAAAB9gpv2NWPwTP1pzz9pfNl4SdKQ+BD9bIef6bStvic7Hc5zhAA6w8l3AAAAAEBvc5Jx7TfsYO06fA/5xpXlO4r5xXLTXr5DAwAAAAAAfYidjmqbomn6y25/lWfSMrIU90rlJhlDAPobEuMAAAAYkFzXU0RFX/0tOrQAAAAAACCT6/oKK/HV34whAP0SiXEAAAAAvc52jBpUK994CimskBuT5/n5DgsAOsyyjJJWo9ImKSOjuF8iN81+DAAAAAD6KhLjAAAAAHpVKlyvBxc9on988HetblqtbQdvqx9u/yMND42W5dJFAdD3+XZKi5KL9Ps3fqd3Vr6jimiFTtjyRM0ata9CyUT7CwAAAAAA9Dor3wEAAAAAGDhSoUZd/tql+t0bv9WKxhVyfVdvfPmGjn/kOH3SOE+2bfIdIgC0ybYtLWj8SCc8erzeXPGmXN/VisYV+r/Xr9KVr1+hdKgx3yECAAAAALIgMQ4AAACg16xOrtCzS57NeN2Xr1+/doWarPo8RAUAHddo1eqKVy6Xr8xp059a/JTWpFblISoAAAAAQHtIjAMAAADoFbZt6Y0Vb+QsX1i1UI1eQy9GBACd1+Q16NOaT3OWv7XiLdk2wy0AAAAA0NfQUwMAAADQS3wVh4pzltrGlm3sXowHADrPNo4sk3s4pThcLN/PvJscAAAAAJBfJMYBAACAfs44npqdWiWd+j59l6Lr+poyeErO5Peeo/ZS3OROnANAXxAzRdpt5G5ZyxzjaHLlZHkeiXH0PmMkP5RSk1OrlNPQp88JAAAAgHzgDBkAAADopyxbqnNW6ZoP/qgTnjhO33vmFD2y/L9KhuvyHVpOcb9El+5ymYxMq9dHJEbonCnnyEo7eYoMADrGTof046nnalhiWKvXjYwun3m5En5pniLDgGZ7WqmluuLNS3T848fqBy+cpVeqnlc6xCNKAAAAgHUYdQIAAAD6qWqzUsc+/C3Vpb5KhF/xyuV6fOhjunSnKxROJfIYXXbGdbRD+Qz956B79dhnj2pZ/TLtMmKmtqrYWnG3VB7TDwPo43xfKnYrddM+t+i91e/qxaWzNSIxQrM23VclqpBcHgmB3mVZRp82L9DJj5+stJ+WJK1sXKnznj9PR006Sidv/j056WieowQAAADyj8Q4AAAA0A/5Tlp/fefaVknxdV5b/poW1X+qiZGt++Rzbi03pFIN0bfGnihjjNJpV17Kl6e+FysAZON5vqJeiaaXzdTOlbvL932lUm6+w8IA1WTX6ZJXLmlJiq/v3/P+rWMmfVNlIjEOAAAAMJU6AAAA0A81mwY9tfipnOUPffqQQqG+fddiKuUqmUzzLF4A/Zbr+kom0yTFkVeNboMWVi3MWf72yrdl2yZnOQAAADBQkBgHAAAA+qmwFc5ZFrOjEndgAwBQ8CzT9vBexI6oD04gAwAAAPQ6EuMAAABAPxT3i/WN8d/IWX7guIOUTHIHIwAAhS5uFWna0GlZyyxjaXLlZGZnAQAAAERiHAAAAOiXvLTRtzb/tkYVj8ooO2bSMRocGpqHqAAAQG9z0lH9fMcLVBIuySj7+Y4XKO4X5yEqAAAAoO9x8h0AAAAAgK6JpUr1t72u15srX9fDnz6s4lCxjpp0tEZGR8lJx/IdHgAA6AW+76vCH6Z/fu1fenrJU3pp2UsanhiuIyYeqUpnqEw6lO8QAQAAgD6BxDgAAADQT/m+r2iqRDMr9tYug3aXkSUvLfnpfEcGAAB6k+f5inllOmjEETpgk0Nky1Y65UucEwAAAAAtSIwDAAAA/ZzrepLLU5IAABjo1p0TpMUzxQEAAIANMXoGAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKCRGAcAAAAAAAAAAAAAFDQS4wAAAAAAAAAAAACAgkZiHAAAAAAAAAAAAABQ0EiMAwAAAAAAAAAAAAAKGolxAAAAAAAAAAAAAEBBIzEOAAAAAAAAAAAAAChoJMYBAAAAAAAAAAAAAAWNxDgAAAAAAAAAAAAAoKA5+Q4gH1atWqVf/OIXeuWVV2Tbtg4++GCdf/75cpz+vTqMMYqZBoX9RvkyarRLlUxz7QPQE8KOr5hXLeN7SlkxScUtZcZIUatZEa9BvqQmq0TNrt1zcbjVMsZTysTU6MfleX6HP+/YluLeGjkmLcmXa4XV7MfU5IZ6JN72fLXu6uUbo2ZToqZuWnfGSDHTpLDfIF9GTVapmt2+uY+M2J6iXrWMfCWtuBq9qPyOV2uXrGsLlly5ctRglcl1vS4tq1W7VFSNSnSqXXZE1E4r4tdKvpS0itTk5afNboyW9SRPKRNVg5+Q39MV3cMitquoVyMjqdmKq8mLZG27USetiLeu/hJq8sJyLKOYt0aW8aT6ZllWVK678evDGClmNSnsrdv2u7ZPbt3mgpg3trqidkoRv65VO+6uJmDblopUrZDfKEny7JhSVkyhdK2Mn5YnW/VWmZJpSyFHSnhVspWSb2ylTFyuLEXUKMtrlowl2REp3SzJV8opldJNsvy0PDsq+a4sLyXP2Gow5Up3Yt8RdjzFvBoZ35MbistON8qWK984cn2jRlOqtG9UbGrk+I2SCckztmSMLLdZkuQbS2mF1GyXKuZVy/YaJRk12eWqT7U+v7cso+JQs0KpakmefOOoITRMjU0pScG+MGHVyXHrJUkpE1O9ilvaYihkq8hdKVtpSZIbKpLnpmW8lHzfUqNVpqQrRW1XEb9Gxvflh4vkpOtkLEtyk5KMPMtRnVWhZNKXZRnFVSfHb5YnS412mVLprtd9V9i2pbhXJVtB22gOVSiSXi1VV6vYGDXYZcHxOV0VrBcrrgaVKOatkb22PTVY5XI9Xwm7Mdi+5ct3ovJcX0k/okY/OJa13vcF7TLmVclZ2/7SJixftmy3Ub4J2kBy7fHasoxiqlfIb5Kvr9Y3+rZC7X/3pqiTVsStldQ9x6CQYxRz18iSp7QJqdGUdMsxN5dW+zljqdEqVyqd+/tiVvPa43bP9qU6IuJ4irrZz8s33Hc22OVKpzt3/tyqj2KMmkzQR2nV3zRxecZW2KuTjNRsilr118K2FPOqZOQpbSJqUFG3n3v3pJidyvhttm2pWGtk+82SjDwnIT/drLTCHfp9YUeKuVVrjzURNXZyndi2UcyvkeOnJCcSHL99XykTU4Mfl+/7Cq39Dtu2ZbykPBmllbn+e7N+bNtS0XrnMUmTUL3f8b5YNCzF/RpZbpNkh+W76eC8S0a+L7my1GDK5Pu+4qqV4yflG0u+HZGVbpQnSw12RdbtIORI8bV14tkRGd+T8VMt/UXf9xW1kop4da3GAlqO/WoKzrXsUiXTplvWl+NYirlrZK/tAydD5YqkVq3dN4bVoOK8bkvrt8PgHDFz3xmxXcX8mpbz57Rv1GiVtXpfyFm3nGTQDhVSQxv7Ydu2FPerZPtpubLV2Ma+rfU+MqHGHP2/ztjY7bcr1m9nsiLy/bSM57b7+3sijmDbSkm2I+Ol5a3X/7SsDY47Vsf7Xq2P/a3bt20bFZlaOV7Qd2y0K9SQ6tqxd12/2bJsyUvLl1GzaT02YIxRzGpQ2AvO95usUjV3MIex/niTa8Vk/JQsLy3PiQb9Q3/d8TqWMb7S0e9d//je221gQ23VW1tyHXtyjSOHbCm+3vtTdlzR9Fd9tnXHvvZ81YaTOfdb60TtYJ8vSc1WcY+PRQf139gyNtQdubNgf1kt2+/4eIhjG8W9qmD81ThqsssVdmsU8puDPq5dpmQ6c12mQqUKp6qC/a2Jq9HPbOOd9dU+PPcY3obHolzH+f5mQPZEzznnHA0dOlTPP/+8Vq5cqdNPP1233HKLTj755HyH1mUhy1Vx02eynviFzKfPSaG4nCnHy9vxDFX55T2eUAEGCmOkUqtK9it/k/X6zVKyTs6mM6X9LlMoMkaesVSSWiLrqV/JzH9MssNytjlG8Z1/qGozqNtO5lvieO0GWa/dJDXXyBm1kyL7Xqa6+HglvfZ378V2ncIL/ifrhd9KNUulQRNlzzhLISuk2MjpqnGG9egA2YYcSypJL5H1+CUy8x6W7JCcyUcptsuPVW0Gb9S6cyxfJclFsp78pczCJyUnKmfbYxWf8X1V+ZWS+sZO0hijMrNK1otXy3r7dindJGf83oru/SvVhEcp7fVMIj9oCw/JeuH/pJqlCg2aqPBev1Tj0B3V4MU7tawyu0r26zfLeu0Gqalazqjpisy6TPWJ8WruhuS1ZRmVestlP/Mbmbn3SL6n0OYHKbbHBapxRmz08ntDy/b76g2yXr9Raq6Vs+kuiuxzieri4zq0/fY1lmVU6q+UNfsPst7+p+Qm5UyYpdhev1zbds167/tS1rO/lfXuvyXfVWjS15TY80L5n74q66mLpIZV0rBtVDrrUjWUbaUmL9LluLJu+9t8S/Gdf6Aqv7LDHbtcba7aHiG3C/umnljm+hJWvWJLZ8s8fZm0aqFUuonsnc6SNX4PmYfPlz59TlYorpLtvi1/p9Nl5v5XZvbvpcY10uQjZc/8kfymapmXr5E+eihY6OYHSVNPkB46T+GKcTJ7/lxa8qrkRKUX/yitnC+VjFBo5o+VHP911fnFbcZojFRq1sh++VpZ8x6RDrhKztz7ZN69Kxh8Hren7Blnyln9qczYXWUe+IE0dEtp1E6yYmXSwqekt+6QmqqkkdNk73WhwsUjgt/80f8kSbHND1J0z5+ryh4h1/UVsVIqTi+TPnlF5sWrpdUfy5SOUmLXHys+bm8l5SjSsExmwRPSazdKdcsVGbKFQntfpMZB28sxaYVXvCfz5MXSF+9KiUFypp8uf+hWMnd+WwoXydnhVJkpx8qf/QdZb98h7fMr+XZEpmKMNPde6d27pXSj7LG7qWSPn8stHi2z5mPZT1woLX1TipUrNP0Mpbc5VtVuyUa1g46KWw2KLpsj+6lfSasWSCUjFN75+zKRYum/ZykydGuFD/2b9NYdMm/8XWquUXj0DIVn/Urmg/8F9V8yUqH9fyNTton0+P9r6Y9o8lGydzxVzsfPKDpmd/mRElmvXCfrjZslLy3nmH8q9ukLMq/eENTlJtNk7/1L+R8/K/P8/wXrdPsT5e54mppUpHjtfFmPXyiz5BUpWiZnh1PlTjlBVW5pr6wrdE0h9r97y7rjpv3MVTLv3b32uPl1xfb8hapDI+R24cKQErtWoQ/vlzX791LdcoWGbKHw3r9S06ApavBi3f4bolaz4tXvy378QmnZ21K8QqGdzlR6629m7Occy5e+/EDxJy7q0b5UR7Sc27zQ+twmuvbcJqIGRZa+JPvpS1qOtaFdz1dy7CzVekUd+g7H8lSSXNz6PGXqSSre8RT5r9wY7CtLRsg54HfSK9fLfPigZIxCWx6m+G7nq8oaqhJTJfutW2W9cp3UVCVnkx0UnnWZ6osmqNkL9/Ba2ji2ZVTiLpP95OUyH/x37W87RIk9fi6z9C2Zpy9tWbfWTmdIY3dXaPYfFJ76XdUXb5bz95XZ1Wv7I9cH/ZFNdgz6I0UTOtQfiVmNiq18W/Zzv5F2/ZE0/3HpnTuDvv+YmYrsc6m8xBDZ794pa8gk6bMXpbfukN24Rs7IaQrPulT1xZPU7IWDWN76u6xX/hbUz8hpQf0UT+z2+olbDYqnVsu8fbv05m1S4xpFRk5TZNYlqm1jfUnBeVm5tVpW7UqZ5XOl0pHShw/KvPNvWck6acyu0owzFXr/foWnHCe5KVmP/0L64h0pXilNPVEasoX0xK8U2ukspTY7WDXuV+eCwXq4TdYrfw3ON0duL+1yjjT3Pjk1SxX52v/J2I7M+mMBWx+p+K4/kRpWyHrsApnFL0uREjnTTpY79buq9so2aqyz2KpT+OMnZD13pVS9WKGKcYrsdq5M7RfSkxcrNGwbhfe5RA3lW29Uf6SrYlajYivekv3kL6Uv35eKhii08w+V2vxQ1bhFLfso+4Xfy7zzr+D8efyesnc6U6Ha5Upvuruq3RKV2rVylr8lK9Ugzf6D9MW7CicGydnpLKW3OlrVbutz9iKrXuEls2U/c6m0+mOFSkcpvPtP1bzp3qpbb99mjFGZVsp64WpZ79wRjF1M2EfRvX7Vqv/XWWV2tew3bpH16nXrbb+Xqr5oYreMJ2QTttIqalgYtLPxewZt+uVrgt9fNlrh3X6q5k33avX7e0LUala8aq7sl/4k7XS69Nbt0gcPtPSZ4/tcLC2bK+vpi9fre52n5ISvqdZtO7ZSu1bOu/+S9fKfpYZVQfte29+2LEvxps+DftSCxyRjK77VoYrt9hOtMcM6fOxt6ePOuU5m4qxgv/n+/ZKbkjNxv2BsILSJjFwVNy+W9cT/k/nkacmJyZlynOLTz2yzjx70H6tkv3ZTMN60dhzU7H5e0O94+1/Su3dJ6UY5Y/dQdJ+LVRsZrZQXJPhDVpbv3e7biu90VqvvTVj1inz+YnB8X7cN7PqTTh3fu0upXSNn7t2yXrpaql+p0NCtg/1SxWQ1edGcnwv2uRueG1wqv2SkrPXHkUfPUGTWpfKLhsl68+/Bduel5Rx9m6LzH5d549ZOjVcFbfj9oG+77G0pXrn2nO+YVud8tm1Ukl4m+6krZN6/X5IU2vIQxXb7WY+NRQf1v2ht/T/T0u686Wepyq/oUoI5bhoUW/6arCcvklbOk4qHKzTzx0pNPFA1ObbJ4NjzqKznfiPVfK5Q5XhF9rhAalgl8/B5UrRUzrRT5G1/YjBO8PiFLcfa8A6nyAzeTLr3NDmjdw7aeHTTljbeGbnOczccw4tbjYp9+YasJ38prfhQKh4WHIs2OM73R8bv77cmddJnn32mfffdV88995yGDh0qSXrooYd01VVX6emnn+7QMlaurM17otkYadCgYq1cGVw1Xp78VPaNe0puqtX7/MFbKHXMXar2yvIQJdqzfj3mu02hY0qsaoXv+qbMF++0LrAcud99QgonZF+/u5RqaF1eNlqpbz+oKr+im+KoUfie42SWvr5BHLbcEx9VVWKLNk9eY1aT4i9fKevV6zML97lI+vx1pfe+RGv8Qd0Sb0dU+Mtk37CnlKxrXVAyUqnjH+7yujNGKk8vkX3DHlK6aYMvHafksferxi/vE9tiqbVG4du/Ia3+uHWBE5V78jNabW/S7d8Zs5rXtoXrMsq8A36vmvFHKOV2rFNbYtUo/J8TZD5/tXWBseSe+Iiqirba6AHNcrNKzi2zpLovWxdEy5Q++Sk5g8bnvR7bU2JVK3z3sTLL3mpdYNlyv/OYquKb96u7fCSpzFqt0D8Okqo+a10Qigdt1wouWig3q+X8ff/gYpz1RYqlo/4u3XFUq3MZ7+h/qmro7l2evaDCbXvbr/bK211Gm23upKe0RkM6HVfby3xaazS408tcJ2x7KvnwNpnHfp5ZuMPJwbp487aWl/xBm8ns9mPpP6dKdlj61p3BtUL/OUlqWN368/FK6dC/SXccGQw+nPS4dP2ea+8k/4q3wylq2Ol8FVUOzrk9llpVCt15tMyXc4O6f/z/SWs+bf2mUEw6+nZp9h+lKd8OEqeeK71/n7To5dbvNUY6/GbpyV9Jaz5ZL+YKed99UmvMEJU3fyzrowelZ6/MiMefcbb87b4p6/nfSu/dk1HuffPfMql6mbu/k/ljJu0njZgiPfPr4O9R06WtD5O+eC+4y2zUdOm53wQDWOuzw/K/+4jM3w+RmmtaxzNhlpq+9qceH4AL2b5KFtwl66EfZRZuf7xkhaTh20iv3Sxl2Wfp+Aeke06SUo3S4ddL/zp27V3x6xk0STrsOmnNZ/Kf/+1X51BfuzK4WCBrXd4kPXlxS136E2bJ3+UcWX8/UBs2KH/0DDV/4ybVen2rY77uPH+g647+t9Q3+uD5UG6tlnPLvlLtF60LIiXB8bWTx6C41ajY8xfJeuv2jDLvkL+petMDlW7jTu7Osm1LZStekPXPozLK/In7q2n/P7Taz1V4S4Pjdg/3pTqizFqj0D8OzHJuE5P7vZdk5j0i69GfZnzOm/F91e9wjprctpOeOfso3/izNOdvwQVYxpKOvTvYzzauab2AxGB533lM5oGzZD6bnbFw97gHVVW6XZ8+pyw3K+TcuFfr3zZxX2mTHaSnL8v8wLTvBsemG/eV+827VF0xLWPwvNiqUeT+78pkHFssucf/T1Ul27S5ThzbqHTJI7L+c5L0jb8EybHlc1u/yXLkH3uXzJrPpHf/HSTGW32XkXvcf5Uum6Dwf0+V+fT5rOVVpdu3xLKxY0MhWyqt+0DmyV9mjcc77n5VlU3NmWwoC9XLWf52kHweNEF68c9BMnaD363j/xscm+8/M3MhE/aRRu8kPXWpvCnHq3HmL9TgxVRs1Sry4PdkPnk2Iy4ddr303P9J+18h/ft4qbn2q/KSEdLXfyv9+9vB+d96/JHTlDzs76rxunYRYdROKvH61bJm/yGzcPfzgyTERw9Lkryj71D1sD169e44xzYqXfywrHszLyDztvmmGne/WGG/UaHbsve/dMzt8t+8Q+m9LpLz+k0yFZtKD3w/Y1n+FgeraZ+rVOclJElh21Xx+7fKeuL/ZX7vzHNVv/2ZLXd0lllrFLrt4Nbn3VKwjzz5Ga22Rnbot67f9ovMxm2/XWFZRmX1H8i+ZT9ps69LgzcL2uQGNvz93c22LZUtf07WncdI3/yn9OCPpNplX71h/N7S2JnSE7/KjG3H76lh+nlqzHEBR5FVr+hjP5JZe/Fwq88e9z+ZonKZm/bP6I+oeLi8Ex/WKq9j44ItfdwDfic98lOpeknrN4QTck95Tko3BzmMDfqQqpyg5Lfuy5nDCMabjpf5/LXWBYffEPTvsvS13JOf0ZrQ6CC+1KJ2vzdsuyr+8DZZj12Q8f3ezueoftr32z2+d1R7+/2EVa/Yk+fLvH9fZixH/kPVI/bOul8qtmoV+e/JWc8N/CP/IfP4ha373ZYt/5h/Bhei1y6TDv6T9Mr1wX5wfZYt9zuPa01ss6xJZNu2VPblc7L+dUxGmT/pa2ra7w8t+5pys1LOTXtlHW9If/fJbh+LNmZt/d+wR5a+6kQlv3lvp3NnIUcqWXiPrAd/kFHmTTtJjTN+poYNLl6IWs1KvPo7WS//JXOBe14gLXkluBhv6Nbydz5b5t7TMt83YZ9gfOHpyyQ7JPekp7UmPKbT5w4dGcML2VLJZw/Iuv/0zN+43nG+K3oqJ9aZPnjfnEO2B82fP19lZWUtnXJJGj9+vJYuXaqampo2Ptl3xaym4A6rDZLikmRWfCB7xXuyrO6ZZggYyCzLyFk9LzMpLkleWtbHT8qa/bvMgRxJqloke9Fs2fbG73aNMXKqPs5MikuS58p67OeKqb7NZUTdquAKy2xe+L201aGy3r1ToV66cTViuzIv/yUzKS5JNZ/L/uQpOU7X1l3USgVXgW+YGJOk1R/L/vw12Xb+95G2bWR//mpmUlwKpix+7krF7Mz9/MYK2kKWCyQkWU9epIS3JmvZhoyRnJpPM5PikuR7sh/9qeLKUr+dEHKMrA/uz0wmSlJTlazXb8l6LOxLgu13YWZSXAq238cvbHf77Wts25K16MXME2pJSjXImv07Re2UHNvIWvBoZlJcCgbB3rsnuCt5Pdaj5yvhrc58fwdE7aSs53/Txrb/Srvbfsgxsj78b+4298YtCjudO4sP2vG9uZf55q2dXub64t4amWeyDCZL0us3S1sc3Ools/IjKdUklY2WtjgoGIhf8FhmJ1UK7ub/5Flp7B5Ssj4YLN722Iy3Wa/doKhblTNGyzKyV34QJMUHby5VL85MiktBsvXNfwSxFQ2V3viHVDw8M5EqBcnS568KBs1bxbxa5t1/qciqlVW/XHrxT1ljMnOukWXsrElxSbIaV8o8/ovsP2jeo9Lw7SR77UDZ4jlBvFsdGtzZ3lybOVAjSW5S5tkrpe2+mRnPgscVblye/fu6UcJbE1zhns2bt0mbHxBcoJBjn6UnL5J2O1fa9pggkbPhQIMUXD2/cr7kRL46h4oUS0XD2qjL37aqSzNmZpCAytJrNoteUqhusUz+D+XIohD7373FsS1Z8x7OTIpLUnONzKt/U9jpXKImml6TNSkuSdbjFyjhdu2Ym0vcWyPrkfOzlpn5jyjc9NWxMGqnZb34+x7vS3VEcG4zO8e5TaOsmiWynr4k62etOX9RrI1j4DpRKynr2Stan6cUDZGMHRyLJWniLGnew5lJcUmqXyEz9x4Zk2Wd+L7sR89XXH13GwvbCtrihr9tyreDC+KyeePW4Jxli4OC3+e3/n3GSKHaRZlJNSnojzz2U8VVm1m2noS3WtZjP5OKhwUvbJgUlyQvLfP876ShW2cmoaVg/T/5q+DYtGFSfF35oz/t1vqJ+2tk6r7IGY/1yPmK+dm/z7KM7MYVMsaX5v5H8r3MpLgkeWmpYWXWCwwlSQuekIZuJdlhWW/+veXxK6GGZZlJ8bVx6bn/C5IB797VOikuSdufID3/fxlJcUkyn78mp/oTmS4e/GNulayXsp8T6qU/S9t+q+VP69GfKt7N+8b2tLTDLKx3/qmoXy9rca59VIP05m0yoYic5tVBUvy532RdlvngvwonV7X8HXfXBPulbN/74h9a9m22bclaMiczKS4F+8jnr1K0k2MXwfa7eKO2366Iqy5Y154rbXO09FKWhJUk66U/dmjf3lUJf42sR38ibTItuNN2/aS4JG1/nPT877PH9up1bfa9ws0rsibFJclSUmbOXzOT4pJUu0xm3sNyOnDsbRmrKRoWnPdvmBSXpGS9zJJXZT1zWWZyWpJWLZD9xVtZcxjGKNjmN0yKl4+Rmmpy9rWsZy5T1GpW1Gpu53vfDKatdtfIynZhliTr5T/1aBvYUCS5KmtSXMq9XzJGCtUtyUyKS5Lvyzz768z+sufKPHdVMDtcYnDQp8067h2MV8VN9vGqRFvnfPMebjnnC9nBfizXeIP1XvePRUet5uC8LWtfdb7s5W93OncWd1fLeuKXWcus129SJEtbiblVsuZcm32BL14tbfft4P87nBTM4JDNgiekYVsHNzW4KVlPX6KYlWXMqw0dHcOLe6tlPZ55kYikVsf5/mrAJcbr6+sVi7W+kmHd3w0NWTpgWRjTN/6tiyXsN8p8/EzOeK0PHlAoZOc9Xv61XY/86/v/HMcKpvXKtW+IlgRT4OXcFu9VyEpvdByhkCWz8PHccSx5RSG/MefnLUsyVZ9lHVyWJDVVS5Yja95DCnv1vbJuw16trAW5f5P1wf0KqbmLy66T+fipnMu2P7hXztpZZ/LZvkJ2EEvOev34qeC3dON3Bm3h0zbbgtW0poPbhy2zMPd61tI35HgNG9dO/AZZ8x7M3U7mPyI1VuW1Htut55AlM//R3PW86KU2t9+++C9ku2233YVPKOzVKWSagyRzLp88H9x1u76qRbLTXdsPRbz6Ntuk/cF9CtkdaHMfPdBmmwu7tZ1rx16DrBwDE8EyH1bY7fq2bjWuDpLW2XhuMOhhb3Cnw6cvSMO3Daa19L3g71zWr6eFT0ljds58j+8Hxxllj9FxrK/W64jtgmXm/L7ngu9b9KI0bLK09I3c710+VyrfNONl89HDCqXrg4HCbAkXKVg3tcuCu6GyCRdlH+BZZ8VHUumor/7+fO3Fa8MmS9kGJtbJ1u7XWfJycO7Rg9uv1bQ6+0CYFLSFxjXS0rdyx7/4lWDq1BFTpGyD/+tULwnayzqDJn61jrJZ/l5wQcQ6FWO/ShRlYT55tsfXVVf+oXv631L+6zIf/8JqavO4ac1/TJFOHIMsy0grP2yjslbKSlZ3629w3PrsiZN19fr5ay3bbtirCx5lkev3dlNfqiP/QpYr+4P7csfduKbNY62pXdp+/Xr1Mh9vMGvC0K1bXzA0Yvs2j5Fm3sO5jyHL31PI3bhz7x5t336drPk5+tbZLpZeu25V87k0cpq04kM5G5wjOo4VTI+ay7K32+2PWKna4OLFDetiQ5+9IPltPMvA97InxddZPjejfqSur0/bbW77HOnLD3K2h1DIkmlYGSSMBk2SPnsp93IkqWpRG7/r/Zbjt1k1LxiL/KyN88oVHwYXE2Zr54M3b/NcwSx8PIi9K+us7ousCXdJwbbtr3fRUdUi2enu7Ye3989K1kj1K3L/9vovZb+fu/+lT56TRs8IEqzR0jbPYc2yt2TbJvjeptXBhanZeGmZ+uVBm7E92e//J/cyFz7ZqbELqYPbbw/s0xy/UWbJ2ov7PTf373dTLb+/J/7Zqdpg2xoxJUdfzLR5zm6qF2Vfrm2y31SzTqQ4aC85mI/+p4jV/lhcS785Z/wBywlnHvvWL//gvqw5jGC8Kct467Bt2uxrBeNoDQp7De1/r2PJalrTZn/R1H3RrfUu5WgPtpG+eDtnvKr5XHYq8xzQcazgkVa5LH9PKsvsL2vJq9LgLdYe++bk/LhZ9GLO8So7XZc90brus0uDc76wVydr3kM532d99HC3j32GvYY29y+52l2b22xzVTCjXTa+L7Pmk2DMdf3P1X7e+viyvubarxpFvLLtY+2XH3x1rP346SA32InY2z3PXTuGZyVrsl/AsO59q+bJsky3t//u2K46ov89xHIjxeNxNTa2Psit+zuRSHRoGZWVfWdKvMrKYqmmLjjRaViV9T2maLBKSrr/WWHoPn2pTaEdRW1Mb+umpEhJ9rsAJSleoeKShIpzDbp3RqKNaWVCcYVCIQ0qbaNdNbTT5ixHipQonkgoHu2F9lnXFOzHaj7PXh4rV1FxkYqcLkxZVFsfLLupOnt5fJCKi4P9f163Rd8Prs7MJVqqcCSsQcXdHGND29PP2ZFox6eCLWqjXTpRhcLhtttle5KWFGnjObLREsl2+v4+ta39SDjR/vbb13iuFG+j7qOlikQjikSLpFh5m+/L6IQaIycc0aCKLqyP2oa1235V9vL4oGCf3NaZc9KSomW5y6MliiXiisU6EV/SCuLKJdKFZa7vy3bO+ZxocMfP+mJl0qpVwUDQ2v1/TtGSr+opUpJz4MBeG3/O7TGxdvrfVGPb62Ndu4hVBFOTV47P/V47nP1Cn2ipLCcUTAvelnA89yC3WdurzXUhUbSkdZIkWhpMNZ5qaJ0wz/a5HANwdrxS5eUd6590WXvtJRSTwm3EEIpLbvqresx1DmSHW5+7tFfvdljBnP5r+d7aq+KzXOUvyUpUqqysh9cVuqQ7+t/SAO0vpZraPW5GYzFFE51YN9VlbRY74U6c93XEmkiw/8wxCGglKr7az9Wt3S/kSgbFK7uvL9Ue1w0GJXNx2n7esB0tan891tYHx4D1Ex2phtb7xnaPkWW5B/DtcHAOVdZHt51GL/tva69+w4kgcW45we8r3+D3tdVPdiIKhcJtr5NVa6c9TTUG9ZNLW+dKkuQlZeJtTP1vh+SEM2Pp8r5u9aq2Y8rxfS2qomsvIGynzVmh9s+H1p7X2LFSlZXF264TywmWFy0NZhBan5cOzkNynCdZiUEqLY3nXnZbku0cf9a/iNSYYN/Ylf5IV61rhzlY4Vjb+6hoiZSskylZO515G3VmxctVUbH2kRbL2/5eOxIP9m2e13a9RksViUQU6cTYRWlpov3tt6023FXV1cH5bKpBstve/7T8/p6wOhrUU6ox+7bcXmzR4tyxLW+jrci02xeLJ+KKh9puGy395lRD2/tOL926P7lhNIk2chiJLL8j1SAlRme+vk6kROFIKOhWZBtvWP97S+NSU3vbQKLb20DO/f6KNs4BjZETybFfamtczs4xphqKS14q8zxkQ22NV62OtnPOt7Zv2+S20+ZKFE8Ude9YdG3d2rGL7McTkxjS+dzZirbfb8eKM+u2qZ3HpK07B2pv7GH9cZhoSVAnJZ1YX+2d50ZKFIlGJLWzPcRKVVm5cY9+y2cfb8AlxidOnKiqqiqtXLlSgwYFO4qFCxdq2LBhKu7gAXvVqvw/38yYoOGsWlUrxy5S8bRTZD3366zvdbc+UmtWdv90M9h469djvtsUOqZ8s4Nk55jOxDMhafrpsh76cdZyd+pJqlrT2C11XT5hP9k5pnT1phynOq9IyTa2+9LYMIVi5dmn5Ru2jbRyntydzlR1g5FX1/P7D9uOq3TH02U9eHbWcneHU1VV3SzfzzLtUTscp0glO5yWc/oXd8rxqlpd1ye2xfLtjpf92k1Zy7wdTlONW6R0N+/PS2NDFYpXZL8KcNg2arJKVdfB7ywft7fsHCdv3nbfVp1X3Ga7bI8xRmXTz5CdY3YBd6ezZMfK816P7Smf+HXZT1yUtczb/sR2t9++xhipbPvvyM4xNau34+mqSRXJbU6pbMfTZH+Q4+63bY6SNliGP3E/NahYjV1YH46dUMmOp8nK9qxtBdv+mlVtT+8ftLnTZc9/LPsypp+l6saQvPqOx2dZRqXTz5Cd4644d6ezVN3odGqZ6yu2SxQZNCmYvnpDRUODK5E33EDG7xVMT1r/pTTtJGnykbmvvJ985FdTaE4/TXo1yz4rVq5UbJhCyn3eXL7lYbKf/7/gLuJvXCO9c2f279v2GOn9+4NnT869NzhG5epwb3GQlGVGBn/66ao3pUoYS6atdRMtD+4M33AqT0l+1RKZcXtJ2e5UcKLB5+vWTn1urOAO/NplwZ3kU78j5di3a7tvS3Pvy3zdcpQeMVVVPbwvKLJLFB26dXD3wIbilUGHe9SOuRcw5VjpnX9JNcukbY4JpoDLZujWUigqPX158PeXHwTrKFddbnmwtP52N+9R+dscLfPmPzLfayylN929x9dVZ607zx/ouqP/LfWNPnhvM8aobIfTZH+YfbYcd/qZqklG5TZ2vO2XlmyqUKQ4+35u1E5qtErU0I3bUswqVnyzr8tk+w12SOmh27Vsu46TUEmbfanvdltfqj3tndv4kRKZwZsF+/gNFQ1RMlypmnbWY0sf5Yn1+nRLXpV2/fFX+9IP/ivNODN4REe2OKZ/T+bBc7KWeZOPUoNfpKY+tm9cx7JslU4/U/aGU3+v+TS4U3hFltkNEoODY9P798nf6nDVK/P3lY3ZQ06u/sjkY1TvF6u5jXUSt4oVGzMzmM55l+/nnFZZ2xwVXABn2VnvPPaHbC1v091k5zjO+VsfqXq/uCX+jR0bSlhRxUZOyx3PVoe1+r4NVcQHy6r9Inh0w85nBY/LySbVIE2Y1foYvY4dlko3CS52j5QoVTxa1StrVbbJTnJyxBWcuz0RnO89dmHrsg//J219RPBYnSzcCft1eayzJFKh8PrnbusbNKnVnXpBf6SoS/2RropbxYptukv26ZDDRUqFS2VNPUn22//MvoBtvynNvU/ewX+W9dZt0rg9W8/cs44TVXrQFi374WKnTJHK8dKqhZnvLR6uZKhCNSuDu1TLppwo+42/Z/16b8fvqSbdsbGL9dt+6ZjdN2r77YqwU6yiKcfJeuVvwflsrt9fMqLl9/eEmFWk+MT9ZD56WNr/19JHG9xRu+rj4Hw6xzl7Kj5U1TliKxu8tRwnknUacX/1J9L2x8v8L/ux19/xNK2uScv32/7dQR/3dNn3fFc68PdBvy0LL1Iq7XCqrKcuzlrubvOtnNt1+YR9ZT9+Yev28ekL0pE35+xreTueptp0cL5ZvMMp7X5vsVOqyKCJ2admLxqqZLj72kB7+/3Sys0VynFxkD9+bzWqOOs5W9nomXLa7GNlmcFw8pHSBw9Kn78WPCZr9h+yxuxt/52c41Uxu0jxSfvLbNh2JckOKz1kG1WtrJVlWSqbfqasHDMLuDud1e1j0SG7OKj/py/N/p3bHNPp40nCLlZs+HbZHzkWK1cqPiJjmyyJDVY4MTj7RaBDtvjq0ZqfvSiN3zuYNn1DTkQqHdnyiEJv2imq9YqU6kT8HR3Dixhf0U12+GpWjfWtd5zvip7KiXWmDz7gplIfM2aMpk6dqssvv1x1dXVavHixrrnmGh1xxBEdXobv941/62JJpiR3u+Pkj5yWEas361I1hofkPVb+tV+P/Osf/xpCg+Xtf1XmjmHYNvImfV3pCV+TP27PzG1xlx+pOTFantdNcTiV8g7MHHz2h2wld/rZak5bbX6+zlTIPeqOYDB/ffFKae//J6/6C6UGbyfX9XtlvabTntJj95Y/Yd/MdbfTmUoWj+3yukulfKW3OFT+pjMzl737z9QUGynf7xvbYlNspLzdM58l5m86U+4WhyqV6v76aKstuIdcp3oVd3hZ9XalvAMzn9XmD95C3owftNsu2/vneb6SFVvI2/7EzO/Y4hClR0zvE/XY3r8Gp1LeAb/P/A1DJ8vd8fSNXk+9/c/zFOzfZmZ2pv2xeyg98etKpb2g/komyNvxtMz3Tdo/uCP4yw++erF0lNx9r1CjF+lSXKm0r/Tmh8gfs2vG93m7nd+y7bfb5spztblvKD1yeqf3k67rK1mxpbztT8jejofvuFH73jqVyj385sy7DENx6eCrMxKX/l7/LxgoSzcHU1U7keAO8i2/kRGftjo0uCu6eknQURuza+bdPU5U7tF3qM4K7pLKFWdjaIi8/a4IkjNL3wyS7BvadBepckLwvL9Xb5R2O096/75gsGjDO/0rx0s7niq913paR3/yUUoO3V6NKVve0K3lf+3KrOvGP/JWecaRDvxj5pX0RUPlTZglf/8rggHf9VmOdODvpDl/Df42Rv4Bvw+ezz37amm/y4OO7cwfZv6+TabJn3Js5jRpxpJ3+M2qN+U9vv3Wq0TuoddnXjEeikkH/iH4De/eLc3KMog0ZMsgsf/Ov6VPnpFG7yR/kyxJ9F3PlaIl8he9LP/rv/3q9Tf+nqMuJwQDuuvVpTdiqrxdzw2mYG+1roy8b1yrBrvn11VX/qF7+t9S/usyH/88z1eybJK8aadkro/NDlB61Eyl016nlllnKuQeeVv2/dxBf1KDl+jW39DoheXuc0nmtJ2WLe/wW1S33n4ulfKUnvC1IIGzge7uS7W/7ts+t0mVjpV72E1ZjyfuUberzlS0+x2plC93y8Pkb7rLej/UlebeJ3+/tRcRrRsg3fyAzHWy3fFKDdpK3t6/zLof9Xb9iRrTTt7bca5/rusrNXR7eVtvsC94+Rr5B/w2+3nMIdcEicxUo9w9fq7GdChjuQ12hbyDr81YJ/6gzeTNPFdNabvNuBq8uNyv/yG4c/XD/0l7Zl5c7Q/fTv60k4JjZI5zEnf3n6veqpB3yHXZy3f7aUb9SF1fnw1+kdySkdL+V2Z+X8U4ebtf0GZ7aLDK5FdOCi5EXPCUtEeW51sP3za403OnMzNnw7HstedD10l2WO7Rt6vOKl+77HK5h94QXAy3QVya8m3ppavll42WP3H/1uUfPiB/6onyh2yZEYp30J/UYLe/neX6V6cKuUfdnjkrTqxc2u+yry4MKB0ld9YVavSivbp9NHgJeQf84atn3a9jh+QedZvqVL52H/WjzHoas6tUPk7eLj9SvV0pd+we0oyzsp7Dekf+vdV+OOhH3JI5Y1a4aO2+rbxlH9kU30Terj/J+Hp/zG5Kb3awUp04Pkltb78aNKlD229X/jWnLLnTz5Y/ZKvg+fL7XZH99x95W6t11d3/Gr2o3FlXBPu6qkXSdse2jmHOtUE/Jss5u3vUHapT7tjqTJm8w28NttP1lY6SO3Ka/PH7SBMzx+L8aScpWTZRntd+37Slj7vlIcGFTRs+x1qSP2GW0kMmy936aPmjd8oo///t3Xl4FFW+//FPVXdngRC2hE1gVEJAVCAQQIEZJBJRQVDAHa565yI/hOtyFUUQEdAZ5DLO4MhF54I4Dl51nAFkU5wZZXEBRAEdVlEz7JAFQvbudNXvjyYtIXQngSTdNO/X8+RRuqu6T9X3nDqnzre6ykp7VsUxzQO3C0eTivNNpcXSke1S/2cqfJ7d5hp5r7pT7lJb7lK7ku9tWb4NnLV/X1Sl/r06f1Lg9wqMxrJu/1PFO6nEXyLvwFkqDHBcKjSbyLr11bOODew+j1U8X252pexeY6TdK33jkH8ulq5/tuL+bNFZ3p7/L+B8VZE3Wt70F8o/DkvyjflG/DTm83ptuZt1lXX1nRVj0eVueRI61/hctLvUlvfqu2W3OVv8p6o4ukW1P7PQbiDv0Fcr3unCGRNwLJhvNPb1Pa4zfm0e29h3vr3h1PPHt74l+/rnzt7XDvqNr6+VZF+SKm+XkXJ7qlf2SufwkgfJU2qpwI6TdctcKa5Z+YXO6Odro/6f7+dWhWHb1Vk8MmRlZWn69OnauHGjTNPUrbfeqieeeEIOh6PylSVlZYX+anXDkBISGvjLYhhSAyNXzhPf+67MiW0s+4ohKnImqsiu5HYnCJkz44gLQ4xZonqeTBm7lkmF2bKTb5SjeSdlu+vLsqQGZp5cef+SsXOZb7K9060qjmqmQvscb/MVsBxu1SvN8pWjIFN20g3yNu2ok3bDKtUnp2mrgZUlx48fS5k7fVefNuskyxUnd1QT5VvndzuUc+Hbd/t82+SMkX3FrSqOaa5C6/z3XQPzpFwnf/T9YiW6gewrhqo4KlGFVr2waov1zELFuDNl7HxfKsmT3XGwPPGXKc+q5HZ956GsLpg/fiJl7pTduqesS3oqz0yQ11u9HRJjlqheabaM3Suk/KOyk9JP1ctGNbZv65sFii46LGPHUsnyyO50m9z1W6vAjgubOFbGdxzJkrF7mVSQJbv9QJU26aC8KrbfcFTPLFJMyVFfXDyFsq+4RZ4GP6tQd+ubhYouPiJjxxLJ65Z9xVB5G7SWWVoo87vV0ol/yby8nzzNOuukmsiyzm+H+Np+hoxdy6WoBrI7/dT2qypQnTuf42RtfGYZh2koXlly7P9MOvCVb+Lx0r6+SZ7Mnb5f5tRrIrvTrXJHNZWrNM/3nK8TGVLb3r7nfns9Uv4Rac9q3+0kO94iFWVL36/xJc2jG8je85GM5Bt8FzQc+FJ2QkdZl6cp30xQqW1U2h5jzGJfO9j5vpSQJKPxZb4T8pJ8qV1/KaqBrPrNZTijZBz91pdATx7ou72wM0r6YY1UmOVLoDe61HdCefKAtGO5ZBrSlcNUUr+N8ry+fWoYhho58+QoyZH2feGbRGlxpXRZPxW4mslTaijeOOF7vuIPa3yTUj/rI2+rVOWqqRwOQ/HeozIOb/U9W7TBJVKHG6WiE75fr8W1lNVhkEpd8XIVHZOxc6mMek2lpOt9V3Q7Y6S9/5Dceb5fWzVtp5NGgmLtk3Ic+0bGD2ukhm1kJd+kQkdTlViV3Pq9hjgcpq8POLhRxoFNUuIVMi77uexju2VmrJN1SXepzTUyPHm+X+8XZkvJN8pumiz70BYZ+z6XEjvJuqy/bIdLzuPf+ZIJUXHSFYMlR5Qsd5E8ca3lUfSpMdRyX+yuvkNGdH3fr2JOHvI9D7P5Vb5bsu9aIbteU9kdh6jQlaASO1bxxnE5snb4njEY10JWh0EqdCaoxDqHR63UsrKxBc7//Nv3GeHft9eW+mbBqX5z6al+81a549qcc3/hcliK82bJ/P7vUvZ3stv2ltWyu04aTc+7zz0b0zTUwM7xHed+XCs1aiur/Y0qcCTIbZWf7DUMKSGmSN6s72v9XKoqKoxtOt4iT7xvbOMwDTWwM2Ue2Cjj4Gap2ZWyLu2nPEeCSr1Vf8BhA/OkXLk/+o6LMfG+C++im8jpzvW9VpQjdb1HhqdY9s5lkmH66kC9Vsq36ivadKteabbMPSulvMOy210vb0InnbQb60KY7osz8xVVcFDGzqW+i8uuuE2euDZyefNkHvhC2r/Zd/Fbu/5SUa6s4pPyJl4ZdPuiT50nm2XnI+0GyJtwRZXPR0zTULydLfPIFhmefBkJHXx3jCnMkZV8k0obt1eJUc+33zN3yGhw6hnZBcdkXX59ufJFm27V82bL3H0qPpdfL29ixfjUxPmow2Eo3s7xjXN2f+DrZ9tdr9LEq5RrN6m0PsQ63apv50kluVLeUSk6znfxZHGu74JIZ7SsgmxZrXtJtmQe2SojY52MRm2ky/rJ3r9RsiWr3fXKdyTI4/0pEe7bDzkyd6/0PWP1suuk+gmy93wou20feZt2lCWHXPn7fONCZ7RvLiC2hVy2R47sXTL2fiTVT5Td8RYVOhNUbAV/pEFl/OfAGWulY9ulS7rLaJ0qe98m6fBW2Zf+XN4WXZVXA+cj58JfDw9/5RtrNU2S1S5d+WZTeSxf/1nPLFKM+5jM7X/1XbzaLk2KbiBvvRYqcDSV23LIZXoVpxMyi7JlZO06dW5wmaz2NynfTJDbKt8X+49t+7+QcehrqflVvmObkaDSM36AWvb9xo6lkjv/1DHy0mrNXZxZ96ONkp/aTP6R09pv7R3TDEOKN3J99ezINzIu7ycd2yEd3ia7+VWyftZPeWbF7a9ppmmogXLkOLJNhu2VEZcoffeRbK9H9hVD5Ym/TA5vocyDm/xjduuy/qfKFrzfiTJLVd+bLfO7D6UT/5J96S/kbdFFefJdzNxIWTJP7vOdRzmjpKuGyx3bQie91RvL+s9xTx6QEdvI94tXr1tWx6HyNGirPMv3efHmSTlzf/DNz8XEy77iVhVFJarICn57av98067lMgqOSUkDpNhGso/vk9HkMt9dpopzfRcQNmqnk2fUxap8r68NZJ1qA1/91L+biTVaB6py3I8yvapvZcv4brWM4z/44ta8q/KM4MelQGMDt1FfsZ5jvvFFQaZ/HsrXp2X5+ypdNUJGdH3Zu1ZWa77KX4ePVj7mizPzFVV4yDcvZBinxjaXKN+qvcdjxZsn5Tzxg2++MqaRL3dWhXoXiMNhqIGVfapNbpROmw/xBGiTToetBt4smT+ukTJ3SJekSq17yM474uv/4prL7jBYhVHNFG3l+Y4HGeukRm1ltB8g++AW37Gpw80qbZRUoY5XR7Bxbhl/X3Ros4z9X0hNk8/az1dXbc3DV+cc/KJMjJ+vcDgpD1R5DMOQ0+mrlB5PgGckImyEUzIO1edy+U4gvF5LTZvGlYujYUhOp+/92m6LTqdDhuErx7mcsDmdpkzTkGEYsiw75MeO2tx3gY6R4dgWy+qX75dAdVMop9M8VQ+saifEK37W+dXLqvhpH3n9F4mFWxwrUxf7qa6dGZfqLFd2PGrYsF6NxrGmxkdV3bZQf2YZh8NUVJRDpmnI4/HK47HkcplyOEyVllrl9oXTacrpdMiy7FNlseV0Ok4dj22VllpyOn1Xh5eUeORw/HS8kCTTNGXbvuWk6rXH0493ZXXAtu1TZSn7fEPR0b5fOnk8pTJN33JS2VXPlkpLLTkchqKinLIsWyUlpWf9PtM0FBvrkmkacru9FZZzOEy5XL764nZ7K7RNl8v0t12Px5JlWRW2//Tt8nq9crmccjodp8psq7jYI4/np2VN05DDUfEz6pLDYcg0TVmWLa/XF4vGjevr+PEClZZaMgwpOtolw5BKSkplWbYcDl8cytaRfO0tOto38eH7hYldoS8789jndJqntl/+PihQmw2HfVUVJMZr1oXUt9eWmu4vysZ9dTUGqUrbLWs32dl5/gsnQn1uIgXf92c7DlZXoHHK6cfKsn75zGV+WrZu41mTAp3/lY1jLMs+Nd6o3vad7zj79DprnPrlXcX+zLffy+7+HOi7KotPTZ7HOByGXC5fP+x2l1Z726OjnXI6zVP73fb/WtQwVK6en75/bNs+61joTKfvB9M0K8QnUF346bt87bAmndmGw60tVeXY6XI5zjp+Pl3ZWEvy7fPKxlDVObadT/8UqO6HIg6n1zNfnT6/Y/v5l+P0Y89P+/bMMXt1BNuvZedRtm2ruPjs51FVVVYnyo6NZ6sb53OOfvrxvWw+0+u1/HU82DxaVb+3Jvr3YKpz3D/X9hBovUD945nLn2s/WtXztbqcO//pO2s+d1bWJqtzfnpm/QrUz525L2tjrrgqx/Bz2cZgwiExftE9YzzS2Xbok1rAxaKsrZ15dxpJpybu66Ytnu+JYbhNKtfmvruQjpGhKGdN1oWanrA4mwsllsHUxX6qa1WNy9mWK0u+1bSaavu1Uedqsx57vZaKisq3a7fbK+ns+/7MY4Avme4t9+/Tly//Xee+HYG+43SWZauoyFPp93m95ZcL9FkFBe6A73u9VtDJD4/HKpfUDlSe07elpKQ0YKK+rEzW2Z69WYe8XrvcdpTtg7L/2rZUXOw5Yx1LZ266bzIteAzOPPYFqn9nEw77CgiFmu4v6vocoDptty7PpaoiWFnOdhysrkDjlDOPlcHKEW7ndNURKN5nG8dUx/mOs6tSZ6u63+syPr7+PHg/HIxvzFL5cmfun6qMBU/fD2fbt4HqQm32/We24XBrS1XZ9qocL8821gqmOse22jhehyIOFet0nRfhrOU405lj9uoItl+rch5VVVWpE+dzjn768f30hG1VjhNV/d6a6N9ryrm2h0DrBeofz1z+XPvRqh6zQzHeq4154XNpk2fWr0D77MzXQzUndT7HnXB10T1jHAAAAAAAAAAAAABwcSExDgAAAAAAAAAAAACIaCTGAQAAAAAAAAAAAAARjcQ4AAAAAAAAAAAAACCikRgHAAAAAAAAAAAAAEQ0EuMAAAAAAAAAAAAAgIhGYhwAAAAAAAAAAAAAENFIjAMAAAAAAAAAAAAAIhqJcQAAAAAAAAAAAABARCMxDgAAAAAAAAAAAACIaCTGAQAAAAAAAAAAAAARjcQ4AAAAAAAAAAAAACCikRgHAAAAAAAAAAAAAEQ0EuMAAAAAAAAAAAAAgIhGYhwAAAAAAAAAAAAAENFIjAMAAAAAAAAAAAAAIhqJcQAAAAAAAAAAAABARCMxDgAAAAAAAAAAAACIaCTGAQAAAAAAAAAAAAARjcQ4AAAAAAAAAAAAACCikRgHAAAAAAAAAAAAAEQ0EuMAAAAAAAAAAAAAgIhGYhwAAAAAAAAAAAAAENFIjAMAAAAAAAAAAAAAIhqJcQAAAAAAAAAAAABARCMxDgAAAAAAAAAAAACIaCTGAQAAAAAAAAAAAAARjcQ4AAAAAAAAAAAAACCikRgHAAAAAAAAAAAAAEQ0EuMAAAAAAAAAAAAAgIhGYhwAAAAAAAAAAAAAENFIjAMAAAAAAAAAAAAAIhqJcQAAAAAAAAAAAABARCMxDgAAAAAAAAAAAACIaM5QF+BCZBihLsFPZQiHsuDcEcfIQBwvfMQwMhDHyEAcIwNxvPARw/PDfqtZ7M+LA8cdXKyo+7hYUfdxsaLu42JWW/W/Op9n2LZt1+zXAwAAAAAAAAAAAAAQPriVOgAAAAAAAAAAAAAgopEYBwAAAAAAAAAAAABENBLjAAAAAAAAAAAAAICIRmIcAAAAAAAAAAAAABDRSIwDAAAAAAAAAAAAACIaiXEAAAAAAAAAAAAAQEQjMQ4AAAAAAAAAAAAAiGgkxgEAAAAAAAAAAAAAEY3EeBhYtWqVOnXqpJSUFP/fhAkTJEnbtm3T7bffrpSUFKWlpem9994rt+6SJUuUnp6url27atiwYdqyZYv/Pa/XqxdffFG9e/dWSkqKxo4dq2PHjtXptl1MgsVx9erVGjp0qLp166a0tDS98sorsizLvy5xDB/B4ljm2LFj6t27txYvXlzudeIYHoLFcNeuXbrvvvuUkpKi3r1769e//rVKS0v96xLD8BEsjitXrtRNN92kbt26aeDAgXr77bfLrUscw8eJEyf05JNPqlevXurRo4ceeugh//5mjHPhCBZHxjgXhmAxLMP4BkCo7Nq1Sw888IB69uypPn366Mknn1ROTk6oiwXUGa/Xq1GjRmnixImhLgpQZ6oyPgUi0fbt23XvvfcqNTVVffv21fPPPy+32x3qYgG1JicnR+np6dq4caP/tcrmBGudjZCbOXOmPXHixAqvnzhxwu7Zs6e9aNEi2+Px2J9//rmdkpJib9u2zbZt296wYYOdkpJib9682Xa73fbChQvtXr162YWFhbZt2/bvf/97+5ZbbrEPHTpk5+Xl2Y8++qg9evToOt22i0mgOH777bd2586d7Y8//tj2er323r177f79+9sLFiywbZs4hptAcSzj9XrtUaNG2R07drT/+te/+l8njuEjUAyzs7PtXr162a+++qrtdrvt/fv32zfccIM9f/5827aJYbgJFMfdu3fbXbp0sbds2WLbtm1/9dVX9pVXXml/+eWXtm0Tx3AzcuRIe9y4cXZubq6dl5dnjx8/3n7wwQcZ41xgAsWRMc6FI1AMyzC+ARAqRUVFdp8+few5c+bYJSUldk5Ojj169Gh7zJgxoS4aUGd+97vf2R07drSfeuqpUBcFqDOVjU+BSOT1eu0+ffrYf/zjH22v12sfPnzYHjhwoP3KK6+EumhArdi8ebM9YMAAOzk52d6wYYNt25XnPesCvxgPA99++62uuuqqCq9/9NFHatSoke699145nU5de+21uuWWW/TWW29Jkt577z0NGjRI3bt3l8vl0v3336/GjRtr1apV/vdHjx6tli1bKi4uTpMnT9a6deu0f//+Ot2+i0WgOB48eFB33XWX+vfvL9M01a5dO6Wnp+vLL7+URBzDTaA4lpk7d65atGihli1blnudOIaPQDFcunSpLr30Uo0ZM0Yul0utW7fW66+/rptuukkSMQw3geKYkZGh0tJSWZYl27ZlGIYcDoeioqIkEcdw8s9//lPbtm3TzJkzFR8fr7i4OM2YMUNPPPEEY5wLSLA4Msa5MASLYRnGNwBC5dChQ+rYsaPGjRunqKgoNW7cWHfeeae/LwEi3RdffKGPPvpIN9xwQ6iLAtSZqoxPgUiUm5urzMxM/5yWJJmmqdjY2BCXDKh5S5Ys0RNPPKHHHnus3OuVzQnWBRLjIWZZlrZv3641a9aof//++sUvfqEpU6YoNzdX3333nZKTk8stn5SUpF27dkmS9u7dG/D9vLw8HTlypNz7CQkJatiwoXbv3l37G3aRCRbHgQMH6umnn/YvW1xcrDVr1ujKK6+URBzDSbA4StKGDRu0cuVKTZ06tcK6xDE8BIvhN998o+TkZD377LPq06ePBgwYoGXLlqlFixaSiGE4CRbHvn37qmvXrrr77rt15ZVX6q677tIjjzyizp07SyKO4eSbb75RUlKS/vznPys9PV19+/bViy++qMTERMY4F5BgcWSMc2EIFkOJ8Q2A0Lr88ss1f/58ORwO/2urV6/29yVAJMvOztbkyZP1m9/8hqQILiqVjU+BSNW4cWPdf//9evHFF3X11VerX79+uvTSS3X//feHumhAjevbt6/+9re/6eabby73emVzgnWBxHiI5eTkqFOnTho4cKBWrVqld955RxkZGZowYYIKCgoqDIxjYmJUWFgoSUHfLygokCTVq1evwvtl76HmBIvj6fLz8zVu3DjFxMT4OzziGD6CxTE7O1uTJk3S7NmzVb9+/QrrEsfwECyGubm5Wrx4sTp37qw1a9bolVde0bvvvquFCxdKIobhJFgc3W63WrdurYULF2rbtm167bXX9Pvf/16ffvqpJOIYTnJzc7V7925lZGRoyZIlWrp0qY4ePaqnnnqKMc4FJFgcT8cYJ3wFiyHjGwDhxLZt/fa3v9Unn3yiyZMnh7o4QK2yLEsTJkzQAw88oI4dO4a6OECdquo5BhBpLMtSTEyMpkyZoq1bt2rFihX6/vvv9fLLL4e6aECNS0xMlNPprPB6ZXOCdYHEeIglJCTorbfe0ogRIxQbG6tWrVppwoQJWrdunWzbVnFxcbnli4uL/ZNWsbGxAd8vq1hFRUUB10fNCRbH/Px8SdIPP/ygu+66S6WlpXrzzTcVFxcniTiGk0BxXLt2rf7rv/5Lo0aNCnibdeIYHoK1RcuydPXVV2vEiBFyuVzq2LGjRo4cqQ8++EASMQwnweL44osvKioqSr1795bL5dJ1112nQYMG6d1335VEHMNJ2e3tJ0+erLi4OCUkJOjRRx/V2rVrGeNcQILFsSz5yRgnvAWK4Zo1axjfAAgb+fn5evjhh7V8+XItWrRIHTp0CHWRgFr12muvKSoqSqNGjQp1UYA6V5VzDCAS/e1vf9Pq1at1zz33KCoqSu3bt9e4ceP09ttvh7poQJ0JNs9QV0iMh9iuXbs0e/Zs/zMlJMntdss0TXXu3FnfffddueX37t2r9u3bS5Lat28f8P2GDRuqefPm2rt3r/+9zMxMnThxosJtCnD+gsUxKipKa9eu1e23366f//znWrBggRo2bOhfjjiGj0BxNAxDGzZs0Ny5c5WamqrU1FQdOnRI06ZN05gxYyQRx3ARrC126NBBbre73PKnP9OHGIaPYHHMzMyUx+Mpt7zT6ZTL5ZJEHMNJUlKSLMsqFy/LsiRJV1xxBWOcC0SwONq2zRjnAhAohoZhaNOmTYxvAITcvn37NHz4cOXn5+svf/kLSXFcFN5//31t2rTJ3wevWLFCK1asUGpqaqiLBtS6ys4xgEh1+PDhCnOTp89pAReD5OTkoHOCdYHEeIg1atRIb731lubPn6/S0lIdOnRI//3f/63bbrtNAwcOVFZWlt544w15PB5t2LBBy5cv1/DhwyVJI0aM0PLly7VhwwZ5PB698cYbys7OVnp6uiRp2LBhmjdvnvbv36/8/Hz96le/Us+ePdW2bdtQbnJEChbHHTt2aNy4cXr66af11FNPVbh9BHEMH4HiOHz4cO3evVubN2/2/7Vq1UpTp07Va6+9Jok4hotgbfHOO+/Unj179L//+7/yer3avXu3Fi1apKFDh0oihuGksr5x1apVWr9+vWzb1qZNm7Rs2TLdcsstkohjOOndu7fatGmjSZMmqaCgQDk5Ofrtb3+rAQMGaPDgwYxxLhDB4rh3717GOBeAYDHcuXMn4xsAIZWbm6v77rtP3bp104IFC9SkSZNQFwmoEx9++KG+/vprfx88ePBgDR48WJs3bw510YBaF2x8Wnb3KSAS9e3bV5mZmXr11Vfl9Xq1f/9+zZs3zz+nBVwM0tPTg84J1gXD5jKskNu0aZNeeukl7dmzR9HR0Ro0aJAmTJig6Ohoffvtt3rhhRe0Z88eNWnSRA899JCGDRvmX/f999/XvHnzdPToUSUlJemZZ55Rly5dJEkej0dz5szRsmXLVFBQoF69emnGjBlq2rRpqDY1ogWK4yOPPKI1a9ZUeG5C9+7dNX/+fEnEMZwEa4+nS0tL0/jx42mPYShYDLdt26ZZs2Zpz549iomJ0d13362xY8fKMAxJxDCcBIvjn/70Jy1atEiZmZlq1aqVHnzwQQ0ZMsS/LnEMH0ePHtXMmTP15ZdfqqSkRGlpaZo8ebLi4+MZ41xAAsXxySefZIxzgQjWFk/H+AZAXVu4cKFmzpyp2NhY/5i8zJYtW0JUKqDuTZw4UZI0c+bMEJcEqBtVHZ8Ckebzzz/X7373O/3www9q0KCBhgwZonHjxvkfMQBEog4dOujNN99Ur169JKnSOcHaRmIcAAAAAAAAAAAAABDRuJU6AAAAAAAAAAAAACCikRgHAAAAAAAAAAAAAEQ0EuMAAAAAAAAAAAAAgIhGYhwAAAAAAAAAAAAAENFIjAMAAAAAAAAAAAAAIhqJcQAAAAAAAAAAAABARCMxDgAAAAAAAAAAAACIaCTGAQAAAAAAAAAAAAARjcQ4AAC1LDc3V88995z69eunrl27qm/fvnrqqad05MiRStc9cOCAOnTooAMHDtRBSQEAAAAAQKilpaVp8eLFFV5fvHix0tLSQlAiAAAiA4lxAABq2WOPPabjx4/rL3/5i7Zu3aqlS5fK7XbrgQceUGlpaaiLBwAAAAAAAABAxCMxDgBALfvqq6+Unp6uxMRESVJCQoImTZqkLl266OTJkzp+/LimTJmivn37qlevXhozZowyMjLO+llff/21/u3f/k19+/bV1VdfrWHDhmnr1q2SpI0bN6pfv356/PHHlZqaqj/84Q+Vli0/P1/Tp09Xv379dO211+qxxx5TVlaWpJ9+rf7ee+8pLS1N3bt31wMPPFDul+6ff/65RowYodTUVA0aNEjLli3zvzdx4kQ9/PDDuummm3TNNddo3759OnDggH75y1+qW7duuvHGG/XGG2+oQ4cOkqRf/vKXmjJlSrnyjRkzRnPmzKl0O44ePar/+I//UM+ePfWLX/xC48eP17Fjx/zlmDhxYrnlO3TooI0bN0ryXYm/cOFCDRkyRF26dNHdd9+t7du3a/To0UpJSdHNN9+sb775ptIyAAAAAABQVz7++GPddddduvbaa9WlSxeNHDky4FwCAADwITEOAEAtGzRokKZOnarnnntOq1at0sGDB5WYmKiZM2eqSZMmevjhh7Vv3z4tWbJEa9eu1eWXX677779f+fn55T6nuLhYY8eO1cCBA7Vu3Tpt3LhRbdu21axZs/zLHDlyRJdffrm++OIL3XPPPZWWbdKkSfrXv/6lxYsX6+9//7vi4uI0fvx42bbtX2bNmjVaunSpVq9eraysLP3P//yPJGnXrl0aO3asHnzwQW3cuFEzZszQr371K61fv96/7vr16zVnzhx99NFHuuSSSzRmzBg1a9ZMn376qRYsWKClS5f6lx0+fLg+/PBDud1uSVJWVpY+++wzDRs2rNLteOmll9SiRQt99tlnWrVqlQoLC6t0YUCZ9957T3/4wx/02WefKScnR6NGjdJDDz2kjRs3Kjk5WbNnz67yZwEAAAAAcL6mTZum1NTUcn/Tpk2T5Dv3f+SRR/Tggw/qiy++0Jo1a2TbtubOnRviUgMAEN5IjAMAUMuef/55Pfvsszp8+LCeffZZpaWlKT09XcuWLdP+/fu1adMmTZkyRYmJiYqJidETTzyh0tJSrV27ttznuFwuvfvuu7rnnnvkdrt18OBBNWrUSEePHi233IgRI+RyuRQXFxe0XNnZ2Vq9erUmT56spk2bqn79+po0aZK+/fZbbd++3b/c6NGjFR8fr4SEBKWlpfmvQH/nnXd0/fXX64YbbpDD4VC3bt10xx136K233vKv27VrVyUnJys+Pl5bt25VRkaGpkyZonr16umSSy7RY4895l92wIABMk1TH3/8sSRp+fLlSklJUZs2bSrdx9HR0frqq6+0cuVKFRQUaP78+XrmmWcqXa/M8OHD1aJFC8XFxalz587q1auXUlJSFBUVpb59++rgwYNV/iwAAAAAAM7X1KlTtXnz5nJ/U6dOlSQ1adJEK1euVFpamvLz83XkyBE1bty4wvwAAAAozxnqAgAAEOlM09TQoUM1dOhQ2bat77//Xu+//76efPJJPfLII5JULvnrcDjUsmVLHTx4UF26dCn3+saNGzV69GgVFhYqKSlJTqez3K+7JalZs2ZVKldZsveOO+4o97rD4dCBAwfUqFEjSb5bv5c5/fsOHjyoDRs2KDU11f++1+tV27Ztz1qWshP1evXq+V9r3bq1//+joqI0ePBgvf/++7rxxhu1ZMkS/fu//3uVtuWZZ57Ra6+9pgULFmjixInq2LGjnnnmmXJlC6ZsW8u2v2HDhv5/m6ZZYR8DAAAAABAqLpdLK1as0DvvvCPDMJScnKz8/Hw5nUz3AwAQDD0lAAC1aP369Xr44Yf1ySefqFGjRjIMQ0lJSXr88cf12WefybIsSdK+ffvUvn17Sb7k8qFDh/zPJC+zbds2zZgxQ++8846uuuoqSdLrr7+uH3/8sdxyhmFUqWzNmzeXJH3wwQflvmvv3r1q06aNMjMzg67fokUL3XbbbZo+fbr/tWPHjpVLIp9ellatWiknJ0dFRUWKjY2VJB06dKjcZw4fPlx33HGHtmzZogMHDmjgwIFV2pYdO3bozjvv1H/+538qJydHc+fO1fjx47VhwwaZpqmSkhL/sjk5ORXWr+o+AwAAAAAg1D744AMtWrRIb7/9tn72s59JkmbMmKE9e/aEuGQAAIQ3bqUOAEAt6tGjh5o2baqnn35au3fvlsfjUX5+vpYtW6aMjAzdeOON6tevn55//nllZmaquLhYs2fPltfrVf/+/ct9Vl5enkzTVExMjCRp69atevPNN/3P5K6u5s2b67rrrtMLL7yg48ePy+PxaN68eRoxYoROnjxZ6fojRozQihUr9Omnn8qyLGVkZGjkyJF6/fXXz7p8ly5dlJSUpJkzZ6qoqEhHjx7Vyy+/XG6ZTp06KSkpSdOnT9fNN9/sT6BX5tVXX9WMGTOUn5+v+Ph4xcbGqnHjxpKkdu3aafPmzTp69KiKi4s1d+5cEuEAAAAAgAvW6fMDtm1r3bp1Wrp0qTweT6iLBgBAWCMxDgBALYqJidH//d//KTExUWPHjlVqaqquu+46LVu2TAsXLlS7du00a9YstWnTRrfddpt69+6t3bt3649//GO523tLUp8+fXTPPffo3nvvVY8ePTRt2jSNGjVKOTk5ysrKOqfyzZo1S/Hx8br11lt1zTXXaO3atZo/f36FX6ufTZcuXfTSSy/ppZdeUo8ePTRy5EilpaXp8ccfP+vypmnq5ZdfVkZGhq699lrdd9996tGjh1wuV7nlhg0bph07dmj48OFV3o7p06fLsixdf/316tGjh7Zt26Y5c+ZIku68806lpKRoyJAhSk9PV8uWLdWqVasqfzYAAAAAAOGkbP5g0KBBuuaaazRv3jzdd999+vHHH8/54nkAAC4Ghs1DMwEAQB0oLi7Wli1b1LNnTzkcDknSxx9/rKlTp2r9+vX+5f7xj39o9uzZ+uCDD0JVVAAAAAAAAABAhOEX4wAAoE64XC49+uij+vOf/yzLspSdna3XX3/df8v448ePa+fOnZo3b57uvvvuEJcWAAAAAAAAABBJ+MU4AAARaty4cfr8888Dvj9t2jQNGTKkDkskbd68WbNmzdL333+v6OhoDRw4UBMmTFC9evW0fv16jR8/Xr1799acOXMUFRUlSVq9erUmTpwY8DO7d++u+fPn19UmAAAAAAAAAAAuQCTGAQAAAAAAAAAAAAARjVupAwAAAAAAAAAAAAAiGolxAAAAAAAAAAAAAEBEIzEOAAAAAAAAAAAAAIhoJMYBAAAAAAAAAAAAABGNxDgAAAAAAAAAAAAAIKKRGAcAAAAAAAAAAAAARDQS4wAAAAAAAAAAAACAiEZiHAAAAAAAAAAAAAAQ0UiMAwAAAAAAAAAAAAAi2v8HLNqmpz6IehkAAAAASUVORK5CYII="
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 26
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Preparazione del Modello di Machine Learning"
]
},
{
"cell_type": "code",
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T10:25:45.872651Z",
"start_time": "2024-10-24T10:25:45.859503Z"
}
},
"source": [
"def prepare_data(df, olive_varieties_df):\n",
" # Crea una copia del DataFrame per evitare modifiche all'originale\n",
" df = df.copy()\n",
"\n",
" # Ordina per zona e anno\n",
" df = df.sort_values(['zone', 'year'])\n",
"\n",
" # Definisci le feature\n",
" temporal_features = ['temp_mean', 'precip_sum', 'solar_energy_sum']\n",
" static_features = ['ha'] # Feature statiche base\n",
" target_features = ['olive_prod', 'min_oil_prod', 'max_oil_prod', 'avg_oil_prod', 'total_water_need']\n",
"\n",
" # Ottieni le varietà pulite\n",
" varieties = [clean_column_name(variety) for variety in olive_varieties_df['Varietà di Olive']]\n",
"\n",
" # Crea la struttura delle feature per ogni varietà\n",
" variety_features = [\n",
" 'tech', 'pct', 'prod_t_ha', 'oil_prod_t_ha', 'oil_prod_l_ha',\n",
" 'min_yield_pct', 'max_yield_pct', 'min_oil_prod_l_ha', 'max_oil_prod_l_ha',\n",
" 'avg_oil_prod_l_ha', 'l_per_t', 'min_l_per_t', 'max_l_per_t', 'avg_l_per_t'\n",
" ]\n",
"\n",
" # Prepara dizionari per le nuove colonne\n",
" new_columns = {}\n",
"\n",
" # Prepara le feature per ogni varietà\n",
" for variety in varieties:\n",
" # Feature esistenti\n",
" for feature in variety_features:\n",
" col_name = f\"{variety}_{feature}\"\n",
" if col_name in df.columns:\n",
" if feature != 'tech': # Non includere la colonna tech direttamente\n",
" static_features.append(col_name)\n",
"\n",
" # Feature binarie per le tecniche di coltivazione\n",
" for technique in ['tradizionale', 'intensiva', 'superintensiva']:\n",
" col_name = f\"{variety}_{technique}\"\n",
" new_columns[col_name] = df[f\"{variety}_tech\"].notna() & (\n",
" df[f\"{variety}_tech\"].str.lower() == technique\n",
" ).fillna(False)\n",
" static_features.append(col_name)\n",
"\n",
" # Aggiungi tutte le nuove colonne in una volta sola\n",
" new_df = pd.concat([df] + [pd.Series(v, name=k) for k, v in new_columns.items()], axis=1)\n",
"\n",
" #print(\"Temporal features:\", temporal_features)\n",
" #print(\"Static features:\", static_features)\n",
"\n",
" # Crea scalers separati per ogni tipo di dato\n",
" scaler_temporal = StandardScaler()\n",
" scaler_static = StandardScaler()\n",
" scaler_y = StandardScaler()\n",
"\n",
" # Prepara array per i dati\n",
" zones = new_df['zone'].unique()\n",
" years = new_df['year'].unique()\n",
" years.sort()\n",
"\n",
" # Inizializza arrays con le dimensioni corrette\n",
" X_temporal = np.zeros((len(zones), len(years), len(temporal_features)))\n",
" X_static = np.zeros((len(zones), len(static_features)))\n",
" y = np.zeros((len(zones), len(target_features)))\n",
"\n",
" # Popola gli arrays\n",
" for i, zone in enumerate(zones):\n",
" zone_data = new_df[new_df['zone'] == zone]\n",
" # Dati statici\n",
" X_static[i] = zone_data[static_features].iloc[0].values\n",
"\n",
" # Per i target, prendiamo solo l'ultimo anno disponibile per il training\n",
" # Questo simula una predizione per il prossimo anno\n",
" last_year_data = zone_data.iloc[-1]\n",
" y[i] = last_year_data[target_features].values\n",
"\n",
" #print(\"\\nShape prima dello split:\")\n",
" #print(\"X_temporal shape:\", X_temporal.shape)\n",
" #print(\"X_static shape:\", X_static.shape)\n",
" #print(\"y shape:\", y.shape)\n",
"\n",
" # Dividi i dati in train, validation e test\n",
" # Modifica: ora dividiamo per zone invece che per anni\n",
" n_zones = len(zones)\n",
" train_idx = int(n_zones * 0.7) # 70% per training\n",
" val_idx = int(n_zones * 0.85) # 15% per validation\n",
"\n",
" # Split dei dati\n",
" X_temporal_train = X_temporal[:train_idx]\n",
" X_temporal_val = X_temporal[train_idx:val_idx]\n",
" X_temporal_test = X_temporal[val_idx:]\n",
"\n",
" X_static_train = X_static[:train_idx]\n",
" X_static_val = X_static[train_idx:val_idx]\n",
" X_static_test = X_static[val_idx:]\n",
"\n",
" y_train = y[:train_idx]\n",
" y_val = y[train_idx:val_idx]\n",
" y_test = y[val_idx:]\n",
"\n",
" # Standardizzazione\n",
" X_temporal_train = scaler_temporal.fit_transform(X_temporal_train.reshape(-1, len(temporal_features))).reshape(X_temporal_train.shape)\n",
" X_temporal_val = scaler_temporal.transform(X_temporal_val.reshape(-1, len(temporal_features))).reshape(X_temporal_val.shape)\n",
" X_temporal_test = scaler_temporal.transform(X_temporal_test.reshape(-1, len(temporal_features))).reshape(X_temporal_test.shape)\n",
"\n",
" X_static_train = scaler_static.fit_transform(X_static_train)\n",
" X_static_val = scaler_static.transform(X_static_val)\n",
" X_static_test = scaler_static.transform(X_static_test)\n",
"\n",
" y_train = scaler_y.fit_transform(y_train)\n",
" y_val = scaler_y.transform(y_val)\n",
" y_test = scaler_y.transform(y_test)\n",
"\n",
" # Prepara i dizionari di input\n",
" train_data = {'temporal': X_temporal_train, 'static': X_static_train}\n",
" val_data = {'temporal': X_temporal_val, 'static': X_static_val}\n",
" test_data = {'temporal': X_temporal_test, 'static': X_static_test}\n",
"\n",
" #print(\"\\nShape dopo lo split:\")\n",
" #print(\"Train temporal shape:\", train_data['temporal'].shape)\n",
" #print(\"Train static shape:\", train_data['static'].shape)\n",
" #print(\"Train target shape:\", y_train.shape)\n",
"\n",
" return (train_data, y_train), (val_data, y_val), (test_data, y_test), (scaler_temporal, scaler_static, scaler_y)"
],
"outputs": [],
"execution_count": 53
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Divisione train/validation/test:\n"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T10:25:49.473595Z",
"start_time": "2024-10-24T10:25:49.199833Z"
}
},
"cell_type": "code",
"source": [
"simulated_data = pd.read_parquet(\"./data/simulated_data.parquet\")\n",
"olive_varieties = pd.read_parquet(\"./data/olive_varieties.parquet\")\n",
"\n",
"(train_data, train_targets), (val_data, val_targets), (test_data, test_targets), scalers = prepare_data(simulated_data, olive_varieties)\n",
"\n",
"scaler_temporal, scaler_static, scaler_y = scalers\n",
"\n",
"print(\"Temporal data shape:\", train_data['temporal'].shape)\n",
"print(\"Static data shape:\", train_data['static'].shape)\n",
"print(\"Target shape:\", train_targets.shape)"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Temporal data shape: (70, 39, 3)\n",
"Static data shape: (70, 337)\n",
"Target shape: (70, 5)\n"
]
}
],
"execution_count": 54
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## OliveOilTransformer"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T09:32:37.506903Z",
"start_time": "2024-10-24T09:32:36.905756Z"
}
},
"cell_type": "code",
"source": [
"import tensorflow as tf\n",
"\n",
"\n",
"class PositionalEncoding(tf.keras.layers.Layer):\n",
" def __init__(self, position, d_model):\n",
" super(PositionalEncoding, self).__init__()\n",
" self.pos_encoding = self.positional_encoding(position, d_model)\n",
"\n",
" def get_angles(self, position, i, d_model):\n",
" angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32))\n",
" return position * angles\n",
"\n",
" def positional_encoding(self, position, d_model):\n",
" angle_rads = self.get_angles(\n",
" position=tf.range(position, dtype=tf.float32)[:, tf.newaxis],\n",
" i=tf.range(d_model, dtype=tf.float32)[tf.newaxis, :],\n",
" d_model=d_model)\n",
"\n",
" sines = tf.math.sin(angle_rads[:, 0::2])\n",
" cosines = tf.math.cos(angle_rads[:, 1::2])\n",
"\n",
" pos_encoding = tf.concat([sines, cosines], axis=-1)\n",
" pos_encoding = pos_encoding[tf.newaxis, ...]\n",
" return tf.cast(pos_encoding, tf.float32)\n",
"\n",
" def call(self, inputs):\n",
" return inputs + self.pos_encoding[:, :tf.shape(inputs)[1], :]\n",
"\n",
"\n",
"class TransformerBlock(tf.keras.layers.Layer):\n",
" def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):\n",
" super(TransformerBlock, self).__init__()\n",
" self.att = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)\n",
" self.ffn = tf.keras.Sequential([\n",
" tf.keras.layers.Dense(ff_dim, activation=\"relu\"),\n",
" tf.keras.layers.Dense(embed_dim),\n",
" ])\n",
" self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)\n",
" self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)\n",
" self.dropout1 = tf.keras.layers.Dropout(rate)\n",
" self.dropout2 = tf.keras.layers.Dropout(rate)\n",
"\n",
" def call(self, inputs, training):\n",
" attn_output = self.att(inputs, inputs)\n",
" attn_output = self.dropout1(attn_output, training=training)\n",
" out1 = self.layernorm1(inputs + attn_output)\n",
" ffn_output = self.ffn(out1)\n",
" ffn_output = self.dropout2(ffn_output, training=training)\n",
" return self.layernorm2(out1 + ffn_output)\n",
"\n",
"\n",
"class OliveOilTransformer(tf.keras.Model):\n",
" def __init__(self, input_shape, num_outputs, d_model=64, num_heads=8, ff_dim=64, num_transformer_blocks=4, mlp_units=[128, 64], dropout=0.1, mlp_dropout=0.1):\n",
" super(OliveOilTransformer, self).__init__()\n",
"\n",
" # Input shape dovrebbe essere (seq_length, num_features)\n",
" self.input_layer = tf.keras.layers.Input(shape=input_shape)\n",
"\n",
" # Feature projection\n",
" self.feature_projection = tf.keras.layers.Dense(d_model)\n",
"\n",
" # Positional encoding\n",
" self.pos_encoding = PositionalEncoding(position=input_shape[0], d_model=d_model)\n",
"\n",
" # Transformer blocks\n",
" self.transformer_blocks = []\n",
" for _ in range(num_transformer_blocks):\n",
" self.transformer_blocks.append(TransformerBlock(d_model, num_heads, ff_dim, dropout))\n",
"\n",
" # Output layers\n",
" self.global_average_pooling = tf.keras.layers.GlobalAveragePooling1D()\n",
" self.dropout = tf.keras.layers.Dropout(mlp_dropout)\n",
"\n",
" # MLP head\n",
" self.mlp_layers = []\n",
" for dim in mlp_units:\n",
" self.mlp_layers.append(tf.keras.layers.Dense(dim, activation=\"relu\"))\n",
" self.mlp_layers.append(tf.keras.layers.Dropout(mlp_dropout))\n",
"\n",
" self.final_layer = tf.keras.layers.Dense(num_outputs)\n",
"\n",
" # Build the model\n",
" inputs = tf.keras.layers.Input(shape=input_shape)\n",
" outputs = self.call(inputs)\n",
" self._model = tf.keras.Model(inputs=inputs, outputs=outputs)\n",
"\n",
" def call(self, inputs, training=None):\n",
" x = inputs\n",
"\n",
" # Project features to d_model dimension\n",
" x = self.feature_projection(x)\n",
"\n",
" # Add positional encoding\n",
" x = self.pos_encoding(x)\n",
"\n",
" # Apply transformer blocks\n",
" for transformer_block in self.transformer_blocks:\n",
" x = transformer_block(x, training=training)\n",
"\n",
" # Global pooling\n",
" x = self.global_average_pooling(x)\n",
"\n",
" # Apply MLP layers\n",
" for layer in self.mlp_layers:\n",
" x = layer(x, training=training)\n",
"\n",
" # Final output\n",
" return self.final_layer(x)\n",
"\n",
" def model(self):\n",
" return self._model\n",
"\n",
"\n",
"# Costruisci il modello\n",
"model = OliveOilTransformer(\n",
" input_shape=(train_data.shape[1], train_data.shape[2]), # (seq_length, num_features)\n",
" num_outputs=train_targets.shape[-1] # numero di target\n",
")\n",
"\n",
"# Compila il modello\n",
"model.compile(\n",
" optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),\n",
" loss='mse',\n",
" metrics=['mae']\n",
")\n",
"\n",
"# Mostra il summary\n",
"model.model().summary()"
],
"outputs": [
{
"data": {
"text/plain": [
"\u001B[1mModel: \"functional_16\"\u001B[0m\n"
],
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"functional_16\"</span>\n",
"</pre>\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃\u001B[1m \u001B[0m\u001B[1mLayer (type) \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1mOutput Shape \u001B[0m\u001B[1m \u001B[0m┃\u001B[1m \u001B[0m\u001B[1m Param #\u001B[0m\u001B[1m \u001B[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ input_layer_20 (\u001B[38;5;33mInputLayer\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m4\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_219 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m320\u001B[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ positional_encoding_18 │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n",
"│ (\u001B[38;5;33mPositionalEncoding\u001B[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_72 │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m141,248\u001B[0m │\n",
"│ (\u001B[38;5;33mTransformerBlock\u001B[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_73 │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m141,248\u001B[0m │\n",
"│ (\u001B[38;5;33mTransformerBlock\u001B[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_74 │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m141,248\u001B[0m │\n",
"│ (\u001B[38;5;33mTransformerBlock\u001B[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_75 │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m34\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m141,248\u001B[0m │\n",
"│ (\u001B[38;5;33mTransformerBlock\u001B[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ global_average_pooling1d_18 │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n",
"│ (\u001B[38;5;33mGlobalAveragePooling1D\u001B[0m) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_228 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m128\u001B[0m) │ \u001B[38;5;34m8,320\u001B[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_201 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m128\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_229 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m8,256\u001B[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_202 (\u001B[38;5;33mDropout\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m64\u001B[0m) │ \u001B[38;5;34m0\u001B[0m │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_230 (\u001B[38;5;33mDense\u001B[0m) │ (\u001B[38;5;45mNone\u001B[0m, \u001B[38;5;34m5\u001B[0m) │ \u001B[38;5;34m325\u001B[0m │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n"
],
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
"┃<span style=\"font-weight: bold\"> Layer (type) </span>┃<span style=\"font-weight: bold\"> Output Shape </span>┃<span style=\"font-weight: bold\"> Param # </span>┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
"│ input_layer_20 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">InputLayer</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">4</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_219 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">320</span> │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ positional_encoding_18 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">PositionalEncoding</span>) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_72 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">141,248</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">TransformerBlock</span>) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_73 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">141,248</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">TransformerBlock</span>) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_74 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">141,248</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">TransformerBlock</span>) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ transformer_block_75 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">34</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">141,248</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">TransformerBlock</span>) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ global_average_pooling1d_18 │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"│ (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">GlobalAveragePooling1D</span>) │ │ │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_228 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">8,320</span> │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_201 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">128</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_229 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">8,256</span> │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dropout_202 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> │\n",
"├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
"│ dense_230 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) │ (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">5</span>) │ <span style=\"color: #00af00; text-decoration-color: #00af00\">325</span> │\n",
"└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
"</pre>\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\u001B[1m Total params: \u001B[0m\u001B[38;5;34m582,213\u001B[0m (2.22 MB)\n"
],
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">582,213</span> (2.22 MB)\n",
"</pre>\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\u001B[1m Trainable params: \u001B[0m\u001B[38;5;34m582,213\u001B[0m (2.22 MB)\n"
],
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">582,213</span> (2.22 MB)\n",
"</pre>\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"\u001B[1m Non-trainable params: \u001B[0m\u001B[38;5;34m0\u001B[0m (0.00 B)\n"
],
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
"</pre>\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"execution_count": 29
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Model Training"
},
{
"metadata": {
"ExecuteTime": {
"end_time": "2024-10-24T09:33:43.625381Z",
"start_time": "2024-10-24T09:33:34.088970Z"
}
},
"cell_type": "code",
"source": [
"# Addestramento\n",
"history = model.fit(\n",
" train_data,\n",
" train_targets,\n",
" validation_split=0.2,\n",
" epochs=100,\n",
" batch_size=32,\n",
" callbacks=[\n",
" EarlyStopping(\n",
" monitor='val_loss',\n",
" patience=10,\n",
" restore_best_weights=True\n",
" ),\n",
" ReduceLROnPlateau(\n",
" monitor='val_loss',\n",
" factor=0.5,\n",
" patience=5,\n",
" min_lr=1e-6\n",
" )\n",
" ]\n",
")"
],
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/100\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/layers/layer.py:372: UserWarning: `build()` was called on layer 'olive_oil_transformer_18', however the layer does not have a `build()` method implemented and it looks like it has unbuilt state. This will cause the layer to be marked as built, despite not being actually built, which may cause failures down the line. Make sure to implement a proper `build()` method.\n",
" warnings.warn(\n",
"2024-10-24 11:33:43.277232: W tensorflow/core/framework/local_rendezvous.cc:404] Local rendezvous is aborting with status: INVALID_ARGUMENT: Incompatible shapes: [32,34,5] vs. [32,5]\n",
"\t [[{{function_node __inference_one_step_on_data_37911}}{{node gradient_tape/compile_loss/mse/sub/BroadcastGradientArgs}}]]\n"
]
},
{
"ename": "InvalidArgumentError",
"evalue": "Graph execution error:\n\nDetected at node gradient_tape/compile_loss/mse/sub/BroadcastGradientArgs defined at (most recent call last):\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/runpy.py\", line 196, in _run_module_as_main\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/runpy.py\", line 86, in _run_code\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel_launcher.py\", line 17, in <module>\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/traitlets/config/application.py\", line 1075, in launch_instance\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelapp.py\", line 701, in start\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tornado/platform/asyncio.py\", line 205, in start\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/asyncio/base_events.py\", line 603, in run_forever\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/asyncio/base_events.py\", line 1909, in _run_once\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/asyncio/events.py\", line 80, in _run\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 534, in dispatch_queue\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 523, in process_one\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 429, in dispatch_shell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 767, in execute_request\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/ipkernel.py\", line 429, in do_execute\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/zmqshell.py\", line 549, in run_cell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3075, in run_cell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3130, in _run_cell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/async_helpers.py\", line 129, in _pseudo_sync_runner\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3334, in run_cell_async\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3517, in run_ast_nodes\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3577, in run_code\n\n File \"/var/folders/j4/dltmqwjj1438ftthspk8_knm0000gn/T/ipykernel_2258/3746327179.py\", line 2, in <module>\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 117, in error_handler\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 318, in fit\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 121, in one_step_on_iterator\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 108, in one_step_on_data\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 70, in train_step\n\nIncompatible shapes: [32,34,5] vs. [32,5]\n\t [[{{node gradient_tape/compile_loss/mse/sub/BroadcastGradientArgs}}]] [Op:__inference_one_step_on_iterator_38382]",
"output_type": "error",
"traceback": [
"\u001B[0;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[0;31mInvalidArgumentError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[0;32mIn[30], line 2\u001B[0m\n\u001B[1;32m 1\u001B[0m \u001B[38;5;66;03m# Addestramento\u001B[39;00m\n\u001B[0;32m----> 2\u001B[0m history \u001B[38;5;241m=\u001B[39m \u001B[43mmodel\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mfit\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 3\u001B[0m \u001B[43m \u001B[49m\u001B[43mtrain_data\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 4\u001B[0m \u001B[43m \u001B[49m\u001B[43mtrain_targets\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 5\u001B[0m \u001B[43m \u001B[49m\u001B[43mvalidation_split\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m0.2\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 6\u001B[0m \u001B[43m \u001B[49m\u001B[43mepochs\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m100\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 7\u001B[0m \u001B[43m \u001B[49m\u001B[43mbatch_size\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m32\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 8\u001B[0m \u001B[43m \u001B[49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[43m[\u001B[49m\n\u001B[1;32m 9\u001B[0m \u001B[43m \u001B[49m\u001B[43mtf\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mkeras\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mEarlyStopping\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 10\u001B[0m \u001B[43m \u001B[49m\u001B[43mmonitor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[38;5;124;43mval_loss\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 11\u001B[0m \u001B[43m \u001B[49m\u001B[43mpatience\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m10\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 12\u001B[0m \u001B[43m \u001B[49m\u001B[43mrestore_best_weights\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;28;43;01mTrue\u001B[39;49;00m\n\u001B[1;32m 13\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\u001B[43m,\u001B[49m\n\u001B[1;32m 14\u001B[0m \u001B[43m \u001B[49m\u001B[43mtf\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mkeras\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mcallbacks\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mReduceLROnPlateau\u001B[49m\u001B[43m(\u001B[49m\n\u001B[1;32m 15\u001B[0m \u001B[43m \u001B[49m\u001B[43mmonitor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[38;5;124;43mval_loss\u001B[39;49m\u001B[38;5;124;43m'\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 16\u001B[0m \u001B[43m \u001B[49m\u001B[43mfactor\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m0.5\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 17\u001B[0m \u001B[43m \u001B[49m\u001B[43mpatience\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m5\u001B[39;49m\u001B[43m,\u001B[49m\n\u001B[1;32m 18\u001B[0m \u001B[43m \u001B[49m\u001B[43mmin_lr\u001B[49m\u001B[38;5;241;43m=\u001B[39;49m\u001B[38;5;241;43m1e-6\u001B[39;49m\n\u001B[1;32m 19\u001B[0m \u001B[43m \u001B[49m\u001B[43m)\u001B[49m\n\u001B[1;32m 20\u001B[0m \u001B[43m \u001B[49m\u001B[43m]\u001B[49m\n\u001B[1;32m 21\u001B[0m \u001B[43m)\u001B[49m\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py:122\u001B[0m, in \u001B[0;36mfilter_traceback.<locals>.error_handler\u001B[0;34m(*args, **kwargs)\u001B[0m\n\u001B[1;32m 119\u001B[0m filtered_tb \u001B[38;5;241m=\u001B[39m _process_traceback_frames(e\u001B[38;5;241m.\u001B[39m__traceback__)\n\u001B[1;32m 120\u001B[0m \u001B[38;5;66;03m# To get the full stack trace, call:\u001B[39;00m\n\u001B[1;32m 121\u001B[0m \u001B[38;5;66;03m# `keras.config.disable_traceback_filtering()`\u001B[39;00m\n\u001B[0;32m--> 122\u001B[0m \u001B[38;5;28;01mraise\u001B[39;00m e\u001B[38;5;241m.\u001B[39mwith_traceback(filtered_tb) \u001B[38;5;28;01mfrom\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m\n\u001B[1;32m 123\u001B[0m \u001B[38;5;28;01mfinally\u001B[39;00m:\n\u001B[1;32m 124\u001B[0m \u001B[38;5;28;01mdel\u001B[39;00m filtered_tb\n",
"File \u001B[0;32m/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tensorflow/python/eager/execute.py:53\u001B[0m, in \u001B[0;36mquick_execute\u001B[0;34m(op_name, num_outputs, inputs, attrs, ctx, name)\u001B[0m\n\u001B[1;32m 51\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[1;32m 52\u001B[0m ctx\u001B[38;5;241m.\u001B[39mensure_initialized()\n\u001B[0;32m---> 53\u001B[0m tensors \u001B[38;5;241m=\u001B[39m pywrap_tfe\u001B[38;5;241m.\u001B[39mTFE_Py_Execute(ctx\u001B[38;5;241m.\u001B[39m_handle, device_name, op_name,\n\u001B[1;32m 54\u001B[0m inputs, attrs, num_outputs)\n\u001B[1;32m 55\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m core\u001B[38;5;241m.\u001B[39m_NotOkStatusException \u001B[38;5;28;01mas\u001B[39;00m e:\n\u001B[1;32m 56\u001B[0m \u001B[38;5;28;01mif\u001B[39;00m name \u001B[38;5;129;01mis\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m:\n",
"\u001B[0;31mInvalidArgumentError\u001B[0m: Graph execution error:\n\nDetected at node gradient_tape/compile_loss/mse/sub/BroadcastGradientArgs defined at (most recent call last):\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/runpy.py\", line 196, in _run_module_as_main\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/runpy.py\", line 86, in _run_code\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel_launcher.py\", line 17, in <module>\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/traitlets/config/application.py\", line 1075, in launch_instance\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelapp.py\", line 701, in start\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/tornado/platform/asyncio.py\", line 205, in start\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/asyncio/base_events.py\", line 603, in run_forever\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/asyncio/base_events.py\", line 1909, in _run_once\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/asyncio/events.py\", line 80, in _run\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 534, in dispatch_queue\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 523, in process_one\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 429, in dispatch_shell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/kernelbase.py\", line 767, in execute_request\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/ipkernel.py\", line 429, in do_execute\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/ipykernel/zmqshell.py\", line 549, in run_cell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3075, in run_cell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3130, in _run_cell\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/async_helpers.py\", line 129, in _pseudo_sync_runner\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3334, in run_cell_async\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3517, in run_ast_nodes\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/IPython/core/interactiveshell.py\", line 3577, in run_code\n\n File \"/var/folders/j4/dltmqwjj1438ftthspk8_knm0000gn/T/ipykernel_2258/3746327179.py\", line 2, in <module>\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/utils/traceback_utils.py\", line 117, in error_handler\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 318, in fit\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 121, in one_step_on_iterator\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 108, in one_step_on_data\n\n File \"/usr/local/anaconda3/envs/ml_env/lib/python3.10/site-packages/keras/src/backend/tensorflow/trainer.py\", line 70, in train_step\n\nIncompatible shapes: [32,34,5] vs. [32,5]\n\t [[{{node gradient_tape/compile_loss/mse/sub/BroadcastGradientArgs}}]] [Op:__inference_one_step_on_iterator_38382]"
]
}
],
"execution_count": 30
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"source": [
"next_year_production = model.predict(next_year_weather.mean().to_frame().T)[0]\n",
"print(f'Previsione produzione di olive per il prossimo anno: {next_year_production:.2f} kg/ettaro')"
],
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 8. Conclusioni e Prossimi Passi\n",
"\n",
"In questo notebook, abbiamo:\n",
"1. Caricato e analizzato i dati meteorologici\n",
"2. Simulato la produzione annuale di olive basata sui dati meteo\n",
"3. Esplorato le relazioni tra variabili meteorologiche e produzione di olive\n",
"4. Creato e valutato un modello di machine learning per prevedere la produzione\n",
"5. Utilizzato ARIMA per fare previsioni meteo\n",
"6. Previsto la produzione di olive per il prossimo anno\n",
"\n",
"Prossimi passi:\n",
"- Raccogliere dati reali sulla produzione di olive per sostituire i dati simulati\n",
"- Esplorare modelli più avanzati, come le reti neurali o i modelli di ensemble\n",
"- Incorporare altri fattori che potrebbero influenzare la produzione, come le pratiche agricole o l'età degli alberi\n",
"- Sviluppare una dashboard interattiva basata su questo modello"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 4
}